JP2009048964A - Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method - Google Patents

Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method Download PDF

Info

Publication number
JP2009048964A
JP2009048964A JP2007216676A JP2007216676A JP2009048964A JP 2009048964 A JP2009048964 A JP 2009048964A JP 2007216676 A JP2007216676 A JP 2007216676A JP 2007216676 A JP2007216676 A JP 2007216676A JP 2009048964 A JP2009048964 A JP 2009048964A
Authority
JP
Japan
Prior art keywords
assembly
electrode body
gravity
electrolyte
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007216676A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007216676A priority Critical patent/JP2009048964A/en
Publication of JP2009048964A publication Critical patent/JP2009048964A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily and accurately determining an infiltration state of an electrolytic solution into an electrode body, to provide a device therefor, and to provide a method of manufacturing a secondary battery using the determining method. <P>SOLUTION: The method of manufacturing the secondary battery includes a process of housing an electrode body 30 and an electrolytic solution E in a container 12 to construct a battery assembly 20, a process of immersing the electrode body 30 into the electrolytic solution E and infiltrating the electrolytic solution into the electrode body 30, a process of comprehending an extent of downward bias of weight balance of the assembly 20, and a process of comparing the extent of its bias with a set target value in advance. The extent of the bias can be comprehended, for example, by the measurement with a load cell 68 of a force with which the assembly 20 is going to be rotated following the gravity which is kept inclined against the gravity. If the extent of the bias is the same as the target value or less, infiltration is determined sufficient and transfer to the following process is conducted, but if the extent of the bias is larger than the target value, the infiltration is determined insufficient, and the transfer to the following process is temporarily suspended. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極体に電解液が浸透した構成の二次電池を製造する方法および該電極体への電解液浸透状態を判定する方法に関する。また本発明は、該方法の実施に適した電解液浸透状態判定装置に関する。   The present invention relates to a method of manufacturing a secondary battery having a configuration in which an electrolyte solution penetrates into an electrode body and a method of determining an electrolyte solution penetration state into the electrode body. Moreover, this invention relates to the electrolyte solution penetration state determination apparatus suitable for implementation of this method.

シート状の電極が典型的にはシート状のセパレータを介して重ね合わされた形態の電極体を液状の電解質(電解液)とともに容器に収容した構成の二次電池(例えばリチウムイオン電池)が知られている。この種の電池を製造する一つの代表的な方法では、上記容器内において電極体を電解液に浸すことで該電解液を上記電極体に浸透させる。電極体への電解液の浸透が不十分なまま電池の充放電を行うと、本来の電池性能が発揮されず、あるいは電池の劣化を招く虞がある。このため、遅くとも電池製品の出荷前には上記電解液が十分に浸透した状態が実現されていることが好ましい。電池構成要素の組立後に初期充放電を行う所謂コンディショニング工程を経て製品化される二次電池では、該コンディショニング工程の前に上記電解液が十分に浸透した状態が実現されていることが好ましい。   2. Description of the Related Art Secondary batteries (for example, lithium ion batteries) having a configuration in which an electrode body in a form in which sheet-like electrodes are typically stacked via a sheet-like separator are housed together with a liquid electrolyte (electrolytic solution) are known. ing. In one typical method for manufacturing this type of battery, the electrolyte is infiltrated into the electrode body by immersing the electrode body in the electrolyte in the container. If the battery is charged / discharged with insufficient penetration of the electrolyte into the electrode body, the original battery performance may not be exhibited, or the battery may be deteriorated. For this reason, it is preferable that the state in which the electrolyte solution is sufficiently permeated is realized at the latest before shipment of the battery product. In a secondary battery that is commercialized through a so-called conditioning process in which initial charge / discharge is performed after the battery components are assembled, it is preferable that the electrolyte solution is sufficiently infiltrated before the conditioning process.

特許文献1には、正負極間の静電容量および/またはインピーダンスを測定することにより電極体への電解液の含浸状態を判定することが記載されている。特許文献2は、所定量の電解液を電池容器に精度よく注入する技術に関する。   Patent Document 1 describes that the state of impregnation of the electrolyte into the electrode body is determined by measuring the capacitance and / or impedance between the positive and negative electrodes. Patent Document 2 relates to a technique for accurately injecting a predetermined amount of electrolyte into a battery container.

特開2002−110252号公報JP 2002-110252 A 特開平11−185795号公報JP-A-11-185895

しかし、正負極間の静電容量やインピーダンスは電解液の浸透状態以外の種々の要因(例えば、電極の製造ばらつき、電極体の捲回状態等)によって大きく変動し得る。電解液の浸透状態をより精度よく、かつ簡単に把握することができれば有益である。   However, the capacitance and impedance between the positive and negative electrodes can vary greatly depending on various factors other than the state of penetration of the electrolyte (for example, variations in electrode manufacturing, the wound state of the electrode body, etc.). It would be beneficial if the permeation state of the electrolyte could be grasped more accurately and easily.

そこで本発明は、電極体への電解液の浸透状態を簡単に精度よく判定する方法および該方法の実施に適した判定装置を提供することを目的とする。本発明の他の一つの目的は、上記判定方法を適用して二次電池を製造する方法を提供することである。   Therefore, an object of the present invention is to provide a method for easily and accurately determining the state of penetration of an electrolytic solution into an electrode body and a determination device suitable for carrying out the method. Another object of the present invention is to provide a method of manufacturing a secondary battery by applying the determination method.

本発明者は、電極体と電解液とが容器に収容された構成の電池組立体では、該電解液の電極体への浸透の程度によって上記容器内における電解液の配置(重量の分配)が異なり、したがって上記組立体の上下方向(鉛直方向)の重量バランスが異なる点に着目した。そして、かかる重量バランスの偏りを指標に用いることにより上記課題を解決し得ることを見出して本発明を完成した。   In the battery assembly having a configuration in which the electrode body and the electrolyte solution are accommodated in the container, the inventor determines the arrangement (weight distribution) of the electrolyte solution in the container depending on the degree of penetration of the electrolyte solution into the electrode body. Therefore, attention was paid to the fact that the weight balance in the vertical direction (vertical direction) of the assembly is different. And it discovered that the said subject could be solved by using the deviation of this weight balance for a parameter | index, and completed this invention.

本発明により提供される二次電池製造方法は、シート状の電極が重ね合わされた形態の電極体と電解液とを容器に収容して電池組立体を構築する工程を備える。該製造方法は、また、前記電極体を前記電解液に浸して該電解液を前記電極体に浸透させる工程を備える。また、前記組立体の重量バランスの鉛直方向下側への偏りの程度を把握する工程を備える。また、その偏りの程度を予め設定した目標値と比較する工程を備える。ここで、前記偏りの程度が前記目標値以下である場合には、前記電解液の浸透が十分に進行したと判定して下流の工程(例えばコンディショニング工程)に移行する。一方、前記偏りの程度が前記目標値よりも大きい場合には、前記電解液の浸透が不十分と判定して、下流の工程への移行を保留する。   The secondary battery manufacturing method provided by the present invention includes a step of constructing a battery assembly by housing an electrode body and an electrolytic solution in a form in which sheet-like electrodes are overlaid in a container. The manufacturing method also includes a step of immersing the electrode body in the electrolytic solution and allowing the electrolytic solution to permeate the electrode body. A step of grasping a degree of deviation of the weight balance of the assembly in the vertical direction; Further, the method includes a step of comparing the degree of the deviation with a preset target value. Here, when the degree of the deviation is equal to or less than the target value, it is determined that the electrolyte has sufficiently penetrated, and the process proceeds to a downstream process (for example, a conditioning process). On the other hand, when the degree of the deviation is larger than the target value, it is determined that the electrolyte solution has not sufficiently penetrated, and the shift to the downstream process is suspended.

電極体に浸透していない電解液(以下、「残留電解液」ともいう。)は、重力に従って容易に移動(流動)することができるため、電池組立体の姿勢に応じて当該姿勢における容器の鉛直方向下(以下、単に「下」ということもある。)側に溜まることとなる。これに対して、電極体に浸透した(染み込んだ)電解液は、容器の姿勢に拘わらずその浸透した位置に保持される。このため、上記残留電解液の量(重量)が多いほど、上記組立体が所定の姿勢にあるときの重量バランスの下側への偏りの程度が大きくなる。この残留電解液の量は、容器内に供給された電解液の量から電極体に浸透した電解液の量を差し引いた残量に相当する。したがって、該残留電解液の量が予め設定した目標値(典型的には、電極体に電解液が十分に浸透した場合における残留電解液量に基づいて設定される。)よりも多い場合には、電極体への電解液の浸透が不十分であるといえる。
ここに開示される方法によると、上記残留電解液量を電池組立体の重量バランスの下側への偏りの程度として把握することにより、電極体への電解液の浸透状態(電極体に浸透した電解液の量)を的確に把握することができる。したがって、電解液の浸透が十分と判定された組立体については下流の(より製品の完成に近い)工程に移行し、電解液の浸透が十分と判定された組立体については電解液が十分に浸透するまで上記浸透工程を延長する等の浸透状態を改善する措置をとるか或いは製造ラインから外すことにより、品質(電池性能)の安定した二次電池を安定して製造することができる。
Since the electrolyte solution that has not penetrated into the electrode body (hereinafter also referred to as “residual electrolyte solution”) can easily move (flow) according to the gravity, the electrolyte in the container in the posture is in accordance with the posture of the battery assembly. It accumulates on the lower side in the vertical direction (hereinafter sometimes simply referred to as “lower”). On the other hand, the electrolytic solution that has permeated (permeated) the electrode body is held at the permeated position regardless of the posture of the container. For this reason, the greater the amount (weight) of the residual electrolyte solution, the greater the degree of bias toward the lower side of the weight balance when the assembly is in a predetermined posture. The amount of the residual electrolyte corresponds to the remaining amount obtained by subtracting the amount of the electrolyte that has permeated the electrode body from the amount of the electrolyte supplied in the container. Therefore, when the amount of the residual electrolyte is larger than a preset target value (typically set based on the amount of the residual electrolyte when the electrolyte sufficiently penetrates the electrode body). It can be said that the penetration of the electrolytic solution into the electrode body is insufficient.
According to the method disclosed herein, by grasping the amount of the residual electrolyte as the degree of the bias to the lower side of the weight balance of the battery assembly, the state of penetration of the electrolyte into the electrode body (the electrode body penetrated) The amount of the electrolytic solution) can be accurately grasped. Therefore, the assembly that has been determined to have sufficient penetration of the electrolyte moves to the downstream process (closer to the completion of the product), and the assembly that has been determined to have sufficient penetration of the electrolyte has sufficient electrolyte. By taking measures to improve the permeation state such as extending the permeation process until permeation, or removing it from the production line, a secondary battery with stable quality (battery performance) can be stably produced.

なお、本明細書において「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。また、本明細書において「二次電池」とは、リチウムイオン電池、金属リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する概念である。   In the present specification, the “battery” is a term indicating a general power storage device that can extract electric energy, and includes a primary battery and a secondary battery. Further, in the present specification, the “secondary battery” is a concept including so-called storage batteries such as lithium ion batteries, metal lithium secondary batteries, nickel metal hydride batteries, nickel cadmium batteries, and power storage elements such as electric double layer capacitors. .

本発明によると、またシート状の電極が重ね合わされた形態の電極体と電解液とが容器に収容された構成の電池組立体について、該電解液の前記電極体への浸透状態を判定する方法が提供される。その方法は、前記組立体の重量バランスの鉛直方向下側への偏りの程度を把握する工程を含む。また、その偏りの程度を予め設定した目標値と比較する工程を含む。また、前記偏りの程度が前記目標値以下である場合には前記電解液の浸透が十分に進行したと判定し、前記偏りの程度が前記目標値よりも大きい場合には前記電解液の浸透が不十分と判定する工程を含む。かかる方法によると、上述した二次電池製造方法と同様に、上記残留電解液量を電池組立体の重量バランスの下側への偏りの程度として把握することによって電極体への電解液の浸透状態を的確に把握することができる。
なお、ここに開示されるいずれかの電解液浸透状態判定方法は、電池(典型的には二次電池)の製造過程において好ましく利用されるほか、完成した電池の電解液浸透状態を判定する方法としても好ましく利用することができる。したがって、ここに開示される判定方法における「電池組立体」は、完成した電池(電池製品)であり得る。
According to the present invention, for a battery assembly having a configuration in which an electrode body in a form in which sheet-like electrodes are overlapped and an electrolytic solution are housed in a container, a method for determining a permeation state of the electrolytic solution into the electrode body Is provided. The method includes the step of grasping the degree of deviation of the weight balance of the assembly in the vertically downward direction. Further, the method includes a step of comparing the degree of the deviation with a preset target value. Further, when the degree of bias is less than or equal to the target value, it is determined that the electrolyte solution has sufficiently penetrated, and when the degree of bias is greater than the target value, the electrolyte solution has penetrated. Including a step of determining that it is insufficient. According to such a method, as in the secondary battery manufacturing method described above, the state of penetration of the electrolytic solution into the electrode body is obtained by grasping the amount of the residual electrolytic solution as the degree of the bias toward the lower side of the weight balance of the battery assembly. Can be accurately grasped.
Note that any one of the electrolyte solution penetration state determination methods disclosed herein is preferably used in the manufacturing process of a battery (typically a secondary battery), and the electrolyte solution penetration state of a completed battery is determined. Can also be preferably used. Therefore, the “battery assembly” in the determination method disclosed herein can be a completed battery (battery product).

上記重量バランスの偏りの程度は、例えば以下のようにして好適に把握され得る。すなわち、前記組立体の下部が上部に対して回転し得るように該組立体を支持し、該組立体を重力に抗して傾いた姿勢(例えば、前記重力に従った姿勢に対して凡そ30°〜45°程度傾いた姿勢が好ましい。)に保持する。そして、該組立体が重力に従った姿勢をとるために回転しようとすることで生じるモーメント力を測定することにより前記重量バランス偏りの程度を把握する。かかる方法によると、簡単にかつ精度よく上記重量バランスの偏りを把握し、電極体への電解液の浸透状態を的確に判定することができる。
上記モーメント力の測定は、例えば、上記組立体が重力に抗して傾斜した姿勢から重力に従った姿勢に回転することを妨げる位置に荷重計またはその測定端子等の測定機器(測定部)を配置することにより好ましく実施することができる。該測定機器による測定値(上記モーメント力に対応する)と予め設定した目標値とを比較することにより、該測定値が目標値以下である場合には前記電解液の浸透が十分に進行したと判定し、該測定値が目標値よりも大きい場合には前記電解液の浸透が不十分であると判定することができる。
The degree of unevenness of the weight balance can be suitably grasped as follows, for example. That is, the assembly is supported so that the lower part of the assembly can rotate with respect to the upper part, and the assembly is tilted against gravity (for example, approximately 30 to the posture according to the gravity). (An attitude inclined by about 45 ° to 45 ° is preferable.). Then, the degree of the weight balance deviation is grasped by measuring the moment force generated when the assembly tries to rotate to take a posture according to gravity. According to such a method, it is possible to easily and accurately grasp the deviation of the weight balance and accurately determine the state of penetration of the electrolytic solution into the electrode body.
The moment force is measured, for example, by placing a measuring device (measuring unit) such as a load meter or its measuring terminal at a position that prevents the assembly from rotating from an inclined posture against gravity to a posture according to gravity. It can implement preferably by arrange | positioning. By comparing the measured value by the measuring instrument (corresponding to the moment force) with a preset target value, when the measured value is equal to or less than the target value, the penetration of the electrolyte solution has sufficiently progressed If the measured value is larger than the target value, it can be determined that the penetration of the electrolytic solution is insufficient.

上記組立体を支持する態様としては、前記組立体の対向する二箇所を支点として該組立体を支持する態様を好ましく採用することができる。例えば上記容器が直方体状である場合、該直方体の平行な二面の対向する箇所を支点とすることが好ましい。かかる態様によると、簡単な機構によって上記組立体を適切に支持する(例えば吊り下げる)ことができる。   As an aspect for supporting the assembly, an aspect in which the assembly is supported by using two opposing portions of the assembly as fulcrums can be preferably employed. For example, when the said container is a rectangular parallelepiped shape, it is preferable to use the location where the two parallel surfaces of this rectangular parallelepiped oppose each other as a fulcrum. According to this aspect, the assembly can be appropriately supported (for example, suspended) by a simple mechanism.

ここに開示されるいずれかの二次電池製造方法および電解液浸透状態判定方法は、重ね合わされたシート状の電極が長手方向に捲回された捲回電極体を備える電池(典型的には二次電池)の製造に特に好ましく適用され得る。このような捲回電極体は、電解液の浸透する経路が主として該捲回電極体の軸方向の端面に限られるため、十分な浸透状態が実現されるまでの所要時間を見積もりにくい。したがって本発明の方法を適用することによる効果が特によく発揮され得る。また、いったん捲回電極体に浸透した電解液は該電極体の内部(浸透位置)に確実に保たれるので、電極体に浸透した電解液と該電極体に浸透していない電解液(残留電解液)とが明確に区別される。このことは、本発明を適用して電解液浸透状態の判定を行うのに好都合である。   One of the secondary battery manufacturing methods and the electrolyte solution permeation state determination methods disclosed herein includes a battery (typically two batteries) including a wound electrode body in which stacked sheet-like electrodes are wound in a longitudinal direction. The secondary battery can be applied particularly preferably. In such a wound electrode body, the path through which the electrolyte solution permeates is mainly limited to the end face in the axial direction of the wound electrode body, and therefore it is difficult to estimate the time required until a sufficient permeation state is realized. Therefore, the effect by applying the method of the present invention can be exhibited particularly well. In addition, since the electrolytic solution that has once permeated the wound electrode body is reliably maintained inside the electrode body (permeation position), the electrolytic solution that has permeated the electrode body and the electrolytic solution that has not permeated the electrode body (residual) (Electrolyte) is clearly distinguished. This is convenient for applying the present invention to determine the electrolyte penetration state.

本発明によると、また、電極体および電解液が容器に収容された構成の電池組立体について、該電解液の前記電極体への浸透状態を判定する装置が提供される。その装置は、前記組立体の下部が上部に対して回転し得るように該組立体を支持する支持部を備える。例えば、前記組立体の対向する二箇所を支点として該組立体を支持し得るように構成された支持部が好ましい。また、その支持された前記組立体が重力に抗して傾いた姿勢(例えば、前記重力に従った姿勢から凡そ30°〜45°程度傾いた姿勢が好ましい。)から重力に従った姿勢をとるために回転しようとすることで生じるモーメント力を測定する測定部を備える。該測定部は、前記組立体が重力に抗して傾いた姿勢から重力に従った姿勢に回転することを妨げる位置に配置されていることが好ましい。
かかる構成の電解液浸透状態判定装置によると、上述した二次電池製造方法および電解液浸透状態判定方法と同様に、上記残留電解液量を組立体の重量バランスの下側への偏りの程度として把握することにより、電極体への電解液の浸透状態を的確に把握することができる。したがって、当該判定装置は、ここに開示されるいずれかの二次電池製造方法および電解液浸透状態判定方法に使用される装置として好適である。
According to the present invention, there is also provided an apparatus for determining a permeation state of the electrolytic solution into the electrode body with respect to a battery assembly having a configuration in which the electrode body and the electrolytic solution are housed in a container. The apparatus includes a support that supports the assembly so that the lower portion of the assembly can rotate relative to the upper portion. For example, a support portion configured to be able to support the assembly with two opposing points of the assembly as fulcrums is preferable. Further, the supported assembly takes a posture according to gravity from a posture inclined against the gravity (for example, a posture inclined approximately 30 ° to 45 ° from the posture according to the gravity is preferable). Therefore, a measuring unit for measuring moment force generated by trying to rotate is provided. Preferably, the measurement unit is disposed at a position that prevents the assembly from rotating from a posture inclined against gravity to a posture according to gravity.
According to the electrolyte solution permeation state determination apparatus having such a configuration, the residual electrolyte amount is set as the degree of bias toward the lower side of the weight balance of the assembly, similarly to the above-described secondary battery manufacturing method and electrolyte solution infiltration state determination method. By grasping | ascertaining, the osmosis | permeation state of the electrolyte solution to an electrode body can be grasped | ascertained correctly. Therefore, the determination apparatus is suitable as an apparatus used in any of the secondary battery manufacturing methods and the electrolyte solution permeation state determination methods disclosed herein.

ここに開示されるいずれかの方法により製造された二次電池(例えばリチウムイオン電池)は、車両に搭載される電池として好適に利用され得る。したがって、本発明によると、ここに開示されるいずれかの方法により製造された二次電池を備える車両(例えば自動車)が提供される。   A secondary battery (for example, a lithium ion battery) manufactured by any of the methods disclosed herein can be suitably used as a battery mounted on a vehicle. Therefore, according to the present invention, a vehicle (for example, an automobile) provided with a secondary battery manufactured by any of the methods disclosed herein is provided.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明に係る方法を適用して製造された二次電池は、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図10に模式的に示すように、かかる二次電池10(当該電池10を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
The secondary battery manufactured by applying the method according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 10, the present invention is a vehicle including such a secondary battery 10 (which may be in the form of an assembled battery formed by connecting a plurality of such batteries 10 in series) as a power source ( An automobile, in particular an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle) 1 is provided.

特に限定することを意図したものではないが、以下では捲回型の電極体(捲回電極体)と非水電解液とを角形(箱形)容器に収容した形態のリチウムイオン電池の製造および該捲回電極体への電解液浸透状態の判定に本発明を適用する場合を例として、本発明を詳細に説明する。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。   Although not intended to be particularly limited, in the following, the manufacture of a lithium ion battery in a form in which a wound electrode body (wound electrode body) and a non-aqueous electrolyte are contained in a rectangular (box-shaped) container and The present invention will be described in detail by taking as an example the case where the present invention is applied to the determination of the electrolyte solution permeation state into the wound electrode body. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified.

本実施形態より製造されるリチウムイオン電池は、例えば図2に示すように、シート状の電極が重ね合わされて扁平に捲回された形態の捲回電極体30と、該捲回電極体30と適当な電解液とを収容し得る形状(本実施形態では扁平な箱形)の容器12とを備える。容器12の材質(ここではアルミニウム等の金属製)は従来の密閉型電池で使用されるものと同じであればよく、特に制限はない。
この容器12は、一端(本実施形態に係る電池の通常の使用状態における上側の端部に相当する。)に開口部を有する箱形(すなわち有底四角筒状)の容器本体13と、その開口部に取り付けられて該開口部を塞ぐ蓋体14とを備える。蓋体14には、外部接続用の正極端子15および負極端子16が設けられており、それら端子15,16の一部は蓋体14の外方に突出している。正極端子15および負極端子16は、それぞれ、容器12の内部に収容された捲回電極体30の正極および負極と電気的に接続されている。蓋体14には、さらに、電解液Eの注入に使用される電解液注入口17が設けられている。
As shown in FIG. 2, for example, the lithium ion battery manufactured according to this embodiment includes a wound electrode body 30 in a form in which sheet-like electrodes are overlapped and wound flat, and the wound electrode body 30. And a container 12 having a shape (in this embodiment, a flat box shape) capable of containing an appropriate electrolytic solution. The material of the container 12 (here, made of metal such as aluminum) may be the same as that used in the conventional sealed battery, and is not particularly limited.
The container 12 has a box-shaped (that is, a bottomed rectangular tube-shaped) container main body 13 having an opening at one end (corresponding to an upper end in a normal use state of the battery according to the present embodiment), and its And a lid body 14 attached to the opening portion and closing the opening portion. The lid body 14 is provided with a positive electrode terminal 15 and a negative electrode terminal 16 for external connection, and a part of the terminals 15 and 16 protrudes outward from the lid body 14. The positive electrode terminal 15 and the negative electrode terminal 16 are electrically connected to the positive electrode and the negative electrode of the wound electrode body 30 accommodated inside the container 12, respectively. The lid body 14 is further provided with an electrolyte solution inlet 17 used for injecting the electrolyte solution E.

容器12に収容される捲回電極体30は、通常のリチウムイオン電池の捲回電極体と同様、長尺シート状の正極(正極シート)32と長尺シート状の負極(負極シート)34とを計二枚の長尺シート状のセパレータ(セパレータシート)(図示せず)とともに積層して長手方向に捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製され得る。ここで、正極シート32と負極シート34とは幅方向に位置をややずらして、上記セパレータシートの幅方向の一端および他端から該シート32,34の幅方向の一端がそれぞれはみ出すように積層された状態で捲回される。その結果として、捲回電極体12の捲回軸方向の一方および他方の端部には、図2に示すように、正極シート30の幅方向の一端が捲回コア部分31(すなわち正極シート32と負極シート34とセパレータシートとが密に捲回された部分)から外方にはみ出した部分32Aと、負極シート34の幅方向の一端が捲回コア部分31から外方にはみ出した部分34Aとがそれぞれ形成されている。   The wound electrode body 30 accommodated in the container 12 includes a long sheet-like positive electrode (positive electrode sheet) 32 and a long sheet-like negative electrode (negative electrode sheet) 34, similarly to a wound electrode body of a normal lithium ion battery. Are laminated together with a total of two long sheet-like separators (separator sheets) (not shown), wound in the longitudinal direction, and then the obtained wound body is crushed from the side direction and kidnapped. obtain. Here, the positive electrode sheet 32 and the negative electrode sheet 34 are laminated so that the positions thereof are slightly shifted in the width direction, and one end in the width direction of the sheets 32 and 34 protrudes from one end and the other end in the width direction of the separator sheet. It is wound in the state. As a result, as shown in FIG. 2, one end in the width direction of the positive electrode sheet 30 is provided at one end and the other end in the winding axis direction of the wound electrode body 12. A portion 32A protruding outward from a portion where the negative electrode sheet 34 and the separator sheet are wound tightly), and a portion 34A where one end in the width direction of the negative electrode sheet 34 protrudes outward from the wound core portion 31; Are formed respectively.

かかる捲回電極体30を構成する材料および部材自体は、従来のリチウムイオン電池に備えられる電極体と同様でよく、特に制限はない。例えば正極シート32は、長尺状の正極集電体(例えばアルミニウム箔)の上に正極活物質層が形成された構成であり得る。この正極活物質層の形成に用いる正極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、LiMn、LiCoO、LiNiO等のリチウム遷移金属酸化物が挙げられる。例えば、長さ2m〜4m(例えば2.7m)、幅8cm〜15cm(例えば12cm)、厚さ5μm〜20μm(例えば15μm)程度のアルミニウム箔を正極集電体として使用し、その表面の所定領域に常法によってニッケル酸リチウムを主体とする正極活物質層(例えばニッケル酸リチウム88質量%、アセチレンブラック10質量%、ポリテトラフルオロエチレン1質量%、カルボキシメチルセルロース1質量%)を形成することによって好適な正極シート32が得られる。 The material and the member constituting the wound electrode body 30 may be the same as the electrode body provided in the conventional lithium ion battery, and are not particularly limited. For example, the positive electrode sheet 32 may have a configuration in which a positive electrode active material layer is formed on a long positive electrode current collector (for example, an aluminum foil). As the positive electrode active material used for forming this positive electrode active material layer, one or two or more materials conventionally used in lithium ion batteries can be used without particular limitation. Preferable examples include lithium transition metal oxides such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 . For example, an aluminum foil having a length of 2 m to 4 m (for example, 2.7 m), a width of 8 cm to 15 cm (for example, 12 cm), and a thickness of about 5 μm to 20 μm (for example, 15 μm) is used as a positive electrode current collector, and a predetermined region on the surface thereof And forming a positive electrode active material layer mainly composed of lithium nickelate (for example, 88% by mass of lithium nickelate, 10% by mass of acetylene black, 1% by mass of polytetrafluoroethylene, 1% by mass of carboxymethylcellulose). A positive electrode sheet 32 is obtained.

一方、負極シート34は、長尺状の負極集電体(例えば銅箔)の上に負極活物質層が形成された構成であり得る。この負極活物質層の形成に用いる負極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物等が挙げられる。例えば、長さ2m〜4m(例えば2.9m)、幅8cm〜15cm(例えば12cm)、厚さ5μm〜20μm(例えば10μm)程度の銅箔を負極集電体として使用し、その表面の所定領域に常法によって黒鉛を主体とする負極活物質層(例えば黒鉛98質量%、スチレンブタジエンラバー1質量%、カルボキシメチルセルロース1質量%)を形成することによって好適な負極シート34が得られる。   On the other hand, the negative electrode sheet 34 may have a configuration in which a negative electrode active material layer is formed on a long negative electrode current collector (for example, a copper foil). As the negative electrode active material used for forming this negative electrode active material layer, one or two or more materials conventionally used in lithium ion batteries can be used without particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal oxides, lithium transition metal nitrides, and the like. For example, a copper foil having a length of 2 m to 4 m (for example, 2.9 m), a width of 8 cm to 15 cm (for example, 12 cm), and a thickness of about 5 μm to 20 μm (for example, 10 μm) is used as the negative electrode current collector. A suitable negative electrode sheet 34 can be obtained by forming a negative electrode active material layer (for example, 98% by mass of graphite, 1% by mass of styrene butadiene rubber, 1% by mass of carboxymethyl cellulose) by a conventional method.

これらの電極シート32,34とともに捲回されるセパレータシートの好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、長さ2m〜4m(例えば3.1m)、幅8cm〜12cm(例えば10cm)、厚さ5μm〜30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)の多孔質セパレータシートを好ましく使用し得る。   Preferable examples of the separator sheet wound together with these electrode sheets 32 and 34 include those made of porous polyolefin resin. For example, a porous separator sheet made of a synthetic resin (for example, made of polyolefin such as polyethylene) having a length of 2 to 4 m (for example, 3.1 m), a width of 8 to 12 cm (for example, 10 cm), and a thickness of about 5 to 30 μm (for example, 25 μm) Can be preferably used.

かかる構成のリチウムイオン電池を製造する方法の要部につき、図2〜4に示す模式図を参照しつつ、図1に示すフローチャートに沿って説明する。なお、これらの図2〜4および後述する図5〜7では、本発明の理解を容易にするため、容器12の内部の様子が一部透けて見えるように表示している。   The main part of the method of manufacturing the lithium ion battery having such a configuration will be described along the flowchart shown in FIG. 1 with reference to the schematic diagrams shown in FIGS. In FIGS. 2 to 4 and FIGS. 5 to 7 to be described later, in order to facilitate understanding of the present invention, a part of the inside of the container 12 is shown through.

上述した構成を備える容器12および捲回電極体30を用意し、容器12に捲回電極体30を収容する(図1に示すステップS10)。この電極体30の容器12への収容を行う際には、例えば、まず蓋体14に設けられた正極端子15および負極端子16の一端(容器12の内側に延びる端部)を正極シートおよび負極シートのはみ出し部32A,34Aにそれぞれ接合(例えば溶接)することにより電極体30と蓋体14とを結合する。そして、この蓋体14に結合された電極体30を容器本体13の開口部から内部に収めるようにして該開口部に蓋体14を被せ、蓋体14と容器本体13との合わせ目を例えばレーザ溶接により封止する。このようにして容器12に捲回電極体30が収容される。   The container 12 and the wound electrode body 30 having the above-described configuration are prepared, and the wound electrode body 30 is accommodated in the container 12 (step S10 shown in FIG. 1). When the electrode body 30 is accommodated in the container 12, for example, first, one end of the positive electrode terminal 15 and the negative electrode terminal 16 (the end extending inside the container 12) provided on the lid body 14 is connected to the positive electrode sheet and the negative electrode. The electrode body 30 and the lid body 14 are coupled by joining (for example, welding) to the protruding portions 32A and 34A of the sheet. Then, the electrode body 30 coupled to the lid body 14 is covered with the lid body 14 so that the electrode body 30 is accommodated from the opening portion of the container body 13, and the joint between the lid body 14 and the container body 13 is, for example, Sealed by laser welding. In this way, the wound electrode body 30 is accommodated in the container 12.

次いで、図2に示すように、蓋体14に設けられた電解液注入口17から容器12内に所定量の電解液Eを注入する(図1に示すステップS20)。この電解液の注入(供給)は、典型的には真空チャンバ内において好ましく実施することができる。容器12内への電解液供給量は、例えば、電解液Eの注入による容器12(電極体30および供給された電解液Eを収容する。)の質量増を検出することによって適切に管理することができる。所定量の電解液を注入したら、注入口17に適当な封止部材(図示せず)を取り付けて該注入口17を封止する。このようにして、捲回電極体30と電解液Eとが容器12に収容された電池組立体20を得る。   Next, as shown in FIG. 2, a predetermined amount of electrolyte E is injected into the container 12 from the electrolyte injection port 17 provided in the lid 14 (step S20 shown in FIG. 1). Typically, the injection (supply) of the electrolytic solution can be preferably performed in a vacuum chamber. The amount of electrolytic solution supplied into the container 12 is appropriately managed by, for example, detecting an increase in mass of the container 12 (containing the electrode body 30 and the supplied electrolytic solution E) due to the injection of the electrolytic solution E. Can do. When a predetermined amount of electrolyte is injected, an appropriate sealing member (not shown) is attached to the injection port 17 to seal the injection port 17. Thus, the battery assembly 20 in which the wound electrode body 30 and the electrolytic solution E are accommodated in the container 12 is obtained.

なお、上記電解液としては、従来からリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。また、上記支持塩としては、例えば、使用する非水溶媒に溶解可能な各種リチウム塩から選択される一種または二種以上を用いることができる。例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等のようなフッ素を構成元素とするリチウム塩を好ましく用いることができる。本実施形態に係るリチウムイオン電池では、ジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)に支持塩としてのヘキサフルオロリン酸リチウム(LiPF)を約1mol/リットルの濃度で含有させた電解液を用いている。 In addition, as said electrolyte solution, the thing similar to the nonaqueous electrolyte solution conventionally used for a lithium ion battery can be used without limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolane, and the like. One kind or two or more kinds selected from the group can be used. Moreover, as said support salt, the 1 type (s) or 2 or more types selected from the various lithium salt which can be melt | dissolved in the nonaqueous solvent to be used can be used, for example. For example, LiPF 6, and LiBF 4, LiAsF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) Fluorine constituent elements such as 3 A lithium salt can be preferably used. In the lithium ion battery according to this embodiment, lithium hexafluorophosphate (LiPF 6 ) as a supporting salt is contained in a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1) at a concentration of about 1 mol / liter. The electrolyte solution is used.

ここで、一般に捲回電極体30(特に捲回コア部分31)は正極シート32と負極シート34とセパレータシートとが密に捲回されているので、上記ステップS20において容器12内に電解液Eを注入しても、該電解液Eが即座に電極体30の全体に染み渡ることはない。すなわち、ステップS20において容器12に電解液Eを注入すると、図3に示すように、未だ電極体30に浸透していない電解液Eが該電極体30の外部に溜まり、この電解液Eが主として捲回電極体30の軸方向端部から徐々に該電極体30の内部へと浸透する(図1に示すステップS30)。かかる電解液Eの浸透(染み込み)につれて電極体30の外部にある電解液(すなわち残留電解液)Eの液面は徐々に下がるが、図4に示すように、電極体30に浸透した電解液Eの一部は該液面よりも高い位置に保持される。したがって、電極体30への電解液Eの浸透が進行するにつれて、組立体20の重心の位置は該組立体20の上方へと移動する。通常は、捲回電極体30の全体に電解液Eが適切に行き渡った状態(目標とする理想的な電解液浸透状態)においても電極体30の下端(本実施形態のように捲回軸が横倒しとなるように捲回電極体30が容器12に収容された形態の電池では、捲回軸方向の端部の下端)が若干浸る程度の残留電解液が残る程度に(例えば凡そ1cm〜10cm程度、本実施形態では3cm)、上記ステップS20における容器12への電解液供給量を設定することが好ましい。かかる構成によると、該残留電解液が必要に応じて電極体30に補充される(吸い上げられる)ので、電極体30の全体に電解液が適切に行き渡った状態を長期間に亘ってよりよく維持することができる。 Here, since the wound electrode body 30 (in particular, the wound core portion 31) is generally wound with the positive electrode sheet 32, the negative electrode sheet 34, and the separator sheet, the electrolytic solution E is contained in the container 12 in step S20. Even if the electrolyte is injected, the electrolytic solution E does not immediately permeate the entire electrode body 30. That is, when the electrolytic solution E is injected into the container 12 in step S20, as shown in FIG. 3, the electrolytic solution E that has not yet penetrated into the electrode body 30 is accumulated outside the electrode body 30, and this electrolytic solution E is mainly used. It gradually permeates into the inside of the electrode body 30 from the axial end of the wound electrode body 30 (step S30 shown in FIG. 1). As the electrolyte solution E penetrates (permeates), the liquid level of the electrolyte solution (that is, the residual electrolyte solution) E outside the electrode body 30 gradually decreases. However, as shown in FIG. A part of E is held at a position higher than the liquid level. Therefore, as the penetration of the electrolytic solution E into the electrode body 30 proceeds, the position of the center of gravity of the assembly 20 moves upward of the assembly 20. Normally, the lower end of the electrode body 30 (the winding axis as in the present embodiment) is also in a state where the electrolyte E is properly distributed over the entire wound electrode body 30 (a target ideal electrolyte penetration state). In a battery in which the wound electrode body 30 is accommodated in the container 12 so as to lie down, a residual electrolyte solution that is soaked slightly that the lower end of the end in the winding axis direction remains slightly (for example, approximately 1 cm 3 to 10 cm 3 approximately, 3 cm 3) in the present embodiment, it is preferable to set the electrolyte supply to the container 12 in step S20. According to such a configuration, since the residual electrolyte is replenished (sucked up) to the electrode body 30 as necessary, the state in which the electrolyte is properly distributed throughout the electrode body 30 is better maintained over a long period of time. can do.

本実施形態に係る製造方法では、ステップS20において容器12に電解液Eを注入した後、所定時間かけて捲回電極体30に電解液Eを浸透させる(ステップS30)。ここで電解液Eを浸透させる時間は、例えばそれまでの製造実績や予備実験の結果に基づいて、平均的に製造された電池組立体20において電極体30の全体に電解液Eを適切に浸透させるに足る時間(例えば4時間程度)に、ばらつき分を見込んである程度の余裕(例えば1時間程度)を持たせた時間として設定することができる。本実施形態では上記電解液浸透時間を5時間としている。   In the manufacturing method according to the present embodiment, after injecting the electrolyte E into the container 12 in step S20, the electrolyte E is infiltrated into the wound electrode body 30 over a predetermined time (step S30). Here, the time for which the electrolytic solution E is permeated is, for example, appropriately permeated into the entire electrode body 30 in the battery assembly 20 manufactured on the average based on the past manufacturing results and the results of preliminary experiments. It can be set as a time that allows a certain amount of margin (for example, about 1 hour) in consideration of the variation in a sufficient time (for example, about 4 hours). In the present embodiment, the electrolyte solution permeation time is 5 hours.

そして、電解液Eの注入から上記所定時間が経過した後に、電池組立体20の重量バランスを測定し(図1に示すステップS40)、該重量バランスの下側への偏りの程度を把握する。これにより電極体30への電解液Eの浸透状態を判定する(ステップS50)。
上記重量バランスの偏りの程度(すなわち電解液Eの浸透状態)は、例えば図8に示す概略構成を有する電解液浸透状態判定装置50を用いて把握することができる。この装置50は、大まかに言って、電池組立体20の下部が上部に対して回転し得るように該組立体20を支持する支持部52と、その支持された前記組立体20が重力に抗して傾いた姿勢から重力に従った姿勢に回転しようとする力を測定し得るように構成された測定部62とを備える。
And after the said predetermined time passes since injection | pouring of the electrolyte solution E, the weight balance of the battery assembly 20 is measured (step S40 shown in FIG. 1), and the grade of the downward bias | inclination of this weight balance is grasped | ascertained. Thereby, the permeation | transmission state of the electrolyte solution E to the electrode body 30 is determined (step S50).
The degree of unevenness of the weight balance (that is, the permeation state of the electrolytic solution E) can be grasped using, for example, the electrolytic solution permeation state determination device 50 having a schematic configuration shown in FIG. In general, the device 50 includes a support portion 52 that supports the assembly 20 so that the lower portion of the battery assembly 20 can rotate with respect to the upper portion, and the supported assembly 20 resists gravity. And a measuring unit 62 configured to be able to measure a force to rotate from an inclined posture to a posture according to gravity.

支持部52は、容器12をその側面(ここでは捲回電極体30の軸方向に垂直な側面。図5参照。)12Aの対向する二箇所で挟持するための二本のアーム54を備える。組立体20は、容器12の両側面12Aにアーム54の先端がそれぞれ当接する位置を支点Pとして、該支点Pを結ぶ線を回転軸Rとして回転し得るように支持部52に支持される。
ここで、上記支点Pの位置は、回転軸Rを軸として回転自在な状態で組立体20をアーム54により支点P間に狭持して吊り下げた場合に、該組立体20の上下(最終的に製造される電池の通常の使用状態における姿勢の鉛直方向に対する上下をいう。)が逆転しない位置に設定することが好ましい。したがって、組立体20が目標とする浸透状態にある場合における該組立体20の重心の位置よりも上記回転軸Rが上方となるように上記支点Pの位置を設定することが好ましい。通常は、支点Pの位置を設定する目安として、組立体20が目標とする浸透状態にある場合における該組立体20の重心の位置に代えて、電解液Eが注入されない場合における組立体20の重心の位置を用いることができる。また、上記支点Pの位置を容器12の側面12Aの上端とするよりは、上記重心よりも上となる範囲で且つ該側面12Aの上端よりも下がった位置とすることにより、重量バランスの偏りの程度の多少(残留電解液量の多少に関係する。)をより感度よく検出することができる。例えば、容器12の側面12Aの上端から支点Pまでの距離D1と、該側面12Aにおいて組立体20が目標とする浸透状態にある場合の重心の高さから支点Pまでの距離D2との比(D1:D2)を凡そ9:1〜1:9の範囲とすることができる。通常はこの比(D1:D2)を凡そ9:1〜5:5の範囲とすることが好ましい。本実施形態に係る電池10では、容器12の側面12Aの長さは90mmであり、この側面12Aの上端から40mmの位置を該側面12Aの幅方向の中央部においてアーム54で支持した。
The support portion 52 includes two arms 54 for holding the container 12 at two opposite sides of the side surface (here, a side surface perpendicular to the axial direction of the wound electrode body 30; see FIG. 5) 12A. The assembly 20 is supported by the support 52 so that the assembly 20 can rotate about a rotation axis R at a position where the tip of the arm 54 abuts on both side surfaces 12A of the container 12 as a fulcrum P.
Here, the position of the fulcrum P is determined when the assembly 20 is suspended between the fulcrum P by the arm 54 in a state in which the fulcrum P is rotatable about the rotation axis R. It is preferable to set the vertical position of the battery in the normal use state of the manufactured battery to a position where it does not reverse. Therefore, it is preferable to set the position of the fulcrum P so that the rotation axis R is above the position of the center of gravity of the assembly 20 when the assembly 20 is in the target infiltration state. Normally, as a guideline for setting the position of the fulcrum P, instead of the position of the center of gravity of the assembly 20 when the assembly 20 is in the target infiltration state, the assembly 20 when the electrolyte E is not injected is used. The position of the center of gravity can be used. In addition, since the position of the fulcrum P is set in a range higher than the center of gravity and lower than the upper end of the side surface 12A rather than the upper end of the side surface 12A of the container 12, the weight balance is biased. Some degree (related to some amount of residual electrolyte solution) can be detected with higher sensitivity. For example, the ratio between the distance D1 from the upper end of the side surface 12A of the container 12 to the fulcrum P and the distance D2 from the height of the center of gravity when the assembly 20 is in the target infiltration state on the side surface 12A ( D1: D2) can be in the range of approximately 9: 1 to 1: 9. Usually, this ratio (D1: D2) is preferably in the range of about 9: 1 to 5: 5. In the battery 10 according to this embodiment, the length of the side surface 12A of the container 12 is 90 mm, and the position of 40 mm from the upper end of the side surface 12A is supported by the arm 54 at the center in the width direction of the side surface 12A.

また、測定部62は、有底円筒状のホルダ64と、ホルダ64の内部に該ホルダ64の軸方向に摺動可能に収容された測定端子66と、ホルダ64の底部(測定端子66とホルダ64の底面との間)に設置された圧縮型荷重計68とを備える。本実施形態では、荷重計68として、株式会社東京測器研究所製品の圧縮型荷重計、型名「CLS−20NA」(容量20N)を使用した。なお、荷重計68には測定データを処理するデータ処理部72が接続されている。該データ処理部72は、例えば、後述する目標値の保持(記憶)、該目標値と測定値との比較、該比較結果の保持、該比較結果の出力等を行い得るように構成されている。
この測定部62は、上記支点Pで吊られた組立体20が重力に従った姿勢(典型的には、図5に示すように容器12の側面12Aの長手方向が鉛直方向とほぼ一致する姿勢)から傾いた姿勢で、容器12の幅広面(最も面積の広い面)12Bの下端近くであって該幅広面12Bの幅方向(捲回電極体30の軸方向)の中央部に測定端子66の先端が当接するように設置されている。ここで組立体20を重力に従った姿勢から傾ける角度は、凡そ30°〜45°の範囲から選択される一定の角度とすることが好ましい。この傾け角度が大きすぎると、組立体20を傾けることによって残留電解液が容器12内で大きく移動し、これにより電解液の浸透状態が変わってしまう場合がある。すなわち、浸透状態を判定する操作自体が判定対象の状態(すなわち浸透状態)を変化させ得ることとなるため好ましくない。また、上記傾け角度が小さすぎると後述する荷重計62により検出される測定値が小さくなるので測定精度が低下傾向となる場合がある。図8には、好ましい一例として、組立体20が上記重力に従った姿勢から45°傾いた姿勢で測定端子66の先端に当接するように構成された例を示している。このときホルダ64の軸方向(測定端子66の摺動方向)が容器12の幅広面12Bに対して略垂直となるように測定部62を配置することが好ましい。
The measurement unit 62 includes a bottomed cylindrical holder 64, a measurement terminal 66 accommodated inside the holder 64 so as to be slidable in the axial direction of the holder 64, and a bottom portion of the holder 64 (the measurement terminal 66 and the holder). And a compression type load meter 68 installed between the bottom surface of 64. In this embodiment, as the load meter 68, a compression type load meter manufactured by Tokyo Sokki Kenkyujo Co., Ltd., model name “CLS-20NA” (capacity 20N) was used. The load meter 68 is connected to a data processing unit 72 that processes measurement data. For example, the data processing unit 72 is configured to be able to hold (store) a target value, which will be described later, compare the target value with a measured value, hold the comparison result, and output the comparison result. .
The measuring unit 62 has a posture in which the assembly 20 suspended at the fulcrum P follows the gravity (typically a posture in which the longitudinal direction of the side surface 12A of the container 12 substantially coincides with the vertical direction as shown in FIG. The measuring terminal 66 is positioned near the lower end of the wide surface (the widest surface) 12B of the container 12 and in the center of the wide surface 12B in the width direction (the axial direction of the wound electrode body 30). It is installed so that the tip of the abuts. Here, the angle at which the assembly 20 is tilted from the posture in accordance with the gravity is preferably a constant angle selected from the range of approximately 30 ° to 45 °. If this tilt angle is too large, tilting the assembly 20 may cause the residual electrolyte to move greatly within the container 12, thereby changing the permeation state of the electrolyte. That is, the operation itself for determining the infiltration state is not preferable because the state to be determined (that is, the infiltration state) can be changed. If the tilt angle is too small, the measurement value detected by the load meter 62 described later becomes small, and the measurement accuracy may tend to decrease. FIG. 8 shows an example in which the assembly 20 is configured to come into contact with the tip of the measurement terminal 66 in a posture inclined by 45 ° from the posture according to the gravity as a preferable example. At this time, it is preferable to arrange the measuring unit 62 so that the axial direction of the holder 64 (the sliding direction of the measurement terminal 66) is substantially perpendicular to the wide surface 12B of the container 12.

このように組立体20を重力に抗して傾けた姿勢で容器12の幅広面12Bの下端付近を測定端子66の先端に係止することにより、その傾いた姿勢から重力に従った姿勢に回転しようとする組立体20が重力により測定端子66を押す力を荷重計68により測定する。ここで、図6に示すように容器12内に注入された電解液が電極体30に十分に浸透している組立体20に比べて、図7に示すように電解液の浸透が不十分である組立体20では残留電解液Eの量が多い。この残留電解液Eは容器12の下側に溜まるため、図7に示す組立体20については図6に示す組立体20に比べて荷重計68による測定値が大きくなることとなる。上記残留電解液量と荷重(荷重計68による測定値)との関係を図9に模式的に示す。この図9は、図7に示すように残留電解液量がより多い(電極体30への電解液Eの浸透量が足りない)組立体20では、図6に示すように残留電解液量がより少ない(電極体30に電解液Eがよりよく浸透している)組立体20に比べて測定される荷重の値が大きくなることを表している。この関係を利用して、上記測定値を予め設定した目標値(例えば、電極体30に電解液が十分に浸透した状態にある電池組立体20を用いて得られた荷重計68の測定値に基づいて設定され得る。本実施形態ではW0=0.08Nとした。)と比較することにより、残留電解液Eの量が十分に(例えば3cm以下になるまで)減っているかどうか、換言すれば電極体30に電解液Eが十分に浸透しているかどうかを判定する(図1に示すステップS50)。 In this manner, the vicinity of the lower end of the wide surface 12B of the container 12 is locked to the tip of the measurement terminal 66 in a posture in which the assembly 20 is tilted against gravity, so that the tilted posture is rotated to a posture according to gravity. The force with which the assembly 20 to be pushed pushes the measurement terminal 66 by gravity is measured by a load meter 68. Here, as shown in FIG. 7, the electrolyte solution injected into the container 12 is not sufficiently permeated as shown in FIG. 7 compared to the assembly 20 in which the electrolyte solution is sufficiently infiltrated into the electrode body 30. In some assembly 20, the amount of residual electrolyte E is large. Since this residual electrolyte E accumulates on the lower side of the container 12, the measured value by the load meter 68 is larger in the assembly 20 shown in FIG. 7 than in the assembly 20 shown in FIG. FIG. 9 schematically shows the relationship between the amount of the residual electrolyte and the load (measured value by the load meter 68). FIG. 9 shows that in the assembly 20 having a larger amount of residual electrolyte as shown in FIG. 7 (the amount of electrolyte E penetrating into the electrode body 30 is insufficient), the amount of residual electrolyte is as shown in FIG. This shows that the load value measured is smaller than that of the assembly 20 that is less (the electrolyte solution E is better infiltrated into the electrode body 30). Using this relationship, the measured value is set to a preset target value (for example, the measured value of the load meter 68 obtained by using the battery assembly 20 in a state where the electrolytic solution sufficiently penetrates the electrode body 30). (In this embodiment, W0 = 0.08N), in other words, whether or not the amount of the residual electrolyte E is sufficiently reduced (for example, until 3 cm 3 or less). For example, it is determined whether or not the electrolytic solution E has sufficiently penetrated into the electrode body 30 (step S50 shown in FIG. 1).

すなわち、荷重計68による測定値W1が上記目標値W0以下である(W1≦W0)組立体20については、電極体30への電解液の浸透が十分に進行したものと判定する(YES判定)。このYES判定された組立体20については電解液の浸透を完了し(ステップS60)、下流の工程(例えばコンディショニング工程)に移行する。
一方、荷重計68による測定値W1が上記目標値W0よりも大きい(W1>W0)組立体20については、電極体30への電解液の浸透が不十分であるものと判定する(NO判定)。このNO判定された組立体20は、しばらく放置してさらに電解液の浸透を進行させ(ステップS30に戻る)、その後、上記と同様にして再び重量バランスを測定する(ステップS40)。その結果、W1≦W0が達成された(YES判定)場合には下流の工程に移行し、依然としてW1>W0である(NO判定)場合にはステップS30に戻る。ここで、前回の測定値と比較して該測定値の減少がみられない(残留電解液量が減っていない、すなわち電解液の浸透に改善がみられないことを意味する。)組立体20については、電解液の浸透を妨げる何らかの要因があるものと判断し、製造ラインから排除することとしてもよい。
かかる実施形態によると、捲回電極体30への電解液Eの浸透状態を簡単に精度よく判定することができる。また、電解液Eが捲回電極体30に適切に浸透したリチウムイオン電池10を安定して製造することができる。
That is, for the assembly 20 in which the measured value W1 by the load meter 68 is equal to or less than the target value W0 (W1 ≦ W0), it is determined that the penetration of the electrolytic solution into the electrode body 30 has sufficiently progressed (YES determination). . For the assembly 20 determined as YES, the permeation of the electrolytic solution is completed (step S60), and the process proceeds to a downstream process (for example, a conditioning process).
On the other hand, for the assembly 20 in which the measured value W1 measured by the load meter 68 is larger than the target value W0 (W1> W0), it is determined that the electrolyte solution has not sufficiently penetrated into the electrode body 30 (NO determination). . The assembly 20 determined to be NO is allowed to stand for a while to further permeate the electrolyte (return to step S30), and then the weight balance is measured again in the same manner as described above (step S40). As a result, when W1 ≦ W0 is achieved (YES determination), the process proceeds to a downstream process, and when W1> W0 still remains (NO determination), the process returns to step S30. Here, there is no decrease in the measured value compared to the previous measured value (meaning that the amount of residual electrolyte is not reduced, that is, no improvement is observed in the penetration of the electrolyte). May be excluded from the production line because it is determined that there is some factor that hinders the penetration of the electrolyte.
According to this embodiment, the penetration state of the electrolytic solution E into the wound electrode body 30 can be easily and accurately determined. Further, the lithium ion battery 10 in which the electrolytic solution E appropriately penetrates the wound electrode body 30 can be manufactured stably.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん種々の改変が可能である。例えば上記実施形態では捲回電極体をその捲回軸が横倒しになる姿勢で容器に収容した形態の電池を例として説明したが、例えば捲回軸が縦向き(典型的には、該電池の通常の使用状態における鉛直方向)となる姿勢で容器に収容した形態の電池に本発明を適用してもよい。電極体の構成は上述のような捲回タイプに限られず、例えば正極シートと負極シートをセパレータシートと共に交互に積層して成る積層タイプ電極体(積層電極体)であってもよい。電池の種類は上述したリチウムイオン電池に限られず、電極体構成材料や電解液の組成が異なる種々の電池、例えばリチウム金属やリチウム合金を負極とするリチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、あるいは電気二重層キャパシタ(物理電池)であってもよい。   As described above, the present invention has been described with reference to the preferred embodiments. However, such description is not a limitation, and various modifications can be made. For example, in the above-described embodiment, the winding electrode body is described as an example of a battery in which the winding axis is housed in a container in a posture in which the winding axis lies sideways. However, for example, the winding axis is vertically oriented (typically, You may apply this invention to the battery of the form accommodated in the container with the attitude | position which becomes the vertical direction in a normal use condition. The configuration of the electrode body is not limited to the wound type as described above, and may be a laminated type electrode body (laminated electrode body) formed by alternately laminating positive electrode sheets and negative electrode sheets together with separator sheets, for example. The type of battery is not limited to the lithium ion battery described above, but various batteries having different electrode body constituent materials and electrolyte compositions, such as a lithium secondary battery, a nickel metal hydride battery, and a nickel cadmium battery having lithium metal or a lithium alloy as a negative electrode. Alternatively, an electric double layer capacitor (physical battery) may be used.

また、上記実施形態では、図8に示すように重力に抗して傾いた姿勢に保持された電池組立体20が重力に従って回転しようとすることで荷重計68を押すことにより検出される測定値(荷重)を指標として該組立体20の重量バランスの下側への偏りの程度を把握したが、重量バランスの偏りの程度を把握する手法はこれに限定されない。例えば、図5に示すように重力に従った姿勢で組立体20を吊り下げておき、この組立体20を重力に抗して傾いた姿勢に変移させるために要する力(慣性モーメント)を検出することで、上記重量バランスの偏りの程度を把握する構成としてもよい。
また、ここに開示される技術は、電池(典型的には二次電池)の製造過程において好ましく利用されるほか、完成した電池(製品)の電解液浸透状態を判定する方法としても好ましく利用することができる。
Further, in the above embodiment, as shown in FIG. 8, the measurement value detected by pressing the load meter 68 when the battery assembly 20 held in a tilted posture against gravity is rotated according to the gravity. Although the degree of the downward bias of the weight balance of the assembly 20 is grasped using (load) as an index, the method of grasping the degree of the weight balance bias is not limited to this. For example, as shown in FIG. 5, the assembly 20 is suspended in a posture according to gravity, and a force (moment of inertia) required to shift the assembly 20 to a tilted posture against gravity is detected. Thus, it may be configured to grasp the degree of the weight balance deviation.
Further, the technology disclosed herein is preferably used in the manufacturing process of a battery (typically a secondary battery), and is also preferably used as a method for determining the electrolyte penetration state of a completed battery (product). be able to.

一実施形態に係る電池製造方法の要部を示すフローチャートである。It is a flowchart which shows the principal part of the battery manufacturing method which concerns on one Embodiment. 容器に電解液を注入する工程を模式的に示す説明図である。It is explanatory drawing which shows typically the process of inject | pouring electrolyte solution into a container. 電極体に電解液を浸透させる工程を模式的に示す説明図である。It is explanatory drawing which shows typically the process of making an electrolyte body osmose | permeate an electrode body. 電極体に電解液を浸透させる工程を模式的に示す説明図である。It is explanatory drawing which shows typically the process of making an electrolyte body osmose | permeate an electrode body. 電解液浸透状態の判定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the determination method of an electrolyte solution osmosis | permeation state. 電解液浸透状態の判定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the determination method of an electrolyte solution osmosis | permeation state. 電解液浸透状態の判定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the determination method of an electrolyte solution osmosis | permeation state. 一実施形態に係る電解液浸透状態判定装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of the electrolyte solution penetration state determination apparatus which concerns on one Embodiment. 測定される荷重と残留電解液量との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the load measured and the amount of residual electrolyte solution. 一実施形態に係る二次電池(リチウムイオン電池)を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the secondary battery (lithium ion battery) which concerns on one Embodiment.

符号の説明Explanation of symbols

1 車両(自動車)
10 リチウムイオン電池(二次電池)
12 容器
12A 側面
17 注入口
20 電池組立体
30 捲回電極体
50 浸透状態測定装置
52 支持部
54 アーム
62 測定部
68 荷重計
1 Vehicle (Automobile)
10 Lithium ion battery (secondary battery)
12 Container 12A Side 17 Inlet 20 Battery assembly 30 Winding electrode body 50 Penetration state measuring device 52 Support part 54 Arm 62 Measuring part 68 Load cell

Claims (10)

シート状の電極が重ね合わされた形態の電極体と電解液とを容器に収容して電池組立体を構築する工程と、
前記電極体を前記電解液に浸して該電解液を前記電極体に浸透させる工程と、
前記組立体の重量バランスの鉛直方向下側への偏りの程度を把握する工程と、
その偏りの程度を予め設定した目標値と比較する工程と、
を備え、
ここで、前記偏りの程度が前記目標値以下である場合には前記電解液の浸透が十分に進行したと判定して下流の工程に移行し、前記偏りの程度が前記目標値よりも大きい場合には前記電解液の浸透が不十分と判定して下流の工程への移行を保留する、二次電池製造方法。
A process of constructing a battery assembly by accommodating an electrode body in a form in which sheet-like electrodes are superimposed and an electrolyte solution in a container;
Immersing the electrode body in the electrolytic solution to infiltrate the electrolytic body into the electrode body;
Grasping the degree of deviation of the weight balance of the assembly downward in the vertical direction;
Comparing the degree of bias with a preset target value;
With
Here, when the degree of bias is less than or equal to the target value, it is determined that the electrolyte has sufficiently penetrated and the process proceeds to a downstream process, and the degree of bias is greater than the target value. In the secondary battery manufacturing method, it is determined that the electrolyte solution is insufficiently permeated and the shift to the downstream process is suspended.
前記組立体の下部が上部に対して回転し得るように該組立体を支持し、該組立体を重力に抗して傾いた姿勢に保持して、該組立体が重力に従った姿勢をとるために回転しようとすることで生じるモーメント力を測定することにより前記重量バランスの偏りの程度を把握する、請求項1に記載の二次電池製造方法。   The assembly is supported so that the lower part of the assembly can rotate with respect to the upper part, the assembly is held in a tilted position against gravity, and the assembly takes a position according to gravity. The method of manufacturing a secondary battery according to claim 1, wherein the degree of bias of the weight balance is grasped by measuring a moment force generated by trying to rotate. 前記重力に抗して傾いた姿勢は、前記重力に従った姿勢から30°〜45°傾いた姿勢である、請求項2に記載の二次電池製造方法。   The secondary battery manufacturing method according to claim 2, wherein the posture tilted against the gravity is a posture tilted by 30 ° to 45 ° from a posture according to the gravity. 前記組立体の対向する二箇所を支点として該組立体を支持する、請求項2または3に記載の二次電池製造方法。   The method of manufacturing a secondary battery according to claim 2 or 3, wherein the assembly is supported by using two opposing portions of the assembly as fulcrums. 前記電極体は、前記重ね合わされたシート状の電極が長手方向に捲回された捲回電極体である、請求項1から4のいずれか一項に記載の二次電池製造方法。   The secondary electrode manufacturing method according to any one of claims 1 to 4, wherein the electrode body is a wound electrode body in which the stacked sheet-like electrodes are wound in a longitudinal direction. シート状の電極が重ね合わされた形態の電極体と電解液とが容器に収容された構成の電池組立体について、該電解液の前記電極体への浸透状態を判定する方法であって、
前記組立体の重量バランスの鉛直方向下側への偏りの程度を把握する工程と、
その偏りの程度を予め設定した目標値と比較する工程と、
前記偏りの程度が前記目標値以下である場合には前記電解液の浸透が十分に進行したと判定し、前記偏りの程度が前記目標値よりも大きい場合には前記電解液の浸透が不十分と判定する工程と、
を備える、電解液浸透状態判定方法。
A battery assembly having a configuration in which an electrode body and an electrolyte solution in a form in which sheet-like electrodes are superimposed are contained in a container, a method for determining a permeation state of the electrolyte solution into the electrode body,
Grasping the degree of deviation of the weight balance of the assembly downward in the vertical direction;
Comparing the degree of bias with a preset target value;
If the degree of bias is less than or equal to the target value, it is determined that the electrolyte solution has sufficiently penetrated. If the degree of bias is greater than the target value, the electrolyte solution is not sufficiently penetrated. A step of determining
An electrolyte solution permeation state determination method comprising:
前記組立体の下部が上部に対して回転し得るように該組立体を支持し、該組立体を重力に抗して傾けた姿勢に保持して、該組立体が重力に従った姿勢をとるために回転しようとすることで生じるモーメント力を測定することにより前記重量バランスの偏りの程度を把握する、請求項6に記載の電解液浸透状態判定方法。   The assembly is supported so that the lower part of the assembly can rotate with respect to the upper part, the assembly is held in an inclined position against gravity, and the assembly is in a position according to gravity. The electrolyte solution penetration state determination method according to claim 6, wherein the degree of deviation of the weight balance is grasped by measuring a moment force generated by trying to rotate. 電極体および電解液が容器に収容された構成の電池組立体について、該電解液の前記電極体への浸透状態を判定する装置であって、
前記組立体の下部が上部に対して回転し得るように該組立体を支持する支持部と、
その支持された前記組立体が重力に抗して傾いた姿勢から重力に従った姿勢をとるために回転しようとすることで生じるモーメント力を測定する測定部と、
を備える、電解液浸透状態判定装置。
A battery assembly having a configuration in which an electrode body and an electrolytic solution are housed in a container, and a device for determining a permeation state of the electrolytic solution into the electrode body,
A support for supporting the assembly so that the lower portion of the assembly can rotate relative to the upper portion;
A measurement unit for measuring a moment force generated when the supported assembly is rotated to take a posture according to gravity from a posture inclined against gravity;
An electrolyte infiltration state determination device comprising:
前記測定部は、前記組立体が重力に抗して傾いた姿勢から重力に従った姿勢に回転することを妨げる位置に配置されている、請求項8に記載の装置。   The apparatus according to claim 8, wherein the measurement unit is arranged at a position that prevents the assembly from rotating from a posture inclined against gravity to a posture according to gravity. 請求項1から5のいずれか一項に記載の方法により製造された二次電池を備える車両。   A vehicle comprising a secondary battery manufactured by the method according to any one of claims 1 to 5.
JP2007216676A 2007-08-23 2007-08-23 Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method Withdrawn JP2009048964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216676A JP2009048964A (en) 2007-08-23 2007-08-23 Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216676A JP2009048964A (en) 2007-08-23 2007-08-23 Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method

Publications (1)

Publication Number Publication Date
JP2009048964A true JP2009048964A (en) 2009-03-05

Family

ID=40500981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216676A Withdrawn JP2009048964A (en) 2007-08-23 2007-08-23 Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method

Country Status (1)

Country Link
JP (1) JP2009048964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device

Similar Documents

Publication Publication Date Title
JP5163466B2 (en) Life estimation method and deterioration suppression method of lithium secondary battery, life estimation device and deterioration suppressor, battery pack and charger using the same
JP5940145B2 (en) Secondary battery system, secondary battery deterioration state judgment method
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5975274B2 (en) Electrode inspection method and use thereof
US20120158330A1 (en) Monitoring system for lithium ion secondary battery and monitoring method thereof
WO2012095913A1 (en) Method for evaluating deterioration of lithium ion secondary cell, and cell pack
US8669010B2 (en) Nonaqueous secondary battery
JP6427744B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2013097980A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2011216297A (en) Wound electrode group, battery including the same, and method of manufacturing battery
JPWO2012093616A1 (en) Power storage device
JP2004273139A (en) Lithium secondary battery
CN112447952A (en) Positive active material, preparation method thereof, positive pole piece and lithium ion secondary battery
KR20200005428A (en) Battery cell sheet, secondary battery, manufacturing method of battery cell sheet, and manufacturing method of secondary battery
JP6260835B2 (en) Screening method for reusable non-aqueous electrolyte secondary battery
JPWO2017179429A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4987944B2 (en) Nonaqueous electrolyte secondary battery
JP2017509110A (en) Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
JP6892285B2 (en) Non-aqueous electrolyte battery
JP3464612B2 (en) Manufacturing method of lithium secondary battery
JP5282966B2 (en) Lithium ion secondary battery
JP2016066461A (en) Lithium ion secondary battery
JP2009048964A (en) Method of manufacturing secondary battery, and electrolytic solution infiltration state determining method
WO2016027403A1 (en) Secondary battery
JP2020126734A (en) Secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102