JP2015197968A - Impregnation inspection device and impregnation inspection method - Google Patents

Impregnation inspection device and impregnation inspection method Download PDF

Info

Publication number
JP2015197968A
JP2015197968A JP2014074169A JP2014074169A JP2015197968A JP 2015197968 A JP2015197968 A JP 2015197968A JP 2014074169 A JP2014074169 A JP 2014074169A JP 2014074169 A JP2014074169 A JP 2014074169A JP 2015197968 A JP2015197968 A JP 2015197968A
Authority
JP
Japan
Prior art keywords
impregnation
battery electrode
ultrasonic wave
output
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014074169A
Other languages
Japanese (ja)
Other versions
JP6398040B2 (en
Inventor
陽祐 今村
Yosuke Imamura
陽祐 今村
尋史 佐藤
Hiroshi Sato
尋史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eliiy Power Co Ltd
Original Assignee
Eliiy Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eliiy Power Co Ltd filed Critical Eliiy Power Co Ltd
Priority to JP2014074169A priority Critical patent/JP6398040B2/en
Publication of JP2015197968A publication Critical patent/JP2015197968A/en
Application granted granted Critical
Publication of JP6398040B2 publication Critical patent/JP6398040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately obtain the degree of impregnation of a battery electrode with an electrolyte.SOLUTION: An impregnation inspection device 1 for inspecting the degree of impregnation of a battery electrode with an electrolyte includes an ultrasonic output unit 11, ultrasonic reception unit 12 and an impregnation degree determination unit 13. The ultrasonic output unit 11 outputs an ultrasonic wave toward a battery electrode impregnated with an electrolyte. The ultrasonic reception unit 12 is disposed at a position opposing to the ultrasonic output unit 11 across the battery electrode and receives the ultrasonic wave output from the ultrasonic output unit 11. The impregnation degree determination unit 13 calculates an attenuation factor of the ultrasonic wave received by the ultrasonic reception unit 12 with respect to the ultrasonic wave output by the ultrasonic output unit 11 and determines the degree of impregnation of the battery electrode with the electrolyte on the basis of the calculated attenuation factor.

Description

本発明は、電池電極への電解液の含浸具合を検査する含浸検査装置および含浸検査方法に関する。   The present invention relates to an impregnation inspection apparatus and an impregnation inspection method for inspecting the degree of impregnation of an electrolytic solution into a battery electrode.

電池は、電極や電解液といった構成要素をケース内に封入することによって製造される。   A battery is manufactured by enclosing components such as electrodes and electrolyte in a case.

例えばリチウムイオン二次電池であれば、正極と負極との間にセパレータを挟んで発電要素を構成し、この発電要素をケース内に配置した後に、電解液をケース内に注液する。注液した電解液が正極や負極の全体に浸み込んで、正極や負極への電解液の含浸が完了した後に、次の製造工程に移行する。   For example, in the case of a lithium ion secondary battery, a power generation element is configured by sandwiching a separator between a positive electrode and a negative electrode, and after the power generation element is arranged in the case, an electrolytic solution is injected into the case. After the injected electrolytic solution has soaked into the entire positive electrode and negative electrode, and the impregnation of the electrolytic solution into the positive electrode and negative electrode is completed, the process proceeds to the next manufacturing process.

電極に電解液を含浸させる含浸時間は、例えば、事前にテストを行うことで決定される。事前のテストでは、まず、含浸時間を電極ごとに変化させて、各電極を解体して含浸が完了しているか否かを目視で判別する。次に、解体して含浸が完了していると判別できた電極における含浸時間に、所定のマージン時間を加算して、加算結果を最終的な含浸時間として設定する。   The impregnation time for impregnating the electrolyte with the electrode is determined, for example, by performing a test in advance. In the preliminary test, first, the impregnation time is changed for each electrode, and each electrode is disassembled to determine visually whether or not the impregnation is completed. Next, a predetermined margin time is added to the impregnation time at the electrode that is determined to be disassembled and impregnation is completed, and the addition result is set as the final impregnation time.

ここで、電極に電解液が含浸する速度は、含浸させる際の電極や電解液の温度によって変化するとともに、電極や電解液の性状によっても変化する。このため、上述のように事前のテストで含浸時間を一律に設定すると、電極への電解液の含浸が完了していないにもかかわらず次の製造工程に移行してしまう可能性がある。この場合、電池容量が変化してしまい、電池としての品質が低下してしまうおそれがある。そこで、上述のマージン時間を長めに設定することになる。   Here, the rate at which the electrode is impregnated with the electrolytic solution varies depending on the temperature of the electrode and the electrolytic solution during the impregnation, and also varies depending on the properties of the electrode and the electrolytic solution. For this reason, if the impregnation time is uniformly set in the preliminary test as described above, there is a possibility that the process proceeds to the next manufacturing process even though the impregnation of the electrolyte into the electrode is not completed. In this case, the battery capacity may change, and the quality of the battery may be reduced. Therefore, the above margin time is set longer.

しかし、電極への電解液の含浸が完了している状態は、過放電の状態に等しい。このため、この後の製造工程において仮充電を行う工程があるものの、上述のようにマージン時間を長めに設定すると、電極への電解液の含浸が完了しても、次の製造工程に移行するのが遅れ、過放電の状態が続いてしまう可能性がある。この場合にも、電池としての品質が低下してしまうおそれがある。   However, the state in which the electrode is impregnated with the electrolytic solution is equivalent to the overdischarge state. For this reason, although there is a process of performing temporary charging in the subsequent manufacturing process, if the margin time is set to be long as described above, the process proceeds to the next manufacturing process even when the electrode is completely impregnated with the electrolyte. There is a possibility that the state of overdischarge will continue and the state of overdischarge will continue. Even in this case, the quality of the battery may be deteriorated.

そこで、電極のインピーダンスを測定することで、電極への電解液の含浸が完了したか否かを判別する手法が提案されている(例えば、特許文献1参照)。この手法によれば、電極への電解液の含浸具合を、電極ごとに確認することができる。このため、含浸時間を一律に設定する必要がなくなるとともに、上述のマージン時間も不要になる。したがって、電池としての品質の低下を抑制することができる。   Therefore, a method has been proposed for determining whether or not the impregnation of the electrolyte into the electrode is completed by measuring the impedance of the electrode (see, for example, Patent Document 1). According to this method, the degree of impregnation of the electrolyte into the electrode can be confirmed for each electrode. For this reason, it is not necessary to set the impregnation time uniformly, and the above margin time is also unnecessary. Therefore, the deterioration of the quality as a battery can be suppressed.

特開2004−311343号公報Japanese Patent Application Laid-Open No. 2004-313143

しかし、電極への電解液の含浸が完了していなくても、ある程度含浸が進んでいくと、電極内での導通が確立する。このため、ある程度含浸が進んだ段階での電極のインピーダンスと、電極への電解液の含浸が完了した段階での電極のインピーダンスと、の間には、ほとんど差異がなくなる。   However, even if the electrode is not completely impregnated with the electrolytic solution, conduction within the electrode is established when the impregnation proceeds to some extent. For this reason, there is almost no difference between the impedance of the electrode when the impregnation has progressed to some extent and the impedance of the electrode when the impregnation of the electrolyte into the electrode is completed.

このため、特許文献1に示されている手法では、電極への電解液の含浸具合を正確に求めることは困難であり、電極への電解液の含浸が完了していないにもかかわらず次の製造工程に移行してしまう可能性があった。このため、上述のマージン時間のように、含浸時間を長めに設定する必要があったので、過放電の状態が続いてしまう可能性が依然としてあり、電池としての品質が低下するおそれが依然としてあった。   For this reason, in the method shown in Patent Document 1, it is difficult to accurately determine the degree of impregnation of the electrolyte into the electrode. There was a possibility of shifting to the manufacturing process. For this reason, since it was necessary to set the impregnation time longer as in the above-described margin time, there was still a possibility that the overdischarge state would continue, and there was still a possibility that the quality of the battery would deteriorate. .

そこで、本発明は、上記の課題に鑑みてなされたものであり、電池電極への電解液の含浸具合を正確に求めることを目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and an object thereof is to accurately obtain the degree of impregnation of the electrolytic solution into the battery electrode.

本発明は、上述の課題を解決するために、以下の事項を提案している。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。   The present invention proposes the following items in order to solve the above-described problems. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this.

(1) 本発明は、電池電極(例えば、図2の電池電極100に相当)への電解液の含浸具合を検査する含浸検査装置(例えば、図1の含浸検査装置1に相当)であって、電解液を含浸させた前記電池電極に向って超音波を出力する出力手段(例えば、図1の超音波出力部11に相当)と、前記電池電極を挟んで前記出力手段と対向する位置に設けられ、当該出力手段により出力された超音波を受信する受信手段(例えば、図1の超音波受信部12に相当)と、前記出力手段により出力された超音波に対する、前記受信手段により受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める含浸具合判定手段(例えば、図1の含浸具合判定部13に相当)と、を備えることを特徴とする含浸検査装置を提案している。   (1) The present invention is an impregnation inspection apparatus (for example, equivalent to the impregnation inspection apparatus 1 in FIG. 1) for inspecting the degree of impregnation of the electrolyte into the battery electrode (for example, equivalent to the battery electrode 100 in FIG. 2). Output means for outputting an ultrasonic wave toward the battery electrode impregnated with the electrolytic solution (for example, equivalent to the ultrasonic output unit 11 in FIG. 1), and a position facing the output means with the battery electrode interposed therebetween. A receiving means (for example, equivalent to the ultrasonic receiving unit 12 in FIG. 1) that receives the ultrasonic waves output by the output means, and the receiving means for the ultrasonic waves output by the output means. And an impregnation degree determination means (for example, equivalent to the impregnation degree determination unit 13 in FIG. 1) for obtaining an attenuation rate of the ultrasonic wave and obtaining an impregnation degree of the electrolytic solution into the battery electrode according to the obtained attenuation rate. Impregnation inspection device characterized in that It is proposed.

ここで、電池電極への電解液の含浸が進むに従って、電池電極内に存在している気泡の量が減少するが、超音波は、気泡に当たると反射するので、超音波の減衰率は、気泡の量に応じて変化する。そこで、この発明によれば、出力手段により、電池電極に向って超音波を出力し、受信手段により、この超音波を受信し、含浸具合判定手段により、電池電極に向って出力された超音波の減衰率に応じて含浸具合を求めることとした。このため、超音波の減衰率から、電池電極への電解液の含浸具合を正確に求めることができる。   Here, as the impregnation of the electrolyte into the battery electrode proceeds, the amount of bubbles present in the battery electrode decreases. However, since the ultrasonic wave is reflected when it hits the bubble, the attenuation rate of the ultrasonic wave is Varies depending on the amount. Therefore, according to the present invention, the output means outputs an ultrasonic wave toward the battery electrode, the reception means receives the ultrasonic wave, and the impregnation condition determination means outputs the ultrasonic wave toward the battery electrode. The degree of impregnation was determined according to the decay rate of. For this reason, the impregnation degree of the electrolyte solution to the battery electrode can be accurately obtained from the attenuation rate of the ultrasonic wave.

(2) 本発明は、(1)の含浸検査装置について、前記含浸具合判定手段は、前記減衰率の単位時間当たりの変化量が、予め定められた閾値(例えば、後述のゼロに相当)以下であれば、前記電池電極への電解液の含浸が完了していると判定することを特徴とする含浸検査装置を提案している。   (2) The present invention relates to the impregnation inspection apparatus according to (1), wherein the impregnation condition determining means has a change amount of the attenuation rate per unit time equal to or less than a predetermined threshold (for example, equivalent to zero described later). Then, the impregnation test | inspection apparatus characterized by determining with impregnation of the electrolyte solution to the said battery electrode being completed is proposed.

ここで、電池電極への電解液の含浸が進むに従って、電池電極内に存在している気泡の量が減少するので、減衰率の単位時間当たりの変化量が小さくなる。そこで、この発明によれば、(1)の含浸検査装置において、含浸具合判定手段により、減衰率の単位時間当たりの変化量が閾値以下であれば、電池電極への電解液の含浸が完了していると判定することとした。このため、閾値を設定することで、電池電極への電解液の含浸具合を正確に求めることができる。   Here, as the impregnation of the battery electrode with the electrolytic solution proceeds, the amount of bubbles present in the battery electrode decreases, so that the amount of change per unit time of the attenuation factor becomes small. Therefore, according to the present invention, in the impregnation inspection apparatus of (1), when the amount of change per unit time in the attenuation rate is equal to or less than the threshold value by the impregnation condition determination means, the impregnation of the electrolyte into the battery electrode is completed. It was decided that it was. For this reason, by setting the threshold value, it is possible to accurately determine the degree of impregnation of the electrolyte into the battery electrode.

(3) 本発明は、(1)または(2)の含浸検査装置について、前記出力手段は、前記電池電極の中心に向って超音波を出力することを特徴とする含浸検査装置を提案している。   (3) The present invention proposes an impregnation inspection apparatus according to (1) or (2), wherein the output means outputs an ultrasonic wave toward the center of the battery electrode. Yes.

この発明によれば、(1)または(2)の含浸検査装置において、出力手段により、電池電極の中心に向って超音波を出力することとした。このため、含浸の完了が最も遅くなることが想定される電池電極の中心について、電解液の含浸具合を求めることができるので、電解液の含浸が完了していない部分が電池電極に存在しないようにすることができる。   According to the present invention, in the impregnation inspection apparatus of (1) or (2), the output means outputs ultrasonic waves toward the center of the battery electrode. For this reason, since the degree of impregnation of the electrolytic solution can be obtained for the center of the battery electrode where the completion of the impregnation is assumed to be the slowest, the portion where the impregnation of the electrolytic solution is not completed does not exist in the battery electrode Can be.

(4) 本発明は、(1)または(2)の含浸検査装置について、前記出力手段は、前記電池電極の複数の点のそれぞれに向って超音波を出力し、前記受信手段は、前記出力手段により前記電池電極の複数の点に向って出力された超音波のそれぞれを受信することを特徴とする含浸検査装置を提案している。   (4) In the impregnation inspection apparatus according to (1) or (2), the output unit outputs an ultrasonic wave to each of a plurality of points of the battery electrode, and the reception unit The impregnation inspection apparatus is characterized in that it receives each of the ultrasonic waves output to a plurality of points of the battery electrode by means.

この発明によれば、(1)または(2)の含浸検査装置において、出力手段により、電池電極の複数の点のそれぞれに対して超音波を出力し、これら超音波のそれぞれを受信手段により受信することとした。このため、電池電極の複数の点のそれぞれにおける超音波の減衰率を求めて、これら複数の減衰率から、電池電極のどの部分で含浸がどれくらい進んでいるのかを求めることができる。したがって、電池電極の全体において、あとどれくらいの時間で含浸が完了するのかを推定することができる。   According to the present invention, in the impregnation inspection apparatus of (1) or (2), the output means outputs ultrasonic waves to each of the plurality of points of the battery electrode, and each of the ultrasonic waves is received by the receiving means. It was decided to. For this reason, the attenuation rate of the ultrasonic wave at each of a plurality of points of the battery electrode can be obtained, and from this plurality of attenuation factors, how much impregnation has progressed in which part of the battery electrode can be obtained. Therefore, it is possible to estimate how much time the impregnation is completed in the entire battery electrode.

(5) 本発明は、電池電極(例えば、図2の電池電極100に相当)への電解液の含浸具合を検査する含浸検査方法であって、電解液を含浸させた前記電池電極に向って超音波を出力する第1のステップと、前記第1のステップにより超音波を出力する位置と前記電池電極を挟んで対向する位置において、当該第1のステップにより出力された超音波を受信する第2のステップと、前記第1のステップにより出力された超音波に対する、前記第2のステップにより受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める第3のステップと、を備えることを特徴とする含浸検査方法を提案している。   (5) The present invention is an impregnation inspection method for inspecting the degree of impregnation of an electrolytic solution into a battery electrode (for example, equivalent to the battery electrode 100 in FIG. 2), toward the battery electrode impregnated with the electrolytic solution. A first step of outputting an ultrasonic wave, and a first step of receiving the ultrasonic wave output by the first step at a position opposite to the position where the ultrasonic wave is output by the first step across the battery electrode. The attenuation rate of the ultrasonic wave received by the second step with respect to the ultrasonic wave output by the step 2 and the first step is obtained, and the electrolyte solution to the battery electrode is determined according to the obtained attenuation rate. And a third step for determining the degree of impregnation.

この発明によれば、上述した効果と同様の効果を奏することができる。   According to the present invention, the same effects as described above can be obtained.

(6) 本発明は、電池電極である正極と負極との間にセパレータを挟んで構成された発電要素と電解液とをケース内に有する電池の製造方法であって、前記ケース内に前記発電要素を入れた後に電解液を注入する第1のステップと、電解液を含浸させた前記電池電極に向って超音波を出力する第2のステップと、前記第2のステップにより超音波を出力する位置と前記電池電極を挟んで対向する位置において、当該第2のステップにより出力された超音波を受信する第3のステップと、前記第2のステップにより出力された超音波に対する、前記第3のステップにより受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める第4のステップと、前記第4のステップで求めた含浸具合が所定の閾値以下となったか否かを判断し、当該閾値以下になったと判断した場合には充電工程を含む以降の工程へ移行する第5のステップと、を備えることを特徴とする含浸検査方法を提案している。   (6) The present invention is a method for manufacturing a battery having in a case a power generation element configured by sandwiching a separator between a positive electrode and a negative electrode, which are battery electrodes, and an electrolytic solution, and the power generation in the case A first step of injecting an electrolytic solution after inserting an element, a second step of outputting an ultrasonic wave toward the battery electrode impregnated with the electrolytic solution, and outputting an ultrasonic wave by the second step A third step for receiving the ultrasonic wave output by the second step at a position facing the position across the battery electrode, and the third step for the ultrasonic wave output by the second step. The fourth step for obtaining the attenuation rate of the ultrasonic wave received in the step and determining the degree of impregnation of the electrolyte into the battery electrode according to the obtained attenuation rate, and the degree of impregnation obtained in the fourth step are predetermined. Threshold And a fifth step of shifting to a subsequent process including a charging process when it is determined that the threshold value is equal to or less than the threshold value. ing.

この発明によれば、電解液の注入後のケース内に納められている電池電極に対して、上述した効果と同様の効果を奏することができる。   According to the present invention, effects similar to those described above can be achieved for the battery electrode housed in the case after the injection of the electrolytic solution.

本発明によれば、電池電極への電解液の含浸具合を正確に求めることができる。   According to the present invention, the degree of impregnation of the electrolytic solution into the battery electrode can be accurately obtained.

本発明の一実施形態に係る含浸検査装置のブロック図である。It is a block diagram of the impregnation test | inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る含浸検査装置が備える超音波出力部および超音波受信部と、発電要素と、の関係を示す模式図である。It is a schematic diagram which shows the relationship between the ultrasonic output part and ultrasonic reception part with which the impregnation test | inspection apparatus which concerns on one Embodiment of this invention is provided, and an electric power generation element. 本発明の一実施形態に係る含浸検査装置が備える超音波出力部および超音波受信部と、発電要素と、の関係を示す模式図である。It is a schematic diagram which shows the relationship between the ultrasonic output part and ultrasonic reception part with which the impregnation test | inspection apparatus which concerns on one Embodiment of this invention is provided, and an electric power generation element. 超音波が減衰する様子を示す模式図である。It is a schematic diagram which shows a mode that an ultrasonic wave attenuate | damps. 超音波の減衰率と含浸具合との関係を示す図である。It is a figure which shows the relationship between the attenuation factor of an ultrasonic wave, and an impregnation condition. 本発明の変形例に係る含浸検査装置が備える超音波出力部および超音波受信部と、発電要素と、の関係を示す模式図である。It is a schematic diagram which shows the relationship between the ultrasonic output part and ultrasonic reception part with which the impregnation test | inspection apparatus which concerns on the modification of this invention is provided, and an electric power generation element.

以下、本発明の実施形態について、図面を用いて、詳細に説明する。なお、以下の実施形態における構成要素は適宜、既存の構成要素などとの置き換えが可能であり、また、他の既存の構成要素との組み合わせを含む様々なバリエーションが可能である。したがって、以下の実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the constituent elements in the following embodiments can be appropriately replaced with existing constituent elements, and various variations including combinations with other existing constituent elements are possible. Accordingly, the description of the following embodiments does not limit the contents of the invention described in the claims.

図1は、本発明の一実施形態に係る含浸検査装置1のブロック図である。含浸検査装置1は、電池電極100(図2参照)への電解液の含浸具合を検査するものであり、超音波出力部11、超音波受信部12、および含浸具合判定部13を備える。   FIG. 1 is a block diagram of an impregnation inspection apparatus 1 according to an embodiment of the present invention. The impregnation inspection apparatus 1 inspects the degree of impregnation of the electrolytic solution into the battery electrode 100 (see FIG. 2), and includes an ultrasonic output unit 11, an ultrasonic reception unit 12, and an impregnation state determination unit 13.

図2は、超音波出力部11と、超音波受信部12と、電池電極100と、の関係を示す模式図である。なお、本実施形態では、電池電極100は、リチウムイオン二次電池の1つの正極または負極であり、平板状に形成されているものとする。   FIG. 2 is a schematic diagram illustrating a relationship among the ultrasonic output unit 11, the ultrasonic reception unit 12, and the battery electrode 100. In the present embodiment, the battery electrode 100 is one positive electrode or negative electrode of a lithium ion secondary battery, and is formed in a flat plate shape.

超音波出力部11は、電池電極100と正対する向きおよび位置に設けられる。また、超音波受信部12は、電池電極100を挟んで超音波出力部11と対向する位置に設けられる。   The ultrasonic output unit 11 is provided in a direction and a position facing the battery electrode 100. Further, the ultrasonic receiving unit 12 is provided at a position facing the ultrasonic output unit 11 with the battery electrode 100 interposed therebetween.

図1に戻って、超音波出力部11は、電池電極100に向って超音波を出力する。ここで、上述のように、電池電極100は平板状に形成され、超音波出力部11は電池電極100と正対する向きおよび位置に設けられる。このため、超音波出力部11から出力された超音波は、電池電極100の表面に直交する方向から、電池電極100に当たることになる。なお、超音波出力部11が出力する超音波の周波数の上限は、4MHzであり、下限は、0.5MHzであるものとする。   Returning to FIG. 1, the ultrasonic output unit 11 outputs ultrasonic waves toward the battery electrode 100. Here, as described above, the battery electrode 100 is formed in a flat plate shape, and the ultrasonic output unit 11 is provided in a direction and a position facing the battery electrode 100. For this reason, the ultrasonic wave output from the ultrasonic wave output unit 11 strikes the battery electrode 100 from a direction orthogonal to the surface of the battery electrode 100. In addition, the upper limit of the frequency of the ultrasonic wave output from the ultrasonic output unit 11 is 4 MHz, and the lower limit is 0.5 MHz.

超音波受信部12は、超音波出力部11により出力された超音波を、電池電極100を挟んで超音波出力部11と対向する位置で受信する。   The ultrasonic receiver 12 receives the ultrasonic wave output from the ultrasonic output unit 11 at a position facing the ultrasonic output unit 11 with the battery electrode 100 interposed therebetween.

図3は、電池電極100のどの位置に向って、超音波出力部11が超音波を出力するのかを示す模式図である。超音波出力部11は、電池電極100のうち電解液の含浸が最も遅くなる部分に向って、超音波を出力する。ここで、平板状に形成された電池電極100において、電解液の含浸が最も遅くなる部分とは、電池電極100の中心、すなわち電池電極100の重心のことである。   FIG. 3 is a schematic diagram showing to which position of the battery electrode 100 the ultrasonic output unit 11 outputs ultrasonic waves. The ultrasonic output unit 11 outputs ultrasonic waves toward the portion of the battery electrode 100 where the impregnation with the electrolyte solution is slowest. Here, in the battery electrode 100 formed in a flat plate shape, the part where the impregnation of the electrolyte solution is the slowest is the center of the battery electrode 100, that is, the center of gravity of the battery electrode 100.

図4は、電池電極100において、超音波が減衰する様子を示す模式図である。電池電極100への電解液の含浸が進むに従って、電池電極100内に存在している気泡の量が減少し、超音波は、気泡に当たると反射して減衰する。このため、超音波の減衰率は、電池電極100内に存在している気泡の量に応じて変化する。   FIG. 4 is a schematic diagram illustrating how the ultrasonic waves are attenuated in the battery electrode 100. As the battery electrode 100 is impregnated with the electrolytic solution, the amount of bubbles present in the battery electrode 100 decreases, and the ultrasonic waves are reflected and attenuated when they hit the bubbles. For this reason, the attenuation rate of the ultrasonic wave changes according to the amount of bubbles existing in the battery electrode 100.

図5は、超音波の減衰率と含浸時間との関係を示す図である。図5において、縦軸は、超音波の減衰率を示し、横軸は、電池電極100への電解液の含浸を開始してからの時間である含浸時間を示す。   FIG. 5 is a diagram showing the relationship between the attenuation rate of ultrasonic waves and the impregnation time. In FIG. 5, the vertical axis indicates the attenuation rate of ultrasonic waves, and the horizontal axis indicates the impregnation time, which is the time since the start of the impregnation of the electrolytic solution into the battery electrode 100.

電池電極100への電解液の含浸を開始すると、超音波の減衰率は、まず低下し、その後上昇し、最終的には、横ばいになってほとんど変化しなくなる。すなわち、超音波の減衰率の単位時間当たりの変化量は、電池電極100への電解液の含浸を開始した直後では大きいが、時間が経過すると小さくなる。   When impregnation of the battery electrode 100 with the electrolytic solution is started, the attenuation rate of the ultrasonic wave first decreases, then increases, and finally becomes level and hardly changes. That is, the amount of change per unit time of the attenuation rate of the ultrasonic wave is large immediately after the impregnation of the electrolytic solution into the battery electrode 100, but decreases as time elapses.

ここで、電池電極100への電解液の含浸を開始してから暫くの間は、電池電極100への電解液の含浸が進行するので、電池電極100内に存在している気泡の量が減少し続ける。このため、超音波の減衰率の単位時間当たりの変化量は、電池電極100への電解液の含浸を開始した直後では大きくなる。   Here, since the impregnation of the electrolyte into the battery electrode 100 proceeds for a while after the impregnation of the electrolyte into the battery electrode 100, the amount of bubbles present in the battery electrode 100 decreases. Keep doing. For this reason, the amount of change per unit time of the attenuation rate of the ultrasonic wave becomes large immediately after the impregnation of the electrolytic solution into the battery electrode 100 is started.

一方、電池電極100への電解液の含浸が完了すると、電池電極100内に存在している気泡の量は、ゼロとなり、変化しなくなる。このため、超音波の減衰率の単位時間当たりの変化量は、電池電極100への電解液の含浸を開始してから時間が経過して、電池電極100への電解液の含浸が完了すると、ゼロになる。   On the other hand, when the battery electrode 100 is completely impregnated with the electrolytic solution, the amount of bubbles present in the battery electrode 100 becomes zero and does not change. For this reason, the amount of change per unit time of the attenuation rate of the ultrasonic wave is such that when the time has elapsed since the start of the impregnation of the electrolytic solution into the battery electrode 100 and the impregnation of the electrolytic solution into the battery electrode 100 is completed, It becomes zero.

図1に戻って、含浸具合判定部13は、超音波出力部11により出力された超音波に対する、超音波受信部12により受信された超音波の減衰率の、単位時間当たりの変化量を求め、求めた超音波の減衰率の単位時間当たりの変化量に応じて、電池電極100への電解液の含浸具合を求める。具体的には、超音波の減衰率の単位時間当たりの変化量が、予め定められた閾値(例えば、ゼロ)以下であれば、電池電極100への電解液の含浸が完了していると判定する。また、単位時間当たりの変化量の変化率が0.01%以下であれば、電池電極100への電解液の含浸が完了していると判定してもよい。   Returning to FIG. 1, the impregnation condition determination unit 13 obtains a change amount per unit time of the attenuation rate of the ultrasonic wave received by the ultrasonic wave reception unit 12 with respect to the ultrasonic wave output by the ultrasonic wave output unit 11. Then, the degree of impregnation of the electrolytic solution into the battery electrode 100 is determined according to the amount of change per unit time in the calculated ultrasonic attenuation rate. Specifically, if the amount of change per unit time in the ultrasonic attenuation rate is equal to or less than a predetermined threshold (for example, zero), it is determined that the impregnation of the electrolyte into the battery electrode 100 is complete. To do. Further, if the change rate of the change amount per unit time is 0.01% or less, it may be determined that the impregnation of the electrolytic solution into the battery electrode 100 is completed.

なお、上述の超音波の減衰率の単位時間当たりの変化量を求めるに際しては、ノイズなどの影響を抑えるために、必要に応じて平均化処理を行ったり、単位時間を長めに設定したりしてもよい。単位時間の設定は、含浸が完了するまでの時間に応じて行うことができ、例えば、含浸が完了するまでの時間の平均値を求め、求めた平均値を50や100で除算した値を上述の単位時間として設定してもよい。単位時間を長く設定するに従って、求めた変化量の精度が高くなるが、変化量を求めるのに必要な時間が長くなる。   When determining the amount of change in the ultrasonic attenuation rate per unit time described above, averaging processing may be performed as necessary, or the unit time may be set longer to suppress the effects of noise and the like. May be. The unit time can be set according to the time until the impregnation is completed. For example, an average value of the time until the impregnation is completed is obtained, and a value obtained by dividing the obtained average value by 50 or 100 is described above. It may be set as a unit time. As the unit time is set longer, the accuracy of the obtained change amount increases, but the time required to obtain the change amount becomes longer.

以上の含浸検査装置1によれば、以下の効果を奏することができる。   According to the above impregnation inspection apparatus 1, the following effects can be produced.

含浸検査装置1は、超音波出力部11により、電池電極100に向って超音波を出力し、超音波受信部12により、この超音波を受信し、含浸具合判定部13により、電池電極100に向って出力された超音波の減衰率の単位時間当たりの変化量に応じて含浸具合を求める。このため、超音波の減衰率から、電池電極100への電解液の含浸具合を正確に求めることができる。   The impregnation inspection apparatus 1 outputs an ultrasonic wave toward the battery electrode 100 by the ultrasonic output unit 11, receives the ultrasonic wave by the ultrasonic reception unit 12, and applies the ultrasonic wave to the battery electrode 100 by the impregnation condition determination unit 13. The degree of impregnation is determined according to the amount of change per unit time in the attenuation rate of the ultrasonic wave output in the direction. For this reason, it is possible to accurately obtain the degree of impregnation of the electrolyte into the battery electrode 100 from the ultrasonic attenuation rate.

また、含浸検査装置1は、含浸具合判定部13により、超音波の減衰率の単位時間当たりの変化量が閾値以下であれば、電池電極100への電解液の含浸が完了していると判定する。このため、閾値を設定することで、電池電極100への電解液の含浸具合を正確に求めることができる。   Further, the impregnation inspection apparatus 1 determines that the impregnation of the electrolytic solution into the battery electrode 100 is completed by the impregnation condition determination unit 13 if the amount of change in the ultrasonic attenuation rate per unit time is equal to or less than the threshold value. To do. For this reason, by setting the threshold value, the degree of impregnation of the electrolyte into the battery electrode 100 can be accurately obtained.

また、含浸検査装置1は、超音波出力部11により、電池電極100の中心に向って超音波を出力する。このため、電池電極100のうち含浸の完了が最も遅くなる部分について、電解液の含浸具合を求めることができるので、電解液の含浸が完了していない部分が電池電極100に存在しないようにすることができる。   Further, the impregnation inspection apparatus 1 outputs ultrasonic waves toward the center of the battery electrode 100 by the ultrasonic output unit 11. For this reason, since the degree of impregnation of the electrolytic solution can be obtained for the portion of the battery electrode 100 where the completion of the impregnation is slowest, the portion where the impregnation of the electrolytic solution is not completed does not exist in the battery electrode 100. be able to.

以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計なども含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes a design that does not depart from the gist of the present invention.

例えば、上述の実施形態では、含浸具合判定部13は、電池電極100への電解液の含浸具合を、超音波の減衰率の単位時間当たりの変化量に応じて求めるものとした。しかし、これに限らず、例えば超音波の含浸率の値そのものに応じて求めるものとしてもよい。   For example, in the above-described embodiment, the impregnation degree determination unit 13 determines the degree of impregnation of the electrolytic solution into the battery electrode 100 in accordance with the amount of change per unit time in the ultrasonic attenuation rate. However, the present invention is not limited to this. For example, it may be determined according to the value of the ultrasonic impregnation rate itself.

また、上述の実施形態では、超音波出力部11は、電池電極100の中心の1点に向って超音波を出力し、超音波受信部12は、超音波出力部11により電池電極100の中心の1点に向って出力された超音波を受信するものとした。しかし、これに限らず、超音波出力部11は、電池電極100の複数の点のそれぞれに向って超音波を出力し、超音波受信部12は、超音波出力部11により電池電極100の複数の点に向って出力された超音波のそれぞれを受信するものとしてもよい。これによれば、電池電極100の複数の点のそれぞれにおける超音波の減衰率を求めて、これら複数の超音波の減衰率のそれぞれの単位時間当たりの変化量から、電池電極100のどの部分で含浸がどれくらい進んでいるのかを求めることができる。このため、電池電極100の全体において、あとどれくらいの時間で含浸が完了するのかを推定することができる。   In the above-described embodiment, the ultrasonic output unit 11 outputs an ultrasonic wave toward one point at the center of the battery electrode 100, and the ultrasonic reception unit 12 is output from the center of the battery electrode 100 by the ultrasonic output unit 11. It is assumed that the ultrasonic wave output toward one point is received. However, the present invention is not limited thereto, and the ultrasonic output unit 11 outputs an ultrasonic wave toward each of a plurality of points of the battery electrode 100, and the ultrasonic reception unit 12 uses the ultrasonic output unit 11 to output a plurality of battery electrodes 100. Each of the ultrasonic waves output toward the point may be received. According to this, the attenuation rate of the ultrasonic wave at each of the plurality of points of the battery electrode 100 is obtained, and at any part of the battery electrode 100 from the amount of change per unit time of the attenuation rate of the plurality of ultrasonic waves. It can be determined how much impregnation has progressed. For this reason, it is possible to estimate how much time the impregnation is completed in the entire battery electrode 100.

また、上述の実施形態では、含浸具合を検査する対象を、1つの平板状の正極または負極で構成される電池電極100とした。しかし、これに限らず、例えば図6に示す発電要素200のように、平板状の正極201と、平板状の負極202と、セパレータ203と、を積層させたものであってもよく、さらに発電要素200はケース(例えば、ラミネートで形成されたケース)に収容されているものであってもよい。この場合、超音波出力部11は、正極201および負極202のうち電解液の含浸が最も遅くなる部分に向って、正極201と負極202とセパレータ203とが積層されている方向から、超音波を出力するものとする。正極201および負極202のうち電解液の含浸が最も遅くなる部分としては、例えばこれら正極201および負極202のうち真ん中に挟まれているもの重心を、適用することができる。ただし、正極201や負極202とケースとを絶縁するために、正極201や負極202には、シュリンクフィルムが被せられており、このシュリンクフィルムによって、正極201や負極202に電解液が浸み込むことのできる場所が制限される場合がある。このため、正極201および負極202のうち電解液の含浸が最も遅くなる部分は、適宜変わるので、超音波出力部11がどこに向って超音波を出力するのかを適宜設定することが好ましい。   Further, in the above-described embodiment, the object to be inspected for the impregnation condition is the battery electrode 100 configured by one flat positive electrode or negative electrode. However, the present invention is not limited to this. For example, a flat plate-like positive electrode 201, a flat plate-like negative electrode 202, and a separator 203 may be laminated as in the power generation element 200 shown in FIG. The element 200 may be housed in a case (eg, a case formed of laminate). In this case, the ultrasonic output unit 11 transmits ultrasonic waves from the direction in which the positive electrode 201, the negative electrode 202, and the separator 203 are laminated toward the portion of the positive electrode 201 and the negative electrode 202 where the impregnation of the electrolyte solution is slowest. Shall be output. As the portion of the positive electrode 201 and the negative electrode 202 that is most slowly impregnated with the electrolytic solution, for example, the center of gravity of the positive electrode 201 and the negative electrode 202 that is sandwiched in the middle can be applied. However, in order to insulate the positive electrode 201 and the negative electrode 202 from the case, the positive electrode 201 and the negative electrode 202 are covered with a shrink film, and the electrolyte soaks into the positive electrode 201 and the negative electrode 202 by the shrink film. There are cases where places where you can go are limited. For this reason, the portion of the positive electrode 201 and the negative electrode 202 that is most slowly impregnated with the electrolyte changes as appropriate. Therefore, it is preferable to appropriately set where the ultrasonic output unit 11 outputs ultrasonic waves.

また、上述の実施形態では、含浸具合を検査する対象を、1つの平板状の正極または負極で構成される電池電極100とした。しかし、これに限らず、例えば、正極と負極とセパレータとを積層させた発電要素を巻き回したものであってもよく、さらにこの発電要素はケース(例えば、ラミネートで形成されたケース)に収容されているものであってもよい。この場合、超音波出力部11は、正極および負極のうち電解液の含浸が最も遅くなる部分に向って、正極と負極とセパレータとが積層されている方向から、超音波を出力するものとする。   Further, in the above-described embodiment, the object to be inspected for the impregnation condition is the battery electrode 100 configured by one flat positive electrode or negative electrode. However, the present invention is not limited to this, and for example, a power generation element in which a positive electrode, a negative electrode, and a separator are stacked may be wound. Further, the power generation element is accommodated in a case (for example, a case formed of laminate). It may be what has been done. In this case, the ultrasonic output unit 11 outputs ultrasonic waves from the direction in which the positive electrode, the negative electrode, and the separator are laminated toward the portion of the positive electrode and the negative electrode where the impregnation with the electrolyte solution is slowest. .

また、上述の実施形態では、含浸具合を検査する対象を、1つの平板状の正極または負極で構成される電池電極100としたが、全ての電池電極100を検査してもよいし、全ての電池電極100の中から1つ以上を適宜抽出して検査してもよい。また、全ての発電要素を検査してもよいし、全ての発電要素の中から1つ以上を適宜抽出して検査してもよい。   Further, in the above-described embodiment, the object to be inspected for the impregnation condition is the battery electrode 100 configured by one flat plate-like positive electrode or negative electrode. However, all the battery electrodes 100 may be inspected, or all the battery electrodes 100 may be inspected. One or more of the battery electrodes 100 may be appropriately extracted and inspected. Moreover, all the power generation elements may be inspected, or one or more of all the power generation elements may be appropriately extracted and inspected.

また、本発明は、電池の製造方法へ適用してもよい。例えば、ケースの開口部から発電要素をケース内に収めて開口部を蓋で閉じた後、蓋に設けられている電解液の注入口より電解液をケース内に注入する。その後に、本発明の検査方法同様に、電解液を含浸させた電池電極に向って超音波を出力する。超音波を出力する位置と電池電極を挟んで対向する位置において出力された超音波を受信する。その後、出力された超音波に対する、受信された超音波の減衰率を求め、求めた減衰率に応じて電池電極への電解液の含浸具合を求める。求めた含浸具合が所定の閾値内となったか否かを検査装置に設けた判別手段(CPU等)にて判断し、この閾値内と判断した場合には充電工程を含む以降の工程へ移行する。このようにすることで、含浸完了後に速やかに次工程への移行を自動ですることができる。   Further, the present invention may be applied to a battery manufacturing method. For example, after the power generation element is housed in the case from the opening of the case and the opening is closed with a lid, the electrolytic solution is injected into the case from the electrolytic solution inlet provided in the lid. Thereafter, as in the inspection method of the present invention, ultrasonic waves are output toward the battery electrode impregnated with the electrolytic solution. The ultrasonic wave output at the position opposite to the position where the ultrasonic wave is output and the battery electrode is received. Thereafter, the attenuation rate of the received ultrasonic wave with respect to the output ultrasonic wave is obtained, and the degree of impregnation of the electrolyte into the battery electrode is obtained according to the obtained attenuation rate. Whether or not the obtained impregnation condition is within a predetermined threshold is determined by a determination unit (CPU or the like) provided in the inspection apparatus. If it is determined that the determination is within the threshold, the process proceeds to the subsequent steps including the charging step. . By doing so, it is possible to automatically shift to the next step immediately after the completion of the impregnation.

1;含浸検査装置
11;超音波出力部
12;超音波受信部
13;含浸具合判定部
100;電池電極
200;発電要素
201;正極
202;負極
203;セパレータ
DESCRIPTION OF SYMBOLS 1; Impregnation test | inspection apparatus 11; Ultrasonic wave output part 12; Ultrasonic wave receiving part 13; Impregnation condition determination part 100; Battery electrode 200; Power generation element 201; Positive electrode 202;

Claims (6)

電池電極への電解液の含浸具合を検査する含浸検査装置であって、
電解液を含浸させた前記電池電極に向って超音波を出力する出力手段と、
前記電池電極を挟んで前記出力手段と対向する位置に設けられ、当該出力手段により出力された超音波を受信する受信手段と、
前記出力手段により出力された超音波に対する、前記受信手段により受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める含浸具合判定手段と、
を備えることを特徴とする含浸検査装置。
An impregnation inspection apparatus for inspecting the degree of impregnation of the electrolyte into the battery electrode,
An output means for outputting an ultrasonic wave toward the battery electrode impregnated with an electrolytic solution;
A receiving unit that is provided at a position facing the output unit across the battery electrode, and that receives the ultrasonic waves output by the output unit;
An impregnation degree determining means for obtaining an attenuation rate of the ultrasonic wave received by the receiving means with respect to the ultrasonic wave output by the output means, and obtaining an impregnation degree of the electrolytic solution to the battery electrode according to the obtained attenuation rate; ,
An impregnation inspection apparatus comprising:
前記含浸具合判定手段は、前記減衰率の単位時間当たりの変化量が、予め定められた閾値以下であれば、前記電池電極への電解液の含浸が完了していると判定することを特徴とする請求項1に記載の含浸検査装置。   The impregnation condition determining means determines that the impregnation of the electrolytic solution into the battery electrode is completed when the amount of change per unit time of the attenuation rate is equal to or less than a predetermined threshold value. The impregnation inspection apparatus according to claim 1. 前記出力手段は、前記電池電極の中心に向って超音波を出力することを特徴とする請求項1または2に記載の含浸検査装置。   The impregnation inspection apparatus according to claim 1, wherein the output unit outputs an ultrasonic wave toward a center of the battery electrode. 前記出力手段は、前記電池電極の複数の点のそれぞれに向って超音波を出力し、
前記受信手段は、前記出力手段により前記電池電極の複数の点に向って出力された超音波のそれぞれを受信することを特徴とする請求項1または2に記載の含浸検査装置。
The output means outputs an ultrasonic wave toward each of the plurality of points of the battery electrode;
3. The impregnation inspection apparatus according to claim 1, wherein the reception unit receives each of the ultrasonic waves output to the plurality of points of the battery electrode by the output unit.
電池電極への電解液の含浸具合を検査する含浸検査方法であって、
電解液を含浸させた前記電池電極に向って超音波を出力する第1のステップと、
前記第1のステップにより超音波を出力する位置と前記電池電極を挟んで対向する位置において、当該第1のステップにより出力された超音波を受信する第2のステップと、
前記第1のステップにより出力された超音波に対する、前記第2のステップにより受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める第3のステップと、
を備えることを特徴とする含浸検査方法。
An impregnation inspection method for inspecting the degree of impregnation of the electrolyte into the battery electrode,
A first step of outputting an ultrasonic wave toward the battery electrode impregnated with an electrolyte;
A second step of receiving the ultrasonic wave output by the first step at a position opposite to the position where the ultrasonic wave is output by the first step with the battery electrode interposed therebetween;
First, an attenuation rate of the ultrasonic wave received by the second step with respect to the ultrasonic wave output by the first step is obtained, and an impregnation degree of the electrolyte solution to the battery electrode is obtained according to the obtained attenuation rate. 3 steps,
An impregnation inspection method comprising:
電池電極である正極と負極との間にセパレータを挟んで構成された発電要素と電解液とをケース内に有する電池の製造方法であって、
前記ケース内に前記発電要素を入れた後に電解液を注入する第1のステップと、
電解液を含浸させた前記電池電極に向って超音波を出力する第2のステップと、
前記第2のステップにより超音波を出力する位置と前記電池電極を挟んで対向する位置において、当該第2のステップにより出力された超音波を受信する第3のステップと、
前記第2のステップにより出力された超音波に対する、前記第3のステップにより受信された超音波の減衰率を求め、求めた減衰率に応じて前記電池電極への電解液の含浸具合を求める第4のステップと、
前記第4のステップで求めた含浸具合が所定の閾値以下となったか否かを判断し、当該閾値以下になったと判断した場合には充電工程を含む以降の工程へ移行する第5のステップと、
を備えることを特徴とする含浸検査方法。
A method for producing a battery having a power generation element and an electrolytic solution, which are configured by sandwiching a separator between a positive electrode and a negative electrode, which are battery electrodes, in a case,
A first step of injecting an electrolyte after placing the power generation element in the case;
A second step of outputting an ultrasonic wave toward the battery electrode impregnated with the electrolyte;
A third step of receiving the ultrasonic wave output by the second step at a position opposite to the position where the ultrasonic wave is output by the second step and the battery electrode in between;
First, the attenuation rate of the ultrasonic wave received in the third step with respect to the ultrasonic wave output in the second step is obtained, and the impregnation degree of the electrolytic solution to the battery electrode is obtained in accordance with the obtained attenuation rate. 4 steps,
Determining whether or not the impregnation degree obtained in the fourth step is equal to or less than a predetermined threshold value; ,
An impregnation inspection method comprising:
JP2014074169A 2014-03-31 2014-03-31 Impregnation inspection apparatus and impregnation inspection method Expired - Fee Related JP6398040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014074169A JP6398040B2 (en) 2014-03-31 2014-03-31 Impregnation inspection apparatus and impregnation inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014074169A JP6398040B2 (en) 2014-03-31 2014-03-31 Impregnation inspection apparatus and impregnation inspection method

Publications (2)

Publication Number Publication Date
JP2015197968A true JP2015197968A (en) 2015-11-09
JP6398040B2 JP6398040B2 (en) 2018-10-03

Family

ID=54547549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014074169A Expired - Fee Related JP6398040B2 (en) 2014-03-31 2014-03-31 Impregnation inspection apparatus and impregnation inspection method

Country Status (1)

Country Link
JP (1) JP6398040B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189962A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Electrolyte wetting device for manufacturing battery cell by using vibration, and battery cell manufacturing method using same
JP7437862B2 (en) 2022-02-11 2024-02-26 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing prismatic batteries and method for inspecting prismatic batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103040A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010181290A (en) * 2009-02-05 2010-08-19 Toyota Motor Corp Dipping inspection device
JP2014225373A (en) * 2013-05-16 2014-12-04 Necエナジーデバイス株式会社 Liquid injection device and method
JP2015021827A (en) * 2013-07-18 2015-02-02 株式会社日本自動車部品総合研究所 Battery inspection method
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103040A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010181290A (en) * 2009-02-05 2010-08-19 Toyota Motor Corp Dipping inspection device
JP2014225373A (en) * 2013-05-16 2014-12-04 Necエナジーデバイス株式会社 Liquid injection device and method
JP2015021827A (en) * 2013-07-18 2015-02-02 株式会社日本自動車部品総合研究所 Battery inspection method
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189962A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Electrolyte wetting device for manufacturing battery cell by using vibration, and battery cell manufacturing method using same
CN112335119A (en) * 2019-03-18 2021-02-05 株式会社Lg化学 Apparatus for manufacturing battery cell to enhance electrode wetting by vibration and method of manufacturing battery cell using the same
US11605830B2 (en) 2019-03-18 2023-03-14 Lg Energy Solution, Ltd. Apparatus for manufacturing battery cell to enhance electrode wetting through vibration, and manufacturing method of battery cell using the same
JP7437862B2 (en) 2022-02-11 2024-02-26 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing prismatic batteries and method for inspecting prismatic batteries

Also Published As

Publication number Publication date
JP6398040B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
US11527783B2 (en) Battery state monitoring using ultrasonic guided waves
Deng et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells
JP5287309B2 (en) Immersion inspection device
JP2018526785A5 (en)
US20170276540A1 (en) Device and method for testing impedance characteristic and expansion performance of sound absorption material
JP6398040B2 (en) Impregnation inspection apparatus and impregnation inspection method
JP2014025858A (en) Secondary battery pre-shipment inspection method
JP2015021827A (en) Battery inspection method
CN110596610A (en) Method and device for detecting charging and discharging electric quantity states of battery module and battery
JPWO2011001471A1 (en) Battery internal state detection device and method
WO2012081873A3 (en) Ultra high frequency fatigue tester
CN115994477B (en) Method for determining service life of rocket engine pipeline
EP3532833A1 (en) Acoustic emission sensors with integral acoustic generators
EP2779206A3 (en) A method of processing image charge - current signals
JP6147862B2 (en) Water-resistant tree evaluation method, insulation design method, and rotating electric machine
WO2012135199A3 (en) System and method for producing statistically valid assay means and ranges for quality control materials
JP6260318B2 (en) Power storage device manufacturing method and power storage device inspection method
JP6038716B2 (en) Non-aqueous electrolyte secondary battery inspection method
JP2015050062A (en) Design method for lithium ion secondary battery
WO2016088156A1 (en) Water tree testing method and water tree testing device
KR102041329B1 (en) Method and apparatus for testing performance of separator for secondary battery
WO2012175169A3 (en) Method for treating and/or repairing an electrochemical cell, and battery having a plurality of such electrochemical cells
CN113921892A (en) Lithium ion battery electrolyte infiltration judgment method
CN103792144A (en) Method for detecting opening pressures of batteries
Bhadra Methods for Characterization of Batteries Using Acoustic Interrogation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6398040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees