JP2020126736A - Secondary battery and manufacturing method thereof - Google Patents

Secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2020126736A
JP2020126736A JP2019017653A JP2019017653A JP2020126736A JP 2020126736 A JP2020126736 A JP 2020126736A JP 2019017653 A JP2019017653 A JP 2019017653A JP 2019017653 A JP2019017653 A JP 2019017653A JP 2020126736 A JP2020126736 A JP 2020126736A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
reference electrode
electrode layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019017653A
Other languages
Japanese (ja)
Other versions
JP7142585B2 (en
Inventor
健一 永光
Kenichi Nagamitsu
健一 永光
直哉 亀田
Naoya Kameda
直哉 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2019017653A priority Critical patent/JP7142585B2/en
Publication of JP2020126736A publication Critical patent/JP2020126736A/en
Application granted granted Critical
Publication of JP7142585B2 publication Critical patent/JP7142585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a secondary battery which allows a reference electrode layer to be doped with lithium ions in a simple and convenient method.SOLUTION: A secondary battery 100, which is an embodiment disclosed herein comprises: an electrode body 3 having a positive electrode and a negative electrode; a conductive battery case 200 serving to house the electrode body; a reference electrode layer containing a compound of the composition formula, LiTiMO(where M is at least one element selected from Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, Al and Ga, and 0.3≤x≤2.8 (after doping) and 0≤y≤1); and an electrolyte containing lithium ions and arranged in the battery case so that the reference electrode layer is immersed therein. The reference electrode layer is formed on an inner wall of the battery case and faces the positive electrode.SELECTED DRAWING: Figure 1

Description

本開示は、二次電池及び二次電池の製造方法に関する。 The present disclosure relates to a secondary battery and a method for manufacturing the secondary battery.

二次電池の信頼性の向上を目的として、電池内に参照電極を設けて充放電時の正負極の電位を管理することが検討されている。参照電極の一例として、チタン酸リチウムが挙げられるが、参照電極の電位を安定させるためには、チタン酸リチウムにリチウムイオンをドープする必要がある。特許文献1には、チタン酸リチウムを含有する参照電極と、第4電極とを電池内に設置して、電池を密閉封止した後に参照電極と第4電極との間に電圧をかけてチタン酸リチウムにリチウムイオンをドープする方法と、別途リチウムイオンをドープした参照電極を用意して二次電池に組み込む方法が開示されている。 For the purpose of improving the reliability of the secondary battery, it has been studied to provide a reference electrode in the battery to control the potentials of the positive and negative electrodes during charging and discharging. Lithium titanate is an example of the reference electrode, but lithium titanate must be doped with lithium ions in order to stabilize the potential of the reference electrode. In Patent Document 1, a reference electrode containing lithium titanate and a fourth electrode are installed in a battery, and after the battery is hermetically sealed, a voltage is applied between the reference electrode and the fourth electrode to make titanium. A method of doping lithium oxide with lithium ions and a method of separately preparing a reference electrode doped with lithium ions and incorporating the reference electrode in a secondary battery are disclosed.

特表2010−539657号公報Special table 2010-539657 gazette

しかし、特許文献1に開示された方法では、電池ケース内に第4電極のためのスペースを確保しなくてはならないという問題がある。本開示の目的は、簡便な方法で参照電極にリチウムイオンをドープできる二次電池を提供することである。 However, the method disclosed in Patent Document 1 has a problem that a space for the fourth electrode must be secured in the battery case. An object of the present disclosure is to provide a secondary battery in which a reference electrode can be doped with lithium ions by a simple method.

本開示の一態様である二次電池は、正極と負極とを有する電極体と、電極体を収容する導電性の電池ケースと、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0.3≦x≦2.8、0≦y≦1を満たす)からなる化合物を含む参照電極層と、参照電極層が浸されるように電池ケース内に配置された、リチウムイオンを含む電解質と、を備え、参照電極層は、電池ケースの内壁上に形成されており、正極と対向することを特徴とする。 Secondary battery which is one embodiment of the present disclosure includes an electrode body having a positive electrode and a negative electrode, a conductive battery case for accommodating the electrode assembly, the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is One or more elements selected from Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, Al, and Ga, 0.3≦x≦2.8, satisfying 0≦y≦1), and a lithium ion-containing electrolyte arranged in the battery case so that the reference electrode layer is immersed. And the reference electrode layer is formed on the inner wall of the battery case and faces the positive electrode.

本開示の一態様である二次電池の製造方法は、導電性の電池ケースの内壁上に、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0≦x<0.3、0≦y≦1を満たす)からなる化合物を含む参照電極層を形成する工程と、正極と負極とを有する電極体を、正極が参照電極層に対向するように、電極体の外側に隣接する多孔質の電極体ホルダを介して電池ケースに収容する工程と、電池ケースにリチウムイオンを含む電解質を少なくとも参照電極層が浸されるように注入する工程と、電池ケースを電源のマイナス極に、正極を電源のプラス極にそれぞれに接続して、参照電極層にリチウムイオンをドープする工程と、を有することを特徴とする。 The method of manufacturing a secondary battery which is one embodiment of the present disclosure, on the inner wall of the conductive battery case, in the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb, Cu, Mn, Ni , One or more elements selected from Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, Al, and Ga, and 0≦x<0.3, 0 ≦y≦1), and a step of forming an electrode body having a positive electrode and a negative electrode with a porous layer adjacent to the outer side of the electrode body so that the positive electrode faces the reference electrode layer. A battery case through a high-quality electrode body holder, a step of injecting an electrolyte containing lithium ions into the battery case so that at least the reference electrode layer is immersed, and the battery case to the negative electrode of the power supply, the positive electrode Is connected to each of the positive electrodes of the power source, and the reference electrode layer is doped with lithium ions.

本開示の一態様によれば、簡便な方法で参照電極層にリチウムイオンをドープできる二次電池を提供できる。 According to one aspect of the present disclosure, it is possible to provide a secondary battery in which the reference electrode layer can be doped with lithium ions by a simple method.

実施形態の一例である二次電池の斜視図であって、角形外装体の手前側を外した状態での電池ケースの内部の構造と第1の参照電極形成領域を示す図である。FIG. 3 is a perspective view of a secondary battery that is an example of an embodiment, showing the internal structure of the battery case and the first reference electrode formation region when the front side of the prismatic outer package is removed. 実施形態の一例である電極体の斜視図である。It is a perspective view of an electrode body which is an example of an embodiment. 図1中のA−A線断面図である。It is the sectional view on the AA line in FIG. 実施形態の他の一例である二次電池の斜視図であって、角形外装体の手前側を外した状態での第1の参照電極形成領域及び第2の参照電極形成領域を示す図である。It is a perspective view of a secondary battery which is another example of the embodiment, and is a view showing a first reference electrode formation region and a second reference electrode formation region in a state where the front side of the rectangular exterior body is removed. .. 実施形態の他の一例である二次電池の断面図である。It is sectional drawing of the secondary battery which is another example of embodiment. 図1中のA−A線断面図であって、参照電極層にリチウムイオンをドープする際の状態を示す図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, showing a state in which a reference electrode layer is doped with lithium ions.

二次電池に対して過充電を行った場合、正極側では電解質の酸化分解によりガスが発生したり、正極活物質の溶解が生じたりする可能性があり、また負極側では金属リチウムが析出する可能性がある。従来、正極と負極の電位差をモニターすることで過充電を抑制しているが、電極は使用により劣化するため、正極及び負極の電位を直接測定できる参照電極層を二次電池に設置できれば二次電池の信頼性をより向上させることができる。特許文献1は、チタン酸リチウムを含有する参照電極と、参照電極にリチウムイオンをドープするための第4電極とを設置する方法を開示している。しかし、電池ケース内の容積は非常に限られた大きさしかないので、電池の実際の使用前にリチウムイオンをドープするだけに使用される第4電極を設置するのは、電池の出力特性の観点から問題がある。 When the secondary battery is overcharged, gas may be generated due to oxidative decomposition of the electrolyte on the positive electrode side, or the positive electrode active material may be dissolved, and metallic lithium is deposited on the negative electrode side. there is a possibility. Conventionally, overcharge is suppressed by monitoring the potential difference between the positive electrode and the negative electrode, but the electrode deteriorates due to use.Therefore, if a reference electrode layer that can directly measure the positive electrode and negative electrode potential can be installed in the secondary battery, the secondary battery The reliability of the battery can be further improved. Patent Document 1 discloses a method of installing a reference electrode containing lithium titanate and a fourth electrode for doping lithium ions into the reference electrode. However, since the volume inside the battery case is very limited, it is important to install the fourth electrode, which is used only for doping lithium ions before the actual use of the battery, because of the output characteristics of the battery. There is a problem from a perspective.

本開示の一態様である二次電池は、正極と負極とを有する電極体と、電極体を収容する導電性の電池ケースと、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0.3≦x≦2.8、0≦y≦1を満たす)からなる化合物を含む参照電極層と、参照電極層が浸されるように電池ケース内に配置された、リチウムイオンを含む電解質と、を備え、参照電極層は、電池ケースの内壁上に形成されており、正極と対向することを特徴とする。 Secondary battery which is one embodiment of the present disclosure includes an electrode body having a positive electrode and a negative electrode, a conductive battery case for accommodating the electrode assembly, the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is One or more elements selected from Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, Al, and Ga, 0.3≦x≦2.8, satisfying 0≦y≦1), and a lithium ion-containing electrolyte arranged in the battery case so that the reference electrode layer is immersed. And the reference electrode layer is formed on the inner wall of the battery case and faces the positive electrode.

参照電極層と正極がリチウムイオンを含む電解質を介して互いに対向しているので、参照電極層と正極との間で電圧をかけたときに、電解質に含まれるリチウムイオンが参照電極層に移動しやすい。よって、参照電極層に十分な量のリチウムイオンをドープすることができるので、参照電極層の電位が安定し、正極及び負極の電位を高精度で測定することができる。 Since the reference electrode layer and the positive electrode face each other via the electrolyte containing lithium ions, when a voltage is applied between the reference electrode layer and the positive electrode, the lithium ions contained in the electrolyte move to the reference electrode layer. Cheap. Therefore, the reference electrode layer can be doped with a sufficient amount of lithium ions, so that the potential of the reference electrode layer is stable and the potentials of the positive electrode and the negative electrode can be measured with high accuracy.

以下、本開示の実施形態の一例について詳細に説明する。本実施形態では、角形の金属製ケースである電池ケース200を備えた角形電池を例示するが、電池ケースは角形に限定されず、例えば金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。なお、ラミネートシートで構成された電池ケースを用いる場合、参照電極層が形成される部分及び電源のマイナス極が当接される部分には樹脂層を設けないようにする。また、巻回型の電極体3を例示するが、積層型の電極体であってもよい。また、正極及び負極の両方において、各活物質層が各芯体の両面に形成される場合を例示するが、各活物質層は、各芯体の両面に形成される場合に限定されず、少なくとも一方の表面に形成されればよい。 Hereinafter, an example of the embodiment of the present disclosure will be described in detail. In the present embodiment, a prismatic battery including a battery case 200 that is a prismatic metal case is illustrated, but the battery case is not limited to a prismatic shape, and is, for example, a battery case configured by a laminate sheet including a metal layer and a resin layer. May be When a battery case made of a laminate sheet is used, the resin layer is not provided on the portion where the reference electrode layer is formed and the portion where the negative electrode of the power source contacts. Further, although the winding type electrode body 3 is exemplified, a laminated type electrode body may be used. Further, in both the positive electrode and the negative electrode, the case where each active material layer is formed on both surfaces of each core is illustrated, but each active material layer is not limited to the case formed on both surfaces of each core. It may be formed on at least one surface.

図1に例示するように、二次電池100は、正極と負極がセパレータを介して巻回され、平坦部及び一対の湾曲部を有する扁平状に成形された巻回型の電極体3と、電解質と、電極体3及び電解質を収容する電池ケース200とを備える。電池ケース200は、開口を有する有底筒状の角形外装体1、及び角形外装体1の開口を封口する封口板2を含む。角形外装体1及び封口板2はいずれも金属製であり、アルミニウム製又はアルミニウム合金製であることが好ましい。 As illustrated in FIG. 1, a secondary battery 100 includes a positive electrode and a negative electrode that are wound with a separator interposed therebetween, and has a flat shape and a spirally wound electrode body 3 having a pair of curved portions. An electrolyte and a battery case 200 accommodating the electrode body 3 and the electrolyte are provided. The battery case 200 includes a bottomed tubular prismatic outer casing 1 having an opening, and a sealing plate 2 for sealing the opening of the rectangular outer casing 1. Both the rectangular outer casing 1 and the sealing plate 2 are made of metal, and are preferably made of aluminum or aluminum alloy.

角形外装体1は、底面視略長方形状の底部、及び底部の周縁に立設した側壁部を有する。側壁部は、底部に対して垂直に形成される。角形外装体1の寸法は特に限定されないが、一例としては、横方向長さが60〜160mm、高さが60〜100mm、厚みが10〜40mmである。本明細書では、説明の便宜上、角形外装体1の底部の長手方向に沿った方向を角形外装体1の「横方向」、底部に対して垂直な方向を「高さ方向」、横方向及び高さ方向に垂直な方向を「厚み方向」とする。 The prismatic outer casing 1 has a bottom portion having a substantially rectangular shape in bottom view, and a side wall portion provided upright on the peripheral edge of the bottom portion. The side wall portion is formed perpendicular to the bottom portion. The dimensions of the rectangular outer package 1 are not particularly limited, but as an example, the lateral length is 60 to 160 mm, the height is 60 to 100 mm, and the thickness is 10 to 40 mm. In this specification, for convenience of description, the direction along the longitudinal direction of the bottom of the rectangular exterior body 1 is the “lateral direction” of the rectangular exterior body 1, the direction perpendicular to the bottom is the “height direction”, the lateral direction, and The direction perpendicular to the height direction is referred to as the “thickness direction”.

電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む非水電解質である。非水溶媒には、例えばカーボネート類、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。カーボネート類としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類が挙げられる。非水溶媒は、上記の溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩は、リチウム塩を含む。リチウム塩には、従来の二次電池100において支持塩として一般に使用されているLiPF等を用いることができる。また、適宜ビニレンカーボネート(VC)等の添加剤を添加することもできる。 The electrolyte is a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the non-aqueous solvent, for example, carbonates, esters, ethers, nitrites, amides, and a mixed solvent of two or more of these may be used. Examples of the carbonates include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and vinylene carbonate; dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), methylpropyl carbonate. Examples thereof include chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate. The non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of hydrogen in the above-mentioned solvent with a halogen atom such as fluorine. The electrolyte is not limited to a liquid electrolyte and may be a solid electrolyte using a gel polymer or the like. The electrolyte salt includes a lithium salt. As the lithium salt, LiPF 6 or the like which is generally used as a supporting salt in the conventional secondary battery 100 can be used. Further, an additive such as vinylene carbonate (VC) can be added as appropriate.

正極4は、金属製の正極芯体と、正極芯体の両面に形成された正極活物質層41とを有する長尺体であって、短手方向における一方の端部に長手方向に沿って正極芯体が露出する帯状の正極芯体露出部42が形成されたものである(後述の図2参照)。本実施形態では、正極4の巻外端から巻内端まで、即ち正極4の長手方向両端にわたって正極活物質層41が正極芯体の両面に設けられている。同様に、負極5は、金属製の負極芯体と、負極芯体の両面に形成された負極活物質層51とを有する長尺体であって、短手方向における一方の端部に長手方向に沿って負極芯体が露出する帯状の負極芯体露出部52が形成されたものである。本実施形態では、負極5の巻外端から巻内端まで、即ち負極5の長手方向両端にわたって負極活物質層51が負極芯体の両面に設けられている。電極体3は、巻軸方向一端側に正極芯体露出部42が、巻軸方向他端側に負極芯体露出部52がそれぞれ配置された状態で、セパレータ30を介して正極4及び負極5が巻回された構造を有する。 The positive electrode 4 is a long body having a positive electrode core made of metal and a positive electrode active material layer 41 formed on both surfaces of the positive electrode core, and has one end in the lateral direction along the longitudinal direction. A strip-shaped positive electrode core exposed portion 42, from which the positive electrode core is exposed, is formed (see FIG. 2 described later). In this embodiment, the positive electrode active material layers 41 are provided on both surfaces of the positive electrode core from the outer end of the positive electrode 4 to the inner end of the positive electrode 4, that is, both ends in the longitudinal direction of the positive electrode 4. Similarly, the negative electrode 5 is a long body having a negative electrode core body made of metal and a negative electrode active material layer 51 formed on both surfaces of the negative electrode core body. A strip-shaped negative electrode core exposed portion 52 is formed along which the negative electrode core is exposed. In the present embodiment, the negative electrode active material layers 51 are provided on both surfaces of the negative electrode core body from the outer end to the inner end of the negative electrode 5, that is, both ends in the longitudinal direction of the negative electrode 5. In the electrode body 3, the positive electrode core exposed portion 42 is arranged on one end side in the winding axis direction, and the negative electrode core exposed portion 52 is arranged on the other end side in the winding axis, respectively. Has a wound structure.

正極芯体露出部42の積層部には正極集電体6が、負極芯体露出部52の積層部には負極集電体8がそれぞれ接続される。好適な正極集電体6は、アルミニウム製又はアルミニウム合金製である。好適な負極集電体8は、銅又は銅合金製である。正極端子7は、封口板2の電池外部側に配置される正極外部導電部13と、正極外部導電部13に接続された正極ボルト部14と、封口板2に設けられた貫通穴に挿入される正極挿入部15とを有し、正極集電体6と電気的に接続されている。また、負極端子9は、封口板2の電池外部側に配置される負極外部導電部16と、負極外部導電部16に接続された負極ボルト部17と、封口板2に設けられた貫通穴に挿入される負極挿入部18とを有し、負極集電体8と電気的に接続されている。 The positive electrode collector 6 is connected to the laminated portion of the positive electrode core exposed portion 42, and the negative electrode collector 8 is connected to the laminated portion of the negative electrode core exposed portion 52. A suitable positive electrode current collector 6 is made of aluminum or an aluminum alloy. A suitable negative electrode current collector 8 is made of copper or a copper alloy. The positive electrode terminal 7 is inserted into the positive electrode external conductive portion 13 arranged on the battery outer side of the sealing plate 2, the positive electrode bolt portion 14 connected to the positive electrode external conductive portion 13, and the through hole provided in the sealing plate 2. And a positive electrode insertion portion 15 that is electrically connected to the positive electrode current collector 6. Further, the negative electrode terminal 9 is provided in a negative electrode external conductive portion 16 arranged on the battery outer side of the sealing plate 2, a negative electrode bolt portion 17 connected to the negative electrode external conductive portion 16, and a through hole provided in the sealing plate 2. The negative electrode insertion portion 18 to be inserted is included, and the negative electrode current collector 8 is electrically connected.

正極端子7及び正極集電体6は、それぞれ内部側絶縁部材及び外部側絶縁部材を介して封口板2に固定される。内部側絶縁部材は、封口板2と正極集電体6との間に配置され、外部側絶縁部材は封口板2と正極端子7との間に配置される。同様に、負極端子9及び負極集電体8は、それぞれ内部側絶縁部材及び外部側絶縁部材を介して封口板2に固定される。内部側絶縁部材は封口板2と負極集電体8との間に配置され、外部側絶縁部材は封口板2と負極端子9との間に配置される。 The positive electrode terminal 7 and the positive electrode current collector 6 are fixed to the sealing plate 2 via an inner insulating member and an outer insulating member, respectively. The inner insulating member is arranged between the sealing plate 2 and the positive electrode current collector 6, and the outer insulating member is arranged between the sealing plate 2 and the positive electrode terminal 7. Similarly, the negative electrode terminal 9 and the negative electrode current collector 8 are fixed to the sealing plate 2 via the inner insulating member and the outer insulating member, respectively. The inner insulating member is arranged between the sealing plate 2 and the negative electrode current collector 8, and the outer insulating member is arranged between the sealing plate 2 and the negative electrode terminal 9.

電極体3は、角形外装体1内に収容される。封口板2は、角形外装体1の開口縁部にレーザー溶接等により接続される。封口板2は電解質注液孔10を有し、この電解質注液孔10は電池ケース200内に電解質を注液した後、封止栓により電解質注液孔10が封止される。封口板2には、電池内部の圧力が所定値以上となった場合にガスを排出するためのガス排出弁11が形成されている。 The electrode body 3 is housed in the rectangular exterior body 1. The sealing plate 2 is connected to the opening edge portion of the rectangular exterior body 1 by laser welding or the like. The sealing plate 2 has an electrolyte injection hole 10. The electrolyte injection hole 10 is filled with the electrolyte in the battery case 200, and then the electrolyte injection hole 10 is sealed by a sealing plug. The sealing plate 2 is formed with a gas discharge valve 11 for discharging gas when the pressure inside the battery reaches or exceeds a predetermined value.

本開示の一態様である二次電池100は、電極体3と電池ケース200との間に配置され、リチウムイオンが通過可能な多孔質の電極体ホルダ12をさらに備えることが好ましい(後述の図3参照)。電極体3と電池ケース200との間に電極体ホルダ12を挟むことにより、電極体3と電池ケース200とが確実に接触しないようにすることができる。電極体ホルダ12は、リチウムイオンを透過する多孔質のものであれば特に限定されないが、例えば絶縁性を有する多孔性シートが用いられる。電極体ホルダ12は、例えばポリオレフィン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルイミド、及びアラミドから選択される少なくとも1種を主成分とする多孔質基材を含み、ポリオレフィンが好ましく、特にポリエチレン、及びポリプロピレンが好ましい。電極体3と電池ケース200との間は狭いので、電極体3が電極体ホルダ12で覆われた状態で角形外装体1内に収容されるのが好ましい。 The secondary battery 100, which is one aspect of the present disclosure, is preferably arranged between the electrode body 3 and the battery case 200, and further includes a porous electrode body holder 12 through which lithium ions can pass (see a later-described diagram). 3). By sandwiching the electrode body holder 12 between the electrode body 3 and the battery case 200, it is possible to prevent the electrode body 3 and the battery case 200 from reliably contacting each other. The electrode body holder 12 is not particularly limited as long as it is porous and permeable to lithium ions. For example, a porous sheet having an insulating property is used. The electrode body holder 12 is a porous material containing at least one selected from the group consisting of polyolefin, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, polyethersulfone, polyetherimide, and aramid, for example. Including a substrate, polyolefins are preferred, and polyethylene and polypropylene are especially preferred. Since the space between the electrode body 3 and the battery case 200 is narrow, it is preferable that the electrode body 3 is housed in the rectangular exterior body 1 while being covered with the electrode body holder 12.

角形外装体1の内壁面は、第1の参照電極形成領域20を有する。第1の参照電極形成領域20は、正極芯体露出部42に対向する領域である。第1の参照電極形成領域20及び後述する第2の参照電極形成領域21の少なくとも一方には参考電極層が形成される。 The inner wall surface of the rectangular outer package 1 has a first reference electrode formation region 20. The first reference electrode formation region 20 is a region facing the positive electrode core body exposed portion 42. A reference electrode layer is formed on at least one of the first reference electrode formation region 20 and a second reference electrode formation region 21 described later.

以下、電極体3及び参照電極層60について詳説する。 Hereinafter, the electrode body 3 and the reference electrode layer 60 will be described in detail.

[電極体]
図2は電極体3の斜視図であり、電極体3の巻き終わり近傍を展開した図としている。図1に例示するように、電極体3は、正極芯体露出部42と負極芯体露出部52とが軸方向の反対側に位置するように、セパレータ30を介して正極4及び負極5が巻回された構造を有する。電極体3において、負極5は、正極4よりも一回り大きな寸法を有し、正極活物質層41と対向する領域には必ず負極活物質層51が存在するように配置される。電極体3は、例えば軸方向長さが50〜150mm、幅が50〜90mm、厚みが8〜38mmの寸法を有する。
[Electrode body]
FIG. 2 is a perspective view of the electrode body 3, and is a developed view of the vicinity of the winding end of the electrode body 3. As illustrated in FIG. 1, in the electrode body 3, the positive electrode 4 and the negative electrode 5 are disposed via the separator 30 so that the positive electrode core exposed portion 42 and the negative electrode core exposed portion 52 are located on the opposite sides in the axial direction. It has a wound structure. In the electrode body 3, the negative electrode 5 has a size slightly larger than that of the positive electrode 4, and is arranged such that the negative electrode active material layer 51 is always present in a region facing the positive electrode active material layer 41. The electrode body 3 has dimensions of, for example, an axial length of 50 to 150 mm, a width of 50 to 90 mm, and a thickness of 8 to 38 mm.

正極4は、正極芯体と、正極芯体上に設けられた正極活物質層41とを有する。正極芯体には、アルミニウム、アルミニウム合金など正極4の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極芯体の厚みは、例えば10〜20μmである。正極活物質層41は、正極活物質、アセチレンブラック等の導電助剤、及びポリフッ化ビニリデン(PVdF)等の結着剤を含み、正極芯体の両面に設けられることが好ましい。正極活物質層41の厚みは、例えば正極芯体の両側の合計で50〜400μmである。正極4は、正極芯体上に正極活物質、導電助剤、及び結着剤等を含む正極活物質スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極活物質層41を正極芯体の両面に形成することにより作製できる。 The positive electrode 4 has a positive electrode core body and a positive electrode active material layer 41 provided on the positive electrode core body. As the positive electrode core, a foil of metal such as aluminum or aluminum alloy which is stable in the potential range of the positive electrode 4, a film in which the metal is arranged on the surface layer, and the like can be used. The thickness of the positive electrode core is, for example, 10 to 20 μm. The positive electrode active material layer 41 preferably includes a positive electrode active material, a conductive auxiliary agent such as acetylene black, and a binder such as polyvinylidene fluoride (PVdF), and is provided on both surfaces of the positive electrode core body. The thickness of the positive electrode active material layer 41 is, for example, 50 to 400 μm in total on both sides of the positive electrode core body. The positive electrode 4 is formed by applying a positive electrode active material slurry containing a positive electrode active material, a conductive additive, a binder and the like on a positive electrode core, drying the coating film, and then compressing the positive electrode active material layer 41 to form a positive electrode. It can be produced by forming on both sides of the core.

正極活物質には、例えばリチウム金属複合酸化物が用いられる。リチウム金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム金属複合酸化物の一例は、Ni、Co、Mnの少なくとも1種を含有するリチウム金属複合酸化物である。具体例としては、Ni、Co、Mnを含有するリチウム金属複合酸化物、Ni、Co、Alを含有するリチウム金属複合酸化物が挙げられる。なお、リチウム金属複合酸化物の粒子表面には、酸化タングステン、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着していてもよい。 As the positive electrode active material, for example, a lithium metal composite oxide is used. The metal elements contained in the lithium metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn, and Ta, W, etc. are mentioned. One example of a suitable lithium metal composite oxide is a lithium metal composite oxide containing at least one of Ni, Co and Mn. Specific examples include a lithium metal composite oxide containing Ni, Co and Mn, and a lithium metal composite oxide containing Ni, Co and Al. Inorganic compound particles such as tungsten oxide, aluminum oxide, and lanthanoid-containing compound may be fixed to the surface of the lithium metal composite oxide particles.

負極5は、負極芯体と、負極芯体上に設けられた負極活物質層51とを有する。負極芯体には、銅、銅合金など負極5の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体の厚みは、例えば5〜15μmである。負極活物質層51は、負極活物質、及びスチレンブタジエンゴム(SBR)等の結着剤を含み、負極芯体の両面に設けられることが好ましい。負極活物質層51の厚みは、例えば負極芯体の両側の合計で50〜400μmである。負極5は、負極芯体上に負極活物質、及び結着剤等を含む負極活物質スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極活物質層51を負極芯体の両面に形成することにより作製できる。 The negative electrode 5 has a negative electrode core body and a negative electrode active material layer 51 provided on the negative electrode core body. As the negative electrode core body, a foil of a metal such as copper or a copper alloy which is stable in the potential range of the negative electrode 5, a film in which the metal is arranged on the surface layer, and the like can be used. The thickness of the negative electrode core body is, for example, 5 to 15 μm. The negative electrode active material layer 51 preferably contains a negative electrode active material and a binder such as styrene-butadiene rubber (SBR) and is provided on both surfaces of the negative electrode core body. The thickness of the negative electrode active material layer 51 is, for example, 50 to 400 μm in total on both sides of the negative electrode core body. The negative electrode 5 is obtained by applying a negative electrode active material slurry containing a negative electrode active material, a binder and the like on a negative electrode core, drying the coating film, and then compressing the negative electrode active material layer 51 on both sides of the negative electrode core. It can be manufactured by forming

負極活物質には、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛が用いられる。負極活物質には、Si、Sn等のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよく、これらが黒鉛と併用されてもよい。当該化合物の具体例としては、SiO(0.5≦x≦1.6)で表されるケイ素化合物が挙げられる。 As the negative electrode active material, for example, natural graphite such as scaly graphite, lump graphite, and earth graphite, lump artificial graphite, graphite such as graphitized mesophase carbon microbeads, and other graphite are used. As the negative electrode active material, a metal alloying with lithium such as Si or Sn, an alloy containing the metal, a compound containing the metal, or the like may be used, and these may be used in combination with graphite. Specific examples of the compound include silicon compounds represented by SiO x (0.5≦x≦1.6).

セパレータ30には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。セパレータ30は、例えばポリオレフィン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルイミド、及びアラミドから選択される少なくとも1種を主成分とする多孔質基材を含み、ポリオレフィンが好ましく、特にポリエチレン、及びポリプロピレンが好ましい。 As the separator 30, a porous sheet having ion permeability and insulation is used. The separator 30 is, for example, a porous substrate containing, as a main component, at least one selected from polyolefin, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, polyether sulfone, polyetherimide, and aramid. Polyolefins are preferable, and polyethylene and polypropylene are particularly preferable.

セパレータ30は、樹脂製の多孔質基材のみで構成されていてもよく、多孔質基材の少なくとも一方の面に無機物粒子等を含む耐熱層などが形成された複層構造であってもよい。また、樹脂製の多孔質基材が、ポリプロピレン/ポリエチレン/ポリプロピレン等の複層構造を有していてもよい。セパレータ30の厚みは、例えば10〜30μmである。セパレータ30は、例えば、平均孔径が0.02〜5μm、空孔率が30〜70%である。一般的に、巻回型の電極体3は2枚のセパレータ30を含むが、各セパレータ30には同じものを用いることができる。 The separator 30 may be composed of only a resin-made porous base material, or may have a multi-layer structure in which a heat-resistant layer containing inorganic particles or the like is formed on at least one surface of the porous base material. .. Further, the resin-made porous base material may have a multilayer structure of polypropylene/polyethylene/polypropylene or the like. The thickness of the separator 30 is, for example, 10 to 30 μm. The separator 30 has, for example, an average pore diameter of 0.02 to 5 μm and a porosity of 30 to 70%. Generally, the wound electrode body 3 includes two separators 30, but the same separators can be used for each separator 30.

電極体3は、セパレータ30を介して巻回された正極4及び負極5の巻回体を扁平状にプレスして作製される。この場合、例えば略円筒形状の巻芯を用いて円筒状の巻回体を作製し、巻芯を取り除いた後、当該巻回体を径方向にプレスする。或いは、扁平状の巻芯を用いて正極4及び負極5を扁平状に巻回してもよい。この場合、巻芯を取り除いた後、さらにプレスして扁平状に成形してもよい。 The electrode body 3 is manufactured by pressing a wound body of the positive electrode 4 and the negative electrode 5 wound via the separator 30 into a flat shape. In this case, for example, a cylindrical winding body is manufactured using a substantially cylindrical winding core, the winding core is removed, and then the winding body is pressed in the radial direction. Alternatively, the positive electrode 4 and the negative electrode 5 may be wound in a flat shape by using a flat winding core. In this case, the core may be removed and then further pressed to form a flat shape.

図2において、電極体3の最外周は負極5である。本願において最外周は、最も巻外側に配置された正極4又は負極5を意味し、セパレータ30は除外する。例えば、電極体3の最外周が負極5の場合には、両極の芯体露出部を除く電極体3の外側表面の略全体を負極5が覆うことを意味する。電極体3の最外周は、負極芯体、負極活物質層51のどちらでもよい。 In FIG. 2, the outermost periphery of the electrode body 3 is the negative electrode 5. In the present application, the outermost circumference means the positive electrode 4 or the negative electrode 5 arranged on the outermost winding side, and the separator 30 is excluded. For example, when the outermost periphery of the electrode body 3 is the negative electrode 5, it means that the negative electrode 5 covers substantially the entire outer surface of the electrode body 3 excluding the core body exposed portions of both electrodes. The outermost periphery of the electrode body 3 may be either the negative electrode core body or the negative electrode active material layer 51.

[参照電極層]
参照電極層60は、正極4及び負極5の電位の絶対値を測定する際の基準となる電極である。具体的には、参照電極層60と電気的に接続している電池ケース200と正極端子7との間の電圧を測定して、参照電極層60に対する正極4の電位が測定できる。参照電極層60に対する負極5の電位は、別途計測したセル電圧から先に測定した参照電極層60に対する正極4の電位を引いて算出できる。参照電極の電位を基準にして正極4及び負極5の電位を決定するので、参照電極層60の電位は安定していることが好ましい。参照電極層60は、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0.3≦x≦2.8、0≦y≦1を満たし、以下、「チタン酸リチウム」という場合がある)からなる化合物を含む。参照電極層60は、電池ケース200内壁上の所定の位置に、少なくともチタン酸リチウムを含む参照電極スラリーを塗布し、塗膜を乾燥させることにより作製できる。作製した参照電極層60に含まれるチタン酸リチウムにリチウムイオンをドープすることで、参照電極層60の電位は安定化する。上記の組成式のチタン酸リチウムは、リチウムイオンをドープした後のチタン酸リチウムである。
[Reference electrode layer]
The reference electrode layer 60 is an electrode serving as a reference when measuring the absolute values of the potentials of the positive electrode 4 and the negative electrode 5. Specifically, the potential between the positive electrode 4 and the reference electrode layer 60 can be measured by measuring the voltage between the positive electrode terminal 7 and the battery case 200 electrically connected to the reference electrode layer 60. The potential of the negative electrode 5 with respect to the reference electrode layer 60 can be calculated by subtracting the previously measured potential of the positive electrode 4 with respect to the reference electrode layer 60 from the separately measured cell voltage. Since the potentials of the positive electrode 4 and the negative electrode 5 are determined based on the potential of the reference electrode, it is preferable that the potential of the reference electrode layer 60 is stable. Reference electrode layer 60, in the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, One or more elements selected from Y, La, Zn, Al, and Ga, satisfying 0.3≦x≦2.8 and 0≦y≦1, and hereinafter referred to as “lithium titanate”. Is present). The reference electrode layer 60 can be produced by applying a reference electrode slurry containing at least lithium titanate to a predetermined position on the inner wall of the battery case 200 and drying the coating film. By doping lithium titanate contained in the manufactured reference electrode layer 60 with lithium ions, the potential of the reference electrode layer 60 is stabilized. The lithium titanate having the above composition formula is lithium titanate after being doped with lithium ions.

参照電極層60は、参照電極層60の電位をより安定させるために、導電助剤をさらに含むことが好ましい。導電助剤としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。 The reference electrode layer 60 preferably further contains a conductive additive in order to further stabilize the potential of the reference electrode layer 60. Examples of the conductive aid include carbon materials such as carbon black, acetylene black, Ketjen black, and graphite.

参照電極層60は、チタン酸リチウム、導電助剤以外に、スチレンブタジエンゴム、ポリフッ化ビニリデン(PVdF)等の結着剤、及びカルボキシメチルセルロース(CMC)等の増粘剤を含むことができる。 The reference electrode layer 60 can include a binder such as styrene-butadiene rubber, polyvinylidene fluoride (PVdF), and a thickener such as carboxymethyl cellulose (CMC), in addition to lithium titanate and a conductive additive.

参照電極層60の厚さ及び大きさは、参照電極層60の電位が安定している限りは特に限定されない。例えば、参照電極層60の厚さは、1〜200μmであることが好ましいく、1〜50μmであることがより好ましく、1μm〜10μmであることが更に好ましい。また、参照電極層60の厚さは、大きさは1cm〜400cmであることが好ましく、3cm〜150cmであることがより好ましく、5cm〜25cmであることが更に好ましい。また、参照電極層60に含まれるチタン酸リチウムの割合は90質量%以上であることが好ましい。 The thickness and size of the reference electrode layer 60 are not particularly limited as long as the potential of the reference electrode layer 60 is stable. For example, the thickness of the reference electrode layer 60 is preferably 1 to 200 μm, more preferably 1 to 50 μm, and further preferably 1 μm to 10 μm. The thickness of the reference electrode layer 60 is preferably sized is 1cm 2 ~400cm 2, more preferably from 3cm 2 ~150cm 2, and further preferably from 5cm 2 ~25cm. Further, the proportion of lithium titanate contained in the reference electrode layer 60 is preferably 90% by mass or more.

図3を参照しつつ参照電極層60の形成される位置について説明する。図3は、図1中のA−A線断面図である。電極体3は、角形外装体1の厚さ方向の略中央に角形外装体1に接触しないように設置されており、正極集電体6(図示しない)を介して封口板2に固定されている。参照電極層60は、電池ケース200の内壁上、より具体的には、角形外装体1の内側の側壁部又は底部に形成される。参照電極層60を角形外装体1の上に層状に形成することで、角形外装体1と電気的に接続することができ、また、電池ケース200内の容積を少なくすることもない。 The position where the reference electrode layer 60 is formed will be described with reference to FIG. FIG. 3 is a sectional view taken along the line AA in FIG. The electrode body 3 is installed substantially in the center of the rectangular outer package 1 in the thickness direction so as not to contact the rectangular outer package 1, and is fixed to the sealing plate 2 via a positive electrode current collector 6 (not shown). There is. The reference electrode layer 60 is formed on the inner wall of the battery case 200, more specifically, on the side wall portion or the bottom portion inside the prismatic outer casing 1. By forming the reference electrode layer 60 in a layered manner on the rectangular outer package 1, the reference electrode layer 60 can be electrically connected to the rectangular outer package 1, and the volume of the battery case 200 is not reduced.

電極体3は、正極4と負極5とがセパレータ30を介して巻かれた巻回型である。そして、電極体3は、巻軸方向の一方の端部に正極芯体露出部42を有し、巻軸方向の他方の端部に負極芯体露出部52を有している。また、電極体3の最外周は負極5であり、参照電極層60は正極芯体露出部42に対向する。 The electrode body 3 is a wound type in which a positive electrode 4 and a negative electrode 5 are wound with a separator 30 in between. The electrode body 3 has a positive electrode core exposed portion 42 at one end in the winding axis direction and a negative electrode core exposed portion 52 at the other end in the winding axis direction. The outermost periphery of the electrode body 3 is the negative electrode 5, and the reference electrode layer 60 faces the positive electrode core exposed portion 42.

図2に示すように電極体3の最外周は負極5であり、電極体3で正極4が巻外側に存在する部分は正極芯体露出部42である。この場合、参照電極層60は、正極芯体露出部42に対向する位置、換言すれば図1の第1の参照電極形成領域20に形成される。参照電極層60と正極4との間にはリチウムイオンを含む電解質があるので、参照電極層60と正極4との間で電圧をかけたときに、電解質に含まれるリチウムイオンが参照電極層60に移動しやすい。よって、参照電極層60に十分な量のリチウムイオンをドープすることができる。 As shown in FIG. 2, the outermost periphery of the electrode body 3 is the negative electrode 5, and the portion of the electrode body 3 where the positive electrode 4 is located outside the winding is the positive electrode core body exposed portion 42. In this case, the reference electrode layer 60 is formed at a position facing the positive electrode core exposed portion 42, in other words, in the first reference electrode formation region 20 of FIG. 1. Since there is an electrolyte containing lithium ions between the reference electrode layer 60 and the positive electrode 4, when a voltage is applied between the reference electrode layer 60 and the positive electrode 4, the lithium ions contained in the electrolyte are not included in the reference electrode layer 60. Easy to move to. Therefore, the reference electrode layer 60 can be doped with a sufficient amount of lithium ions.

図2ではセパレータ30が最外周の負極5の上に積層されているが、セパレータ30は負極5の上に積層されていなくてもよい。この場合、図2で負極5の上に積層されている方のセパレータ30を正極4の下に積層させることや、負極5の上に積層されている方のセパレータ30の長さを短くすることができる。 In FIG. 2, the separator 30 is stacked on the outermost negative electrode 5, but the separator 30 may not be stacked on the negative electrode 5. In this case, in FIG. 2, the separator 30 laminated on the negative electrode 5 is laminated under the positive electrode 4, or the length of the separator 30 laminated on the negative electrode 5 is shortened. You can

<実施形態の他の一例>
図4は、実施形態の他の一例である二次電池の斜視図であって、第1の参照電極形成領域20及び第2の参照電極形成領域21を示す図である。第2の参照電極形成領域21は、角形外装体1の内壁面の一部であって、電極体3の正極芯体露出部42と負極芯体露出部52を除く部分に対向する領域である。また、図3の断面図に示す例と同様に、参照電極層60は、電池ケース200の内壁上、より具体的には、角形外装体1の内側の側壁部又は底部に形成される。
<Another Example of Embodiment>
FIG. 4 is a perspective view of a secondary battery which is another example of the embodiment, and is a diagram showing a first reference electrode formation region 20 and a second reference electrode formation region 21. The second reference electrode formation region 21 is a part of the inner wall surface of the rectangular exterior body 1 and is a region facing the part of the electrode body 3 excluding the positive electrode core exposed part 42 and the negative electrode core exposed part 52. .. Further, similarly to the example shown in the cross-sectional view of FIG. 3, the reference electrode layer 60 is formed on the inner wall of the battery case 200, more specifically, on the inner side wall portion or bottom portion of the rectangular exterior body 1.

電極体3は、正極4と負極5とがセパレータ30を介して巻かれた巻回型であり、巻軸方向の両端にはそれぞれ正極芯体露出部42及び負極芯体露出部52を有し、電極体3の最外周は正極4であり、参照電極層60は電極体3の負極芯体露出部52を除く部分に対向することを特徴とする。 The electrode body 3 is a winding type in which a positive electrode 4 and a negative electrode 5 are wound with a separator 30 in between, and has a positive electrode core exposed portion 42 and a negative electrode core exposed portion 52 at both ends in the winding axis direction. The outermost periphery of the electrode body 3 is the positive electrode 4, and the reference electrode layer 60 faces the portion of the electrode body 3 excluding the negative electrode core exposed portion 52.

電極体3の最外周が正極4である場合には、電極体3の負極芯体露出部52を除く部分で正極4が電極体3の巻外側に存在する。この場合、参照電極層60は、電極体3の負極芯体露出部52を除く部分に対向する位置、換言すれば図4の第1の参照電極形成領域20又は第2の参照電極形成領域21に形成される。よって、最外周が負極5の場合と比べて、参照電極層60を形成する位置を広い範囲で選択することができる。また、電極体3の最外周が正極活物質層41であると最外周の正極活物質層41に対向する領域に負極活物質層51が存在しないので、電極体3の最外周は正極芯体であることが好ましい。 When the outermost periphery of the electrode body 3 is the positive electrode 4, the positive electrode 4 exists outside the winding of the electrode body 3 in the portion of the electrode body 3 excluding the negative electrode core exposed portion 52. In this case, the reference electrode layer 60 faces the portion of the electrode body 3 excluding the negative electrode core exposed portion 52, in other words, the first reference electrode formation region 20 or the second reference electrode formation region 21 of FIG. Is formed. Therefore, compared to the case where the outermost periphery is the negative electrode 5, the position where the reference electrode layer 60 is formed can be selected in a wider range. When the outermost periphery of the electrode body 3 is the positive electrode active material layer 41, the negative electrode active material layer 51 does not exist in the region facing the outermost periphery positive electrode active material layer 41, so the outermost periphery of the electrode body 3 is the positive electrode core body. Is preferred.

セパレータ30は、最外周の上に積層されているのが好ましい。この場合、最外周が角形外装体1に接触することを避けることができる。なお、電極体3と角形外装体1との間に電極体ホルダ12がある場合にもセパレータ30を最外周の上に積層してもよい。 The separator 30 is preferably laminated on the outermost periphery. In this case, it is possible to prevent the outermost periphery from coming into contact with the rectangular outer package 1. Even when the electrode body holder 12 is between the electrode body 3 and the rectangular outer casing 1, the separator 30 may be laminated on the outermost periphery.

図5に例示するように、参照電極層60は、二次電池100の高さ方向中央で半分に分けた場合の底部側の側面上に少なくとも一部が形成されていることが好ましく、二次電池100の高さ方向で4等分に分けた場合の最も底部側の側面上に少なくとも一部が形成されていることがより好ましい。電池ケース200内に電解質で満たされていない部分がある場合にも、角形外装体1の底部側に参照電極層60を形成しておくことで、参照電極層60と正極4との間に電解質が確実に存在するようにすることができる。 As illustrated in FIG. 5, it is preferable that at least a part of the reference electrode layer 60 is formed on the side surface on the bottom side when the secondary battery 100 is divided in half at the center in the height direction. It is more preferable that at least a part of the battery 100 is formed on the side surface closest to the bottom when the battery 100 is divided into four equal parts in the height direction. Even when there is a portion not filled with the electrolyte in the battery case 200, the reference electrode layer 60 is formed on the bottom side of the prismatic outer casing 1 so that the electrolyte is provided between the reference electrode layer 60 and the positive electrode 4. Can be ensured to exist.

[二次電池の製造方法]
上述の構成を備えた二次電池100は、例えば、下記の工程を経て製造される。
(1)導電性の電池ケース200の内壁上に、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0≦x<0.3、0≦y≦1を満たす)からなる化合物を含む参照電極層60を形成する工程。
(2)正極4と負極5とを有する電極体3を、正極4が参照電極層60に対向するように、電極体3の外側に隣接する多孔質の電極体ホルダ12を介して電池ケース200に収容する工程。
(3)電池ケース200にリチウムイオンを含む電解質を少なくとも参照電極層60が浸されるように注入する工程。
(4)電池ケース200を電源のマイナス極に、正極4を電源のプラス極にそれぞれに接続して、参照電極層60にリチウムイオンをドープする工程(図6参照)。
[Method of manufacturing secondary battery]
The secondary battery 100 having the above configuration is manufactured, for example, through the following steps.
(1) on a conductive inner wall of the battery case 200, in the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, A compound consisting of one or more elements selected from Co, Cr, V, Sc, Y, La, Zn, Al, and Ga and satisfying 0≦x<0.3, 0≦y≦1) A step of forming the reference electrode layer 60 including.
(2) The electrode case 3 having the positive electrode 4 and the negative electrode 5 is inserted into the battery case 200 via the porous electrode body holder 12 adjacent to the outside of the electrode body 3 so that the positive electrode 4 faces the reference electrode layer 60. Step of housing.
(3) A step of injecting an electrolyte containing lithium ions into the battery case 200 so that at least the reference electrode layer 60 is immersed.
(4) A step of connecting the battery case 200 to the negative electrode of the power source and the positive electrode 4 to the positive electrode of the power source, and doping the reference electrode layer 60 with lithium ions (see FIG. 6 ).

図6を参照して二次電池100の製造方法の内、特に参照電極層60にリチウムイオンをドープする工程について説明する。上述の(1)〜(3)の工程により、角形外装体1と封口板2を有する電池ケース200の中には、角形外装体1の側壁上又は底面上に形成された参照電極層60と、電池ケース200とは接触しないように正極集電体6及び負極集電体8を介して封口板2に固定された電極体3が配置される。電極体3の巻外側の正極4と参照電極層60とは、お互いに対向し、参照電極層60と正極4との間にはリチウムイオンを含有する電解質が存在する。 Of the method for manufacturing the secondary battery 100, the step of doping the reference electrode layer 60 with lithium ions will be described with reference to FIG. Through the steps (1) to (3) described above, in the battery case 200 having the rectangular outer package 1 and the sealing plate 2, the reference electrode layer 60 formed on the side wall or the bottom surface of the rectangular outer package 1 is formed. The electrode body 3 fixed to the sealing plate 2 via the positive electrode current collector 6 and the negative electrode current collector 8 is arranged so as not to contact the battery case 200. The positive electrode 4 and the reference electrode layer 60 on the outer side of the winding of the electrode body 3 face each other, and an electrolyte containing lithium ions exists between the reference electrode layer 60 and the positive electrode 4.

次に上述の(4)の工程により、電池ケース200を電源のマイナス極に、正極4を電源のプラス極にそれぞれに接続する。具体的には、電源のマイナス極は、電池ケース200に含まれる角形外装体1及び封口板2のいずれかに接続させ、一方電源のプラス極は、正極端子7に接続させる。電池ケース200上の参照電極層60と、正極端子7に接続している正極4との間には電位差が生じるので、電解質中のリチウムイオンはマイナス極側の参照電極層60に引き寄せられ、参照電極層60に含まれるチタン酸リチウムにリチウムイオンがドープされる。リチウムイオンがドープされたチタン酸リチウムは電位が安定化するので、参照電極層60は、正極4又は負極5の電位を測定するための基準電極として使用することができるようになる。 Next, in the step (4) described above, the battery case 200 is connected to the negative pole of the power source, and the positive electrode 4 is connected to the positive pole of the power source. Specifically, the negative pole of the power source is connected to either the rectangular outer casing 1 or the sealing plate 2 included in the battery case 200, while the positive pole of the power source is connected to the positive electrode terminal 7. Since a potential difference is generated between the reference electrode layer 60 on the battery case 200 and the positive electrode 4 connected to the positive electrode terminal 7, lithium ions in the electrolyte are attracted to the reference electrode layer 60 on the negative electrode side. Lithium titanate contained in the electrode layer 60 is doped with lithium ions. Since the potential of lithium titanate doped with lithium ions is stabilized, the reference electrode layer 60 can be used as a reference electrode for measuring the potential of the positive electrode 4 or the negative electrode 5.

(4)の工程の前に電池ケース200を封止する工程を行うことができる。なお、(4)の工程の後に電池ケース200を封止する工程を行うこともできる。例えば、電池ケース200の電解質注液孔10が封止されない状態で参照電極層60にリチウムイオンをドープした後、電池ケース200の電解質注液孔10を封止してもよい。この場合、参照電極層60へのリチウムイオンのドープは、ドライ環境下で行うことが好ましい。但し、(4)の工程の前に電池ケース200を封止する工程を行うことにより、リチウムがドープされた参照電極層60が大気中の水分に触れることがなく、参照電極層60の電位がより安定したものとなる。よって、(4)の工程の前に電池ケース200を封止する工程を行うことがより好ましい。 The step of sealing the battery case 200 can be performed before the step (4). Note that the step of sealing the battery case 200 may be performed after the step (4). For example, the electrolyte injection hole 10 of the battery case 200 may be sealed after the reference electrode layer 60 is doped with lithium ions in a state where the electrolyte injection hole 10 of the battery case 200 is not sealed. In this case, it is preferable to dope the reference electrode layer 60 with lithium ions in a dry environment. However, by performing the step of sealing the battery case 200 before the step (4), the reference electrode layer 60 doped with lithium does not come into contact with moisture in the atmosphere, and the potential of the reference electrode layer 60 is reduced. It will be more stable. Therefore, it is more preferable to perform the step of sealing the battery case 200 before the step (4).

以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。また、各実施例及び各比較例に係る二次電池は、ドライルームを使用しない非ドライ環境下で作製し、参考例に係る二次電池はドライルーム内の管理されたドライ環境下で作製した。 Hereinafter, the present disclosure will be further described with reference to examples, but the present disclosure is not limited to these examples. Further, the secondary batteries according to each example and each comparative example were manufactured in a non-dry environment without using a dry room, and the secondary battery according to the reference example was manufactured in a controlled dry environment in a dry room. ..

<実施例1>
[正極の作製]
正極活物質として、LiNi0.35Co0.35Mn0.30で表されるリチウム金属複合酸化物粒子を用いた。正極活物質と、N−メチル−2−ピロリドン(NMP)中に分散されたポリフッ化ビニリデンと、アセチレンブラックとを、91:2:7の固形分質量比で混合して、正極活物質スラリーを調製した。次に、正極活物質スラリーを厚み15μmのアルミニウム合金からなる正極芯体の両面に塗布し、塗膜を真空乾燥させてNMPを揮発除去した。ただし、正極芯体の長手方向に沿う一方の端部には両面とも正極活物質スラリーを塗布せずに正極芯体を露出させて正極芯体露出部を設けた。圧延ロールを用いて乾燥した塗膜を圧縮した後、所定の極板サイズに切断し、正極集電体の両面に正極活物質層が形成された正極板を作製した。
<Example 1>
[Preparation of positive electrode]
As the positive electrode active material, lithium metal composite oxide particles represented by LiNi 0.35 Co 0.35 Mn 0.30 O 2 were used. The positive electrode active material, polyvinylidene fluoride dispersed in N-methyl-2-pyrrolidone (NMP), and acetylene black were mixed at a solid content mass ratio of 91:2:7 to prepare a positive electrode active material slurry. Prepared. Next, the positive electrode active material slurry was applied on both surfaces of a positive electrode core body made of an aluminum alloy having a thickness of 15 μm, and the coating film was vacuum dried to volatilize and remove NMP. However, the positive electrode core was exposed without providing the positive electrode active material slurry on both surfaces at one end along the longitudinal direction of the positive electrode core to provide a positive electrode core exposed portion. The dried coating film was compressed using a rolling roll, and then cut into a predetermined electrode plate size to prepare a positive electrode plate having positive electrode active material layers formed on both surfaces of the positive electrode current collector.

[負極の作製]
天然黒鉛と、スチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、98:1:1の固形分質量比で混合し、水を適量加えて、負極活物質スラリーを調製した。次に、当該負極活物質スラリーを厚み8μmの銅箔からなる負極芯体の両面に塗布し、塗膜を真空乾燥させて水を揮発除去した。ただし、負極芯体の長手方向に沿う一方の端部には両面とも負極活物質スラリーを塗布せずに負極芯体を露出させて負極芯体露出部を設けた。圧延ロールを用いて乾燥した塗膜を圧縮した後、所定の電極サイズに切断し、方形状の負極芯体の両面に負極活物質層が形成された負極を作製した。
[Preparation of negative electrode]
Natural graphite, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed at a solid content mass ratio of 98:1:1, and water was added in an appropriate amount to prepare a negative electrode active material slurry. Next, the negative electrode active material slurry was applied to both surfaces of a negative electrode core body made of a copper foil having a thickness of 8 μm, and the coating film was vacuum dried to volatilize and remove water. However, the negative electrode core was exposed without providing the negative electrode active material slurry on both surfaces at one end along the longitudinal direction of the negative electrode core to provide a negative electrode core exposed portion. The dried coating film was compressed using a rolling roll, and then cut into a predetermined electrode size to prepare a negative electrode having a negative electrode active material layer formed on both surfaces of a rectangular negative electrode core.

[電極体の作製]
上記正極及び上記負極を、それぞれの芯体露出部が互いに巻回体の軸方向反対側に位置するようにして、帯状のポリエチレン/ポリプロピレン製の微細多孔膜からなるセパレータを介して巻回した。その後、巻回体を径方向にプレスして扁平状に成形し、巻回型の電極体を作製した。巻回体は、巻内側からセパレータ/正極/セパレータ/負極の順に重ね合わせたものを、円筒状の巻芯に巻き付けて形成した(2枚のセパレータには同じものを用いた)。なお、電極体の最外周は負極とした。
[Production of electrode body]
The positive electrode and the negative electrode were wound with a strip-shaped polyethylene/polypropylene microporous membrane separator interposed between them so that the exposed cores of the positive electrode and the negative electrode were located on the axially opposite sides of the wound body. After that, the wound body was pressed in the radial direction and formed into a flat shape, to prepare a wound electrode body. The wound body was formed by stacking a separator, a positive electrode, a separator, and a negative electrode in this order from the inside of the winding, and winding the wound body around a cylindrical winding core (the same two separators were used). The outermost periphery of the electrode body was the negative electrode.

[参照電極の作製]
組成式LiTi12のチタン酸リチウムと、カルボキシメチルセルロース(CMC)と、スチレンブタジエンゴム(SBR)とを、98.9:0.7:0.4の固形分質量比で混合し、水を適量加えて、参照電極スラリーを調製した。次に参照電極スラリーを正極芯体露出部に対向するように電池ケースの側面の内壁に塗布量が1mg/cmとなるように塗布した。その後、電池ケースを乾燥させて参照電極スラリー調整時に分散媒として用いた水を除去して参照電極層を作製した。なお、参照電極層の形成面積は8cmとした。
[Preparation of reference electrode]
Lithium titanate having a composition formula Li 4 Ti 5 O 12 , carboxymethyl cellulose (CMC), and styrene butadiene rubber (SBR) were mixed at a solid content mass ratio of 98.9:0.7:0.4, A reference electrode slurry was prepared by adding an appropriate amount of water. Next, the reference electrode slurry was applied to the inner wall of the side surface of the battery case so as to face the exposed portion of the positive electrode core so that the application amount was 1 mg/cm 2 . After that, the battery case was dried to remove water used as a dispersion medium at the time of preparing the reference electrode slurry to form a reference electrode layer. The formation area of the reference electrode layer was 8 cm 2 .

[電解質の調製]
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジエチルカーボネート(DEC)とを、3:3:4の体積比(25℃、1気圧)で混合した。当該混合溶媒にLiPFを1mol/Lの濃度で溶解させ、さらに電解質の総質量に対して0.3質量%のビニレンカーボネート(VC)を添加して電解質を調製した。
[Preparation of electrolyte]
Ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a volume ratio of 3:3:4 (25° C., 1 atm). LiPF 6 was dissolved in the mixed solvent at a concentration of 1 mol/L, and 0.3% by mass of vinylene carbonate (VC) was added to the total mass of the electrolyte to prepare an electrolyte.

[二次電池の作製]
上記電極体、上記電解質、及びアルミニウム製の角形の電池ケースを用いて、二次電池(角形電池)を作製した。電極体を多孔質の電極体ホルダで覆い、電池ケースを構成する角形有底筒状の外装缶(横方向長さ148.0mm(内寸146.8mm)、厚み17.5mm(内寸16.5mm)、高さ65.0mm(内寸64.0mm))内に収容した。電池ケースを構成する封口板に正極端子を取り付けると共に、正極端子に正極集電体を接続した。また、封口板に負極端子を取り付けると共に、負極端子に負極集電体を接続した。そして、正極芯体露出部に正極集電体を、負極芯体露出部に負極集電体をそれぞれ溶接した。電解質を外装缶に注入し、電池ケースの開口部を封口板で塞いだ。
[Preparation of secondary battery]
A secondary battery (square battery) was produced using the electrode body, the electrolyte, and a prismatic battery case made of aluminum. The electrode body is covered with a porous electrode body holder to form a prismatic bottomed cylindrical outer can that constitutes the battery case (lateral length 148.0 mm (inner dimension 146.8 mm), thickness 17.5 mm (inner dimension 16. 5 mm) and a height of 65.0 mm (inner dimension 64.0 mm)). The positive electrode terminal was attached to the sealing plate constituting the battery case, and the positive electrode current collector was connected to the positive electrode terminal. Further, the negative electrode terminal was attached to the sealing plate, and the negative electrode current collector was connected to the negative electrode terminal. Then, the positive electrode current collector was welded to the positive electrode core exposed portion and the negative electrode current collector was welded to the negative electrode core exposed portion. The electrolyte was poured into an outer can and the opening of the battery case was closed with a sealing plate.

[参照電極層へのリチウムイオンドープ]
作製した二次電池の電池ケースを電源のマイナス極に、正極端子を電源のプラス極にそれぞれに接続して、0.0015It(7.5mA)で60秒間充電することで、参照電極層にリチウムイオンをドープした。リチウムイオンをドープした後の参照電極層の電位は、1.55Vと考えられる。
[Doping the reference electrode layer with lithium ions]
By connecting the battery case of the fabricated secondary battery to the negative electrode of the power source and the positive electrode terminal to the positive electrode of the power source, and charging the battery at 0.0015 It (7.5 mA) for 60 seconds, lithium was added to the reference electrode layer. Doped with ions. The potential of the reference electrode layer after doping with lithium ions is considered to be 1.55V.

<実施例2>
参照電極スラリーの固形分質量比を、組成式LiTi12のチタン酸リチウムと、アセチレンブラックと、カルボキシメチルセルロース(CMC)と、スチレンブタジエンゴム(SBR)とで、96.9:2.0:0.7:0.4に変更した以外は、実施例1と同様の方法で二次電池を作製した。
<Example 2>
The solid content mass ratio of the reference electrode slurry was 96.9:2 with lithium titanate having a composition formula Li 4 Ti 5 O 12 , acetylene black, carboxymethyl cellulose (CMC), and styrene butadiene rubber (SBR). A secondary battery was made in the same manner as in Example 1 except that the ratio was changed to 0:0.7:0.4.

<比較例1〜3>
比較例1〜3は、以下を変更した以外は、実施例1と同様の方法で二次電池を作製した。
(1)比較例1:参照電極層を作製しなかった。
(2)比較例2:参照電極層を正極芯体露出部に対向しないような位置に作製した。
(3)比較例3:参照電極層を正極芯体露出部に対向しないような位置に作製し、参照電極層へのリチウムイオンドープも行わなかった。
<Comparative Examples 1 to 3>
In Comparative Examples 1 to 3, secondary batteries were produced in the same manner as in Example 1 except that the following was changed.
(1) Comparative Example 1: No reference electrode layer was prepared.
(2) Comparative Example 2: The reference electrode layer was formed at a position not facing the exposed portion of the positive electrode core body.
(3) Comparative Example 3: The reference electrode layer was formed at a position not facing the exposed portion of the positive electrode core body, and the reference electrode layer was not doped with lithium ions.

<参考例>
参照電極層の作製後で二次電池の作製前に、電解質を外装缶に注入し、多孔質の電極体ホルダを介して参照電極層に対向するように別途準備したリチウム電極を挿入した。外装缶を電源のマイナス極に、リチウム電極を電源のプラス極にそれぞれに接続して、0.0015It(7.5mA)で60秒間充電することで、参照電極層にリチウムイオンをドープした。その後、リチウム電極を抜き取った上で二次電池を作製した。
<Reference example>
After preparation of the reference electrode layer and before preparation of the secondary battery, the electrolyte was injected into the outer can, and the separately prepared lithium electrode was inserted so as to face the reference electrode layer through the porous electrode body holder. The outer can was connected to the negative electrode of the power source and the lithium electrode was connected to the positive electrode of the power source, and the reference electrode layer was doped with lithium ions by charging at 0.0015 It (7.5 mA) for 60 seconds. After that, a lithium battery was extracted and then a secondary battery was manufactured.

実施例1〜2、比較例1〜3、及び参考例の各二次電池をそれぞれ10セルずつ作製し下記の方法により、参照電極層の安定性の評価を行い、評価結果を表1に示した。 Each of the secondary batteries of Examples 1 and 2, Comparative Examples 1 to 3, and Reference Example was produced by 10 cells, and the stability of the reference electrode layer was evaluated by the following method. The evaluation results are shown in Table 1. It was

[参照電極層の安定性の評価]
各二次電池を、25℃の温度環境において、1It(5A)で定電流充電した後、3.52Vで2.5時定電圧充電し、充電深度(SOC)を20%とした。室温条件で2.5時間静置した後、電池ケースに対する正極の電圧(正極/電池ケース)を測定した。電池ケースに対する負極の電圧(負極/電池ケース)は、別途計測したセル電圧から電池ケースに対する正極の電圧を引いて算出した。10セルについての測定結果から、正極/電池ケース及び負極/電池ケースの平均値と正極/電池ケースの標準偏差を算出した。また、定電圧充電時の電圧を3.69Vにする以外はSOCが20%の場合と同様にして、二次電池のSOCを50%として、同様に測定した。また、定電圧充電時の電圧を3.91Vにする以外はSOCが20%の場合と同様にして、二次電池のSOCを80%として、同様に測定した。
[Evaluation of stability of reference electrode layer]
Each secondary battery was charged with a constant current of 1 It (5 A) in a temperature environment of 25° C., and then with a constant voltage of 3.52 V for 2.5 hours, and the depth of charge (SOC) was 20%. After standing at room temperature for 2.5 hours, the voltage of the positive electrode with respect to the battery case (positive electrode/battery case) was measured. The voltage of the negative electrode with respect to the battery case (negative electrode/battery case) was calculated by subtracting the voltage of the positive electrode with respect to the battery case from the separately measured cell voltage. From the measurement results of 10 cells, the average value of the positive electrode/battery case and the negative electrode/battery case and the standard deviation of the positive electrode/battery case were calculated. Further, the SOC of the secondary battery was set to 50% and the measurement was performed in the same manner as in the case where the SOC was 20% except that the voltage during constant voltage charging was set to 3.69V. Further, the SOC of the secondary battery was set to 80% in the same manner as in the case where the SOC was 20% except that the voltage during constant voltage charging was set to 3.91 V, and the same measurement was performed.

Figure 2020126736
Figure 2020126736

比較例1〜3の二次電池はいずれもドライ環境下で作製した参考例の二次電池とは異なる正極/電池ケース及び負極/電池ケースの電位を示し、標準偏差も大きく不安定だった。 The secondary batteries of Comparative Examples 1 to 3 all showed potentials of the positive electrode/battery case and the negative electrode/battery case different from those of the secondary battery of the reference example produced in a dry environment, and the standard deviation was also large and unstable.

一方、実施例1の二次電池は、ドライ環境下で作製した参考例の二次電池と略同じ正極/電池ケース及び負極/電池ケースの電位と標準偏差が得られた。実施例1の二次電池では、正極と負極とを有する電極体と、電極体を収容する導電性の電池ケースと、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0.3≦x≦2.8、0≦y≦1を満たす)からなる化合物を含む参照電極層と、参照電極層が浸されるように電池ケース内に配置され、リチウムイオンを含む電解質と、を備え、参照電極層は、電池ケースの内壁上に形成されており、正極と対向することで、簡便な方法で参照電極層にリチウムイオンをドープできる二次電池を提供できる。さらに、実施例2の二次電池では、標準偏差が実施例1よりも小さく、安定するようになった。電位をより安定にするために、参照電極層は導電助剤をさらに含むことが好ましい。 On the other hand, in the secondary battery of Example 1, substantially the same potentials and standard deviations of the positive electrode/battery case and the negative electrode/battery case as the secondary battery of the reference example produced in a dry environment were obtained. In the secondary battery of Example 1, the electrode body having a positive electrode and a negative electrode, a conductive battery case for accommodating the electrode assembly, in the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb , Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, Al, and Ga, and one or more elements selected from 0.3 ≦x≦2.8, satisfying 0≦y≦1), and an electrolyte containing lithium ions, which is arranged in the battery case so that the reference electrode layer is immersed. Since the reference electrode layer is formed on the inner wall of the battery case and faces the positive electrode, it is possible to provide a secondary battery in which the reference electrode layer can be doped with lithium ions by a simple method. Further, the standard deviation of the secondary battery of Example 2 was smaller than that of Example 1 and became stable. In order to make the potential more stable, the reference electrode layer preferably further contains a conductive auxiliary agent.

1 角形外装体、2 封口板、3 電極体、4 正極、5 負極、6 正極集電体、7 正極端子、8 負極集電体、9 負極端子、10 電解質注液孔、11 ガス排出弁、12 電極体ホルダ、13 正極外部導電部、14 正極ボルト部、15 正極挿入部、16 負極外部導電部、17 負極ボルト部、18 負極挿入部、20 第1の参照電極形成領域、21 第2の参照電極形成領域、30 セパレータ、41 正極活物質層、42 正極芯体露出部、51 負極活物質層、52 負極芯体露出部、60 参照電極層、100 二次電池、200 電池ケース DESCRIPTION OF SYMBOLS 1 prismatic exterior body, 2 sealing plate, 3 electrode body, 4 positive electrode, 5 negative electrode, 6 positive electrode current collector, 7 positive electrode terminal, 8 negative electrode current collector, 9 negative electrode terminal, 10 electrolyte injection hole, 11 gas discharge valve, 12 electrode body holder, 13 positive electrode external conductive part, 14 positive electrode bolt part, 15 positive electrode insertion part, 16 negative electrode external conductive part, 17 negative electrode bolt part, 18 negative electrode insertion part, 20 first reference electrode formation region, 21 second Reference electrode formation region, 30 Separator, 41 Positive electrode active material layer, 42 Positive electrode core exposed part, 51 Negative electrode active material layer, 52 Negative electrode core exposed part, 60 Reference electrode layer, 100 Secondary battery, 200 Battery case

Claims (9)

正極と負極とを有する電極体と、
前記電極体を収容する導電性の電池ケースと、
組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0.3≦x≦2.8、0≦y≦1を満たす)からなる化合物を含む参照電極層と、
前記参照電極層が浸されるように前記電池ケース内に配置された、リチウムイオンを含む電解質と、を備え、
前記参照電極層は、前記電池ケースの内壁上に形成されており、前記正極と対向する二次電池。
An electrode body having a positive electrode and a negative electrode,
A conductive battery case that accommodates the electrode body,
In the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, V, Sc, Y, La, Zn, A reference electrode layer containing a compound of one or more elements selected from Al and Ga, which satisfies 0.3≦x≦2.8 and 0≦y≦1),
An electrolyte containing lithium ions, which is disposed in the battery case so that the reference electrode layer is immersed,
The secondary battery, wherein the reference electrode layer is formed on an inner wall of the battery case and faces the positive electrode.
前記電極体と前記電池ケースとの間に配置され、リチウムイオンが通過可能な多孔質の電極体ホルダをさらに備える、請求項1に記載の二次電池。 The secondary battery according to claim 1, further comprising a porous electrode body holder that is disposed between the electrode body and the battery case and through which lithium ions can pass. 前記電極体は、前記正極と前記負極とがセパレータを介して巻かれた巻回型であり、巻軸方向における一方の端部に正極芯体露出部を有し、巻軸方向における他方の端部に負極芯体露出部を有し、
前記電極体の最外周は前記負極であり、
前記参照電極層は前記正極芯体露出部に対向する、請求項1又は2に記載の二次電池。
The electrode body is a winding type in which the positive electrode and the negative electrode are wound via a separator, and has a positive electrode core body exposed portion at one end in the winding axis direction and the other end in the winding axis direction. Has a negative electrode core exposed part,
The outermost periphery of the electrode body is the negative electrode,
The secondary battery according to claim 1, wherein the reference electrode layer faces the exposed portion of the positive electrode core body.
前記電極体は、前記正極と前記負極とがセパレータを介して巻かれた巻回型であり、巻軸方向における一方の端部に正極芯体露出部を有し、巻軸方向における他方の端部に負極芯体露出部を有し、
前記電極体の最外周は前記正極であり、
前記参照電極層は、前記電極体の負極芯体露出部を除く部分に対向する、請求項1又は2に記載の二次電池。
The electrode body is a winding type in which the positive electrode and the negative electrode are wound via a separator, and has a positive electrode core body exposed portion at one end in the winding axis direction and the other end in the winding axis direction. Has a negative electrode core exposed part,
The outermost periphery of the electrode body is the positive electrode,
The secondary battery according to claim 1, wherein the reference electrode layer faces a portion of the electrode body excluding a negative electrode core body exposed portion.
前記セパレータが、前記最外周の上に積層されている、請求項3又は4に記載の二次電池。 The secondary battery according to claim 3, wherein the separator is laminated on the outermost periphery. 前記参照電極層は、導電助剤をさらに含む、請求項1〜5のいずれか1項に記載の二次電池。 The secondary battery according to claim 1, wherein the reference electrode layer further contains a conductive auxiliary agent. 前記参照電極層は、二次電池の高さ方向中央で半分に分けた場合の底部側の側面上に少なくとも一部が形成されている、請求項1〜6のいずれか1項に記載の二次電池。 7. The reference electrode layer according to claim 1, wherein at least a part of the reference electrode layer is formed on a side surface on the bottom side when the reference electrode layer is divided in half at the center in the height direction of the secondary battery. Next battery. 導電性の電池ケースの内壁上に、組成式Li4+xTi12(式中、MはMg、Nb、Cu、Mn、Ni、Fe、Ru、Zr、B、Ca、Co、Cr、V、Sc、Y、La、Zn、Al、及びGaから選択された1種以上の元素であり、0≦x<0.3、0≦y≦1を満たす)からなる化合物を含む参照電極層を形成する工程と、
正極と負極とを有する電極体を、前記正極が前記参照電極層に対向するように、前記電極体の外側に隣接する多孔質の電極体ホルダを介して前記電池ケースに収容する工程と、
前記電池ケースにリチウムイオンを含む電解質を少なくとも前記参照電極層が浸されるように注入する工程と、
前記電池ケースを電源のマイナス極に、前記正極を前記電源のプラス極にそれぞれに接続して、前記参照電極層にリチウムイオンをドープする工程と、を有する二次電池の製造方法。
On the inner wall of the conductive battery case, in the composition formula Li 4 + x Ti 5 M y O 12 ( wherein, M is Mg, Nb, Cu, Mn, Ni, Fe, Ru, Zr, B, Ca, Co, Cr, Reference electrode layer containing a compound of one or more elements selected from V, Sc, Y, La, Zn, Al, and Ga, and satisfying 0≦x<0.3 and 0≦y≦1. A step of forming
A step of accommodating an electrode body having a positive electrode and a negative electrode in the battery case via a porous electrode body holder adjacent to the outside of the electrode body so that the positive electrode faces the reference electrode layer;
Injecting an electrolyte containing lithium ions into the battery case so that at least the reference electrode layer is immersed,
Connecting the battery case to a negative pole of a power source and the positive electrode to a positive pole of the power source, and doping the reference electrode layer with lithium ions.
前記参照電極層にリチウムイオンをドープする工程の前に、前記電池ケースを封止する工程を有する請求項8に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 8, further comprising a step of sealing the battery case before the step of doping the reference electrode layer with lithium ions.
JP2019017653A 2019-02-04 2019-02-04 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY Active JP7142585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017653A JP7142585B2 (en) 2019-02-04 2019-02-04 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017653A JP7142585B2 (en) 2019-02-04 2019-02-04 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY

Publications (2)

Publication Number Publication Date
JP2020126736A true JP2020126736A (en) 2020-08-20
JP7142585B2 JP7142585B2 (en) 2022-09-27

Family

ID=72084166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017653A Active JP7142585B2 (en) 2019-02-04 2019-02-04 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY

Country Status (1)

Country Link
JP (1) JP7142585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422115A (en) * 2021-07-02 2021-09-21 广州小鹏汽车科技有限公司 Lithium ion battery cell, preparation method of lithium ion battery cell and lithium analysis detection method
WO2024057727A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Electricity storage element
JP7465007B1 (en) 2022-11-04 2024-04-10 株式会社スリーダムアライアンス Lithium secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015169A (en) * 1999-06-29 2001-01-19 Asahi Glass Co Ltd Nonaqueous electrolyte secondary battery
JP2006179329A (en) * 2004-12-22 2006-07-06 Toyota Motor Corp Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2012230865A (en) * 2011-04-27 2012-11-22 Gs Yuasa Corp Power generation element and power generation element termination processing method
US20150295284A1 (en) * 2014-04-11 2015-10-15 Robert Bosch Gmbh Electrochemical Energy Cell, and Rechargeable Battery for Repeatedly Storing Electrical Energy, and also Method for Determining an Electrode Potential of an Electrode of an Electrochemical Energy Storage Cell
WO2016035309A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage element
JP2016195044A (en) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 Lithium ion secondary battery and system using the same
JP2018067384A (en) * 2016-10-17 2018-04-26 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015169A (en) * 1999-06-29 2001-01-19 Asahi Glass Co Ltd Nonaqueous electrolyte secondary battery
JP2006179329A (en) * 2004-12-22 2006-07-06 Toyota Motor Corp Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2012230865A (en) * 2011-04-27 2012-11-22 Gs Yuasa Corp Power generation element and power generation element termination processing method
US20150295284A1 (en) * 2014-04-11 2015-10-15 Robert Bosch Gmbh Electrochemical Energy Cell, and Rechargeable Battery for Repeatedly Storing Electrical Energy, and also Method for Determining an Electrode Potential of an Electrode of an Electrochemical Energy Storage Cell
WO2016035309A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage element
JP2016195044A (en) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 Lithium ion secondary battery and system using the same
JP2018067384A (en) * 2016-10-17 2018-04-26 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422115A (en) * 2021-07-02 2021-09-21 广州小鹏汽车科技有限公司 Lithium ion battery cell, preparation method of lithium ion battery cell and lithium analysis detection method
CN113422115B (en) * 2021-07-02 2023-08-25 广州小鹏汽车科技有限公司 Lithium ion battery cell, lithium ion battery cell preparation method and lithium analysis detection method
WO2024057727A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Electricity storage element
JP7465007B1 (en) 2022-11-04 2024-04-10 株式会社スリーダムアライアンス Lithium secondary battery

Also Published As

Publication number Publication date
JP7142585B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
EP2685525B1 (en) Energy storage device
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5773226B2 (en) Method for producing lithium ion secondary battery
JP5906698B2 (en) Nonaqueous electrolyte secondary battery
JP2008262832A (en) Nonaqueous electrolyte secondary battery
US10483049B2 (en) Lithium ion capacitor
US11791494B2 (en) Nonaqueous electrolyte secondary battery
WO2016034936A1 (en) Wound electrode body lithium ion battery having active electrode material layers of different widths
JP7142585B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
US20220052314A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11374263B2 (en) Nonaqueous electrolyte secondary battery
JP5667828B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20160023579A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same, and separator for nonaqueous electrolyte secondary battery
JP7145092B2 (en) Method for manufacturing secondary battery
CN111129430A (en) Secondary battery and method for manufacturing secondary battery
JP6770701B2 (en) Power storage element
US10580589B2 (en) Lithium ion capacitor
US9660258B2 (en) Lithium-ion secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP7008275B2 (en) Power storage element
JP2009295554A (en) Battery
WO2019103019A1 (en) Power storage element and power storage device
WO2020090410A1 (en) Secondary battery
CN112005419A (en) Insulating layer, single battery piece and battery
JP2019091603A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220913

R151 Written notification of patent or utility model registration

Ref document number: 7142585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151