JP6260318B2 - Power storage device manufacturing method and power storage device inspection method - Google Patents

Power storage device manufacturing method and power storage device inspection method Download PDF

Info

Publication number
JP6260318B2
JP6260318B2 JP2014021399A JP2014021399A JP6260318B2 JP 6260318 B2 JP6260318 B2 JP 6260318B2 JP 2014021399 A JP2014021399 A JP 2014021399A JP 2014021399 A JP2014021399 A JP 2014021399A JP 6260318 B2 JP6260318 B2 JP 6260318B2
Authority
JP
Japan
Prior art keywords
electrode assembly
case
wall
electrolyte
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014021399A
Other languages
Japanese (ja)
Other versions
JP2015149187A (en
Inventor
三好 学
学 三好
木下 恭一
恭一 木下
雅巳 冨岡
雅巳 冨岡
山本 めぐみ
めぐみ 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014021399A priority Critical patent/JP6260318B2/en
Publication of JP2015149187A publication Critical patent/JP2015149187A/en
Application granted granted Critical
Publication of JP6260318B2 publication Critical patent/JP6260318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電極組立体、及び電解液をケース内に備える蓄電装置の製造方法及び蓄電装置の検査方法に関する。   The present invention relates to an electrode assembly, a method for manufacturing a power storage device including an electrolytic solution in a case, and a method for inspecting the power storage device.

二次電池やキャパシタのような蓄電装置は再充電が可能であり、繰り返し使用することができるため電源として広く利用されている。一般に、容量の大きな二次電池(蓄電装置)としては、電解液と、シート状の正極電極及び負極電極を、間にセパレータが介在する状態で積層した電極組立体と、をケース内に備えたものがある。   Power storage devices such as secondary batteries and capacitors are widely used as power sources because they can be recharged and can be used repeatedly. Generally, as a secondary battery (power storage device) having a large capacity, an electrolytic solution and an electrode assembly in which a sheet-like positive electrode and a negative electrode are stacked with a separator interposed therebetween are provided in a case. There is something.

二次電池では、電解液中のイオンが、セパレータの細孔を通過して、正極電極と負極電極の活物質の間を往復することによって、二次電池の充放電が行われる。このような二次電池において、セパレータ、及び各極の活物質層の少なくとも一つにおいて細孔に空気が残り、電解液が各活物質やセパレータに含浸されないまま製造されてしまうことがある。各活物質やセパレータの細孔に電解液が含浸していない場合には、正極電極と負極電極との間を往復できるイオンの量が減少するため、二次電池の性能(例えば、作動電圧や電気容量)が低下してしまう。   In the secondary battery, the ions in the electrolytic solution pass through the pores of the separator and reciprocate between the active material of the positive electrode and the negative electrode, whereby the secondary battery is charged and discharged. In such a secondary battery, air may remain in the pores in at least one of the separator and the active material layer of each electrode, and the electrolyte may be manufactured without being impregnated in each active material or separator. When the electrolyte of each active material or separator is not impregnated with electrolyte, the amount of ions that can reciprocate between the positive electrode and the negative electrode decreases, so the performance of the secondary battery (for example, operating voltage or Electric capacity) will be reduced.

そこで、二次電池の製造時には、電解液を含浸させた後、電解液が電極組立体に十分に含浸されたか否かを判定するようにしている(例えば、特許文献1参照)。特許文献1では、電解液を電極組立体に含浸させる工程を行った後、二次電池を傾ける。このとき、電解液が電極組立体に含浸していないと、電極組立体の外周面とケースの内面との間に電解液が溜まり、電解液が溜まることで二次電池の重量バランスが偏る。そして、この重量バランスの偏りの程度を把握し、その偏りの程度を予め設定した目標値と比較し、偏りの程度が目標値以下であれば含浸十分と判定し、偏りの程度が目標値よりも大きければ含浸不十分と判定している。   Therefore, at the time of manufacturing the secondary battery, after impregnating the electrolytic solution, it is determined whether or not the electrolytic solution is sufficiently impregnated in the electrode assembly (see, for example, Patent Document 1). In Patent Document 1, after performing the step of impregnating the electrode assembly with the electrolytic solution, the secondary battery is tilted. At this time, if the electrode assembly is not impregnated with the electrode assembly, the electrolyte solution accumulates between the outer peripheral surface of the electrode assembly and the inner surface of the case, and the electrolyte solution accumulates, so that the weight balance of the secondary battery is biased. Then, grasp the degree of deviation of the weight balance, compare the degree of deviation with a preset target value, and determine that the impregnation is sufficient if the degree of deviation is equal to or less than the target value. Is too large, it is determined that the impregnation is insufficient.

特開2009−48964号公報JP 2009-48964 A

ところが、電極組立体には積層型と捲回型がある。特許文献1のような捲回型の電極組立体は、正極電極と負極電極を渦巻状に捲回したものであるため、外周面が湾曲しており、捲回型の電極組立体の外周面と、各面が矩形をなすケースの内面との間、特には電極組立体の捲回のアール部と対向するケースの内面との間に、比較的大きな空間ができやすい。このため、電解液の含浸を判定する際、特許文献1のように二次電池を傾けると空間に電解液が溜まり、重量バランスの偏りが大きくなる。よって、重量バランスの大きな偏りから電解液の含浸状態が把握しやすい。しかし、積層型の電極組立体は、正極電極及び負極電極とセパレータとが、十分に密着するように加圧され、かつ電極組立体の積層方向の両端面及び底面がケース内面に密着するようにケース内に収容されている。さらには、捲回型の電極組立体のようにアール部も有していない。このため、積層型の二次電池においては、特許文献1のように二次電池を傾けても電解液が溜まりにくく、電解液の含浸が不十分であっても重量バランスの偏りを検出しづらく、電解液の含浸が十分か否かの判定が困難である。   However, the electrode assembly includes a laminated type and a wound type. Since the wound electrode assembly as in Patent Document 1 is obtained by winding the positive electrode and the negative electrode in a spiral shape, the outer peripheral surface is curved, and the outer peripheral surface of the wound electrode assembly And a relatively large space is easily formed between the inner surface of the case in which each surface forms a rectangle, in particular, between the rounded portion of the wound electrode assembly and the inner surface of the case. For this reason, when determining the impregnation of the electrolytic solution, if the secondary battery is tilted as in Patent Document 1, the electrolytic solution accumulates in the space, and the weight balance becomes large. Therefore, it is easy to grasp the impregnation state of the electrolytic solution from the large weight balance. However, the stacked electrode assembly is pressurized so that the positive electrode, the negative electrode, and the separator are in close contact with each other, and the both end surfaces and the bottom surface in the stacking direction of the electrode assembly are in close contact with the inner surface of the case. Housed in a case. Further, it does not have a rounded portion like a wound electrode assembly. For this reason, in the stacked type secondary battery, even when the secondary battery is tilted as in Patent Document 1, it is difficult for the electrolyte to accumulate, and even if the electrolyte is not sufficiently impregnated, it is difficult to detect an imbalance in the weight balance. It is difficult to determine whether the electrolyte is sufficiently impregnated.

本発明は、汎用性を高めることができる蓄電装置の製造方法及び蓄電装置の検査方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a power storage device and a method for inspecting a power storage device that can improve versatility.

上記問題点を解決するための蓄電装置の製造方法は、異なる極の電極を両者の間を絶縁した状態で交互に積層した電極組立体、及び電解液を金属製のケース内に備える蓄電装置の製造方法であって、前記ケース内に前記電解液を注入する注入工程と、前記電極組立体に前記電解液を含浸させる含浸工程と、前記含浸工程の後で、かつエージング工程の前に行われ、前記電解液が前記電極組立体に十分に含浸したか否かを判定する含浸検査工程と、を含み、前記含浸検査工程は、測定用コイルを前記ケースの壁部に接近させた状態で前記測定用コイルに交流電流を流し、前記ケースの壁部に渦電流を発生させるとともに、該渦電流の浸透深さが、前記測定用コイルを接近させた前記ケースの壁部の厚さより深くなるように前記ケースの壁部の厚さ及び前記ケースの材質に合わせて前記交流電流の周波数を設定し、前記ケースの壁部の内面と前記電極組立体の外面との間に存在する空隙又は空間の有無によって変化する前記渦電流の変化に基づいて前記電解液の前記電極組立体への含浸状態を判定することを要旨とする。 A method of manufacturing a power storage device for solving the above problems includes an electrode assembly in which electrodes of different poles are alternately stacked in a state of being insulated from each other, and a power storage device including an electrolytic solution in a metal case. A manufacturing method comprising: an injection step of injecting the electrolytic solution into the case; an impregnation step of impregnating the electrode assembly with the electrolytic solution; and after the impregnation step and before the aging step. And an impregnation inspection step for determining whether or not the electrode assembly is sufficiently impregnated with the electrolyte solution, wherein the impregnation inspection step is performed in a state where the measurement coil is brought close to the wall portion of the case. An alternating current is passed through the measurement coil to generate an eddy current in the wall portion of the case, and the penetration depth of the eddy current is deeper than the thickness of the wall portion of the case where the measurement coil is approached. the thickness of the wall portion of the case to And sets the frequency of the alternating current in accordance with the material of the case, the change of the eddy current varies depending on the presence or absence of voids or spaces present between the inner surface and the outer surface of the electrode assembly of a wall portion of said case The gist of the present invention is to determine the impregnation state of the electrode assembly into the electrode assembly.

これによれば、含浸工程の後、電解液が電極組立体に十分に含浸していると、壁部の内面と電極組立体の外面との間に空隙が存在する。この状態で、含浸検査工程を行い、壁部に測定用コイルを接近させ、壁部に渦電流を発生させると、壁部の内面に面した電解液が存在しないことから、発生する渦電流も壁部に制限される。このため、測定用コイルに流れる電流は、壁部に渦電流が生じたときの値から変化せず、電解液が電極組立体に十分に含浸していることが判定される。   According to this, after the impregnation step, when the electrode assembly is sufficiently impregnated with the electrolytic solution, a gap exists between the inner surface of the wall portion and the outer surface of the electrode assembly. In this state, when the impregnation inspection process is performed, the measurement coil is brought close to the wall portion and an eddy current is generated in the wall portion, there is no electrolyte solution facing the inner surface of the wall portion. Limited to walls. For this reason, the current flowing through the measuring coil does not change from the value when the eddy current is generated in the wall portion, and it is determined that the electrode assembly is sufficiently impregnated with the electrolyte.

一方、含浸工程の後、電解液が電極組立体に十分に含浸していないと、壁部の内面と電極組立体の外面との間は、電解液で満たされ、僅かな空隙も存在しない。この状態で、含浸検査工程を行い、壁部に測定用コイルを接近させ、壁部に渦電流を発生させると、壁部の内面に面した電解液の存在によって、発生する渦電流が電解液の無い場合よりも深い位置まで発生する。このため、測定用コイルに流れる電流は、壁部だけに渦電流が生じたときの値から変化し、この変化に基づいて電解液が電極組立体に十分に含浸していないことが判定される。   On the other hand, after the impregnation process, if the electrode assembly is not sufficiently impregnated with the electrode assembly, the space between the inner surface of the wall portion and the outer surface of the electrode assembly is filled with the electrolyte solution, and there is no slight gap. In this state, when the impregnation inspection process is performed, the measuring coil is brought close to the wall and an eddy current is generated in the wall, the eddy current generated is caused by the presence of the electrolyte facing the inner surface of the wall. It occurs up to a deeper position than when there is no. For this reason, the current flowing through the measurement coil changes from the value when the eddy current is generated only in the wall portion, and based on this change, it is determined that the electrolyte assembly is not sufficiently impregnated in the electrode assembly. .

したがって、蓄電装置を傾けても電解液が溜まらないような、積層型の電極組立体を備えた蓄電装置であっても、僅かな空隙の有無に基づいて電解液の含浸が十分か否かを判定することができる。捲回型の電極組立体を備えた蓄電装置においては、壁部の内面と電極組立体の外面との間に比較的大きな空間が形成されるため、この空間を利用して電解液の含浸が十分か否かを判定できる。よって、電極組立体の形態に関わらず電解液の含浸が十分か否かを判定でき、汎用性を高めることができる。また、ケースの壁部の厚さや、壁部の材質に合わせて測定用コイルに流す交流電流の周波数を設定する。このため、ケースの壁部の厚さや、壁部の材質に応じた含浸検査工程を行うことができ、汎用性を高めることができる。   Therefore, even in a power storage device having a stacked electrode assembly that does not accumulate electrolyte even when the power storage device is tilted, whether or not the electrolyte is sufficiently impregnated based on the presence or absence of a small gap is determined. Can be determined. In a power storage device having a wound electrode assembly, a relatively large space is formed between the inner surface of the wall and the outer surface of the electrode assembly. Whether it is sufficient or not can be determined. Therefore, it can be determined whether or not the electrolyte is sufficiently impregnated regardless of the form of the electrode assembly, and versatility can be improved. Moreover, the frequency of the alternating current passed through the measuring coil is set according to the thickness of the case wall and the material of the wall. For this reason, the impregnation inspection process according to the thickness of the wall part of a case and the material of a wall part can be performed, and versatility can be improved.

また、蓄電装置の製造方法について、前記測定用コイルは、前記渦電流に応じて前記測定用コイルに誘起される電流の変化をインピーダンスの変化に変換するブリッジ回路に接続されており、前記含浸検査工程では、発生した渦電流によって得られるインピーダンスの値に基づいて前記電解液の前記電極組立体への含浸状態を判定してもよい。
また、蓄電装置の製造方法について、前記ケースは、前記壁部としての底壁を有し、前記浸透深さが前記底壁の厚さより深くなるように前記周波数を設定してもよい。
これによれば、電解液が電極組立体に十分に含浸していないと、電解液は自重によってケースの底壁上に溜まる。このため、測定用コイルを底壁に接近させて、電解液の含浸が十分か否かを判定する方法が行い易い。
In the method for manufacturing the power storage device, the measurement coil is connected to a bridge circuit that converts a change in current induced in the measurement coil in response to the eddy current into a change in impedance, and the impregnation test is performed. In the step, the impregnation state of the electrode assembly with the electrolytic solution may be determined based on the impedance value obtained by the generated eddy current.
Moreover, about the manufacturing method of an electrical storage apparatus, the said case may have the bottom wall as said wall part, and may set the said frequency so that the said penetration depth may become deeper than the thickness of the said bottom wall.
According to this, if the electrolyte solution is not sufficiently impregnated in the electrode assembly, the electrolyte solution accumulates on the bottom wall of the case by its own weight. For this reason, it is easy to carry out a method of determining whether the measurement coil is sufficiently impregnated by bringing the measuring coil close to the bottom wall.

また、蓄電装置の製造方法について、前記ケースは、前記電極組立体の積層方向の両端に対向する側壁を有し、前記壁部としての前記側壁に沿って前記測定用コイルを走査させ、前記電極組立体の積層方向に前記電解液が含浸されたか否かを判定してもよい。   In the method of manufacturing the power storage device, the case has side walls facing both ends in the stacking direction of the electrode assembly, and the measurement coil is scanned along the side walls as the wall portions, You may determine whether the said electrolyte solution was impregnated in the lamination direction of the assembly.

これによれば、電極組立体が有する活物質やセパレータの細孔に電解液が含浸していると、電極組立体が有する細孔は電解液で満たされ、空隙が存在しなくなる。この状態で、積層方向に位置する側壁に測定用コイルを走査させると、空隙の有無によって、発生する渦電流の深さが変化し、測定用コイルに流れる電流が変化する。この電流の変化を検出することで、電解液が電極組立体に十分に含浸しているか否かが判定される。   According to this, when the active material of the electrode assembly or the pores of the separator are impregnated with the electrolytic solution, the pores of the electrode assembly are filled with the electrolytic solution, and there are no voids. In this state, when the measurement coil is scanned on the side wall located in the stacking direction, the depth of the generated eddy current changes depending on the presence or absence of a gap, and the current flowing through the measurement coil changes. By detecting this change in current, it is determined whether or not the electrolyte assembly is sufficiently impregnated in the electrode assembly.

また、上記問題点を解決するための蓄電装置の検査方法は、異なる極の電極を両者の間を絶縁した状態で交互に積層した電極組立体、及び電解液をケース内に備える蓄電装置の検査方法であって、前記電解液が前記電極組立体から漏出しているか否かを判定する検査工程を有し、前記検査工程は、測定用コイルを前記ケースの壁部に接近させた状態で前記測定用コイルに交流電流を流し、前記ケースの壁部に渦電流を発生させるとともに、該渦電流の浸透深さが、前記測定用コイルを接近させた前記ケースの壁部の厚さより深くなるように前記交流電流の周波数を設定することで前記電解液が前記電極組立体から漏出しているか否かを判定することを要旨とする。   Also, a method for inspecting a power storage device to solve the above problems includes an electrode assembly in which electrodes of different poles are alternately stacked with the electrodes insulated from each other, and a power storage device inspection including an electrolyte solution in a case A method for determining whether or not the electrolyte solution has leaked from the electrode assembly, wherein the inspection step is performed in a state where the measurement coil is brought close to the wall of the case. An alternating current is passed through the measurement coil to generate an eddy current in the wall portion of the case, and the penetration depth of the eddy current is deeper than the thickness of the wall portion of the case where the measurement coil is approached. And determining whether or not the electrolytic solution is leaking from the electrode assembly by setting the frequency of the alternating current.

これによれば、この検査工程は、例えば、蓄電装置が所定時間使用された後に行われる。この検査の際、電解液が十分に電極組立体に含浸したままであれば、壁部の内面と電極組立体の外面との間に空隙や空間が画定されている。この状態で、検査工程を行い、壁部に測定用コイルを接近させ、壁部に渦電流を発生させると、壁部の内面に面した電解液が存在しないことから、発生する渦電流も壁部に制限される。このため、測定用コイルに流れる電流は、壁部に渦電流が生じたときの値から変化せず、発生する渦電流の深さが制限され、測定用コイルに流れる電流が予め決められた値となり、電解液が漏出していないことが判定される。   According to this, this inspection process is performed, for example, after the power storage device has been used for a predetermined time. If the electrode assembly is sufficiently impregnated with the electrolyte during the inspection, a gap or space is defined between the inner surface of the wall portion and the outer surface of the electrode assembly. In this state, when the inspection process is performed, the measuring coil is brought close to the wall portion and an eddy current is generated in the wall portion, there is no electrolyte solution facing the inner surface of the wall portion. Limited to part. For this reason, the current flowing through the measuring coil does not change from the value when the eddy current is generated in the wall, the depth of the generated eddy current is limited, and the current flowing through the measuring coil is a predetermined value. Thus, it is determined that the electrolyte is not leaking.

一方、例えば、蓄電装置が使用時に振動して、電極組立体から電解液が漏出してしまい、含浸が不十分になっていると、壁部の内面と電極組立体の外面との間に電解液が存在し、上述の空隙や空間が存在しない。この状態で、検査工程を行い、壁部に測定用コイルを接近させ、壁部に渦電流を発生させると、壁部の内面に面した電解液の存在によって、発生する渦電流が電解液の無い場合よりも深い位置まで発生する。このため、測定用コイルに流れる電流は、壁部だけに渦電流が生じたときの値から変化し、この変化に基づいて電解液が漏出していることが判定される。   On the other hand, for example, when the power storage device vibrates during use, the electrolyte leaks from the electrode assembly, and the impregnation is insufficient, electrolysis occurs between the inner surface of the wall portion and the outer surface of the electrode assembly. Liquid is present and the above-mentioned voids and spaces are not present. In this state, when the inspection process is performed, the measuring coil is brought close to the wall and an eddy current is generated in the wall, the generated eddy current is caused by the presence of the electrolyte facing the inner surface of the wall. It occurs up to a deeper position than there is no. For this reason, the current flowing through the measurement coil changes from the value when an eddy current is generated only in the wall, and it is determined that the electrolyte is leaking based on this change.

したがって、蓄電装置を傾けても電解液が溜まらないような、積層型の電極組立体を備えた蓄電装置であっても電解液が電極組立体から漏出したか否か、すなわち電解液が電極組立体に十分含浸しているか否かを判定することができる。捲回型の電極組立体を備えた蓄電装置においては、壁部の内面と電極組立体の外面との間には比較的大きな空間が形成されるため、この空間を利用して電解液が電極組立体から漏出したか否かを判定できる。よって、電極組立体の形態に関わらず電解液が電極組立体から漏出しているか否かを判定でき、汎用性を高めることができる。また、ケースの壁部の厚さや、壁部の材質に合わせて測定用コイルに流す交流電流の周波数を設定する。このため、ケースの壁部の厚さや、壁部の材質に応じた検査工程を行うことができ、汎用性を高めることができる。   Therefore, whether or not the electrolyte has leaked from the electrode assembly even in a power storage device having a stacked electrode assembly in which the electrolyte does not accumulate even when the power storage device is tilted, that is, the electrolyte It can be determined whether or not the solid is sufficiently impregnated. In a power storage device including a wound electrode assembly, a relatively large space is formed between the inner surface of the wall portion and the outer surface of the electrode assembly. It can be determined whether the assembly has leaked. Therefore, regardless of the form of the electrode assembly, it can be determined whether the electrolyte is leaking from the electrode assembly, and versatility can be improved. Moreover, the frequency of the alternating current passed through the measuring coil is set according to the thickness of the case wall and the material of the wall. For this reason, the inspection process according to the thickness of the wall part of a case and the material of a wall part can be performed, and versatility can be improved.

本発明によれば、汎用性を高めることができる。   According to the present invention, versatility can be improved.

実施形態の二次電池を示す分解斜視図。The disassembled perspective view which shows the secondary battery of embodiment. 実施形態の二次電池の外観を示す斜視図。The perspective view which shows the external appearance of the secondary battery of embodiment. 検査装置を示す図。The figure which shows an inspection apparatus. 浸透深さと周波数の関係を示すグラフ。Graph showing the relationship between penetration depth and frequency. (a)は電解液が十分に含浸した二次電池を検査する状態を示す図、(b)は電解液が十分に含浸していない二次電池を検査する状態を示す図。(A) is a figure which shows the state which test | inspects the secondary battery fully impregnated with electrolyte solution, (b) is the figure which shows the state which test | inspects the secondary battery which electrolyte solution is not fully impregnated. (a)は電解液が十分に含浸した二次電池の底壁側を示す部分断面図、(b)は電解液が十分に含浸していない二次電池の底壁側を示す部分断面図。(A) is a fragmentary sectional view which shows the bottom wall side of the secondary battery fully impregnated with electrolyte solution, (b) is a fragmentary sectional view which shows the bottom wall side of the secondary battery not fully impregnated with electrolyte solution. 電解液の含浸状態、空隙の有無、及びインピーダンスの関係を示す表。The table | surface which shows the relationship of the impregnation state of electrolyte solution, the presence or absence of a space | gap, and an impedance. 捲回型の電極組立体を備えた二次電池を検査する状態を示す断面図。Sectional drawing which shows the state which test | inspects a secondary battery provided with the winding type electrode assembly. 積層型の電極組立体を備えた二次電池の検査方法の別例を示す断面図。Sectional drawing which shows another example of the inspection method of a secondary battery provided with the laminated | stacked electrode assembly. 電解液の含浸状態、空隙の有無、及びインピーダンスの関係を示す表。The table | surface which shows the relationship of the impregnation state of electrolyte solution, the presence or absence of a space | gap, and an impedance. 電解液の漏出の有無、空隙・空間の有無、及びインピーダンスの関係を示す表。The table | surface which shows the relationship between the presence or absence of leakage of electrolyte solution, the presence or absence of space | gap and space, and impedance.

以下、蓄電装置の製造方法を二次電池の製造方法に具体化した一実施形態について図1〜図8にしたがって説明する。
図1及び図2に示すように、二次電池10はケース11を備え、このケース11には電極組立体12及び電解液(図示せず)が収容されている。ケース11は、有底四角筒状のケース本体13と、ケース本体13に電極組立体12を挿入するための開口部13aを塞ぐ矩形平板状の蓋体14とからなる。ケース本体13と蓋体14は、いずれも金属製(ステンレス製)である。二次電池10は角型電池であり、リチウムイオン電池である。ケース本体13は矩形板状の底壁13bと、底壁13bの一対の第1側縁(短側縁)から立設された第1側壁13cと、底壁13bにおける別の一対の第2側縁(長側縁)から立設された第2側壁13dと、を備える。
Hereinafter, an embodiment in which a method for manufacturing a power storage device is embodied in a method for manufacturing a secondary battery will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the secondary battery 10 includes a case 11, and the case 11 accommodates an electrode assembly 12 and an electrolytic solution (not shown). The case 11 includes a bottomed square cylindrical case main body 13 and a rectangular flat lid 14 that closes an opening 13 a for inserting the electrode assembly 12 into the case main body 13. Both the case body 13 and the lid body 14 are made of metal (stainless steel). The secondary battery 10 is a prismatic battery and is a lithium ion battery. The case body 13 includes a rectangular plate-shaped bottom wall 13b, a first side wall 13c erected from a pair of first side edges (short side edges) of the bottom wall 13b, and another pair of second sides of the bottom wall 13b. And a second side wall 13d erected from the edge (long side edge).

電極組立体12には、正極端子15と負極端子16が電気的に接続されている。正極端子15及び負極端子16には、ケース11から絶縁するためのリング状の絶縁部材17がそれぞれ取り付けられている。また、正極端子15と負極端子16は、一端が蓋体14からケース11外に露出している。   A positive electrode terminal 15 and a negative electrode terminal 16 are electrically connected to the electrode assembly 12. A ring-shaped insulating member 17 for insulating from the case 11 is attached to each of the positive terminal 15 and the negative terminal 16. One end of each of the positive electrode terminal 15 and the negative electrode terminal 16 is exposed to the outside of the case 11 from the lid body 14.

図6(a)に示すように、電極組立体12は、異なる極の正極電極21と負極電極24、及び正極電極21と負極電極24とを絶縁するセパレータ27を有する。正極電極21は、正極金属箔21a(アルミニウム箔)の両面に正極活物質層21bを備える。負極電極24は、負極金属箔24a(銅箔)の両面に負極活物質層24bを備える。そして、電極組立体12は、複数の正極電極21と複数の負極電極24が交互に積層されるとともに、両電極の間にセパレータ27が介在された積層型である。   As shown in FIG. 6A, the electrode assembly 12 includes a positive electrode 21 and a negative electrode 24 of different poles, and a separator 27 that insulates the positive electrode 21 and the negative electrode 24 from each other. The positive electrode 21 includes a positive electrode active material layer 21b on both surfaces of a positive metal foil 21a (aluminum foil). The negative electrode 24 includes a negative electrode active material layer 24b on both surfaces of a negative electrode metal foil 24a (copper foil). The electrode assembly 12 is a stacked type in which a plurality of positive electrodes 21 and a plurality of negative electrodes 24 are alternately stacked, and a separator 27 is interposed between the electrodes.

正極電極21上の正極活物質層21b、負極電極24上の負極活物質層24b、及びセパレータ27は多孔質体であり、その内部の細孔に電解液が含浸されている。電解液は、電極組立体12内部の細孔を満たす分だけケース11に注入されている。   The positive electrode active material layer 21b on the positive electrode 21, the negative electrode active material layer 24b on the negative electrode 24, and the separator 27 are porous bodies, and the internal pores are impregnated with an electrolytic solution. The electrolytic solution is injected into the case 11 by an amount that fills the pores inside the electrode assembly 12.

図1及び図5(a)に示すように、蓋体14において、ケース11の内側に臨む面を内壁面14aとし、ケース11の外側に臨む面を外壁面14bとする。蓋体14は、その厚み方向に貫通する円孔状の注液孔14cを備える。注液孔14cは、封止部材20によって封止されている。   As shown in FIGS. 1 and 5A, in the lid body 14, a surface facing the inside of the case 11 is an inner wall surface 14a, and a surface facing the outside of the case 11 is an outer wall surface 14b. The lid 14 includes a circular liquid injection hole 14c penetrating in the thickness direction. The liquid injection hole 14 c is sealed by the sealing member 20.

次に、電極組立体12に電解液が十分含浸されているか否かの判定を行う検査装置について説明する。
図3に示すように、検査装置30は、測定用コイル31と、測定用コイル31に交流電流を流す発信器32と、測定用コイル31に接続されたブリッジ回路33と、インピーダンスの変化を表示する表示器34と、を有する。測定用コイル31は、ケース11において、ケース本体13の底壁13bに接近させて使用される。測定用コイル31に交流電流を流すことで、測定用コイル31に磁界が誘起され、その磁束を底壁13bの外面に直角に当てると、底壁13bに渦電流が発生する。
Next, an inspection apparatus that determines whether or not the electrode assembly 12 is sufficiently impregnated with the electrolyte will be described.
As shown in FIG. 3, the inspection device 30 displays a measurement coil 31, a transmitter 32 that causes an alternating current to flow through the measurement coil 31, a bridge circuit 33 connected to the measurement coil 31, and a change in impedance. Display 34. The measurement coil 31 is used in the case 11 while being close to the bottom wall 13 b of the case body 13. By passing an alternating current through the measuring coil 31, a magnetic field is induced in the measuring coil 31, and when the magnetic flux is applied to the outer surface of the bottom wall 13b at a right angle, an eddy current is generated in the bottom wall 13b.

発信器32は、測定用コイル31に流す交流電流の周波数を変更可能である。底壁13bに渦電流が発生したとき、底壁13bに流れる電流量は、測定用コイル31からの距離が離れるほど弱まる。本実施形態では、ケース11の底壁13b上に電解液が溜まっているか否かを判別するため、渦電流が底壁13bの厚さを越えて形成されることが重要である。このため、渦電流の深さ、所謂浸透深さを設定し、渦電流の浸透深さが底壁13bの厚さより深くなるようにする。   The transmitter 32 can change the frequency of the alternating current that flows through the measuring coil 31. When an eddy current is generated in the bottom wall 13b, the amount of current flowing through the bottom wall 13b becomes weaker as the distance from the measuring coil 31 increases. In the present embodiment, it is important that the eddy current is formed beyond the thickness of the bottom wall 13b in order to determine whether or not the electrolytic solution is accumulated on the bottom wall 13b of the case 11. For this reason, the depth of eddy current, the so-called penetration depth, is set so that the penetration depth of eddy current is deeper than the thickness of the bottom wall 13b.

図4に示すように、渦電流の浸透深さは、測定用コイル31に流す交流電流の周波数、及び渦電流が形成される金属の材質によって異なる。そして、本実施形態では、ステンレス製の底壁13bにおいて、その底壁13bの厚さより深い浸透深さNを得るために、周波数Mを設定する。   As shown in FIG. 4, the penetration depth of the eddy current differs depending on the frequency of the alternating current flowing through the measuring coil 31 and the material of the metal on which the eddy current is formed. And in this embodiment, in order to obtain the penetration depth N deeper than the thickness of the bottom wall 13b in the stainless steel bottom wall 13b, the frequency M is set.

図3に示すように、検査装置30のブリッジ回路33は、測定用コイル31に流れる電流が変化したとき、電流の変化をインピーダンスの変化に変換する。表示器34は、インピーダンスの値、及びインピーダンスの値が適正値か否かを表示させる。なお、インピーダンスの適正値は、ケース11内に電解液の残留の無い場合、すなわち、底壁13bのみに渦電流を発生させたときに検出されるインピーダンスの値であり、適正値は実験等により予め設定されている。   As shown in FIG. 3, the bridge circuit 33 of the inspection apparatus 30 converts a change in current into a change in impedance when the current flowing through the measurement coil 31 changes. The display 34 displays the impedance value and whether or not the impedance value is an appropriate value. The appropriate impedance value is the impedance value detected when no electrolyte remains in the case 11, that is, when an eddy current is generated only in the bottom wall 13b. It is set in advance.

次に、二次電池10の製造方法を含浸検査工程の作用とともに説明する。
まず、ケース本体13の開口部13aから電極組立体12をケース本体13内に挿入する。このとき、電極組立体12は、正極電極21及び負極電極24とセパレータ27とが、十分に密着するように加圧され、かつ電極組立体12の積層方向の両端面がケース本体13の第2側壁13dの内面に密着するようにケース本体13に収容される。次に、ケース本体13に蓋体14を接合して、ケース本体13の開口部13aを閉塞する。すると、ケース11に電極組立体12を収納する工程が完了する。次に、注液孔14cからケース11内に電解液を注入する注入工程を行い、その後、注液孔14cを封止部材20によって封止する。そして、電解液を電極組立体12に含浸させる含浸工程を所定時間行う。
Next, the manufacturing method of the secondary battery 10 will be described together with the operation of the impregnation inspection process.
First, the electrode assembly 12 is inserted into the case body 13 from the opening 13 a of the case body 13. At this time, the electrode assembly 12 is pressurized so that the positive electrode 21 and the negative electrode 24 and the separator 27 are in close contact with each other, and both end surfaces of the electrode assembly 12 in the stacking direction are the second of the case body 13. The case body 13 is accommodated so as to be in close contact with the inner surface of the side wall 13d. Next, the lid body 14 is joined to the case body 13 to close the opening 13 a of the case body 13. Then, the process of housing the electrode assembly 12 in the case 11 is completed. Next, an injection process of injecting an electrolytic solution into the case 11 from the liquid injection hole 14 c is performed, and then the liquid injection hole 14 c is sealed with the sealing member 20. Then, an impregnation step of impregnating the electrode assembly 12 with the electrolytic solution is performed for a predetermined time.

含浸工程を所定時間行った後、電解液が電極組立体12に十分に含浸したか否かを判定する含浸検査工程を行う。
まず、図4に示すグラフに基づき、ステンレス製の底壁13bの厚さを越えた浸透深さNが得られるように、測定用コイル31に流す交流電流の周波数Mを選択する。そして、発信器32によって選択した周波数を設定し、その周波数の交流電流を測定用コイル31に流すと、測定用コイル31に磁界が誘起される。測定用コイル31を、ケース11の壁部としての底壁13bに接近させる。測定用コイル31に発生した磁束を底壁13bの外面に直角に当て、底壁13bに渦電流を発生させる。このとき、周波数Mは、底壁13bの厚さを越えた浸透深さNが得られるように設定されているため、底壁13bの反対側(ケース11内における底壁13b上)に導電体(電解液)があれば、この導電体にも渦電流が発生する。
After performing the impregnation step for a predetermined time, an impregnation inspection step is performed to determine whether or not the electrode assembly 12 is sufficiently impregnated with the electrolyte.
First, based on the graph shown in FIG. 4, the frequency M of the alternating current flowing through the measuring coil 31 is selected so that the penetration depth N exceeding the thickness of the bottom wall 13b made of stainless steel can be obtained. When a frequency selected by the transmitter 32 is set and an alternating current of that frequency is passed through the measuring coil 31, a magnetic field is induced in the measuring coil 31. The measurement coil 31 is brought close to the bottom wall 13 b as the wall portion of the case 11. Magnetic flux generated in the measuring coil 31 is applied to the outer surface of the bottom wall 13b at a right angle to generate an eddy current in the bottom wall 13b. At this time, since the frequency M is set so as to obtain a penetration depth N exceeding the thickness of the bottom wall 13b, a conductor is provided on the opposite side of the bottom wall 13b (on the bottom wall 13b in the case 11). If (electrolyte) is present, eddy current is also generated in this conductor.

図5(a)及び図6(a)に示すように、電極組立体12に電解液が十分に含浸していると、ケース11内において、測定用コイル31を接近させた底壁13bの反対側である底壁13b上には導電体である電解液は存在せず、電解液の残留は無い。   As shown in FIGS. 5 (a) and 6 (a), when the electrode assembly 12 is sufficiently impregnated with the electrolyte, the case 11 is opposite to the bottom wall 13b with the measuring coil 31 approached. On the bottom wall 13b that is the side, there is no electrolytic solution that is a conductor, and no electrolytic solution remains.

すなわち、図6(a)及び図7に示すように、底壁13bの上面と、底壁13bに対向する電極組立体12の外面との間には僅かな空隙Tが画定されている。なお、この空隙Tは、リチウムイオン電池において、リチウムの析出を抑制するために、正極活物質層21b、負極活物質層24b、及びセパレータ27のサイズに大小関係を設定するために生じる。このため、ケース11内にまで達した渦電流は、僅かな空隙Tの存在によって渦電流が発生する深さが制限される。   That is, as shown in FIGS. 6A and 7, a slight gap T is defined between the upper surface of the bottom wall 13b and the outer surface of the electrode assembly 12 facing the bottom wall 13b. The void T is generated in the lithium ion battery in order to set a size relationship between the sizes of the positive electrode active material layer 21b, the negative electrode active material layer 24b, and the separator 27 in order to suppress lithium deposition. For this reason, the eddy current reaching the inside of the case 11 is limited in the depth at which the eddy current is generated due to the presence of the slight gap T.

発生した渦電流によって磁界が発生し、その磁束が測定用コイル31に入り、測定用コイル31に電流が誘起され(反作用電流)、測定用コイル31に電流が流れる。すると、測定用コイル31に流れる電流の変化がブリッジ回路33によってインピーダンスに変換され、インピーダンスの値は表示器34に表示される。そして、含浸検査工程の際に検出されたインピーダンスの値と、予め設定された適正値とが比較される。底壁13b上に電解液が無いことから、検出されたインピーダンスの値は適正値となり、電極組立体12に電解液が十分に含浸したと判定できる。   A magnetic field is generated by the generated eddy current, the magnetic flux enters the measurement coil 31, a current is induced in the measurement coil 31 (reaction current), and a current flows through the measurement coil 31. Then, the change in the current flowing through the measuring coil 31 is converted into impedance by the bridge circuit 33, and the impedance value is displayed on the display 34. Then, the impedance value detected during the impregnation inspection process is compared with a preset appropriate value. Since there is no electrolyte solution on the bottom wall 13b, the detected impedance value becomes an appropriate value, and it can be determined that the electrode assembly 12 is sufficiently impregnated with the electrolyte solution.

一方、図5(b)及び図6(b)に示すように、電極組立体12への電解液の含浸が不十分であると、図5(b)及び図6(b)のドットハッチングに示すように、ケース11の底壁13b上に電解液Dが残留し(存在し)、空隙Tが電解液Dで満たされ、空隙Tが無い。このため、ケース11内にまで達した渦電流は、電解液Dの存在によってより深い位置、すなわち、電解液の無い場合よりも深い位置まで発生する。   On the other hand, as shown in FIGS. 5B and 6B, if the electrode assembly 12 is not sufficiently impregnated with the electrolyte, dot hatching in FIGS. 5B and 6B will occur. As shown, the electrolyte D remains (exists) on the bottom wall 13b of the case 11, the gap T is filled with the electrolyte D, and there is no gap T. For this reason, the eddy current that has reached the inside of the case 11 is generated to a deeper position due to the presence of the electrolytic solution D, that is, a deeper position than when there is no electrolytic solution.

よって、図7に示すように、電解液の残留が有ると、測定用コイル31に流れる電流は、電解液が存在しない場合(空隙Tが有る場合)と異なり、インピーダンスの値も異なる。したがって、表示器34には、インピーダンスの値が適正値でない旨が表示される。よって、インピーダンスの値により、電極組立体12に電解液が十分に含浸していないと判定できる。   Therefore, as shown in FIG. 7, if the electrolyte remains, the current flowing through the measurement coil 31 is different from the case where there is no electrolyte (when the gap T is present), and the impedance value is also different. Therefore, the display 34 displays that the impedance value is not an appropriate value. Therefore, it can be determined from the impedance value that the electrode assembly 12 is not sufficiently impregnated with the electrolyte.

その後、二次電池10のエージング工程が行われる。エージング工程が完了すると、二次電池10において、封止部材20が注液孔14cから抜かれるとともに、エージング工程で発生したガスが注液孔14cからケース11外へ放出される。ガスを放出させる工程の後、注液孔14cが別の封止部材20で封止される。その後、二次電池10の自己放電等が行われ、二次電池10が完成する。   Thereafter, an aging process of the secondary battery 10 is performed. When the aging process is completed, in the secondary battery 10, the sealing member 20 is removed from the liquid injection hole 14c, and the gas generated in the aging process is released from the liquid injection hole 14c to the outside of the case 11. After the step of releasing the gas, the liquid injection hole 14 c is sealed with another sealing member 20. Thereafter, the secondary battery 10 is self-discharged to complete the secondary battery 10.

次に、電極組立体として捲回型の電極組立体を備えた二次電池の含浸検査工程を行う場合について説明する。
図8に示すように、捲回型の電極組立体42を備えた二次電池40において、電極組立体42は、正極電極と負極電極が、セパレータで絶縁した状態で渦巻状に捲回されたものである。また、二次電池40のケース41は、有底四角筒状のケース本体43と、ケース本体43に電極組立体42を挿入するための開口部43aを塞ぐ矩形平板状の蓋体44とからなる。ケース本体43と蓋体44は、いずれもステンレス製である。ケース本体43は矩形板状の底壁43bと、底壁43bの一対の第1側縁(短側縁)から立設された第1側壁43cと、底壁43bにおける別の一対の第2側縁(長側縁)から立設された第2側壁43dと、を備える。
Next, the case where the impregnation inspection process of the secondary battery provided with the wound electrode assembly as the electrode assembly is performed will be described.
As shown in FIG. 8, in the secondary battery 40 having the wound electrode assembly 42, the electrode assembly 42 was wound in a spiral shape with the positive electrode and the negative electrode insulated by a separator. Is. The case 41 of the secondary battery 40 includes a bottomed square cylindrical case main body 43 and a rectangular flat plate-shaped lid body 44 that closes an opening 43 a for inserting the electrode assembly 42 into the case main body 43. . Both the case main body 43 and the lid 44 are made of stainless steel. The case body 43 includes a rectangular plate-shaped bottom wall 43b, a first side wall 43c erected from a pair of first side edges (short side edges) of the bottom wall 43b, and another pair of second sides of the bottom wall 43b. And a second side wall 43d erected from the edge (long side edge).

電極組立体42は捲回軸Lの周方向に沿って外周面が湾曲している。二次電池40のケース41内では、底壁43b及び両第2側壁43dの内面に電極組立体42の周面が密接している。そして、電極組立体42のアール部と、底壁43bの内面と、第2側壁43dの内面とによって、ケース41内には空間Sが画定されている。   The electrode assembly 42 has an outer peripheral surface that is curved along the circumferential direction of the winding axis L. In the case 41 of the secondary battery 40, the peripheral surface of the electrode assembly 42 is in close contact with the inner surfaces of the bottom wall 43b and the second side walls 43d. A space S is defined in the case 41 by the rounded portion of the electrode assembly 42, the inner surface of the bottom wall 43b, and the inner surface of the second side wall 43d.

捲回型の電極組立体42を備える二次電池40の含浸検査工程では、まず、二次電池40を片方の第2側壁43d側に傾ける。
このとき、電極組立体42に電解液が十分に含浸していると、空間Sには電解液が残留せず(存在せず)、空間Sのみが存在していることになる。そして、底壁43bにおいて、片方の第2側壁43d側に測定用コイル31を接近させると、ケース41内にまで達した渦電流は、空間Sの存在によって渦電流が発生する深さが第2側壁43dだけに制限される。このため、発生した渦電流によって得られるインピーダンスの値と、予め設定された適正値とが比較されたとき、検出されたインピーダンスの値は適正値であることから、電極組立体42に電解液が十分に含浸したと判定できる。
In the impregnation inspection process for the secondary battery 40 including the wound electrode assembly 42, first, the secondary battery 40 is tilted toward the second side wall 43d.
At this time, if the electrode assembly 42 is sufficiently impregnated with the electrolytic solution, the electrolytic solution does not remain (does not exist) in the space S, and only the space S exists. When the measurement coil 31 is brought closer to the second side wall 43d on the bottom wall 43b, the eddy current reaching the inside of the case 41 has a depth at which the eddy current is generated due to the presence of the space S. It is limited only to the side wall 43d. For this reason, when the impedance value obtained by the generated eddy current is compared with a preset appropriate value, the detected impedance value is an appropriate value. It can be determined that it is sufficiently impregnated.

一方、図8に示すように、電極組立体42に電解液Dが十分に含浸していないと、空間Sに電解液Dが溜まる。このため、ケース41内にまで達した渦電流は、電解液Dの残留(存在)によってより深い位置、すなわち、電解液の無い場合よりも深い位置まで発生する。このため、発生した渦電流によって得られるインピーダンスの値と、予め設定された適正値とが比較されると、表示器34には、インピーダンスの値が適正値でない旨が表示される。よって、インピーダンスの値により、電極組立体42に電解液が十分に含浸していないと判定できる。   On the other hand, as shown in FIG. 8, if the electrode assembly 42 is not sufficiently impregnated with the electrolyte D, the electrolyte D accumulates in the space S. For this reason, the eddy current that has reached the inside of the case 41 is generated to a deeper position due to the remaining (presence) of the electrolytic solution D, that is, a deeper position than when there is no electrolytic solution. For this reason, when the impedance value obtained by the generated eddy current is compared with a preset appropriate value, the display 34 displays that the impedance value is not an appropriate value. Therefore, it can be determined from the impedance value that the electrode assembly 42 is not sufficiently impregnated with the electrolyte.

上記実施形態によれば、以下のような効果を得ることができる。
(1)二次電池10,40の製造時、含浸工程の後で、かつエージング工程の前に、電極組立体12,42に電解液が十分に含浸したか否かを含浸検査工程で判定するようにした。すなわち、積層型の二次電池10では、ケース11内の空隙Tの有無によって変化する渦電流の変化を利用し、電解液が十分に含浸しているか否かを判定し、捲回型の二次電池40では、ケース41内の空間Sの有無によって変化する渦電流の変化を利用し、電解液が十分に含浸しているか否かを判定する。したがって、電極組立体12,42が捲回型及び積層型のいずれであっても、電解液が電極組立体12,42に十分に含浸したか否かを判定でき、含浸検査工程の汎用性を高めることができる。
According to the above embodiment, the following effects can be obtained.
(1) When the secondary batteries 10 and 40 are manufactured, whether the electrode assemblies 12 and 42 are sufficiently impregnated with the electrolytic solution is determined in the impregnation inspection step after the impregnation step and before the aging step. I did it. That is, in the stacked secondary battery 10, it is determined whether or not the electrolytic solution is sufficiently impregnated using a change in eddy current that changes depending on the presence or absence of the gap T in the case 11. In the secondary battery 40, it is determined whether or not the electrolyte is sufficiently impregnated by using a change in eddy current that changes depending on the presence or absence of the space S in the case 41. Therefore, it is possible to determine whether the electrolyte assembly is sufficiently impregnated in the electrode assembly 12 or 42 regardless of whether the electrode assembly 12 or 42 is a wound type or a laminated type. Can be increased.

(2)また、ケース11,41の底壁13b,43bの厚さ及び材質に合わせて測定用コイル31に流す交流電流の周波数を設定する。このため、ケース11,41のサイズや材質の種類が様々であっても、電解液が電極組立体12,42に十分に含浸したか否かを判定でき、含浸検査工程の汎用性を高めることができる。   (2) Also, the frequency of the alternating current that flows through the measuring coil 31 is set in accordance with the thickness and material of the bottom walls 13b and 43b of the cases 11 and 41. For this reason, even if the sizes and types of materials of the cases 11 and 41 are various, it can be determined whether or not the electrode assembly 12 or 42 is sufficiently impregnated with the electrolyte, and the versatility of the impregnation inspection process can be improved. Can do.

(3)含浸検査工程では、ケース11,41における底壁13b,43bの外面に測定用コイル31を接近させて、電極組立体12,42に電解液が十分に含浸したか否かを判定した。電解液が電極組立体12,42に十分に含浸していないと、電解液は自重によってケース11,41の底壁13b,43b上に溜まる。このため、底壁13b,43bに溜まった電解液の有無から、電解液が電極組立体12,42に十分に含浸されたか否かを判定できる。   (3) In the impregnation inspection step, the measurement coil 31 is brought close to the outer surfaces of the bottom walls 13b and 43b in the cases 11 and 41 to determine whether or not the electrode assemblies 12 and 42 are sufficiently impregnated with the electrolyte. . If the electrode assembly 12 or 42 is not sufficiently impregnated with the electrolyte, the electrolyte will accumulate on the bottom walls 13b and 43b of the cases 11 and 41 due to its own weight. For this reason, it can be determined whether or not the electrode assemblies 12 and 42 are sufficiently impregnated from the presence or absence of the electrolyte accumulated in the bottom walls 13b and 43b.

(4)含浸検査工程を、電解液の含浸工程の後で、かつエージング工程の前に行うようにした。このため、電解液が電極組立体12,42に十分に含浸していないことが判定できれば、エージング工程の前に、電解液の追加の含浸のための時間を設定することができる。   (4) The impregnation inspection step is performed after the electrolytic solution impregnation step and before the aging step. For this reason, if it can be determined that the electrolyte solution is not sufficiently impregnated in the electrode assemblies 12, 42, the time for additional impregnation of the electrolyte solution can be set before the aging step.

なお、上記実施形態は以下のように変更してもよい。
○ 実施形態では、ケース11,41の底壁13b,43bに測定用コイル31を接近させて電解液が含浸したか否かを判定するようにしたが、これに加え、別の方法によっても含浸検査を行うことも可能である。
In addition, you may change the said embodiment as follows.
In the embodiment, the measurement coil 31 is brought close to the bottom walls 13b and 43b of the cases 11 and 41 to determine whether or not the electrolyte is impregnated. In addition to this, the impregnation is also performed by another method. It is also possible to perform an inspection.

図9に示すように、測定用コイル31を壁部としての一対の第2側壁13d,43d上に接近させつつ走査させ、電極組立体12,42の内部を検査対象としてもよい。
このとき、図10の表に示すように、電極組立体12,42に電解液が十分に含浸していると、電極組立体12,42の積層方向に隣り合う正極活物質層21b、負極活物質層24b、及びセパレータ27内の細孔内は電解液で満たされ、空隙は無い。
As shown in FIG. 9, the measurement coil 31 may be scanned while approaching a pair of second side walls 13 d and 43 d as wall portions, and the inside of the electrode assemblies 12 and 42 may be an inspection target.
At this time, as shown in the table of FIG. 10, when the electrode assemblies 12 and 42 are sufficiently impregnated with the electrolyte, the positive electrode active material layer 21 b and the negative electrode active material adjacent to each other in the stacking direction of the electrode assemblies 12 and 42. The pores in the material layer 24b and the separator 27 are filled with the electrolytic solution, and there are no voids.

この状態で、図9に示すように、各第2側壁13d,43dに測定用コイル31を接近させ、第2側壁13d,43dに渦電流を発生させるとともに、第2側壁13d,43d上に接近させつつ走査させる。ケース11,41の内部の状態は一様であるため、測定用コイル31に流れる電流は変化しない。   In this state, as shown in FIG. 9, the measurement coil 31 is brought close to the second side walls 13d and 43d, eddy currents are generated in the second side walls 13d and 43d, and the second side walls 13d and 43d are approached. And scanning. Since the internal state of the cases 11 and 41 is uniform, the current flowing through the measurement coil 31 does not change.

その結果、図10に示すように、検出されるインピーダンスの値の変化は無く、インピーダンスを検出することで、電解液が、電極組立体12,42の積層方向にまで十分に含浸していることが判定される。   As a result, as shown in FIG. 10, there is no change in the detected impedance value, and the electrolyte is sufficiently impregnated in the stacking direction of the electrode assemblies 12 and 42 by detecting the impedance. Is determined.

一方、電極組立体12,42への電解液の含浸が不十分であると、正極活物質層21b、負極活物質層24b、及びセパレータ27内の細孔内には電解液が含浸していない部分(空隙)が存在する。この状態で、第2側壁13d,43dに測定用コイル31を接近させ、第2側壁13d,43dに渦電流を発生させるとともに、第2側壁13d,43d上を走査させる。すると、電解液が含浸していない部分にて測定用コイル31に流れる電流が変化する。よって、インピーダンスの値が変化することを検出することで、電解液が電極組立体12,42に十分に含浸していないことが判定される。   On the other hand, if the electrode assemblies 12 and 42 are not sufficiently impregnated with the electrolyte solution, the positive electrode active material layer 21b, the negative electrode active material layer 24b, and the pores in the separator 27 are not impregnated with the electrolyte solution. There are parts (voids). In this state, the measurement coil 31 is brought close to the second side walls 13d and 43d, eddy currents are generated on the second side walls 13d and 43d, and the second side walls 13d and 43d are scanned. As a result, the current flowing through the measurement coil 31 changes in a portion not impregnated with the electrolytic solution. Therefore, it is determined that the electrolytic solution is not sufficiently impregnated in the electrode assemblies 12 and 42 by detecting that the impedance value changes.

したがって、電極組立体12,42の積層方向においても、電解液が十分に含浸したか否かを判定できる。そして、両方の第2側壁13d,43dから含浸検査を行うため、電極組立体12,42の積層方向の中央まで電解液が十分に含浸したか否かをより正確に判定できる。   Therefore, whether or not the electrolyte is sufficiently impregnated can be determined also in the stacking direction of the electrode assemblies 12 and 42. Since the impregnation test is performed from both the second side walls 13d and 43d, it can be more accurately determined whether or not the electrolytic solution is sufficiently impregnated to the center in the stacking direction of the electrode assemblies 12 and 42.

なお、片方の第2側壁13d,43dから含浸検査を行ってもよい。
○ 含浸検査工程で用いた検査装置30を使用して、電極組立体12,42から電解液が漏出しているか否かを検査する検査工程を行ってもよい。
The impregnation inspection may be performed from one of the second side walls 13d and 43d.
O You may perform the test | inspection process which test | inspects whether the electrolyte solution has leaked from the electrode assemblies 12 and 42 using the test | inspection apparatus 30 used at the impregnation test | inspection process.

例えば、二次電池10,40が振動等を受けて、電極組立体12,42から電解液が漏出する場合がある。
この場合、図11に示すように、ケース11,41の内面と電極組立体12,42の外面との間が電解液で満たされ、空隙Tや空間Sは無い。この状態で、例えば、ケース11,41の底壁13b,43bに測定用コイル31を接近させ、底壁13b,43bに渦電流を発生させる。
For example, the secondary batteries 10 and 40 may receive vibrations or the like, and the electrolyte solution may leak from the electrode assemblies 12 and 42.
In this case, as shown in FIG. 11, the space between the inner surfaces of the cases 11 and 41 and the outer surfaces of the electrode assemblies 12 and 42 is filled with the electrolytic solution, and there is no gap T or space S. In this state, for example, the measurement coil 31 is brought close to the bottom walls 13b and 43b of the cases 11 and 41, and eddy currents are generated on the bottom walls 13b and 43b.

すると、渦電流は、電解液の存在によってより深い位置、すなわち、電解液の漏出の無い場合よりも深い位置まで発生する。よって、測定用コイル31に流れる電流は、電解液が漏出していない場合と異なり、インピーダンスの値も異なる。したがって、表示器34には、インピーダンスの値が適正値でない旨が表示される。よって、インピーダンスの値により、電極組立体12から電解液が漏出していることが判定される。   Then, the eddy current is generated in a deeper position due to the presence of the electrolytic solution, that is, a deeper position than in the case where there is no leakage of the electrolytic solution. Therefore, the current flowing through the measurement coil 31 is different from the case where the electrolyte does not leak, and the impedance value is also different. Therefore, the display 34 displays that the impedance value is not an appropriate value. Therefore, it is determined that the electrolyte is leaking from the electrode assembly 12 based on the impedance value.

一方、電極組立体12,42から電解液が漏出しておらず、電解液が電極組立体12,42に十分に含浸していれば、ケース11,41の内面と電極組立体12,42の外面との間に僅かな空隙Tや空間Sが有り、電解液は存在しない。したがって、検査装置30で検査を行うと、ケース11,41内にまで達した渦電流は、空隙Tや空間Sの存在によって渦電流が発生する深さが制限される。よって、測定用コイル31に流れる電流は、電解液が漏出している場合と異なり、インピーダンスの値が適正値となり、表示器34には、インピーダンスの値が適正値である旨が表示される。このため、インピーダンスの値により、電極組立体12,42から電解液が漏出していないことが判定される。   On the other hand, if the electrolyte does not leak from the electrode assemblies 12 and 42 and the electrolyte is sufficiently impregnated in the electrode assemblies 12 and 42, the inner surfaces of the cases 11 and 41 and the electrode assemblies 12 and 42 There are slight gaps T and spaces S between the outer surface and the electrolyte solution. Therefore, when the inspection apparatus 30 performs the inspection, the depth of the eddy current that has reached the inside of the cases 11 and 41 is limited due to the presence of the gap T and the space S. Therefore, unlike the case where the electrolyte is leaking, the current flowing through the measuring coil 31 has an appropriate impedance value, and the display 34 displays that the impedance value is an appropriate value. For this reason, it is determined that the electrolyte does not leak from the electrode assemblies 12 and 42 based on the impedance value.

したがって、二次電池10,40の検査においても、電極組立体12,42の形態に関わらず、電解液が漏出しているか否かを判定することができる。
○ 検査装置30において、測定用コイル31の種類、形状、誘導方式は適宜変更してもよい。
Therefore, even in the inspection of the secondary batteries 10 and 40, it is possible to determine whether or not the electrolyte is leaking regardless of the form of the electrode assemblies 12 and 42.
In the inspection apparatus 30, the type, shape, and guidance method of the measurement coil 31 may be changed as appropriate.

○ 含浸検査工程及び検査工程において、壁部としてケース11,41の第1側壁13c,43cの外面に測定用コイル31を接近させて行ってもよい。このとき、二次電池10,40の第1側壁13c,43cや第2側壁13d,43dが底になるように二次電池10,40を倒してもよいし、第1側壁13c,43cや第2側壁13d,43dにおいて、底壁13b,43b寄りに測定用コイル31を接近させる。   In the impregnation inspection step and the inspection step, the measurement coil 31 may be brought close to the outer surfaces of the first side walls 13c and 43c of the cases 11 and 41 as wall portions. At this time, the secondary batteries 10 and 40 may be tilted so that the first side walls 13c and 43c and the second side walls 13d and 43d of the secondary batteries 10 and 40 are at the bottom, or the first side walls 13c and 43c On the two side walls 13d and 43d, the measuring coil 31 is moved closer to the bottom walls 13b and 43b.

○ 実施形態では、測定用コイル31に流れる電流の変化を、インピーダンスの値の変化として検出したが、これに限らない。例えば、測定用コイル31に流れる電流の変化を、電圧の変化として検出してもよい。   In the embodiment, the change in the current flowing through the measurement coil 31 is detected as the change in the impedance value, but the present invention is not limited to this. For example, a change in the current flowing through the measurement coil 31 may be detected as a change in voltage.

○ 実施形態では、測定用コイル31を底壁13b,43bに接近させたときに検出されたインピーダンスの値を、予め設定された適正値と比較して電解液が十分に含浸しているか否かを判定したが、これに限らない。例えば、検査装置30が測定用コイル31を複数備える場合には、複数の測定用コイル31を壁部、例えば底壁13b,43bに接近させ、複数の測定用コイル31で検出されたインピーダンスの値を比較する。そして、検出された複数のインピーダンスの値に基づき、電解液が十分に含浸しているか否かを判定してもよい。   In the embodiment, whether or not the electrolyte is sufficiently impregnated by comparing the impedance value detected when the measurement coil 31 is brought close to the bottom walls 13b and 43b with a preset appropriate value. However, the present invention is not limited to this. For example, when the inspection apparatus 30 includes a plurality of measurement coils 31, the impedance values detected by the plurality of measurement coils 31 are made close to a plurality of measurement coils 31, for example, the bottom walls 13 b and 43 b. Compare Then, it may be determined whether or not the electrolytic solution is sufficiently impregnated based on a plurality of detected impedance values.

○ 実施形態では、インピーダンスの値を表示器34で表示させたが、これに限らない。例えば、二次電池10,40の生産設備において、電極組立体12,42に電解液が十分に含浸していない場合、その二次電池10,40を排除する排除設備を設ける。また、検査装置30において、測定されたインピーダンスや電流の値を信号化し、その信号を排除設備に出力するようにする。そして、電流やインピーダンスの値に基づき、電極組立体12,42に電解液が十分に含浸していないと判定された場合、その旨の信号が排除設備に出力され、電極組立体12,42に電解液が十部に含浸していない二次電池10,40を、排除設備によって排除するようにしてもよい。   In the embodiment, the impedance value is displayed on the display 34, but the present invention is not limited to this. For example, in the production facility for the secondary batteries 10 and 40, if the electrode assemblies 12 and 42 are not sufficiently impregnated with the electrolyte, an exclusion facility for removing the secondary batteries 10 and 40 is provided. Further, the inspection device 30 converts the measured impedance and current values into signals and outputs the signals to the exclusion facility. When it is determined that the electrode assemblies 12 and 42 are not sufficiently impregnated with the electrolyte based on the current and impedance values, a signal to that effect is output to the exclusion facility, and the electrode assemblies 12 and 42 are notified. The secondary batteries 10 and 40 that are not impregnated with 10 parts of the electrolytic solution may be excluded by an exclusion facility.

○ 実施形態では、正極電極21は、正極金属箔21aの両面に正極活物質層21bを有するとしたが、正極金属箔21aの片面のみに正極活物質層21bを有していてもよい。同様に、負極電極24は、負極金属箔24aの両面に負極活物質層24bを有するとしたが、負極金属箔24aの片面のみに負極活物質層24bを有していてもよい。   In the embodiment, the positive electrode 21 has the positive electrode active material layer 21b on both sides of the positive electrode metal foil 21a, but may have the positive electrode active material layer 21b only on one side of the positive electrode metal foil 21a. Similarly, the negative electrode 24 has the negative electrode active material layer 24b on both sides of the negative electrode metal foil 24a, but may have the negative electrode active material layer 24b only on one side of the negative electrode metal foil 24a.

○ 二次電池10,40はリチウムイオン二次電池であったが、これに限られず、ニッケル水素等の他の二次電池であってもよい。要は、電解液を有するものであればよい。
次に、上記実施形態及び別例から把握できる技術的思想について追記する。
The secondary batteries 10 and 40 are lithium ion secondary batteries, but are not limited thereto, and may be other secondary batteries such as nickel metal hydride. In short, any material having an electrolyte solution may be used.
Next, a technical idea that can be grasped from the above embodiment and another example will be additionally described.

(イ)前記蓄電装置は二次電池である。   (A) The power storage device is a secondary battery.

D…電解液、M…周波数、N…浸透深さ、10,40…蓄電装置としての二次電池、11,41…ケース、12,42…電極組立体、13b,43b…壁部としての底壁、13d…壁部としての第2側壁、21…正極電極、24…負極電極、31…測定用コイル。   D ... electrolyte, M ... frequency, N ... penetration depth, 10,40 ... secondary battery as power storage device, 11,41 ... case, 12,42 ... electrode assembly, 13b, 43b ... bottom as wall A wall, 13d, a second side wall as a wall, 21 a positive electrode, 24 a negative electrode, 31 a measuring coil.

Claims (5)

異なる極の電極を両者の間を絶縁した状態で交互に積層した電極組立体、及び電解液を金属製のケース内に備える蓄電装置の製造方法であって、
前記ケース内に前記電解液を注入する注入工程と、
前記電極組立体に前記電解液を含浸させる含浸工程と、
前記含浸工程の後で、かつエージング工程の前に行われ、前記電解液が前記電極組立体に十分に含浸したか否かを判定する含浸検査工程と、を含み、
前記含浸検査工程は、
測定用コイルを前記ケースの壁部に接近させた状態で前記測定用コイルに交流電流を流し、前記ケースの壁部に渦電流を発生させるとともに、該渦電流の浸透深さが、前記測定用コイルを接近させた前記ケースの壁部の厚さより深くなるように前記ケースの壁部の厚さ及び前記ケースの材質に合わせて前記交流電流の周波数を設定し、前記ケースの壁部の内面と前記電極組立体の外面との間に存在する空隙又は空間の有無によって変化する前記渦電流の変化に基づいて前記電解液の前記電極組立体への含浸状態を判定する蓄電装置の製造方法。
An electrode assembly in which electrodes of different poles are alternately stacked in a state where the electrodes are insulated from each other, and a method of manufacturing a power storage device including an electrolytic solution in a metal case,
An injection step of injecting the electrolytic solution into the case;
An impregnation step of impregnating the electrode assembly with the electrolytic solution;
An impregnation inspection step that is performed after the impregnation step and before the aging step, and determines whether or not the electrode assembly is sufficiently impregnated in the electrode assembly,
The impregnation inspection process includes
An alternating current is passed through the measuring coil in a state where the measuring coil is brought close to the wall of the case, and an eddy current is generated in the wall of the case. The frequency of the alternating current is set according to the thickness of the case wall and the material of the case so as to be deeper than the thickness of the case wall close to the coil, and the inner surface of the case wall A method for manufacturing a power storage device that determines an impregnation state of the electrolyte solution in the electrode assembly based on a change in the eddy current that changes depending on the presence or absence of a gap or space existing between the outer surface of the electrode assembly.
前記測定用コイルは、前記渦電流に応じて前記測定用コイルに誘起される電流の変化をインピーダンスの変化に変換するブリッジ回路に接続されており、  The measurement coil is connected to a bridge circuit that converts a change in current induced in the measurement coil in response to the eddy current into a change in impedance;
前記含浸検査工程では、発生した渦電流によって得られるインピーダンスの値に基づいて前記電解液の前記電極組立体への含浸状態を判定する請求項1に記載の蓄電装置の製造方法。  The method for manufacturing a power storage device according to claim 1, wherein in the impregnation inspection step, an impregnation state of the electrode assembly with the electrolytic solution is determined based on an impedance value obtained by the generated eddy current.
前記ケースは、前記壁部としての底壁を有し、前記浸透深さが前記底壁の厚さより深くなるように前記周波数を設定する請求項1又は請求項2に記載の蓄電装置の製造方法。 The case has a bottom wall as the wall portion, a manufacturing method of a power storage device according to claim 1 or claim 2 wherein the penetration depth is to set the frequency to be deeper than the thickness of the bottom wall . 前記ケースは、前記電極組立体の積層方向の両端に対向する側壁を有し、前記壁部としての前記側壁に沿って前記測定用コイルを走査させ、前記電極組立体の積層方向に前記電解液が含浸されたか否かを判定する請求項1又は請求項2に記載の蓄電装置の製造方法。 The case has side walls opposed to both ends in the stacking direction of the electrode assembly, and the measurement coil is scanned along the side wall as the wall portion, and the electrolyte solution is stacked in the stacking direction of the electrode assembly. The method for manufacturing a power storage device according to claim 1, wherein it is determined whether or not the material is impregnated. 異なる極の電極を両者の間を絶縁した状態で交互に積層した電極組立体、及び電解液をケース内に備える蓄電装置の検査方法であって、
前記電解液が前記電極組立体から漏出しているか否かを判定する検査工程を有し、
前記検査工程は、
測定用コイルを前記ケースの壁部に接近させた状態で前記測定用コイルに交流電流を流し、前記ケースの壁部に渦電流を発生させるとともに、該渦電流の浸透深さが、前記測定用コイルを接近させた前記ケースの壁部の厚さより深くなるように前記交流電流の周波数を設定することで前記電解液が前記電極組立体から漏出しているか否かを判定する蓄電装置の検査方法。
An electrode assembly in which electrodes of different poles are alternately stacked in a state where the electrodes are insulated from each other, and a method for inspecting a power storage device including an electrolyte in a case,
Having an inspection step of determining whether or not the electrolyte is leaking from the electrode assembly;
The inspection process includes
An alternating current is passed through the measuring coil in a state where the measuring coil is brought close to the wall of the case, and an eddy current is generated in the wall of the case. A method for inspecting a power storage device that determines whether or not the electrolytic solution is leaking from the electrode assembly by setting the frequency of the alternating current so as to be deeper than the thickness of the wall portion of the case where the coil is approached. .
JP2014021399A 2014-02-06 2014-02-06 Power storage device manufacturing method and power storage device inspection method Expired - Fee Related JP6260318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021399A JP6260318B2 (en) 2014-02-06 2014-02-06 Power storage device manufacturing method and power storage device inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021399A JP6260318B2 (en) 2014-02-06 2014-02-06 Power storage device manufacturing method and power storage device inspection method

Publications (2)

Publication Number Publication Date
JP2015149187A JP2015149187A (en) 2015-08-20
JP6260318B2 true JP6260318B2 (en) 2018-01-17

Family

ID=53892410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021399A Expired - Fee Related JP6260318B2 (en) 2014-02-06 2014-02-06 Power storage device manufacturing method and power storage device inspection method

Country Status (1)

Country Link
JP (1) JP6260318B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658956B2 (en) * 2017-02-28 2020-03-04 株式会社豊田自動織機 Method for manufacturing power storage device
CN113937394A (en) * 2021-08-31 2022-01-14 新余赣锋电子有限公司 Pre-press welded electrode connecting piece and noise-reducing high-energy-density steel-shell battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619966A (en) * 1984-06-27 1986-01-17 Kawasaki Steel Corp Estimating method of amount of molten steel remaining in ladle
JP2002018563A (en) * 2000-07-03 2002-01-22 Kawasaki Steel Corp Method for detecting molten steel level in tundish and its adjusting method
JP4880811B2 (en) * 2000-09-28 2012-02-22 株式会社東芝 Battery manufacturing method
JP2002333361A (en) * 2001-05-07 2002-11-22 Sefa Technology Kk Method for measuring amount of sample in vessel and apparatus therefor
JP2009048964A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method
JP5287309B2 (en) * 2009-02-05 2013-09-11 トヨタ自動車株式会社 Immersion inspection device
JP5741359B2 (en) * 2011-10-05 2015-07-01 トヨタ自動車株式会社 Manufacturing method of secondary battery
JP2013143203A (en) * 2012-01-09 2013-07-22 Toyota Motor Corp Manufacturing method of battery
JP2014082020A (en) * 2012-10-12 2014-05-08 Sharp Corp Battery manufacturing method

Also Published As

Publication number Publication date
JP2015149187A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5975274B2 (en) Electrode inspection method and use thereof
JP6190783B2 (en) Secondary battery and method for measuring gas generated in secondary battery
JP6260318B2 (en) Power storage device manufacturing method and power storage device inspection method
KR101797838B1 (en) Sealed battery and manufacturing method of same
JP5724858B2 (en) Battery manufacturing method
JP5974967B2 (en) Battery inspection method and battery manufacturing method
JP6528424B2 (en) Power storage device
CN108370000B (en) Sealing member, electricity storage element, and method for manufacturing electricity storage element
JP5456405B2 (en) Inspection device
KR20150089311A (en) Secondary Battery
EP4250466A1 (en) Method for inspecting state of welds in battery
JP2016062728A (en) Method and device for detecting foreign matter of electrode assembly
KR102041329B1 (en) Method and apparatus for testing performance of separator for secondary battery
JP6822357B2 (en) Battery abnormality diagnosis method
KR102142377B1 (en) Electricity storage element
JP5958756B2 (en) Leakage inspection method for current cutoff valve
JP2020092016A (en) Manufacturing device of power storage device
KR102611967B1 (en) Measuring Apparatus For Outer Diameter Of Jelly-roll And Measuring Method For Outer Diameter Of Jelly-roll
JP6398040B2 (en) Impregnation inspection apparatus and impregnation inspection method
US20180108934A1 (en) Battery having a prismatic metal housing
KR20150045594A (en) Method of nondestructive stiffness inspection in battery cell and apparatus thereof
JP2019029209A (en) Power storage element
JP2012252980A (en) Square battery
JP2019083153A (en) Device of inspecting inner pressure of lithium ion secondary battery and method of inspecting inner pressure of the same
JP2020098687A (en) Inspection device for power storage device, and inspection method for power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R151 Written notification of patent or utility model registration

Ref document number: 6260318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees