JP2015050062A - Design method for lithium ion secondary battery - Google Patents

Design method for lithium ion secondary battery Download PDF

Info

Publication number
JP2015050062A
JP2015050062A JP2013181456A JP2013181456A JP2015050062A JP 2015050062 A JP2015050062 A JP 2015050062A JP 2013181456 A JP2013181456 A JP 2013181456A JP 2013181456 A JP2013181456 A JP 2013181456A JP 2015050062 A JP2015050062 A JP 2015050062A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013181456A
Other languages
Japanese (ja)
Inventor
克弥 松岡
Katsuya Matsuoka
克弥 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013181456A priority Critical patent/JP2015050062A/en
Publication of JP2015050062A publication Critical patent/JP2015050062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a design method for a lithium ion secondary battery in which a battery can be properly designed by performing proper simulation of the battery.SOLUTION: A design method for a lithium ion secondary battery 1 includes a non-stationary simulation step S3 for calculating values of respective variables in the arbitrary time t after driving start by the stationary calculation just after driving and the non-stationary calculation thereafter in accordance with predetermined battery drive conditions by setting an analytic model 11 imitating a battery 1 including a negative electrode current collector area 12, a negative electrode active material layer area 13, a positive electrode current collector area 16, a positive electrode active material layer area 15 and a separator area 14 and also setting respective initial values about respective variables of an active material potential φs, an electrolyte potential φe, Li ion concentration Ce, Li concentration Cs and a temperature T in respective areas.

Description

本発明は、リチウムイオン二次電池の設計方法に関する。   The present invention relates to a method for designing a lithium ion secondary battery.

特許文献1に記載の二次電池の内部状態検知方法では、二次電池の内部状態を検知するに当たり、予めコンピュータシミュレーションにより取得した基礎データを用いることが記載されている。なお、この基礎データとしては、二次電池を各種温度下、各種電流で充放電したときに計測されるべき電池電圧、および蓄電量もしくは放電量が挙げられている。   The method for detecting the internal state of a secondary battery described in Patent Document 1 describes that basic data acquired in advance by computer simulation is used to detect the internal state of the secondary battery. The basic data includes the battery voltage to be measured when the secondary battery is charged and discharged with various currents at various temperatures, and the amount of stored electricity or the amount of discharge.

特開2011−257411号公報JP 2011-257411 A

リチウムイオン二次電池(以下、単位、電池をもいう。)を設計するにあたり、このようなシミュレーションを用いて、電池の特性を予測し、電池の設計に反映させることが考えられる。
しかしながら、電池としては、ざまざまな形態がある。特に、ハイブリッド自動車(HV車,HEV車)や電気自動車(EV車)、ハイブリッド電車などに用いる車載用の電池は、外形寸法も大きく場所による特性の偏りが生じやすい。また、電池に生じる反応は、高速で生じる電子による反応や、中程度の速度の酸化還元反応、緩やかに生じる活物質内イオンの拡散などが重なっているため、非線形に生じる。加えて、捲回型や積層型の電池では、活物質層、これを担持する集電体(集電箔)、セパレータなどが多数層をなす。このため、適切なシミュレーション結果を得て、電池の設計にこのシミュレーションの結果を反映させることが困難であった。
In designing a lithium ion secondary battery (hereinafter, also referred to as a unit or a battery), it is conceivable to predict the characteristics of the battery using such a simulation and reflect it in the design of the battery.
However, there are various types of batteries. In particular, in-vehicle batteries used for hybrid vehicles (HV vehicles, HEV vehicles), electric vehicles (EV vehicles), hybrid trains, etc. have large external dimensions and tend to have characteristic bias depending on location. In addition, the reaction occurring in the battery occurs nonlinearly because a reaction due to electrons generated at a high speed, a medium-rate oxidation-reduction reaction, a slow diffusion of ions in the active material, and the like overlap. In addition, in a wound type or stacked type battery, an active material layer, a current collector (current collector foil) supporting the active material layer, a separator, and the like form a large number of layers. For this reason, it is difficult to obtain an appropriate simulation result and to reflect the simulation result in the battery design.

本発明は、かかる問題点に鑑みてなされたものであって、適切な電池のシミュレーションを行って、適切に電池を設計できるリチウムイオン二次電池の設計方法を提供する。   The present invention has been made in view of such problems, and provides a design method of a lithium ion secondary battery that can appropriately design a battery by performing appropriate battery simulation.

その一態様は、リチウムイオン二次電池の設計方法であって、上記リチウムイオン二次電池を模し、負極集電体を模した負極集電体領域、負極集電体上の負極活物質層を模した負極活物質層領域、正極集電体を模した正極集電体領域、上記正極集電体上の正極活物質層を模した正極活物質層領域、及び、上記負極活物質層と上記正極活物質層との間に介在するセパレータを模したセパレータ領域、を含む解析モデルを設定し、上記負極活物質層領域における負極活物質電位、上記負極活物質層中の電解質電位、Liイオン濃度、Li濃度及び負極活物質層温度、上記セパレータ領域における上記セパレータ中の電解質電位、Liイオン濃度、及びセパレータ温度、上記正極活物質層領域における正極活物質電位、上記正極活物質層中の電解質電位、Liイオン濃度、Li濃度及び正極活物質層温度、上記負極集電体領域における上記負極活物質電位及び負極集電体温度、並びに、上記正極集電体領域における上記正極活物質電位及び正極集電体温度の各変数について、各々初期値を設定し、予め定めた電池駆動条件に従って、駆動開始直後の定常計算と、その後の非定常計算により、駆動開始後の任意の時刻における上記各変数の値を算出する非定常シミュレーション工程を含むリチウムイオン二次電池の設計方法である。   One aspect thereof is a method for designing a lithium ion secondary battery, which simulates the lithium ion secondary battery, is a negative electrode current collector region imitating a negative electrode current collector, and a negative electrode active material layer on the negative electrode current collector Negative electrode active material layer region simulating a positive electrode current collector region simulating a positive electrode current collector, positive electrode active material layer region simulating a positive electrode active material layer on the positive electrode current collector, and the negative electrode active material layer An analysis model including a separator region imitating a separator interposed between the positive electrode active material layer, a negative electrode active material potential in the negative electrode active material layer region, an electrolyte potential in the negative electrode active material layer, Li ions Concentration, Li concentration and negative electrode active material layer temperature, electrolyte potential in the separator in the separator region, Li ion concentration, separator temperature, positive electrode active material potential in the positive electrode active material layer region, electrolyte in the positive electrode active material layer Position, Li ion concentration, Li concentration and positive electrode active material layer temperature, the negative electrode active material potential and negative electrode current collector temperature in the negative electrode current collector region, and the positive electrode active material potential and positive electrode in the positive electrode current collector region For each variable of the current collector temperature, an initial value is set, and the above variables at any time after the start of driving are determined according to a predetermined battery driving condition by a steady calculation immediately after the start of driving and a subsequent unsteady calculation. It is a design method of a lithium ion secondary battery including the unsteady simulation process which calculates the value of.

この設計方法では、上述の各領域における各変数を、駆動直後の定常状態及びこれに続く非定常状態を模した定常計算及び非定常計算で求める非定常シミュレーション工程を有しているので、電池を放電開始あるいは充電開始した後の、電池の各部の電位、温度等を適切にシミュレーションでき、これを反映した適切な形態を有する電池を設計することができる。   This design method has a non-steady simulation step in which each variable in each of the above-described regions is obtained by a steady calculation and a non-stationary calculation imitating a steady state immediately after driving and a non-steady state. It is possible to appropriately simulate the potential, temperature and the like of each part of the battery after the start of discharging or charging, and a battery having an appropriate form reflecting this can be designed.

シミュレーションを行うソフトウェアとしては、例えば、熱流体力解析(CFD)ソフトウェアを用いると良く、例えば、アンシスジャパン株式会社製のANSYS Flunetが挙げられる。
なお、電池の駆動条件には、電池の放電及び充電のいずれも含まれる。
As the software for performing the simulation, for example, thermal fluid force analysis (CFD) software may be used. For example, ANSYS Flunet manufactured by Ansys Japan Co., Ltd. may be mentioned.
The battery driving conditions include both battery discharging and charging.

電池の基本構造及び電池解析モデルの各領域を示す説明図である。It is explanatory drawing which shows each area | region of the basic structure of a battery and a battery analysis model. 実施形態にかかる捲回型の電池(発電体)及び電池解析モデルの断面図である。It is sectional drawing of the winding type battery (electric power generation body) and battery analysis model concerning embodiment. 電池解析モデルについてのシミュレーションの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the simulation about a battery analysis model. 図3のフローチャートのうち、駆動開始直後より後の非定常計算サブプログラムの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the unsteady calculation subprogram after the drive start among the flowcharts of FIG.

本発明の実施の形態を、図面を参照して説明する。まず、電池(発電体)10の基本構造を、図1を参照して説明する。電池1は、負極集電箔2に担持された負極活物質層3と、正極集電箔6に担持された正極活物質層5との間に、セパレータ4を介在させ、Liイオンを含む電解液(図示しない)を、負極活物質層2、セパレータ3、及び正極活物質層4に含浸させた構造を有する。従って、電池1の特性のシミュレーションにあたり、これらの要素を模した領域を設定する。具体的には、電池1を模した電池解析モデル11において、負極集電箔2を模した負極集電箔領域12、負極集電体2上の負極活物質層3を模した負極活物質層領域13、正極集電箔6を模した正極集電箔領域16、正極集電体6上の正極活物質層5を模した正極活物質層領域15、及び、セパレータ4を模したセパレータ領域14を設定する。例えば、捲回型の電池解析モデル11において、図2に示すように、負極集電箔領域12、負極活物質層領域13、正極集電箔領域16、正極活物質層領域15、及び、セパレータ領域14を設定する。   Embodiments of the present invention will be described with reference to the drawings. First, the basic structure of the battery (power generation body) 10 will be described with reference to FIG. In the battery 1, an electrolyte containing Li ions is interposed between a negative electrode active material layer 3 supported on a negative electrode current collector foil 2 and a positive electrode active material layer 5 supported on a positive electrode current collector foil 6. The negative electrode active material layer 2, the separator 3, and the positive electrode active material layer 4 are impregnated with a liquid (not shown). Therefore, when simulating the characteristics of the battery 1, a region simulating these elements is set. Specifically, in the battery analysis model 11 simulating the battery 1, the negative electrode current collector foil region 12 simulating the negative electrode current collector foil 2, and the negative electrode active material layer simulating the negative electrode active material layer 3 on the negative electrode current collector 2 Region 13, positive electrode current collector foil region 16 imitating positive electrode current collector foil 6, positive electrode active material layer region 15 imitating positive electrode active material layer 5 on positive electrode current collector 6, and separator region 14 imitating separator 4 Set. For example, in the wound-type battery analysis model 11, as shown in FIG. 2, the negative electrode current collector foil region 12, the negative electrode active material layer region 13, the positive electrode current collector foil region 16, the positive electrode active material layer region 15, and the separator Region 14 is set.

次いで、この電池解析モデル11を用いて、電池1のシミュレーションを行った例を説明する。なお、シミュレーションにあたり、CDFソフトウェアとして、アンシスジャパン株式会社製のANSYS Flunetを用いた。   Next, an example in which the battery 1 is simulated using the battery analysis model 11 will be described. In the simulation, ANSYS Flunet made by Ansys Japan Co., Ltd. was used as CDF software.

シミュレーションにあたり、電池の主要な変数として、活物質電位φs(負極活物質電
位φs2、正極活物質電位φs1)、電解質電位φe(負極活物質層中、セパレータ中、正
極活物質層中での電解質電位φe2,φese,φe1)、電解質のLiイオン濃度Ce(負
極活物質層中、セパレータ中、正極活物質層中の電解質のLiイオン濃度Ce2,Ce
se,Ce1)、活物質のLi濃度Cs(負極活物質層中、正極活物質層中のLi濃度Cs
2,Cs1)、及び温度T(負極集電箔、負極活物質層、セパレータ、正極活物質層、正極
集電箔の各温度Tnc,T2,Tse,T1,Tpc)を定義する。各領域において、変数として定義した電位φs,φeあるいは濃度Ce,Csについての輸送方程式(数1参照)をCDFソフトウェアで解く。添字のうち、1は正極、2は負極、seはセパレータ、ncは負極集電箔、pcは正極集電箔を示す。
なお、CDFソフトウェアのユーザ定義関数(UDF)機能により、電位φs,φeや濃度Ce,Csに関する輸送方程式を定義し、これをCDFソフトウェアにより有限体積法を用いて解くと良い。
また、各領域と当該領域において解くべき変数(電位φs,φe、濃度Ce,Cs、温
度T)との関係を、表1に示す。
In the simulation, as the main variables of the battery, active material potential φs (negative electrode active material potential φs 2 , positive electrode active material potential φs 1 ), electrolyte potential φe (in the negative electrode active material layer, in the separator, in the positive electrode active material layer) Electrolyte potential φe 2 , φe se , φe 1 ), Li ion concentration Ce of the electrolyte (in the negative electrode active material layer, in the separator, and in the positive electrode active material layer, the Ce ion concentration of the electrolyte Ce 2 , Ce
se , Ce 1 ), Li concentration Cs of the active material (in the negative electrode active material layer, the Li concentration Cs in the positive electrode active material layer)
2 , Cs 1 ) and temperature T (negative electrode current collector foil, negative electrode active material layer, separator, positive electrode active material layer, positive electrode current collector foil temperature T nc , T 2 , T se , T 1 , T pc ) Define. In each region, a transport equation (see Equation 1) for potentials φs and φe or concentrations Ce and Cs defined as variables is solved by CDF software. Of the subscripts, 1 is a positive electrode, 2 is a negative electrode, se is a separator, nc is a negative electrode current collector foil, and pc is a positive electrode current collector foil.
It should be noted that the transport equation relating to the potentials φs and φe and the concentrations Ce and Cs is defined by the user-defined function (UDF) function of the CDF software and solved by the finite volume method using the CDF software.
Table 1 shows the relationship between each region and the variables (potentials φs, φe, concentrations Ce, Cs, temperature T) to be solved in the region.

Figure 2015050062
Figure 2015050062

Figure 2015050062
Figure 2015050062

電池1の放電あるいは充電のシミュレーション(CDFソフトウェアを用いた解析)にあたり、時刻t=0以前において、電池1は、放電(あるいは充電)を行わず、所定のOCV(Open Circuit Voltage)及びSOC(State of Charge)を有しているとする。そして、時刻t=0に放電(あるいは充電)を開始するとする。図3のステップS1に示すように、まず、各領域における各変数のt=0以前の値(初期値)を、表2に示すように設定する。なお、充放電を行っていない静止状態の電池では、活物質電位φs及びLi濃度Csは、活物質組成値θの関数であると考えられる。また、活物質組成値θは、電池1のOCVあるいはSOCから得られるので、活物質組成値θの初期値θ0を算出し、これを用いて、活物質電位φs及びLi濃度Csの初期値をそれぞれ設定する。表2では、活物質電位φs及びLi濃度Csを、初期値θ0の関数として表現している。 In the simulation (analysis using the CDF software) of the discharge or charge of the battery 1, the battery 1 does not discharge (or charge) before time t = 0, and the predetermined OCV (Open Circuit Voltage) and SOC (State of Charge). Then, it is assumed that discharging (or charging) starts at time t = 0. As shown in Step S1 of FIG. 3, first, values (initial values) before t = 0 of each variable in each region are set as shown in Table 2. In a stationary battery that is not charged / discharged, the active material potential φs and the Li concentration Cs are considered to be functions of the active material composition value θ. Further, since the active material composition value θ is obtained from the OCV or SOC of the battery 1, the initial value θ 0 of the active material composition value θ is calculated and used to obtain the initial values of the active material potential φs and the Li concentration Cs. Set each. In Table 2, the active material potential φs and the Li concentration Cs are expressed as a function of the initial value θ 0 .

Figure 2015050062
Figure 2015050062

次いで、電池の駆動条件を境界条件として、放電開始直後(あるいは充電開始直後)における、即ち、t=0における、活物質電位φsの分布、電解質電位φeの分布、及び反応電流jLiの分布を、定常計算で算出する(ステップS2)。なお、電解質のLiイオン濃度Ce及び活物質のLi濃度Csは、一定(不変)であるとして計算する。 Next, with the battery driving condition as a boundary condition, the distribution of the active material potential φs, the distribution of the electrolyte potential φe, and the distribution of the reaction current j Li immediately after the start of discharge (or immediately after the start of charging), that is, at t = 0. Then, it is calculated by steady calculation (step S2). It is calculated that the Li ion concentration Ce of the electrolyte and the Li concentration Cs of the active material are constant (invariable).

次いで、t=0より後の任意の時刻tにおける、活物質電位φsの分布、電解質電位φeの分布、反応電流jLiの分布、Liイオン濃度Ceの分布、及び活物質のLi濃度Csの分布を、温度Tの分布を、非定常計算により求める(ステップS3)。具体的には、図4のステップS31に示すように、まず、時刻t-dtでの反応電流jLi(t-dt)から、時刻tでの活物質表面Li濃度Csh(t)の分布を計算する。なお、添字hは、活物質表面を表す。
次いで、このステップS31で算出した活物質表面Li濃度Csh(t)の分布に応じた、活物質電位φsの分布、電解質電位φeの分布、反応電流jLiの分布、Liイオン濃度Ceの分布、活物質のLi濃度Csの分布、及び温度Tの分布を、収束計算する(ステップS32参照)。
Next, the distribution of the active material potential φs, the distribution of the electrolyte potential φe, the distribution of the reaction current j Li , the distribution of the Li ion concentration Ce, and the distribution of the Li concentration Cs of the active material at an arbitrary time t after t = 0. Is obtained by non-stationary calculation of the temperature T distribution (step S3). Specifically, as shown in step S31 of FIG. 4, first, the distribution of the active material surface Li concentration Csh (t) at time t is determined from the reaction current j Li (t-dt) at time t-dt. calculate. The suffix h represents the active material surface.
Next, according to the distribution of the active material surface Li concentration Csh (t) calculated in step S31, the distribution of the active material potential φs, the distribution of the electrolyte potential φe, the distribution of the reaction current j Li , the distribution of the Li ion concentration Ce, The distribution of the Li concentration Cs of the active material and the distribution of the temperature T are calculated for convergence (see step S32).

そして、ステップS33では、時刻tを微少時間dtだけ進める(t=t+dt)。
さらにステップS34に進み、時刻tが予め定めた任意の時刻tendに達するまで、ステップS31〜S33を繰り返し計算し、時刻tが時刻tendに達したら、メインルーチン(図3参照)に戻り終了する。
これにより、時刻t=0〜tendの期間において、活物質電位φsの分布、電解質電位φeの分布、反応電流jLiの分布、Liイオン濃度Ceの分布、及び活物質のLi濃度Csの分布を、温度Tの分布が、どのように変化するかを知ることができる。このようにすることで、電池1を様々な条件で放電あるいは充電(充放電)させたときの、電池1の各領域の電位、温度等の分布を適切にシミュレーションが可能となる。従って、様々な条件についてのシミュレーション結果を反映し、適切な材料(材質)を用いたり適切な形態を有する電池を設計することができる。
In step S33, time t is advanced by a minute time dt (t = t + dt).
After further proceeds to step S34, and the time t reaches the arbitrary time t end a predetermined, repeated to calculate the step S31 to S33, the time t has reached the time t end, flow returns to the main routine (see FIG. 3) To do.
Thus, in the period of time t = 0 to t end The, the distribution of active material potential .phi.s, distribution of the electrolyte potential .phi.e, distribution of reaction current j Li, distribution of Li ion concentration Ce, and distribution of Li concentration Cs of the active material It is possible to know how the distribution of the temperature T changes. By doing in this way, when the battery 1 is discharged or charged (charged / discharged) under various conditions, it is possible to appropriately simulate the distribution of potential, temperature, etc. in each region of the battery 1. Accordingly, it is possible to design a battery using an appropriate material (material) or having an appropriate form, reflecting simulation results for various conditions.

さらに、予め定めた電池1の駆動条件に基づいて求めた上述の各変数(φs,φe,Ce,Cs,T)の分布を用いて、例えば、時刻t=0〜tendの期間における、電池1の内部抵抗をなす、反応抵抗、拡散抵抗、電子抵抗、イオン抵抗の変化を取得することができる。具体的には、電池1の内部抵抗をなす、反応抵抗Rη、拡散抵抗Rdiff、電子抵抗Rele、イオン抵抗Rionの変化は、求められた上述の各変数(φs,φe,Ce,Cs,T)の分布を用いて、表3に示す各式により求める。
なお、添字のうち、1は正極、2は負極、seはセパレータ、hは活物質表面に関するものを示す。また添字のうち、eleは電子によることを、ionはイオンによることを、ηは反応によることを、diffは活物質内のLi拡散によることを示す。
Furthermore, using the distribution of each variable (φs, φe, Ce, Cs, T) obtained based on a predetermined driving condition of the battery 1, for example, the battery in a period of time t = 0 to t end It is possible to obtain changes in reaction resistance, diffusion resistance, electronic resistance, and ion resistance, which constitute one internal resistance. Specifically, the reaction resistance Rη, the diffusion resistance R diff , the electron resistance R ele , and the ion resistance R ion that form the internal resistance of the battery 1 are determined by the above-described variables (φs, φe, Ce, Cs). , T) using the distributions shown in Table 3.
Of the subscripts, 1 represents a positive electrode, 2 represents a negative electrode, se represents a separator, and h represents an active material surface. Of the subscripts, ele represents an electron, ion represents an ion, η represents a reaction, and diff represents Li diffusion in the active material.

Figure 2015050062
Figure 2015050062

また、予め定めた電池1の駆動条件に基づいて求めた各変数(φs,φe,Ce,Cs,T)の分布を用いて、時刻t=0〜tendの期間における、電池1の端子間電圧(負極集電箔2−正極集電箔6間の電圧)の変化を得ることもできる。 Further, each variable calculated on the basis of the predetermined battery 1 of the driving conditions (φs, φe, Ce, Cs , T) by using the distribution of, in the period of time t = 0 to t end The, between the terminal battery 1 A change in voltage (voltage between the negative electrode current collector foil 2 and the positive electrode current collector foil 6) can also be obtained.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

1 電池
2 負極集電箔(負極集電体)
3 負極活物質層
4 セパレータ
5 正極活物質層
6 正極集電箔(正極集電体)
11 電池解析モデル
12 負極集電箔領域(負極集電体領域)
13 負極活物質層領域
14 セパレータ領域
15 正極活物質層領域
16 正極集電箔領域(正極集電体領域)
1 Battery 2 Negative Current Collector Foil (Negative Electrode Current Collector)
3 Negative electrode active material layer 4 Separator 5 Positive electrode active material layer 6 Positive electrode current collector foil (positive electrode current collector)
11 Battery analysis model 12 Negative electrode current collector foil region (negative electrode current collector region)
13 Negative electrode active material layer region 14 Separator region 15 Positive electrode active material layer region 16 Positive electrode current collector foil region (positive electrode current collector region)

Claims (1)

リチウムイオン二次電池の設計方法であって、
負極集電体を模した負極集電体領域、負極集電体上の負極活物質層を模した負極活物質層領域、正極集電体を模した正極集電体領域、上記正極集電体上の正極活物質層を模した正極活物質層領域、及び、上記負極活物質層と上記正極活物質層との間に介在するセパレータを模したセパレータ領域、を含む上記リチウムイオン二次電池を模した解析モデルを設定し、
上記負極活物質層領域における負極活物質電位、上記負極活物質層中の電解質電位、Liイオン濃度、Li濃度及び負極活物質層温度、
上記セパレータ領域における上記セパレータ中の電解質電位、Liイオン濃度、及びセパレータ温度、
上記正極活物質層領域における正極活物質電位、上記正極活物質層中の電解質電位、Liイオン濃度、Li濃度及び正極活物質層温度、
上記負極集電体領域における上記負極活物質電位及び負極集電体温度、並びに、
上記正極集電体領域における上記正極活物質電位及び正極集電体温度の
各変数について、
各々初期値を設定し、
予め定めた電池駆動条件に従って、駆動直後の定常計算と、その後の非定常計算により、駆動開始後の任意の時刻における上記各変数の値を算出する
非定常シミュレーション工程を含む
リチウムイオン二次電池の設計方法。
A method of designing a lithium ion secondary battery,
Negative electrode current collector region simulating negative electrode current collector, negative electrode active material layer region simulating negative electrode active material layer on negative electrode current collector, positive electrode current collector region simulating positive electrode current collector, positive electrode current collector The lithium ion secondary battery comprising: a positive electrode active material layer region simulating the positive electrode active material layer; and a separator region simulating a separator interposed between the negative electrode active material layer and the positive electrode active material layer. Set up a simulated analysis model,
Negative electrode active material potential in the negative electrode active material layer region, electrolyte potential in the negative electrode active material layer, Li ion concentration, Li concentration, and negative electrode active material layer temperature,
Electrolyte potential in the separator in the separator region, Li ion concentration, and separator temperature,
Positive electrode active material potential in the positive electrode active material layer region, electrolyte potential in the positive electrode active material layer, Li ion concentration, Li concentration and positive electrode active material layer temperature,
The negative electrode active material potential and the negative electrode current collector temperature in the negative electrode current collector region, and
For each variable of the positive electrode active material potential and the positive electrode current collector temperature in the positive electrode current collector region,
Set each initial value,
According to a predetermined battery driving condition, the value of each variable is calculated at an arbitrary time after the start of driving by a steady calculation immediately after driving and a subsequent non-stationary calculation. Design method.
JP2013181456A 2013-09-02 2013-09-02 Design method for lithium ion secondary battery Pending JP2015050062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181456A JP2015050062A (en) 2013-09-02 2013-09-02 Design method for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181456A JP2015050062A (en) 2013-09-02 2013-09-02 Design method for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015050062A true JP2015050062A (en) 2015-03-16

Family

ID=52699914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181456A Pending JP2015050062A (en) 2013-09-02 2013-09-02 Design method for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2015050062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881550A (en) * 2015-06-15 2015-09-02 清华大学 Self-adaptive prediction method for running temperature of power battery
KR101675348B1 (en) * 2015-11-17 2016-11-22 한국과학기술연구원 Simulation method and system for development of secondary cell
KR20190004469A (en) * 2017-07-04 2019-01-14 한국과학기술연구원 Virtual simulation method and electronic device for cathode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881550A (en) * 2015-06-15 2015-09-02 清华大学 Self-adaptive prediction method for running temperature of power battery
CN104881550B (en) * 2015-06-15 2018-02-16 清华大学 The adaptive forecasting method of electrokinetic cell running temperature
KR101675348B1 (en) * 2015-11-17 2016-11-22 한국과학기술연구원 Simulation method and system for development of secondary cell
KR20190004469A (en) * 2017-07-04 2019-01-14 한국과학기술연구원 Virtual simulation method and electronic device for cathode
KR101983599B1 (en) 2017-07-04 2019-05-29 한국과학기술연구원 Virtual simulation method and electronic device for cathode

Similar Documents

Publication Publication Date Title
Westerhoff et al. Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy
Zhang et al. A novel model of the initial state of charge estimation for LiFePO4 batteries
Mesbahi et al. Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm
Dai et al. On graded electrode porosity as a design tool for improving the energy density of batteries
EP2762908B1 (en) Battery cell performance estimation method and battery cell performance estimation apparatus
Seaman et al. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation
Rahimian et al. Comparison of single particle and equivalent circuit analog models for a lithium-ion cell
US8207706B2 (en) Method of estimating battery state of charge
Zhang et al. Modeling discharge behavior of multicell battery
JP5850492B2 (en) Battery system and battery evaluation method
US9020798B2 (en) Real-time capable battery cell simulation
Sabatier et al. Lithium-ion batteries modeling involving fractional differentiation
Ganesan et al. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension
JP6260812B2 (en) Battery remaining capacity estimation device, battery remaining capacity determination method, and battery remaining capacity determination program
JP6337233B2 (en) Battery evaluation method and battery characteristic evaluation apparatus
CN113253131B (en) Method and device for determining charging and discharging performance of battery core, storage medium and electronic equipment
CN112949101B (en) Method, device, equipment and medium for acquiring pulse charging and discharging maximum current of battery
Sabatier et al. Fractional models for lithium-ion batteries
JP2015050062A (en) Design method for lithium ion secondary battery
Garrick et al. Modeling electrochemical transport within a three-electrode system
Sakti et al. A validation study of lithium‐ion cell constant c‐rate discharge simulation with Battery Design Studio®
Kök et al. Investigation of thermal behavior of lithium-ion batteries under different loads
Esfahanian et al. Design parameter study on the performance of lead-acid batteries
Shin et al. Modeling of lithium battery cells for plug-in hybrid vehicles
CN106526494B (en) The prediction technique and device of power battery service life