JP2013097980A - Nonaqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2013097980A
JP2013097980A JP2011239035A JP2011239035A JP2013097980A JP 2013097980 A JP2013097980 A JP 2013097980A JP 2011239035 A JP2011239035 A JP 2011239035A JP 2011239035 A JP2011239035 A JP 2011239035A JP 2013097980 A JP2013097980 A JP 2013097980A
Authority
JP
Japan
Prior art keywords
battery case
wound
electrode body
axial direction
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011239035A
Other languages
Japanese (ja)
Inventor
Yusuke Onoda
祐介 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011239035A priority Critical patent/JP2013097980A/en
Publication of JP2013097980A publication Critical patent/JP2013097980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery manufacturing method which can impregnate a nonaqueous electrolyte into the wound coated part of a flat wound electrode body in a short time without deteriorating the cycle charge-discharge characteristic of the battery.SOLUTION: Lower uncoated parts 155f, 156f, of wound coated parts 155d, 156d, which are located below a position at which current collector terminal members 120 and 130 are to be welded or have been welded when a flat wound electrode body 150A is housed in a battery case 160 are cut off. The battery case 160 used here is the one in which counter faces 112b, 112f opposed in an axis direction AX to cut faces 150b, 150c of the flat wound electrode body 150 which has had the lower uncoated parts 155f, 156f cut off are located to the inside in the battery case 160 with respect to the axis direction AX from the inner faces 112c, 112g opposed in the axis direction AX to the end faces of the wound coated parts 155d, 156d at an upper position than those.

Description

本発明は、非水電解液二次電池、及び、その製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a manufacturing method thereof.

リチウムイオン二次電池等の非水電解液二次電池は、携帯機器の電源として、また、電気自動車やハイブリッド自動車などの電源として注目されている。近年、様々な非水電解液二次電池が提案されている(例えば、特許文献1参照)。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are attracting attention as power sources for portable devices and power sources for electric vehicles and hybrid vehicles. In recent years, various nonaqueous electrolyte secondary batteries have been proposed (see, for example, Patent Document 1).

特開2006−128132号公報JP 2006-128132 A

特許文献1には、正極、負極、及び、セパレータを扁平形状に捲回してなる扁平捲回電極体(電極群)と、扁平捲回電極体を収容する直方体形状の電池ケースと、集電端子部材(リードエレメント)を備える二次電池が開示されている。集電端子部材は、扁平捲回電極体の軸線方向両端部の位置で、正極の合材層未塗工部(無地部)と上記負極の合材層未塗工部(無地部)とがそれぞれ捲回されてなる捲回未塗工部に溶接されている。詳細には、捲回未塗工部の中央に位置する平坦部に、集電端子部材を溶接している。   Patent Document 1 discloses a flat wound electrode body (electrode group) formed by winding a positive electrode, a negative electrode, and a separator into a flat shape, a rectangular parallelepiped battery case that houses the flat wound electrode body, and a current collecting terminal A secondary battery including a member (lead element) is disclosed. The current collecting terminal member has a positive electrode mixture layer uncoated part (plain part) and a negative electrode mixture layer uncoated part (plain part) at the positions of both ends in the axial direction of the flat wound electrode body. It is welded to the wound uncoated part which is wound respectively. In detail, the current collection terminal member is welded to the flat part located in the center of the winding non-coating part.

さらに、特許文献1には、捲回未塗工部の両端部(合材層未塗工部が弧状をなしている上下端部)を切除した後、捲回未塗工部の中央に位置する平坦部に、集電端子部材を溶接する形態が開示されている。捲回未塗工部の端部を切除しておくことで、捲回未塗工部の中央に位置する平坦部に、集電端子部材を良好な状態で接続することができることが記載されている。   Further, in Patent Document 1, after cutting both ends of the uncoated portion of the wound (upper and lower end portions where the composite material layer uncoated portion has an arc shape), it is positioned at the center of the uncoated portion of the wound. The form which welds a current collection terminal member to the flat part to perform is disclosed. It is described that the current collecting terminal member can be connected in a good state to the flat part located at the center of the wound uncoated part by cutting off the end of the wound uncoated part. Yes.

ところで、特許文献1等の非水電解液二次電池では、扁平捲回電極体の捲回塗工部内に、非水電解液を含浸させている。具体的には、まず、扁平捲回電極体を電池ケース内に収容した後、注液工程において、扁平捲回電極体を収容した電池ケース内に、非水電解液を注入する。その後、含浸工程において、電池ケース内に注入した非水電解液を、扁平捲回電極体の捲回塗工部内に含浸させる。ここで、捲回塗工部とは、正極の合材層塗工部、負極の合材層塗工部、及び、セパレータが捲回されてなる部位をいう。   By the way, in the non-aqueous electrolyte secondary battery of Patent Document 1 or the like, the non-aqueous electrolyte is impregnated in the wound coating portion of the flat wound electrode body. Specifically, first, after the flat wound electrode body is accommodated in the battery case, a nonaqueous electrolyte is injected into the battery case in which the flat wound electrode body is accommodated in the liquid injection process. Thereafter, in the impregnation step, the non-aqueous electrolyte injected into the battery case is impregnated into the wound coating portion of the flat wound electrode body. Here, the wound coating portion refers to a portion formed by winding the positive electrode mixture layer coating portion, the negative electrode mixture layer coating portion, and the separator.

扁平捲回電極体を収容する直方体形状の電池ケース内に注入した非水電解液は、捲回塗工部の軸線方向両端面(左右端面)を通じて、捲回塗工部の内部に進入する。さらに言えば、捲回塗工部の内部への非水電解液の進入口は、捲回塗工部の軸線方向両端面(左右端面)のみである。しかも、捲回塗工部は、正極(合材層塗工部)、負極(合材層塗工部)、及び、セパレータが密に(ほとんど隙間無く、きつく)捲回されているので、捲回塗工部の内部に非水電解液が浸透し難く、その結果、捲回塗工部内への非水電解液の含浸が完了するまでの時間が長くなっていた。   The nonaqueous electrolyte injected into the rectangular battery case that accommodates the flat wound electrode body enters the inside of the wound coating part through both axial end faces (left and right end faces) of the wound coating part. Furthermore, the entrance of the non-aqueous electrolyte into the wound coating part is only the axial end faces (left and right end faces) of the wound coating part. In addition, the wound coating portion is wound with a positive electrode (a mixture layer coating portion), a negative electrode (a mixture layer coating portion), and a separator wound tightly (with almost no gap). It was difficult for the non-aqueous electrolyte to penetrate into the inside of the coating part, and as a result, it took a long time to complete the impregnation of the non-aqueous electrolyte into the winding part.

上述のように、捲回塗工部の内部への非水電解液の進入口は、捲回塗工部の軸線方向両端面(左右端面)である。従って、非水電解液を短時間で捲回塗工部内に含浸させるためには、捲回塗工部の軸線方向両端面に対し、非水電解液が接触する部分の面積を増大させるのが好ましい。このためには、例えば、注液工程において、多量の非水電解液を注入して、非水電解液の液面を高くする方法が考えられる。   As described above, the entrance of the non-aqueous electrolyte to the inside of the wound coating portion is both end surfaces (left and right end surfaces) in the axial direction of the wound coating portion. Therefore, in order to impregnate the non-aqueous electrolyte in the wound coating portion in a short time, it is necessary to increase the area of the portion where the non-aqueous electrolyte is in contact with both axial end surfaces of the wound coating portion. preferable. For this purpose, for example, a method of injecting a large amount of non-aqueous electrolyte to raise the liquid level of the non-aqueous electrolyte in the liquid injection step can be considered.

しかしながら、捲回塗工部の内部に含浸される非水電解液の量は限られているので、非水電解液の注入量を増加すると、捲回塗工部の内部に浸透しない余剰電解液の液量が増加する。余剰電解液の液量が増加すると、電池のサイクル充放電特性が大きく低下してしまう。このため、電池ケース内に過剰な非水電解液を注入することは、好ましくなかった。   However, since the amount of non-aqueous electrolyte impregnated inside the wound coating portion is limited, if the amount of non-aqueous electrolyte injected is increased, the excess electrolyte does not penetrate into the wound coating portion The amount of liquid increases. When the amount of the excess electrolyte increases, the cycle charge / discharge characteristics of the battery are greatly deteriorated. For this reason, it was not preferable to inject an excessive non-aqueous electrolyte into the battery case.

本発明は、かかる現状に鑑みてなされたものであって、電池のサイクル充放電特性を低下させることなく、非水電解液を短時間で扁平捲回電極体の捲回塗工部内に含浸させることができる非水電解液二次電池の製造方法、及び、サイクル充放電特性が良好な非水電解液二次電池を提供することを目的とする。   The present invention has been made in view of the present situation, and impregnates the non-aqueous electrolyte in the wound coating portion of the flat wound electrode body in a short time without deteriorating the cycle charge / discharge characteristics of the battery. An object of the present invention is to provide a method for producing a non-aqueous electrolyte secondary battery that can be used, and a non-aqueous electrolyte secondary battery having good cycle charge / discharge characteristics.

本発明の一態様は、正極、負極、及び、セパレータを扁平形状に捲回してなる扁平捲回電極体と、上記扁平捲回電極体を収容する角形の電池ケースと、上記扁平捲回電極体内に含浸している非水電解液と、集電端子部材と、を備え、上記扁平捲回電極体は、上記正極の合材層塗工部、上記負極の合材層塗工部、及び、上記セパレータが捲回されてなる捲回塗工部と、上記扁平捲回電極体の軸線方向両端部に位置し、上記正極の合材層未塗工部と上記負極の合材層未塗工部とがそれぞれ捲回されてなる捲回未塗工部と、を有し、上記集電端子部材は、上記捲回未塗工部に溶接されてなる非水電解液二次電池の製造方法において、上記正極、上記負極、及び、上記セパレータを扁平形状に捲回して扁平捲回電極体を形成する捲回工程と、上記扁平捲回電極体の上記捲回未塗工部のうち、上記扁平捲回電極体を上記電池ケース内に収容する姿勢としたときに上記集電端子部材を溶接する予定部位または溶接した部位よりも下方に位置する下方未塗工部、を切除する切除工程と、上記下方未塗工部を切除した上記扁平捲回電極体を、上記電池ケース内に収容する工程と、上記扁平捲回電極体を収容した上記電池ケース内に、上記非水電解液を注入する注液工程と、上記電池ケース内に注入した上記非水電解液を上記捲回塗工部内に含浸させる含浸工程と、を備え、上記電池ケースとして、当該電池ケースの内側面のうち上記下方未塗工部を切除した上記扁平捲回電極体の切断面と上記軸線方向に対向する対向面を、これより上方の位置で上記捲回未塗工部の端面と上記軸線方向に対向する上方内側面よりも、上記軸線方向について上記電池ケースの内側に位置させた形態の電池ケースを用いる非水電解液二次電池の製造方法である。   One aspect of the present invention includes a flat wound electrode body obtained by winding a positive electrode, a negative electrode, and a separator into a flat shape, a rectangular battery case that accommodates the flat wound electrode body, and the flat wound electrode body A non-aqueous electrolyte impregnated in the electrode, and a current collecting terminal member, wherein the flat wound electrode body comprises the positive electrode mixture layer coating portion, the negative electrode mixture layer coating portion, and The wound coating part formed by winding the separator, and the axially opposite ends of the flat wound electrode body, the positive electrode mixture layer uncoated part and the negative electrode mixture layer uncoated A non-aqueous electrolyte secondary battery produced by welding the winding terminal member to the winding non-coated portion. A winding step of winding the positive electrode, the negative electrode, and the separator into a flat shape to form a flat wound electrode body, and the flat Of the wound uncoated portion of the wound electrode body, when the flat wound electrode body is in a posture to be accommodated in the battery case, the current collector terminal member is to be welded or below the welded portion. An excision step of excising the lower uncoated part located in the step, a step of accommodating the flat wound electrode body excised from the lower uncoated part in the battery case, and the flat wound electrode body Injecting the non-aqueous electrolyte into the battery case accommodated, and an impregnation step of impregnating the non-aqueous electrolyte injected into the battery case into the wound coating part, As the battery case, a cutting surface of the flat wound electrode body obtained by excising the lower uncoated portion of the inner side surface of the battery case and a facing surface facing the axial direction are positioned at a position above the upper surface. Opposite to the end face of the uncoated part in the axial direction Than the inner surface, a method of manufacturing a nonaqueous electrolyte secondary battery using the battery case in a form is positioned on the inside of the battery case for the axial direction.

上述の製造方法では、切除工程において、捲回未塗工部(正極捲回未塗工部と負極捲回未塗工部)のうち、下方未塗工部(下方正極未塗工部と下方負極未塗工部)を切除する。ここで、下方未塗工部とは、扁平捲回電極体を電池ケース内に収容する姿勢としたときに、捲回未塗工部のうち集電端子部材を溶接する予定部位または溶接した部位よりも下方(電池ケースの底面側)に位置する部位である。従って、従来の非水電解液二次電池(すなわち、捲回未塗工部を切除していない電池)において、捲回未塗工部のうち、電池ケースの底面側(下方)に位置する合材層未塗工部であって、集電端子部材を溶接した部位よりも底面側(下方)に位置する部位に相当する。   In the above-described manufacturing method, in the cutting process, the lower uncoated part (the lower positive electrode uncoated part and the lower part) among the wound uncoated parts (the positive electrode wound uncoated part and the negative electrode wound uncoated part) Cut off the negative electrode uncoated part). Here, the lower uncoated portion is a portion to be welded or welded to the current collecting terminal member of the wound uncoated portion when the flat wound electrode body is accommodated in the battery case. It is a part located below (the bottom side of the battery case). Therefore, in a conventional non-aqueous electrolyte secondary battery (that is, a battery in which the wound uncoated part is not cut), the position of the wound uncoated part on the bottom side (downward) of the battery case is The material layer uncoated portion corresponds to a portion located on the bottom surface side (downward) from the portion where the current collecting terminal member is welded.

上述の製造方法により製造される非水電解液二次電池では、扁平捲回電極体が、軸線方向を左右方向(水平方向)に一致させた姿勢で、電池ケース内に収容されており、扁平捲回電極体のうち正極等が弧状をなしている部位が、扁平捲回電極体の上端側と下端側に配置されている。従って、捲回後の扁平捲回電極体を電池ケース内に収容する姿勢としたときには、捲回未塗工部のうち合材層未塗工部が弧状をなしている部位が、扁平捲回電極体(捲回未塗工部)の上端側と下端側に配置される。   In the nonaqueous electrolyte secondary battery manufactured by the above-described manufacturing method, the flat wound electrode body is accommodated in the battery case in a posture in which the axial direction is aligned with the left-right direction (horizontal direction). Of the wound electrode body, portions where the positive electrode and the like form an arc are disposed on the upper end side and the lower end side of the flat wound electrode body. Therefore, when the flat wound electrode body after winding is in a posture to be accommodated in the battery case, the portion where the mixed material layer uncoated part of the wound uncoated part has an arc shape is flat wound. It arrange | positions at the upper end side and lower end side of an electrode body (winding non-coating part).

切除工程は、捲回未塗工部に集電端子部材を溶接する前に行っても良いし、捲回未塗工部に集電端子部材を溶接した後に行っても良い。捲回未塗工部に集電端子部材を溶接する前に切除工程を行う場合は、扁平捲回電極体を電池ケース内に収容する姿勢としたときに「捲回未塗工部のうち集電端子部材を溶接する予定部位」よりも下方に位置する下方未塗工部を切除する。また、捲回未塗工部に集電端子部材を溶接した後に切除工程を行う場合は、扁平捲回電極体を電池ケース内に収容する姿勢としたときに「捲回未塗工部のうち集電端子部材を溶接した部位」よりも下方に位置する下方未塗工部を切除する。   The excision step may be performed before the current collecting terminal member is welded to the wound uncoated portion, or may be performed after the current collecting terminal member is welded to the wound uncoated portion. When performing the excision process before welding the current collecting terminal member to the wound uncoated part, when the flat wound electrode body is placed in the battery case, the “collected part of the wound uncoated part” The lower uncoated portion located below the “scheduled portion for welding the electric terminal member” is cut off. Also, when performing the excision process after welding the current collecting terminal member to the wound uncoated part, when the flat wound electrode body is placed in a battery case, The lower uncoated portion located below the “part where the current collecting terminal member is welded” is cut off.

なお、正極は、正極集電部材(例えば、金属箔)と、その表面に塗工された正極合材層とを有する。従って、正極の合材層未塗工部とは、正極活物質を含む正極合材層を有することなく、正極を構成する正極集電部材(例えば、金属箔)のみからなる部位をいう。一方、正極のうち正極合材層を有する部位(正極集電部材と正極合材層を有する部位)を、正極の合材層塗工部という。   In addition, a positive electrode has a positive electrode current collection member (for example, metal foil) and the positive mix layer coated on the surface. Accordingly, the positive electrode mixture layer uncoated portion refers to a portion made only of a positive electrode current collecting member (for example, metal foil) constituting the positive electrode without having a positive electrode mixture layer containing a positive electrode active material. On the other hand, a portion having a positive electrode mixture layer (a portion having a positive electrode current collecting member and a positive electrode mixture layer) in the positive electrode is referred to as a positive electrode mixture layer coating portion.

また、負極は、負極集電部材(例えば、金属箔)と、その表面に塗工された負極合材層とを有する。従って、負極の合材層未塗工部とは、負極活物質を含む負極合材層を有することなく、負極を構成する負極集電部材(例えば、金属箔)のみからなる部位をいう。一方、負極のうち負極合材層を有する部位(負極集電部材と負極合材層を有する部位)を、負極の合材層塗工部という。   Moreover, a negative electrode has a negative electrode current collection member (for example, metal foil) and the negative mix layer coated on the surface. Therefore, the negative electrode mixture layer uncoated portion refers to a portion made only of a negative electrode current collecting member (for example, a metal foil) constituting the negative electrode without having a negative electrode mixture layer containing a negative electrode active material. On the other hand, a portion having a negative electrode mixture layer (a portion having a negative electrode current collecting member and a negative electrode mixture layer) in the negative electrode is referred to as a negative electrode mixture layer coating portion.

また、扁平捲回電極体は、正極の合材層塗工部、負極の合材層塗工部、及び、セパレータが捲回されてなる捲回塗工部と、その一方端に隣接する正極捲回未塗工部(正極合材層未塗工部のみが捲回されてなる部位)と、他方端に隣接する負極捲回未塗工部(負極合材層未塗工部のみが捲回されてなる部位)とを有している。正極捲回未塗工部に正極集電端子部材を溶接し、負極捲回未塗工部に負極集電端子部材を溶接する。   The flat wound electrode body includes a positive electrode mixture layer coating portion, a negative electrode mixture layer coating portion, a wound coating portion in which a separator is wound, and a positive electrode adjacent to one end thereof. The wound uncoated part (the part where only the positive electrode mixture layer uncoated part is wound) and the negative electrode wound uncoated part adjacent to the other end (only the negative electrode mixture layer uncoated part) A portion formed by rotation). A positive electrode current collecting terminal member is welded to the positive electrode winding uncoated portion, and a negative electrode current collecting terminal member is welded to the negative electrode winding uncoated portion.

捲回未塗工部のうち集電端子部材が溶接されない部位は、切除しても、電池特性に影響がないため、上述の製造方法では、下方未塗工部を切除している。下方未塗工部を切除することにより、従来、下方未塗工部が配置されていた電池ケースの内部空間は、不要になる。   The portion where the current collecting terminal member is not welded in the wound uncoated portion does not affect the battery characteristics even if it is excised, and therefore the lower uncoated portion is excised in the above-described manufacturing method. By cutting away the lower uncoated portion, the internal space of the battery case where the lower uncoated portion is conventionally disposed becomes unnecessary.

そこで、上述の製造方法では、電池ケースとして、当該電池ケースの内側面のうち下方未塗工部を切除した扁平捲回電極体の切断面(扁平捲回電極体の軸線方向を向く切断面)と扁平捲回電極体の軸線方向に対向する面(これを対向面という)を、これより上方(底面側とは反対側)の位置で捲回未塗工部の端面と上記軸線方向(左右方向)に対向する内側面(これを上方内側面という)よりも、上記軸線方向について上記電池ケースの内側(中央側)に位置させた形態の電池ケースを用いることにした。   Therefore, in the above-described manufacturing method, as a battery case, a cut surface of a flat wound electrode body (a cut surface facing the axial direction of the flat wound electrode body) obtained by cutting a lower uncoated portion of the inner surface of the battery case. And the surface facing the axial direction of the flat wound electrode body (referred to as the facing surface) above this (on the opposite side to the bottom side) and the end surface of the wound uncoated part and the axial direction (left and right) The battery case has a configuration in which it is positioned on the inner side (center side) of the battery case with respect to the axial direction rather than the inner side surface (which is referred to as the upper inner side surface) facing the direction.

すなわち、電池ケースにおいて、電池ケースの内側面のうち下方正極未塗工部を切除した扁平捲回電極体の第1切断面と上記軸線方向に対向する第1対向面を、これよりも上方の位置で正極捲回未塗工部の端面と軸線方向に対向する第1上方内側面よりも、上記軸線方向について電池ケースの内側に位置させている。さらに、電池ケースの内側面のうち下方負極未塗工部を切除した扁平捲回電極体の第2切断面と上記軸線方向に対向する第2対向面を、これよりも上方の位置で負極捲回未塗工部の端面と軸線方向に対向する第2上方内側面よりも、上記軸線方向について電池ケースの内側に位置させている。   That is, in the battery case, the first opposed surface that faces the first cut surface of the flat wound electrode body in which the lower positive electrode uncoated portion is cut out of the inner surface of the battery case and the axial direction is positioned above the first opposed surface. The axial direction is positioned on the inner side of the battery case from the first upper inner surface facing the end surface of the positive electrode winding uncoated portion in the axial direction. Furthermore, the second cut surface of the flat wound electrode body in which the lower negative electrode uncoated portion is cut out of the inner side surface of the battery case and the second facing surface facing the axial direction above the negative electrode It is located inside the battery case in the axial direction from the second upper inner surface facing the end face of the uncoated portion in the axial direction.

このような電池ケースでは、電池ケースの底面(下面)から上記対向面(第1対向面及び第2対向面)の上端に至るまでの電池ケースの内部空間の単位高さ当たりの容量(電池ケースの底面積に一致する)を、これよりも上方の内部空間の単位高さ当たりの容量(従来の直方体形状の電池ケースの底面積に一致する)よりも小さくすることができる。   In such a battery case, the capacity per unit height (battery case) of the internal space of the battery case from the bottom surface (lower surface) of the battery case to the upper end of the opposing surface (first opposing surface and second opposing surface). Can be made smaller than the capacity per unit height of the internal space above this (corresponding to the bottom area of a conventional rectangular parallelepiped battery case).

これにより、注液工程において、一定量(規定量)の非水電解液を電池ケース内に注入したとき、上述の形態の電池ケースでは、従来の直方体形状の電池ケース(内面が直方体形状)に比べて、非水電解液の液面を高くすることができる。従って、上述の電池ケースを用いることで、従来の電池ケースを用いる場合に比べて、扁平捲回電極体の捲回塗工部の軸線方向両端面のうち非水電解液が接触する部分の面積(以下、液接触面積ともいう)を、増大させることができる。   Thereby, in a liquid injection process, when a fixed amount (regulated amount) of non-aqueous electrolyte is injected into the battery case, the battery case of the above-described form has a conventional rectangular parallelepiped battery case (inner surface is a rectangular parallelepiped shape). In comparison, the liquid level of the non-aqueous electrolyte can be increased. Therefore, by using the above-described battery case, compared to the case of using a conventional battery case, the area of the portion where the non-aqueous electrolyte contacts with each other in the axial direction of both ends of the wound coating portion of the flat wound electrode body (Hereinafter also referred to as a liquid contact area) can be increased.

扁平捲回電極体の捲回未塗工部(正極捲回未塗工部及び負極捲回未塗工部)は、集電部材(正極集電部材及び負極集電部材)が、比較的大きな隙間を空けて捲回されている。このため、電池ケース内に非水電解液を注入すると、直ちに、捲回未塗工部(正極捲回未塗工部及び負極捲回未塗工部)内に非水電解液が進入する。一方、捲回塗工部は、密に(ほとんど隙間なく)捲回されているため、注入した非水電解液は、ゆっくりと捲回塗工部の内部に進入(浸透)することになる。   The winding uncoated part (positive winding uncoated part and negative winding uncoated part) of the flat wound electrode body has a relatively large current collecting member (positive current collecting member and negative current collecting member). It is wound around a gap. For this reason, when the non-aqueous electrolyte is injected into the battery case, the non-aqueous electrolyte immediately enters the wound uncoated portions (the positive electrode wound uncoated portion and the negative electrode wound uncoated portion). On the other hand, since the wound coating part is wound densely (with almost no gap), the injected non-aqueous electrolyte slowly enters (penetrates) into the wound coating part.

このため、電池ケース内に非水電解液を注入すると、まず、捲回未塗工部の内部空間と扁平捲回電極体の外部(すなわち、捲回塗工部の外部)に、非水電解液が溜まる。その後、捲回塗工部の外部に溜まっている非水電解液は、捲回塗工部の軸線方向両端面を通じて、ゆっくりと、捲回塗工部の内部に浸透してゆく。   For this reason, when a non-aqueous electrolyte is injected into the battery case, first, non-aqueous electrolysis is performed in the internal space of the wound uncoated portion and the outside of the flat wound electrode body (that is, outside the wound coated portion). Liquid accumulates. Thereafter, the non-aqueous electrolyte accumulated outside the wound coating portion slowly permeates into the inside of the wound coating portion through both axial end surfaces of the wound coating portion.

従って、捲回塗工部端面の液接触面積が大きいほど、非水電解液が捲回塗工部の内部に浸透する速度が速くなり、含浸が完了する(非水電解液が捲回塗工部の内部全体に行き渡る)までの時間を短くすることができる。従って、上述の製造方法では、含浸工程において、非水電解液を短時間で捲回塗工部の内部に含浸させることができる。   Therefore, the larger the liquid contact area at the end surface of the wound coating portion, the faster the non-aqueous electrolyte penetrates into the wound coating portion, and the impregnation is completed (the non-aqueous electrolyte solution is wound. The time until it reaches the entire interior of the department) can be shortened. Therefore, in the above-described manufacturing method, the non-aqueous electrolyte can be impregnated in the wound coating portion in a short time in the impregnation step.

しかも、上述の製造方法では、非水電解液の液面を高くするため(液接触面積を増大させるため)に、電池ケース内に過剰な非水電解液を注入する必要がないので、電池のサイクル充放電特性を低下させてしまうこともない。
以上より、上述の製造方法によれば、電池のサイクル充放電特性を低下させることなく、非水電解液を短時間で扁平捲回電極体の捲回塗工部内に含浸させることができる。
In addition, in the above-described manufacturing method, it is not necessary to inject excess nonaqueous electrolyte into the battery case in order to increase the liquid level of the nonaqueous electrolyte (in order to increase the liquid contact area). Cycle charge / discharge characteristics are not deteriorated.
As mentioned above, according to the above-mentioned manufacturing method, the non-aqueous electrolyte can be impregnated in the wound coating portion of the flat wound electrode body in a short time without deteriorating the cycle charge / discharge characteristics of the battery.

なお、含浸工程では、電池ケース内を減圧した後加圧する操作を、複数回繰り返し行うようにすると良い。これにより、捲回塗工部内への非水電解液の含浸速度を高めることができ、より一層短時間で、非水電解液を捲回塗工部内に含浸させることができるからである。   In the impregnation step, the operation of depressurizing the inside of the battery case and then pressurizing may be repeated a plurality of times. This is because the impregnation rate of the non-aqueous electrolyte into the wound coating portion can be increased, and the non-aqueous electrolyte can be impregnated into the wound coating portion in a shorter time.

なお、電池ケース内を「減圧した後加圧する」操作としては、例えば、電池ケース内を、大気圧状態から減圧した後、大気圧まで上昇(大気開放)させる操作が挙げられる。
また、含浸工程では、電池ケース内を減圧した後加圧する操作を複数回繰り返し行った後、所定時間、電池ケース内を一定の圧力状態(例えば、大気圧状態)として、放置するようにしても良い。
The operation of “depressurizing and pressurizing” the inside of the battery case includes, for example, an operation of depressurizing the inside of the battery case from the atmospheric pressure state and then increasing (opening to the atmosphere) to the atmospheric pressure.
Further, in the impregnation step, after the operation of depressurizing and pressurizing the inside of the battery case is repeated a plurality of times, the inside of the battery case may be left in a constant pressure state (for example, atmospheric pressure state) for a predetermined time. good.

さらに、上記の非水電解液二次電池の製造方法であって、前記電池ケースは、当該電池ケースの壁部のうち前記対向面を有する対向壁部が、前記上方内側面を有する上方壁部よりも、前記軸線方向について上記電池ケースの内側に凹んだ形態とすることにより、上記対向面を上記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置させてなる非水電解液二次電池の製造方法とすると良い。   Furthermore, in the method for manufacturing a non-aqueous electrolyte secondary battery described above, the battery case has an upper wall portion in which the facing wall portion having the facing surface among the wall portions of the battery case has the upper inner side surface. In the non-aqueous electrolyte 2, the opposing surface is positioned on the inner side of the battery case with respect to the axial direction than the upper inner surface by adopting a configuration in which the axial direction is recessed toward the inner side of the battery case. A secondary battery manufacturing method is preferable.

上述の製造方法で用いる電池ケースは、電池ケースの壁部のうち対向面(扁平捲回電極体の切断面と軸線方向に対向する面)を有する対向壁部が、上方内側面(対向面より上方の位置で捲回未塗工部の端面と軸線方向に対向する面)を有する上方壁部よりも、軸線方向(左右方向)について電池ケースの内側に凹んだ形態としている。このような形態とすることで、適切に、対向面を、上方内側面よりも軸線方向について電池ケースの内側に位置させることができる。   In the battery case used in the above-described manufacturing method, the opposing wall portion having a facing surface (a surface facing the cut surface of the flat wound electrode body in the axial direction) among the wall portions of the battery case is an upper inner surface (from the facing surface). The upper wall portion having a surface facing the end surface of the wound uncoated portion at the upper position in the axial direction is recessed in the battery case in the axial direction (left-right direction). By setting it as such a form, an opposing surface can be appropriately located inside a battery case about an axial direction rather than an upper inner surface.

また、前記の非水電解液二次電池の製造方法であって、前記電池ケースは、直方体形状のケースの内部のうち前記扁平捲回電極体の前記切断面と前記軸線方向に対向する位置に配置されたスペーサーを有し、上記スペーサーの側面であって上記切断面と上記軸線方向に対向する前記対向面が、前記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる非水電解液二次電池の製造方法とすると良い。   Further, in the method for manufacturing the non-aqueous electrolyte secondary battery, the battery case is located at a position facing the cut surface of the flat wound electrode body in the axial direction within a rectangular parallelepiped case. The spacer includes a spacer, and a side surface of the spacer that is opposed to the cut surface in the axial direction is located inside the battery case in the axial direction from the upper inner surface. A method for manufacturing a non-aqueous electrolyte secondary battery is preferable.

上述の製造方法で用いる電池ケースは、直方体形状のケースの内部のうち扁平捲回電極体の切断面(下方未塗工部を切除した切断面)と扁平捲回電極体の軸線方向(左右方向)に対向する位置に配置されたスペーサーを有している。このような電池ケースでは、適切に、対向面を上方内側面よりも軸線方向について電池ケースの内側に位置させることができる。具体的には、スペーサーの側面のうち扁平捲回電極体の上記切断面と上記軸線方向に対向する面が、前記対向面となる。これにより、適切に、対向面を、上方内側面よりも軸線方向について電池ケースの内側に位置させることができる。なお、上記スペーサーは、電池ケースの一部(構成部品)である。   The battery case used in the manufacturing method described above includes a cut surface of the flat wound electrode body (cut surface obtained by cutting away the lower uncoated portion) and an axial direction (left-right direction) of the flat wound electrode body in the case of the rectangular parallelepiped shape. ) Is provided at a position opposite to the spacer. In such a battery case, the opposing surface can be appropriately positioned inside the battery case in the axial direction with respect to the upper inner surface. Specifically, of the side surfaces of the spacer, the surface facing the cut surface of the flat wound electrode body in the axial direction is the facing surface. Thereby, an opposing surface can be appropriately located inside a battery case about an axial direction rather than an upper inner surface. The spacer is a part (component) of the battery case.

本発明の他の態様は、正極、負極、及び、セパレータを扁平形状に捲回してなる扁平捲回電極体と、上記扁平捲回電極体を収容する角形の電池ケースと、上記扁平捲回電極体内に含浸している非水電解液と、集電端子部材と、を備え、上記扁平捲回電極体は、上記正極の合材層塗工部、上記負極の合材層塗工部、及び、上記セパレータが捲回されてなる捲回塗工部と、上記扁平捲回電極体の軸線方向両端部に位置し、上記正極の合材層未塗工部と上記負極の合材層未塗工部とがそれぞれ捲回されてなる捲回未塗工部と、を有し、上記集電端子部材は、上記捲回未塗工部に溶接されてなる非水電解液二次電池において、上記捲回未塗工部のうち、上記集電端子部材が溶接されている部位よりも下方に位置する下方未塗工部が、切除されてなり、上記電池ケースの内側面のうち上記下方未塗工部を切除した上記扁平捲回電極体の切断面と上記軸線方向に対向する対向面が、これより上方の位置で上記捲回未塗工部の端面と上記軸線方向に対向する上方内側面よりも、上記軸線方向について上記電池ケースの内側に位置してなる非水電解液二次電池である。   Another aspect of the present invention includes a flat wound electrode body obtained by winding a positive electrode, a negative electrode, and a separator into a flat shape, a rectangular battery case that accommodates the flat wound electrode body, and the flat wound electrode. A non-aqueous electrolyte impregnated in the body, and a current collecting terminal member, wherein the flat wound electrode body includes the positive electrode mixture layer coating portion, the negative electrode mixture layer coating portion, and A wound coating portion formed by winding the separator, and axially opposite ends of the flat wound electrode body, the positive electrode mixture layer uncoated portion and the negative electrode mixture layer uncoated A non-aqueous electrolyte secondary battery formed by welding a wound uncoated portion formed by winding each of the working portions, and the current collecting terminal member being welded to the wound uncoated portion, Of the winding uncoated part, the lower uncoated part located below the part where the current collecting terminal member is welded is cut off, The cutting surface of the flat wound electrode body obtained by excising the lower uncoated portion of the inner surface of the battery case and the facing surface facing the axial direction are positioned above the wound uncoated portion. It is a non-aqueous electrolyte secondary battery which is located inside the battery case in the axial direction from the upper inner surface facing the end surface of the battery in the axial direction.

上述の非水電解液二次電池は、電池ケースとして、当該電池ケースの内側面のうち下方未塗工部を切除した扁平捲回電極体の切断面(扁平捲回電極体の軸線方向を向く切断面)と扁平捲回電極体の軸線方向に対向する面(これを対向面という)を、これより上方(底面側とは反対側)の位置で捲回未塗工部の端面と上記軸線方向(左右方向)に対向する内側面(これを上方内側面という)よりも、上記軸線方向について上記電池ケースの内側(中央側)に位置させた形態の電池ケースを用いている。   The non-aqueous electrolyte secondary battery described above has a cut surface of a flat wound electrode body obtained by cutting a lower uncoated portion of the inner side surface of the battery case as the battery case (facing the axial direction of the flat wound electrode body). The end face of the wound uncoated part and the above axis at a position above this (the opposite face) and the face facing the axial direction of the flat wound electrode body (this is called the facing face) A battery case is used that is positioned on the inner side (center side) of the battery case in the axial direction than the inner side surface (referred to as the upper inner side surface) facing the direction (left-right direction).

すなわち、電池ケースにおいて、電池ケースの内側面のうち下方正極未塗工部を切除した扁平捲回電極体の第1切断面と上記軸線方向に対向する第1対向面を、これよりも上方の位置で正極捲回未塗工部の端面と軸線方向に対向する第1上方内側面よりも、上記軸線方向について電池ケースの内側に位置させている。さらに、電池ケースの内側面のうち下方負極未塗工部を切除した扁平捲回電極体の第2切断面と上記軸線方向に対向する第2対向面を、これよりも上方の位置で負極捲回未塗工部の端面と軸線方向に対向する第2上方内側面よりも、上記軸線方向について電池ケースの内側に位置させている。   That is, in the battery case, the first opposed surface that faces the first cut surface of the flat wound electrode body in which the lower positive electrode uncoated portion is cut out of the inner surface of the battery case and the axial direction is positioned above the first opposed surface. The axial direction is positioned on the inner side of the battery case from the first upper inner surface facing the end surface of the positive electrode winding uncoated portion in the axial direction. Furthermore, the second cut surface of the flat wound electrode body in which the lower negative electrode uncoated portion is cut out of the inner side surface of the battery case and the second facing surface facing the axial direction above the negative electrode It is located inside the battery case in the axial direction from the second upper inner surface facing the end face of the uncoated portion in the axial direction.

前述のように、このような形態の電池ケースを用いることで、当該電池を製造する際、含浸工程において、非水電解液を短時間で捲回塗工部の内部に含浸させることができる。従って、電池の製造時間が短縮されるので、上述の非水電解液二次電池は、安価な電池となる。しかも、上述の非水電解液二次電池は、サイクル充放電特性が良好となる。   As described above, by using such a battery case, the non-aqueous electrolyte can be impregnated in the wound coating portion in a short time in the impregnation step when the battery is manufactured. Therefore, since the battery manufacturing time is shortened, the non-aqueous electrolyte secondary battery described above is an inexpensive battery. Moreover, the non-aqueous electrolyte secondary battery described above has good cycle charge / discharge characteristics.

さらに、上記の非水電解液二次電池であって、前記電池ケースの壁部のうち前記対向面を有する対向壁部を、前記上方内側面を有する上方壁部よりも、前記軸線方向について上記電池ケースの内側に凹んだ形態とすることにより、上記対向面が、上記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる非水電解液二次電池とすると良い。   Further, in the above non-aqueous electrolyte secondary battery, the opposing wall portion having the opposing surface among the wall portions of the battery case is more in the axial direction than the upper wall portion having the upper inner surface. By adopting a form that is recessed inside the battery case, the non-aqueous electrolyte secondary battery may be configured such that the facing surface is located inside the battery case in the axial direction with respect to the upper inner surface.

上述のような形態の電池ケースを用いることで、当該電池を製造する際、含浸工程において、非水電解液を短時間で捲回塗工部の内部に含浸させることができる。従って、電池の製造時間が短縮されるので、上述の非水電解液二次電池は、安価な電池となる。しかも、上述の非水電解液二次電池は、サイクル充放電特性が良好となる。   By using the battery case having the above-described form, when the battery is manufactured, the non-aqueous electrolyte can be impregnated in the wound coating portion in a short time in the impregnation step. Therefore, since the battery manufacturing time is shortened, the non-aqueous electrolyte secondary battery described above is an inexpensive battery. Moreover, the non-aqueous electrolyte secondary battery described above has good cycle charge / discharge characteristics.

また、前記の非水電解液二次電池であって、前記電池ケースは、直方体形状のケースの内部のうち前記扁平捲回電極体の前記切断面と前記軸線方向に対向する位置に配置されたスペーサーを有し、上記スペーサーの側面であって上記切断面と上記軸線方向に対向する前記対向面が、前記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる非水電解液二次電池とすると良い。   Further, in the nonaqueous electrolyte secondary battery, the battery case is disposed at a position facing the cut surface of the flat wound electrode body in the axial direction within a rectangular parallelepiped case. Non-aqueous electrolysis comprising a spacer, wherein the opposing surface which is a side surface of the spacer and faces the cut surface in the axial direction is located inside the battery case in the axial direction with respect to the upper inner surface A liquid secondary battery is preferred.

上述のような形態の電池ケースを用いることで、当該電池を製造する際、含浸工程において、非水電解液を短時間で捲回塗工部の内部に含浸させることができる。従って、電池の製造時間が短縮されるので、上述の非水電解液二次電池は、安価な電池となる。しかも、上述の非水電解液二次電池は、サイクル充放電特性が良好となる。   By using the battery case having the above-described form, when the battery is manufactured, the non-aqueous electrolyte can be impregnated in the wound coating portion in a short time in the impregnation step. Therefore, since the battery manufacturing time is shortened, the non-aqueous electrolyte secondary battery described above is an inexpensive battery. Moreover, the non-aqueous electrolyte secondary battery described above has good cycle charge / discharge characteristics.

実施例1にかかる非水電解液二次電池の断面図である。1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to Example 1. FIG. 同非水電解液二次電池のケース本体部の斜視図である。It is a perspective view of the case main-body part of the nonaqueous electrolyte secondary battery. 同非水電解液二次電池の扁平捲回電極体の斜視図である。It is a perspective view of the flat wound electrode body of the nonaqueous electrolyte secondary battery. 扁平捲回電極体を構成する正極を示す図である。It is a figure which shows the positive electrode which comprises a flat wound electrode body. 扁平捲回電極体を構成する負極を示す図である。It is a figure which shows the negative electrode which comprises a flat wound electrode body. 実施例1,2にかかる非水電解液二次電池の製造方法の流れを示すフローチャートである。3 is a flowchart showing a flow of a method for manufacturing a non-aqueous electrolyte secondary battery according to Examples 1 and 2. 実施例1の捲回工程を説明する図である。It is a figure explaining the winding process of Example 1. FIG. 同捲回工程において形成した扁平捲回電極体の斜視図である。It is a perspective view of the flat wound electrode body formed in the same winding process. 実施例1の収容工程、注液工程、及び、含浸工程を説明する図であって、組み立て体101の断面図である。FIG. 2 is a diagram for explaining the accommodation process, the liquid injection process, and the impregnation process of Example 1, and is a cross-sectional view of the assembly 101. 実施例2にかかる非水電解液二次電池の断面図である。6 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to Example 2. FIG. 同非水電解液二次電池のケース本体部の斜視図である。It is a perspective view of the case main-body part of the nonaqueous electrolyte secondary battery. 比較例1にかかる非水電解液二次電池の断面図である。3 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to Comparative Example 1. FIG. 同非水電解液二次電池のケース本体部の斜視図である。It is a perspective view of the case main-body part of the nonaqueous electrolyte secondary battery.

(実施例1)
まず、本実施例1の非水電解液二次電池100について説明する。
非水電解液二次電池100は、図1に示すように、角形の電池ケース160と、正極外部端子121と、負極外部端子131とを備える、角形密閉式のリチウムイオン二次電池である。
Example 1
First, the nonaqueous electrolyte secondary battery 100 of the first embodiment will be described.
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular battery case 160, a positive electrode external terminal 121, and a negative electrode external terminal 131.

このうち、電池ケース160は、角形の収容空間をなす金属製のケース本体部110と金属製の蓋部170とを有するハードケースである。電池ケース160(ケース本体部110)の内部には、扁平捲回電極体150などが収容されている。   Among these, the battery case 160 is a hard case having a metal case main body 110 and a metal lid 170 that form a square accommodation space. A flat wound electrode body 150 and the like are accommodated inside the battery case 160 (case body 110).

扁平捲回電極体150は、シート状の正極155、負極156、及びセパレータ157を扁平形状に捲回した扁平型の捲回電極体である(図3〜図5参照)。本実施例1では、扁平捲回電極体150が、軸線AX方向を左右方向(水平方向)に一致させた姿勢で、電池ケース160内に収容されている(図1参照)。従って、扁平捲回電極体150のうち、正極155、負極156、及びセパレータ157が弧状をなしている部位150f,150gが、扁平捲回電極体150の上端側と下端側に配置されている。   The flat wound electrode body 150 is a flat wound electrode body in which a sheet-like positive electrode 155, a negative electrode 156, and a separator 157 are wound into a flat shape (see FIGS. 3 to 5). In the first embodiment, the flat wound electrode body 150 is accommodated in the battery case 160 in a posture in which the axis AX direction is aligned with the left-right direction (horizontal direction) (see FIG. 1). Therefore, portions 150 f and 150 g of the flat wound electrode body 150 in which the positive electrode 155, the negative electrode 156, and the separator 157 form an arc shape are disposed on the upper end side and the lower end side of the flat wound electrode body 150.

正極155は、図4に示すように、長手方向DAに延びる帯状で、アルミニウム箔からなる正極集電部材151と、この正極集電部材151の両面に、それぞれ長手方向DAに延びる帯状に配置された2つの正極合材層152とを有している。正極合材層152は、正極活物質153と、アセチレンブラックからなる導電材と、PVdF(結着剤)とを、89:8:3(重量比)の割合で含んでいる。   As shown in FIG. 4, the positive electrode 155 has a strip shape extending in the longitudinal direction DA, and is disposed in a strip shape extending in the longitudinal direction DA on both sides of the positive electrode current collecting member 151 made of aluminum foil and the positive electrode current collecting member 151. And two positive electrode mixture layers 152. The positive electrode mixture layer 152 includes a positive electrode active material 153, a conductive material made of acetylene black, and PVdF (binder) in a ratio of 89: 8: 3 (weight ratio).

正極155のうち、正極合材層152が塗工されている部位を、正極合材層塗工部155cという。一方、正極合材層152を有することなく、正極集電部材151のみからなる部位を、正極合材層未塗工部155bという。正極合材層未塗工部155bは、正極155の一方長辺に沿って、正極155の長手方向DAに帯状に延びている。この正極合材層未塗工部155bは、捲回されて渦巻き状をなし、扁平捲回電極体150の軸線方向(図1において左右方向)一方端部(図1及び図3において右端部)に位置している。
なお、本実施形態では、正極活物質153として、LiNi1/3Co1/3Mn1/32を用いている。
A portion of the positive electrode 155 where the positive electrode mixture layer 152 is applied is referred to as a positive electrode mixture layer coating portion 155c. On the other hand, a portion made only of the positive electrode current collecting member 151 without having the positive electrode mixture layer 152 is referred to as a positive electrode mixture layer uncoated portion 155b. The positive electrode mixture layer uncoated portion 155 b extends in a band shape in the longitudinal direction DA of the positive electrode 155 along one long side of the positive electrode 155. This positive electrode mixture layer uncoated portion 155b is wound to form a spiral shape, and has one end (right end in FIGS. 1 and 3) in the axial direction (left and right direction in FIG. 1) of the flat wound electrode body 150. Is located.
In the present embodiment, LiNi 1/3 Co 1/3 Mn 1/3 O 2 is used as the positive electrode active material 153.

また、負極156は、図5に示すように、長手方向DAに延びる帯状で、銅箔からなる負極集電部材158と、この負極集電部材158の両面に、それぞれ長手方向DAに延びる帯状に配置された2つの負極合材層159とを有している。負極合材層159は、負極活物質154とSBR(結着剤)とCMC(増粘剤)とを、98:1:1(重量比)の割合で含んでいる。   Further, as shown in FIG. 5, the negative electrode 156 has a strip shape extending in the longitudinal direction DA. The negative electrode current collecting member 158 made of copper foil and strips extending in the longitudinal direction DA on both surfaces of the negative electrode current collecting member 158, respectively. It has two negative electrode mixture layers 159 arranged. The negative electrode mixture layer 159 includes the negative electrode active material 154, SBR (binder), and CMC (thickener) at a ratio of 98: 1: 1 (weight ratio).

負極156のうち、負極合材層159が塗工されている部位を、負極合材層塗工部156cという。一方、負極合材層159を有することなく、負極集電部材158のみからなる部位を、負極合材層未塗工部156bという。負極合材層未塗工部156bは、負極156の一方長辺に沿って、負極156の長手方向DAに帯状に延びている。この負極合材層未塗工部156bは、捲回されて渦巻き状をなし、扁平捲回電極体150の軸線方向他方端部(図1及び図3において左端部)に位置している。
なお、本実施形態では、負極活物質154として、黒鉛を用いている。
A portion of the negative electrode 156 where the negative electrode mixture layer 159 is applied is referred to as a negative electrode mixture layer coating portion 156c. On the other hand, a portion including only the negative electrode current collector 158 without having the negative electrode mixture layer 159 is referred to as a negative electrode mixture layer uncoated portion 156b. The negative electrode mixture layer uncoated portion 156 b extends in a strip shape in the longitudinal direction DA of the negative electrode 156 along one long side of the negative electrode 156. The negative electrode mixture layer uncoated portion 156b is wound to form a spiral shape, and is located at the other end portion in the axial direction of the flat wound electrode body 150 (the left end portion in FIGS. 1 and 3).
In the present embodiment, graphite is used as the negative electrode active material 154.

扁平捲回電極体150のうち、正極合材層未塗工部155bが捲回されてなる部位を、正極捲回未塗工部155dという(図3参照)。また、扁平捲回電極体150のうち、負極合材層未塗工部156bが捲回されてなる部位を、負極捲回未塗工部156dという。正極捲回未塗工部155dと負極捲回未塗工部156dとは、扁平捲回電極体150の軸線方向端部に位置している。   In the flat wound electrode body 150, a portion where the positive electrode mixture layer uncoated portion 155b is wound is referred to as a positive electrode wound uncoated portion 155d (see FIG. 3). In addition, a portion of the flat wound electrode body 150 where the negative electrode mixture layer uncoated portion 156b is wound is referred to as a negative electrode wound uncoated portion 156d. The positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d are located at the axial ends of the flat wound electrode body 150.

また、扁平捲回電極体150のうち、正極合材層塗工部155c、負極合材層塗工部156c、及び、セパレータ150が捲回されてなる部位を、捲回塗工部150dという(図3参照)。捲回塗工部150dは、正極捲回未塗工部155dと負極捲回未塗工部156dとの間に位置している。捲回塗工部150dの内部には、リチウムイオンを有する非水電解液140を含浸させている。   Further, in the flat wound electrode body 150, a portion where the positive electrode mixture layer coating portion 155c, the negative electrode mixture layer coating portion 156c, and the separator 150 are wound is referred to as a wound coating portion 150d ( (See FIG. 3). The wound coating portion 150d is located between the positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d. The wound coating part 150d is impregnated with a non-aqueous electrolyte solution 140 having lithium ions.

セパレータ157は、PP(ポリプロピレン)/PE(ポリエチレン)/PP(ポリプロピレン)の3層からなるセパレータである。このセパレータ157は、正極155と負極156との間に介在して、これらを離間させている。   The separator 157 is a separator composed of three layers of PP (polypropylene) / PE (polyethylene) / PP (polypropylene). The separator 157 is interposed between the positive electrode 155 and the negative electrode 156 to separate them.

非水電解液140は、DMC(ジメチルカーボネート)とEMC(エチルメチルカーボネート)と添加剤とを混合した非水溶媒中に、Li塩である六フッ化燐酸リチウム(LiPF6)とEC(エチレンカーボネート)とを溶解した非水電解液である。なお、非水電解液140中のLiPF6のモル濃度は、1.1mol/Lである。また、本実施例1では、電池ケース160内に、非水電解液140を124g注入している。 The non-aqueous electrolyte 140 is prepared by mixing lithium hexafluorophosphate (LiPF 6 ) and EC (ethylene carbonate) which are Li salts in a non-aqueous solvent in which DMC (dimethyl carbonate), EMC (ethyl methyl carbonate) and an additive are mixed. ) And a non-aqueous electrolyte solution. In addition, the molar concentration of LiPF 6 in the nonaqueous electrolytic solution 140 is 1.1 mol / L. In the first embodiment, 124 g of the nonaqueous electrolyte solution 140 is injected into the battery case 160.

また、扁平捲回電極体150の正極155(具体的には、正極捲回未塗工部155d)には、金属板を加工してなる正極集電端子部材120が溶接されている(図1参照)。詳細には、正極集電端子部材120の正極集電接続部122が、正極捲回未塗工部155dのうち上下方向に見て中央及び上方側の部位に溶接されている。なお、正極集電端子部材120の上端部には、正極外部端子121が一体に形成されている。   Further, the positive electrode current collecting terminal member 120 formed by processing a metal plate is welded to the positive electrode 155 (specifically, the positive electrode winding uncoated portion 155d) of the flat wound electrode body 150 (FIG. 1). reference). Specifically, the positive electrode current collector connection part 122 of the positive electrode current collector terminal member 120 is welded to the center and upper side portions of the positive electrode winding uncoated part 155d as viewed in the vertical direction. A positive external terminal 121 is integrally formed at the upper end of the positive current collecting terminal member 120.

また、扁平捲回電極体150の負極156(具体的には、負極捲回未塗工部156d)には、金属板を加工してなる負極集電端子部材130が溶接されている(図1参照)。詳細には、負極集電端子部材130の負極集電接続部132が、負極捲回未塗工部156dのうち上下方向に見て中央及び上方側の部位に溶接されている。なお、負極集電端子部材130の上端部には、負極外部端子131が一体に形成されている。   Further, the negative electrode current collecting terminal member 130 formed by processing a metal plate is welded to the negative electrode 156 (specifically, the negative electrode winding uncoated portion 156d) of the flat wound electrode body 150 (FIG. 1). reference). Specifically, the negative electrode current collector connection part 132 of the negative electrode current collector terminal member 130 is welded to the center and the upper part of the negative electrode winding uncoated part 156d as viewed in the vertical direction. Note that a negative electrode external terminal 131 is integrally formed at the upper end of the negative electrode current collecting terminal member 130.

ところで、本実施例1では、正極捲回未塗工部155dのうち正極集電端子部材120を溶接する部位(端子溶接部155g)よりも下方に位置する部位(下方正極未塗工部155f、図8参照)を切除している(図3参照)。さらに、負極捲回未塗工部156dのうち負極集電端子部材130を溶接する部位(端子溶接部156g)よりも下方に位置する部位(下方負極未塗工部156f、図8参照)を切除している。   By the way, in the present Example 1, the part (lower positive electrode uncoated part 155f, lower positive electrode uncoated part 155f, lower part than the part (terminal welded part 155g) where the positive electrode current collecting terminal member 120 is welded in the positive electrode wound uncoated part 155d 8) is cut out (see FIG. 3). Further, a portion (lower negative electrode uncoated portion 156f, see FIG. 8) located below the portion where the negative electrode current collector terminal member 130 is welded (terminal welded portion 156g) in the negative electrode wound uncoated portion 156d is excised. doing.

なお、扁平捲回電極体150のうち、下方正極未塗工部155fを切除した切断面(扁平捲回電極体150の軸線AX方向を向く切断面、図1において右方向を向く切断面)を、第1切断面150bという。また、扁平捲回電極体150のうち、下方負極未塗工部156fを切除した切断面(扁平捲回電極体150の軸線AX方向を向く切断面、図1において左方向を向く切断面)を、第2切断面150cという。軸線AX方向とは、扁平捲回電極体150の軸線AXに沿った方向をいう。   In addition, a cut surface (a cut surface facing the axis AX direction of the flat wound electrode body 150, a cut surface facing the right direction in FIG. 1) obtained by cutting out the lower positive electrode uncoated portion 155 f of the flat wound electrode body 150. The first cut surface 150b. Further, a cut surface (a cut surface facing the axis AX direction of the flat wound electrode body 150, a cut surface facing the left direction in FIG. 1) obtained by cutting out the lower negative electrode uncoated portion 156 f of the flat wound electrode body 150. This is referred to as a second cut surface 150c. The axis AX direction refers to a direction along the axis AX of the flat wound electrode body 150.

正極捲回未塗工部155dのうち正極集電端子部材120が溶接されない部位は、切除しても、電池特性に影響がない。同様に、負極捲回未塗工部156dのうち負極集電端子部材130が溶接されない部位も、切除しても、電池特性に影響がない。このため、本実施例1では、下方正極未塗工部155f及び下方負極未塗工部156fを切除している。これにより、従来の直方体形状の電池ケース(例えば、図12の電池ケース560)の内部空間のうち、下方正極未塗工部155f及び下方負極未塗工部156fが配置されていた空間部分は、不要になる。   Even if the portion where the positive electrode current collector terminal member 120 is not welded in the positive electrode winding uncoated portion 155d is cut off, the battery characteristics are not affected. Similarly, even if a portion of the negative electrode wound uncoated portion 156d where the negative electrode current collecting terminal member 130 is not welded is excised, the battery characteristics are not affected. For this reason, in the present Example 1, the lower positive electrode uncoated part 155f and the lower negative electrode uncoated part 156f are excised. Thereby, in the internal space of the conventional rectangular parallelepiped battery case (for example, the battery case 560 in FIG. 12), the space portion where the lower positive electrode uncoated portion 155f and the lower negative electrode uncoated portion 156f are arranged is It becomes unnecessary.

そこで、本実施例1では、電池ケース160の形態を、電池ケース160(ケース本体部110)の内側面112のうち、扁平捲回電極体150の第1切断面150bと軸線AX方向(図1において左右方向)に対向する第1対向面112bが、これよりも上方の位置で正極捲回未塗工部155dの端面と軸線AX方向に対向する第1上方内側面112cよりも、軸線AX方向について電池ケース160(ケース本体部110)の内側(図1において左側)に位置する形態とした(図1、図2参照)。   Therefore, in the first embodiment, the shape of the battery case 160 is different from the first cut surface 150b of the flat wound electrode body 150 in the inner side surface 112 of the battery case 160 (case main body 110) and the axis AX direction (FIG. 1). The first facing surface 112b facing in the left-right direction in FIG. 5 is more axially in the direction of the axis AX than the first upper inner surface 112c facing the end surface of the positively wound uncoated portion 155d in the axis AX direction at a position above this. The battery case 160 (case body 110) is positioned inside (left side in FIG. 1) (see FIGS. 1 and 2).

さらに、扁平捲回電極体150の第2切断面150cと軸線AX方向(図1において左右方向)に対向する第2対向面112fが、これよりも上方の位置で負極捲回未塗工部156dの端面と軸線AX方向に対向する第2上方内側面112gよりも、軸線AX方向について電池ケース160(ケース本体部110)の内側(図1において右側)に位置する形態とした(図1、図2参照)。   Further, the second facing surface 112f facing the second cut surface 150c of the flat wound electrode body 150 in the axis AX direction (left-right direction in FIG. 1) is at a position above this, the negative-wound uncoated portion 156d. The inner surface (right side in FIG. 1) of the battery case 160 (case main body 110) in the axis AX direction with respect to the second upper inner side surface 112g facing the end surface of the battery in the axis AX direction (FIG. 1, FIG. 2).

詳細には、電池ケース160(ケース本体部110)について、電池ケース160(ケース本体部110)の壁部111のうち第1対向面112bを有する第1対向壁部111bが、第1上方内側面112cを有する第1上方壁部111cよりも、軸線AX方向(図1、図2において左右方向)について電池ケース160の内側(図1、図2において左側)に凹んだ形態としている。   Specifically, for the battery case 160 (case body 110), the first opposing wall 111b having the first opposing surface 112b of the wall 111 of the battery case 160 (case body 110) is the first upper inner surface. The first upper wall portion 111c having 112c is recessed toward the inner side (left side in FIGS. 1 and 2) of the battery case 160 in the axis AX direction (left and right direction in FIGS. 1 and 2).

さらに、電池ケース160(ケース本体部110)について、第2対向面112fを有する第2対向壁部111fが、第2上方内側面112gを有する第2上方壁部111gよりも、軸線AX方向(図1、図2において左右方向)について電池ケース160の内側(図1、図2において右側)に凹んだ形態としている。   Further, with respect to the battery case 160 (case body 110), the second opposing wall 111f having the second opposing surface 112f is more in the axis AX direction (see FIG. 5) than the second upper wall 111g having the second upper inner surface 112g. 1 and in the left-right direction in FIG. 2, the battery case 160 is recessed on the inner side (right side in FIGS. 1 and 2).

なお、本実施例1では、電池ケース160のケース本体部110の内寸を、以下のようにしている。具体的には、図2を参照して説明すると、幅方向(扁平捲回電極体150の軸線方向に一致する方向)の内寸Aを152mm、深さ方向(図2において上下方向)の内寸Bを88mm、奥行きの内寸Cを24mmとしている。   In the first embodiment, the internal dimensions of the case main body 110 of the battery case 160 are as follows. Specifically, with reference to FIG. 2, the inner dimension A in the width direction (the direction corresponding to the axial direction of the flat wound electrode body 150) is 152 mm, and the inner dimension A is in the depth direction (the vertical direction in FIG. 2). The dimension B is 88 mm, and the inner dimension C of the depth is 24 mm.

さらに、第1対向面112bの高さ寸法D(図2において上下方向寸法)を35mm、第1対向面112bの凹み寸法E(第1上方内側面112cから第1対向面112bまでの軸線AX方向距離に相当)を15mmとしている。さらに、第2対向面112fの高さ寸法F(図2において上下方向寸法)を35mm、第2対向面112bの凹み寸法G(第2上方内側面112gから第2対向面112fまでの軸線AX方向距離に相当)を15mmとしている。   Further, the height dimension D (vertical dimension in FIG. 2) of the first facing surface 112b is 35 mm, and the recess dimension E of the first facing surface 112b (axis AX direction from the first upper inner surface 112c to the first facing surface 112b) (Corresponding to the distance) is 15 mm. Further, the height dimension F (vertical dimension in FIG. 2) of the second facing surface 112f is 35 mm, and the recess dimension G of the second facing surface 112b (axis AX direction from the second upper inner surface 112g to the second facing surface 112f) (Corresponding to the distance) is 15 mm.

このような電池ケース160(ケース本体部110)では、電池ケース160の底面115(下面)から第1対向面112b及び第2対向面112fの上端に至るまでの内部空間S1(図2においてD,Fで示す高さ寸法部分の空間)の単位高さ当たりの容量(電池ケース160の底面積に一致する)を、これよりも上方の内部空間S2の単位高さ当たりの容量(従来の直方体形状の電池ケースの底面積に一致する)よりも小さくすることができる。従って、実施例1の電池ケース160は、従来の直方体形状の電池ケース560(図12、図13参照)に比べて、下方側(底面側)の容量が小さくなる。   In such a battery case 160 (case body 110), an internal space S1 (D, in FIG. 2) from the bottom surface 115 (lower surface) of the battery case 160 to the upper ends of the first opposing surface 112b and the second opposing surface 112f. The capacity per unit height (the space of the height dimension portion indicated by F) (corresponding to the bottom area of the battery case 160) is the capacity per unit height of the internal space S2 above this (the conventional rectangular parallelepiped shape) Less than the bottom area of the battery case). Therefore, the battery case 160 of Example 1 has a lower capacity (bottom side) than the conventional rectangular parallelepiped battery case 560 (see FIGS. 12 and 13).

これにより、後述する注液工程において、一定量(規定量)の非水電解液140を電池ケース内に注入したとき、本実施例1の電池ケース160では、従来の直方体形状の電池ケース560(内面が直方体形状)に比べて、非水電解液140の液面を高くすることができる。従って、本実施例1の電池ケース160を用いることで、従来の電池ケース560を用いる場合に比べて、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を増大させることができる。   As a result, when a certain amount (specified amount) of the non-aqueous electrolyte solution 140 is injected into the battery case in the liquid injection step described later, the battery case 160 of the first embodiment has a conventional rectangular parallelepiped battery case 560 ( The liquid surface of the non-aqueous electrolyte 140 can be made higher than the inner surface of a rectangular parallelepiped. Therefore, by using the battery case 160 of the first embodiment, compared to the case of using the conventional battery case 560, the portion of the end portion in the axial direction of the wound coating portion 150d that is in contact with the nonaqueous electrolyte solution 140 is reduced. The area (liquid contact area) can be increased.

正極捲回未塗工部155d及び負極捲回未塗工部156dは、正極集電部材151及び負極集電部材158が、比較的大きな隙間を空けて捲回されている。このため、電池ケース160内に非水電解液140を注入すると、直ちに、正極捲回未塗工部155dの内部及び負極捲回未塗工部156dの内部に非水電解液140が進入する。一方、捲回塗工部150dは、密に(ほとんど隙間なく)捲回されているため、注入した非水電解液140は、ゆっくりと捲回塗工部150dの内部に進入(浸透)することになる。   In the positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d, the positive electrode current collecting member 151 and the negative electrode current collecting member 158 are wound with a relatively large gap. For this reason, when the nonaqueous electrolyte solution 140 is injected into the battery case 160, the nonaqueous electrolyte solution 140 immediately enters the positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d. On the other hand, since the wound coating part 150d is wound densely (with almost no gap), the injected non-aqueous electrolyte 140 slowly enters (penetrates) the wound coating part 150d. become.

このため、電池ケース160内に非水電解液140を注入すると、まず、正極捲回未塗工部155d及び負極捲回未塗工部156dの内部空間と扁平捲回電極体150の外部(すなわち、捲回塗工部150dの外部)に、非水電解液140が溜まる。その後、捲回塗工部150dの外部に溜まっている非水電解液140が、捲回塗工部150dの軸線方向両端面を通じて、ゆっくりと、捲回塗工部150dの内部に浸透してゆく。   For this reason, when the non-aqueous electrolyte 140 is injected into the battery case 160, first, the internal space of the positively wound non-coated portion 155d and the negatively wound non-coated portion 156d and the outside of the flat wound electrode body 150 (that is, The non-aqueous electrolyte 140 is accumulated outside the wound coating part 150d. Thereafter, the non-aqueous electrolyte 140 accumulated outside the wound coating part 150d slowly permeates into the inside of the wound coating part 150d through both axial end surfaces of the wound coating part 150d. .

従って、捲回塗工部150dの軸線方向両端面における液接触面積が大きいほど、非水電解液140が捲回塗工部150dの内部に浸透する速度が速くなり、含浸が完了する(非水電解液140が捲回塗工部150dの内部全体に行き渡る)までの時間を短くすることができる。従って、本実施例1では、後述する含浸工程において、非水電解液140を短時間で捲回塗工部150dの内部に含浸させることができる。   Accordingly, the larger the liquid contact area at both axial end surfaces of the wound coating portion 150d, the faster the nonaqueous electrolyte 140 penetrates into the wound coating portion 150d, and the impregnation is completed (non-aqueous). The time until the electrolytic solution 140 reaches the entire inside of the wound coating portion 150d) can be shortened. Therefore, in the present Example 1, the non-aqueous electrolyte solution 140 can be impregnated in the wound coating part 150d in a short time in the impregnation step described later.

しかも、非水電解液140の液面を高くするため(液接触面積を増大させるため)に、電池ケース160内に過剰な非水電解液140を注入する必要がないので、電池のサイクル充放電特性を低下させてしまうこともない。   In addition, in order to increase the liquid level of the non-aqueous electrolyte 140 (in order to increase the liquid contact area), it is not necessary to inject the excessive non-aqueous electrolyte 140 into the battery case 160. The characteristics are not deteriorated.

次に、本実施例1にかかる非水電解液二次電池の製造方法について説明する。
図6は、本実施例1にかかる非水電解液二次電池の製造方法の流れを示すフローチャートである。まず、ステップS1(捲回工程)において、正極155、負極156、及び、セパレータ157を扁平形状に捲回して、扁平捲回電極体150A(図8参照)を形成する。
Next, a method for manufacturing the non-aqueous electrolyte secondary battery according to Example 1 will be described.
FIG. 6 is a flowchart illustrating the flow of the method for manufacturing the nonaqueous electrolyte secondary battery according to the first embodiment. First, in step S1 (winding step), the positive electrode 155, the negative electrode 156, and the separator 157 are wound into a flat shape to form a flat wound electrode body 150A (see FIG. 8).

具体的には、図4に示すように、帯状の正極集電部材151の表面(両面)に正極合材層152が塗工された正極155を用意する。さらに、図5に示すように、帯状の負極集電部材158の表面(両面)に負極合材層159が塗工された負極156を用意する。   Specifically, as shown in FIG. 4, a positive electrode 155 is prepared in which a positive electrode mixture layer 152 is coated on the surface (both sides) of a strip-shaped positive electrode current collecting member 151. Further, as shown in FIG. 5, a negative electrode 156 in which a negative electrode mixture layer 159 is coated on the surface (both sides) of a strip-shaped negative electrode current collecting member 158 is prepared.

次に、図7に示すように、セパレータ157、負極156、セパレータ157、及び正極155を、この順に重ねるようにして捲回する。詳細には、正極155の正極合材層未塗工部155bと負極156の負極合材層未塗工部156bとが、幅方向(図7において左右方向)について互いに反対側に位置するようにして、セパレータ157、負極156、セパレータ157、及び正極155を扁平形状に捲回して、扁平捲回電極体150Aを形成する(図8参照)。   Next, as shown in FIG. 7, the separator 157, the negative electrode 156, the separator 157, and the positive electrode 155 are wound so as to overlap in this order. Specifically, the positive electrode mixture layer uncoated portion 155b of the positive electrode 155 and the negative electrode mixture layer uncoated portion 156b of the negative electrode 156 are positioned on opposite sides in the width direction (left-right direction in FIG. 7). Then, the separator 157, the negative electrode 156, the separator 157, and the positive electrode 155 are wound into a flat shape to form a flat wound electrode body 150A (see FIG. 8).

次いで、ステップS2(切除工程)に進み、正極捲回未塗工部155dの下方未塗工部155f、及び、負極捲回未塗工部156dの下方未塗工部156fを切除する。ここで、正極捲回未塗工部155dの下方未塗工部155fとは、正極捲回未塗工部155dのうち、扁平捲回電極体150Aを電池ケース160内に収容する姿勢(図8に示す姿勢)としたときに、正極集電端子部材120を溶接する部位(端子溶接部155gという)よりも下方に位置する部位である(図8参照)。また、負極捲回未塗工部156dの下方未塗工部156fとは、負極捲回未塗工部156dのうち、扁平捲回電極体150Aを電池ケース160内に収容する姿勢としたときに、負極集電端子部材130を溶接する部位(端子溶接部156gという)よりも下方に位置する部位である。
これにより、下方未塗工部155f,156fが切除された扁平捲回電極体150(図3参照)が完成する。
Subsequently, it progresses to step S2 (cutting process), and the lower uncoated part 155f of the positive electrode winding uncoated part 155d and the lower uncoated part 156f of the negative electrode winding uncoated part 156d are cut off. Here, the lower uncoated portion 155f of the positive electrode winding uncoated portion 155d is a posture in which the flat wound electrode body 150A is accommodated in the battery case 160 of the positive electrode winding uncoated portion 155d (FIG. 8). (Position shown in FIG. 8) is a portion located below a portion (referred to as terminal welded portion 155g) where the positive electrode current collecting terminal member 120 is welded (see FIG. 8). In addition, the lower uncoated portion 156f of the negative electrode wound uncoated portion 156d is a posture in which the flat wound electrode body 150A is accommodated in the battery case 160 in the negative electrode wound uncoated portion 156d. This is a part located below the part where the negative electrode current collecting terminal member 130 is welded (referred to as terminal welded part 156g).
Thereby, the flat wound electrode body 150 (see FIG. 3) in which the lower uncoated portions 155f and 156f are cut off is completed.

なお、非水電解液二次電池100では、前述のように、扁平捲回電極体150が、軸線AX方向を左右方向(水平方向)に一致させた姿勢で、電池ケース160内に収容され、扁平捲回電極体150のうち正極155等が弧状をなしている部位150f,150gが、扁平捲回電極体150の上端側と下端側に配置される。従って、扁平捲回電極体150Aを電池ケース160内に収容する姿勢としたときには、正極捲回未塗工部155dのうち正極合材層未塗工部155bが弧状をなしている部位155j,155kが、扁平捲回電極体(捲回未塗工部)の上端側と下端側に配置されると共に、負極捲回未塗工部156dのうち負極合材層未塗工部156bが弧状をなしている部位156j,156kが、扁平捲回電極体(捲回未塗工部)の上端側と下端側に配置される(図8参照)。   In the non-aqueous electrolyte secondary battery 100, as described above, the flat wound electrode body 150 is housed in the battery case 160 in a posture in which the axis AX direction is aligned with the left-right direction (horizontal direction). Parts 150 f and 150 g in which the positive electrode 155 and the like form an arc shape in the flat wound electrode body 150 are disposed on the upper end side and the lower end side of the flat wound electrode body 150. Accordingly, when the flat wound electrode body 150A is placed in the battery case 160, the portion 155j, 155k in which the positive electrode mixture layer uncoated portion 155b of the positive electrode wound uncoated portion 155d has an arc shape. Are arranged on the upper end side and the lower end side of the flat wound electrode body (winding uncoated portion), and the negative electrode mixture layer uncoated portion 156b of the negative electrode wound uncoated portion 156d has an arc shape. The portions 156j and 156k are disposed on the upper end side and the lower end side of the flat wound electrode body (the wound uncoated portion) (see FIG. 8).

その後、ステップS3(溶接工程)に進み、扁平捲回電極体150の正極捲回未塗工部155dに、正極集電端子部材120を溶接する。詳細には、正極捲回未塗工部155dの端子溶接部155gに、正極集電端子部材120の正極集電接続部122を溶接する。さらに、扁平捲回電極体150の負極捲回未塗工部156dに、負極集電端子部材130を溶接する。詳細には、負極捲回未塗工部156dの端子溶接部156gに、負極集電端子部材130の負極集電接続部132を溶接する。   Then, it progresses to step S3 (welding process), and the positive electrode current collection terminal member 120 is welded to the positive electrode winding uncoated part 155d of the flat wound electrode body 150. FIG. Specifically, the positive electrode current collector connection portion 122 of the positive electrode current collector terminal member 120 is welded to the terminal weld portion 155g of the positive electrode winding uncoated portion 155d. Further, the negative electrode current collector terminal member 130 is welded to the negative electrode wound uncoated portion 156 d of the flat wound electrode body 150. Specifically, the negative electrode current collector connection part 132 of the negative electrode current collector terminal member 130 is welded to the terminal weld part 156g of the negative electrode winding uncoated part 156d.

次に、ステップS4(収容工程)に進み、正極集電端子部材120及び負極集電端子部材130が溶接された扁平捲回電極体150を、ケース本体部110内に収容する。その後、蓋部170でケース本体部110の開口を閉塞し、この状態で、蓋部170とケース本体部110とを溶接する。これにより、電池ケース160内に扁平捲回電極体150が収容された組み立て体101が完成する(図9参照)。なお、蓋部170の中央には、蓋部170を貫通する注液孔170bが形成されている。   Next, proceeding to step S4 (accommodating step), the flat wound electrode body 150 to which the positive electrode current collector terminal member 120 and the negative electrode current collector terminal member 130 are welded is accommodated in the case body 110. Thereafter, the lid 170 closes the opening of the case body 110, and in this state, the lid 170 and the case body 110 are welded. Thereby, the assembly 101 in which the flat wound electrode body 150 is accommodated in the battery case 160 is completed (see FIG. 9). A liquid injection hole 170 b that penetrates the lid 170 is formed at the center of the lid 170.

次いで、ステップS5(注液工程)に進み、組み立て体101の注液孔170bを通じて、非水電解液140を電池ケース160内に注入する。本実施例1では、非水電解液140の注入量を、124g(153.8mL)としている。
なお、注入した非水電解液140は、まず、電池ケース160の内部空間のうち、扁平捲回電極体150の捲回塗工部150dの外部の空間(正極捲回未塗工部155dの内部空間、及び、負極捲回未塗工部156dの内部空間も含む)に溜まる。
Next, the process proceeds to step S <b> 5 (the liquid injection process), and the nonaqueous electrolytic solution 140 is injected into the battery case 160 through the liquid injection hole 170 b of the assembly 101. In Example 1, the injection amount of the non-aqueous electrolyte solution 140 is set to 124 g (153.8 mL).
In addition, the injected nonaqueous electrolyte solution 140 is a space outside the wound coating portion 150d of the flat wound electrode body 150 in the inner space of the battery case 160 (inside the positive winding uncoated portion 155d). And the internal space of the negative-winding uncoated portion 156d).

正極捲回未塗工部155d及び負極捲回未塗工部156dは、正極集電部材151及び負極集電部材158が、比較的大きな隙間を空けて捲回されているため、電池ケース160内に非水電解液140を注入すると、直ちに、正極捲回未塗工部155dの内部及び負極捲回未塗工部156dの内部に非水電解液140が進入する。一方、捲回塗工部150dは、密に(ほとんど隙間なく)捲回されているため、注入した非水電解液140は、その後、ステップS6(含浸工程)において、ゆっくりと捲回塗工部150dの内部に進入(浸透)することになる。   Since the positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d are wound with a relatively large gap between the positive electrode current collecting member 151 and the negative electrode current collecting member 158, the inside of the battery case 160 When the non-aqueous electrolyte solution 140 is injected into the non-aqueous electrolyte solution 140, the non-aqueous electrolyte solution 140 immediately enters the positive electrode winding uncoated portion 155d and the negative electrode winding uncoated portion 156d. On the other hand, since the wound coating part 150d is wound densely (with almost no gap), the injected nonaqueous electrolytic solution 140 is then slowly wound in the step S6 (impregnation step). It will enter (penetrate) into the interior of 150d.

次に、ステップS6(含浸工程)に進み、電池ケース160内に注入した非水電解液140、捲回塗工部150dの内部に含浸させる。具体的には、電池ケース160内を減圧した後加圧する操作を、複数回(例えば5回)繰り返し行う。詳細には、真空ポンプ(図示なし)を用いて、電池ケース160の注液孔170bを通じて、電池ケース160内のガスを外部に排出し、電池ケース160内を減圧(例えば、大気圧から100kPa減圧)する。次いで、電池ケース160内を大気圧まで上昇(大気開放)させる。この操作を、複数回(例えば5回)繰り返し行う。これにより、扁平捲回電極体150内への非水電解液140の含浸速度を高めることができる。その後、一定時間、電池ケース160内を大気圧とした状態で放置することで、捲回塗工部150dの内部に非水電解液140を含浸させることができる。   Next, it progresses to step S6 (impregnation process) and is made to impregnate the inside of the nonaqueous electrolyte solution 140 and the winding coating part 150d which were inject | poured in the battery case 160. FIG. Specifically, the operation of depressurizing the inside of the battery case 160 and then pressurizing is repeatedly performed a plurality of times (for example, five times). Specifically, using a vacuum pump (not shown), the gas in the battery case 160 is discharged to the outside through the liquid injection hole 170b of the battery case 160, and the inside of the battery case 160 is depressurized (for example, from atmospheric pressure to 100 kPa). ) Next, the inside of the battery case 160 is raised to atmospheric pressure (open to the atmosphere). This operation is repeated a plurality of times (for example, 5 times). Thereby, the impregnation speed of the non-aqueous electrolyte solution 140 into the flat wound electrode body 150 can be increased. Thereafter, by leaving the battery case 160 in an atmospheric pressure state for a certain time, the non-aqueous electrolyte solution 140 can be impregnated in the wound coating portion 150d.

次に、注液孔170bを注液蓋175で封止した後、ステップS7(初期充電工程)に進み、非水電解液二次電池の初期充電を行う。例えば、1Cの定電流で、電池電圧値が4.1Vに至るまで充電し、その後、電池電圧値を4.1Vに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で充電を終了する。これにより、非水電解液二次電池をSOC100%にする。
以上のようにして、非水電解液二次電池100が完成する。
Next, after sealing the liquid injection hole 170b with the liquid injection lid 175, the process proceeds to step S7 (initial charging step), and the non-aqueous electrolyte secondary battery is initially charged. For example, charging is performed at a constant current of 1 C until the battery voltage value reaches 4.1 V, and then charging is performed while the battery voltage value is maintained at 4.1 V. When the charging current value is reduced to 0.1 A, Stop charging. As a result, the non-aqueous electrolyte secondary battery is made 100% SOC.
As described above, the non-aqueous electrolyte secondary battery 100 is completed.

なお、1Cは、定格容量値(公称容量値)の容量を有する電池を定電流放電して、1時間で放電終了となる電流値である。本実施例1の非水電解液二次電池100の定格容量(公称容量)は、22.8Ahであるので、1C=22.8Aとなる。   Note that 1C is a current value at which discharge is completed in 1 hour after a battery having a rated capacity value (nominal capacity value) is discharged at a constant current. Since the rated capacity (nominal capacity) of the nonaqueous electrolyte secondary battery 100 of Example 1 is 22.8 Ah, 1C = 22.8A.

(比較例1)
比較例1では、電池ケースとして、従来の直方体形状の電池ケース560(図12参照)を用いて、非水電解液二次電池500を製造した。
(Comparative Example 1)
In Comparative Example 1, a non-aqueous electrolyte secondary battery 500 was manufactured using a conventional rectangular parallelepiped battery case 560 (see FIG. 12) as a battery case.

なお、電池ケース560は、実施例1の電池ケース160と比較して、ケース本体部の壁部を内側に凹ませていない点が異なっており、その他については同様である(図12、図13参照)。具体的には、図13に示すように、ケース本体部510の幅方向の内寸A、深さ方向の内寸B、奥行きの内寸Cを、実施例1のケース本体部110と同様に、152mm、88mm、24mmとしている。従って、比較例1の電池ケース560は、実施例1の電池ケース160に比べて、下方側(底面側)の容量が大きくなっている。   The battery case 560 is different from the battery case 160 of Example 1 in that the wall portion of the case body is not recessed inward, and the others are the same (FIGS. 12 and 13). reference). Specifically, as shown in FIG. 13, the inner dimension A in the width direction, the inner dimension B in the depth direction, and the inner dimension C in the depth direction of the case body 510 are the same as those in the case body 110 of the first embodiment. , 152 mm, 88 mm, and 24 mm. Therefore, the battery case 560 of Comparative Example 1 has a larger capacity on the lower side (bottom side) than the battery case 160 of Example 1.

また、比較例1では、扁平捲回電極体として、正極捲回未塗工部155dの下方未塗工部155f、及び、負極捲回未塗工部156dの下方未塗工部156fを切除することなく、扁平捲回電極体150Aを用いている。それ以外は、実施例1と同様にして、非水電解液二次電池500を製造した。   Further, in Comparative Example 1, as the flat wound electrode body, the lower uncoated portion 155f of the positive electrode wound uncoated portion 155d and the lower uncoated portion 156f of the negative electrode wound uncoated portion 156d are excised. Instead, the flat wound electrode body 150A is used. Other than that was carried out similarly to Example 1, and manufactured the non-aqueous-electrolyte secondary battery 500. FIG.

本比較例1では、直方体形状の電池ケース560(図12参照)を用いているため、注液工程において規定量(具体的には124g)の非水電解液140を電池ケース内に注入したとき、実施例1(電池ケース160)に比べて、非水電解液140の液面が低くなる。従って、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)は、実施例1に比べて減少する。このため、後述するように、本比較例1では、実施例1に比べて、非水電解液140の含浸完了時間が長くなった。   In this comparative example 1, since the rectangular battery case 560 (see FIG. 12) is used, when a specified amount (specifically, 124 g) of the nonaqueous electrolyte solution 140 is injected into the battery case in the liquid injection process. Compared with Example 1 (battery case 160), the liquid level of the nonaqueous electrolyte solution 140 is lowered. Therefore, the area (liquid contact area) of the portion in contact with the non-aqueous electrolyte 140 in both axial end faces of the wound coating portion 150d is reduced as compared with the first embodiment. For this reason, as will be described later, in Comparative Example 1, the completion time of impregnation with the nonaqueous electrolytic solution 140 was longer than that in Example 1.

(比較例2)
比較例2でも、比較例1と同様に、電池ケースとして、従来の直方体形状の電池ケース560(図12参照)を用いている。さらに、比較例1と同様に、扁平捲回電極体として、正極捲回未塗工部155dの下方未塗工部155f、及び、負極捲回未塗工部156dの下方未塗工部156fを切除することなく、扁平捲回電極体150Aを用いている。
(Comparative Example 2)
In Comparative Example 2, as in Comparative Example 1, a conventional rectangular parallelepiped battery case 560 (see FIG. 12) is used as the battery case. Further, similarly to Comparative Example 1, as a flat wound electrode body, a lower uncoated portion 155f of the positive electrode wound uncoated portion 155d and a lower uncoated portion 156f of the negative electrode wound uncoated portion 156d are provided. The flat wound electrode body 150A is used without excision.

但し、比較例2では、実施例1及び比較例1と異なり、注液工程において、128g(158.7mL)の非水電解液140を電池ケース内に注入した。このように、過剰な(規定量よりも4g多い)非水電解液140を電池ケース内に注入することで、比較例1に比べて、非水電解液140を電池ケース内に注入したときの液面高さを高くすることができる。従って、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を、比較例1よりも大きくすることができる。このため、後述するように、本比較例2では、比較例1に比べて、非水電解液140の含浸完了時間が短くなる。
上記以外は、実施例1と同様にして、比較例2の非水電解液二次電池500を製造した。
However, in Comparative Example 2, unlike Example 1 and Comparative Example 1, 128 g (158.7 mL) of nonaqueous electrolyte solution 140 was injected into the battery case in the liquid injection process. Thus, by injecting excess (4 g more than the specified amount) non-aqueous electrolyte solution 140 into the battery case, the non-aqueous electrolyte solution 140 was injected into the battery case as compared with Comparative Example 1. The liquid level can be increased. Therefore, the area (liquid contact area) of the portion in contact with the non-aqueous electrolyte 140 in both axial end faces of the wound coating portion 150d can be made larger than that in Comparative Example 1. For this reason, as will be described later, in this comparative example 2, the time for completing the impregnation of the nonaqueous electrolytic solution 140 is shorter than in the comparative example 1.
A nonaqueous electrolyte secondary battery 500 of Comparative Example 2 was manufactured in the same manner as Example 1 except for the above.

(含浸完了時間の調査)
実施例1及び比較例1,2について、以下のようにして、非水電解液の含浸完了時間を調査した。
(Investigation of impregnation completion time)
About Example 1 and Comparative Examples 1 and 2, the non-aqueous electrolyte impregnation completion time was investigated as follows.

実施例1では、124gの非水電解液140を電池ケース160内に注入し終えたときから、捲回塗工部150dの内部への非水電解液140の含浸が完了するまでの時間(含浸完了時間という)を調査した。詳細には、前述の電池ケース160及び扁平捲回電極体150を用いて、多数の電池を組み立てて用意し、これらの電池にそれぞれ非水電解液140を注入した。その後、それぞれの電池について、上述のように減圧加圧操作を行った後、一定時間が経過する毎に、電池を1つずつ抽出して、捲回塗工部150dの内部への非水電解液140の含浸が完了しているか否かを調査した。   In Example 1, the time from the completion of pouring 124 g of the non-aqueous electrolyte 140 into the battery case 160 until the impregnation of the non-aqueous electrolyte 140 into the wound coating portion 150 d (impregnation) Surveyed). Specifically, a large number of batteries were assembled using the battery case 160 and the flat wound electrode body 150 described above, and the nonaqueous electrolyte solution 140 was injected into each of these batteries. After that, after performing the decompression and pressurization operation as described above for each battery, the batteries are extracted one by one every time a certain time elapses, and non-aqueous electrolysis is performed inside the wound coating unit 150d. It was investigated whether the impregnation of the liquid 140 was completed.

なお、含浸完了したか否かの判断は、抽出した電池について初期充電を行い、その後、電池を分解して分析を行って、負極合材層塗工部156cまたはセパレータ157の表面にLiが析出しているか否かで判断した。Liが検出された場合は、未だ、捲回塗工部150dの内部への非水電解液140の含浸が完了していていないと判断することができる。一方、Liが検出されなかった場合は、捲回塗工部150dの内部への非水電解液140の含浸が完了したと判断することができる。このようにして、Liが検出されなかった電池について、非水電解液140を電池ケース160内に注入し終えたときから、当該電池を抽出するまで(初期充電を開始するまで)の経過時間を、含浸完了時間とした。その結果を表1に示す。   Whether or not the impregnation has been completed is determined by performing initial charging on the extracted battery, then disassembling and analyzing the battery, and Li is deposited on the surface of the negative electrode mixture layer coating portion 156c or the separator 157. Judging by whether or not. When Li is detected, it can be determined that the impregnation of the nonaqueous electrolytic solution 140 into the wound coating portion 150d has not yet been completed. On the other hand, when Li is not detected, it can be determined that the impregnation of the nonaqueous electrolytic solution 140 into the wound coating portion 150d is completed. Thus, for a battery in which Li was not detected, the elapsed time from when the non-aqueous electrolyte 140 was completely injected into the battery case 160 until the battery was extracted (until the initial charge was started) was And impregnation completion time. The results are shown in Table 1.

さらに、比較例1及び比較例2についても、上述のようにして、非水電解液140の含浸完了時間を調査した。これらの結果も表1に示す。   Further, for Comparative Example 1 and Comparative Example 2, the impregnation completion time of the nonaqueous electrolyte solution 140 was investigated as described above. These results are also shown in Table 1.

Figure 2013097980
Figure 2013097980

その結果、比較例1では、含浸完了時間が32時間となった。すなわち、非水電解液140を電池ケース560内に注入してから、捲回塗工部150dの内部への非水電解液140の含浸が完了するまでに、32時間を費やした。   As a result, in Comparative Example 1, the impregnation completion time was 32 hours. That is, 32 hours were spent from injecting the nonaqueous electrolyte solution 140 into the battery case 560 until the impregnation of the nonaqueous electrolyte solution 140 into the wound coating portion 150d was completed.

また、比較例2では、含浸完了時間が20時間となった。すなわち、非水電解液140を電池ケース560内に注入してから、捲回塗工部150dの内部への非水電解液140の含浸が完了するまでに、20時間を費やした。   In Comparative Example 2, the impregnation completion time was 20 hours. That is, 20 hours were spent from injecting the non-aqueous electrolyte 140 into the battery case 560 until the impregnation of the non-aqueous electrolyte 140 into the wound coating portion 150d was completed.

このように、比較例2では、比較例1に比べて、含浸完了時間を12時間短縮することができた。その理由は、比較例2では、注液工程において、比較例1よりも多量(規定量よりも4g多い)の非水電解液140を、電池ケース560内に注入したからである。これにより、比較例2では、比較例1に比べて、非水電解液140を電池ケース内に注入したときの液面高さを高くすることができ、その結果、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を、比較例1よりも大きくすることができたといえる。このため、比較例2では、比較例1に比べて、非水電解液140の含浸完了時間が短くなったといえる。   Thus, in Comparative Example 2, the impregnation completion time was shortened by 12 hours compared to Comparative Example 1. The reason is that in Comparative Example 2, a larger amount (4 g more than the specified amount) of nonaqueous electrolyte solution 140 was injected into battery case 560 in Comparative Example 2 in the liquid injection process. Thereby, in the comparative example 2, compared with the comparative example 1, the liquid level height when inject | pouring the non-aqueous electrolyte 140 in a battery case can be made high, As a result, the winding coating part 150d It can be said that the area (liquid contact area) of the portion in contact with the nonaqueous electrolyte solution 140 in both axial end faces can be made larger than that in Comparative Example 1. For this reason, in Comparative Example 2, it can be said that the completion time of impregnation with the nonaqueous electrolytic solution 140 is shorter than that in Comparative Example 1.

また、実施例1では、含浸完了時間が12時間となった。すなわち、非水電解液140を電池ケース160内に注入してから、捲回塗工部150dの内部への非水電解液140の含浸が完了するまでに、12時間を費やした。   In Example 1, the impregnation completion time was 12 hours. That is, 12 hours were spent from injecting the nonaqueous electrolyte solution 140 into the battery case 160 until the impregnation of the nonaqueous electrolyte solution 140 into the wound coating portion 150d was completed.

このように、実施例1では、比較例1に比べて、含浸完了時間を20時間も短縮することができた。その理由は、実施例1では、電池ケース160(ケース本体部110)について、電池ケース160(ケース本体部110)の壁部111のうち第1対向面112bを有する第1対向壁部111bを、第1上方内側面112cを有する第1上方壁部111cよりも、軸線AX方向について電池ケース160の内側に凹んだ形態としているからである。さらに、第2対向面112fを有する第2対向壁部111fを、第2上方内側面112gを有する第2上方壁部111gよりも、軸線AX方向について電池ケース160の内側に凹んだ形態としているからである(図1、図2参照)。   Thus, in Example 1, compared with Comparative Example 1, the impregnation completion time could be shortened by 20 hours. The reason for this is that in Example 1, for the battery case 160 (case body 110), the first opposing wall 111b having the first opposing surface 112b of the wall 111 of the battery case 160 (case body 110) is This is because the first upper wall 111c having the first upper inner surface 112c is recessed in the battery case 160 in the axis AX direction. Furthermore, since the second opposing wall portion 111f having the second opposing surface 112f is recessed toward the inner side of the battery case 160 in the axis AX direction than the second upper wall portion 111g having the second upper inner surface 112g. (See FIGS. 1 and 2).

これにより、実施例1の電池ケース160は、従来の直方体形状の電池ケース560(図12、図13参照)に比べて、下方側(底面側)の容量を小さくしている。その結果、非水電解液140を電池ケース内に注入したとき、実施例1では、注液量が同量(124g)であるにも拘わらず、比較例1に比べて、非水電解液140の液面を高くすることができた。   Thereby, the battery case 160 of Example 1 has the capacity | capacitance of the downward side (bottom surface side) made small compared with the battery case 560 (refer FIG. 12, FIG. 13) of the conventional rectangular parallelepiped shape. As a result, when the nonaqueous electrolytic solution 140 was injected into the battery case, the nonaqueous electrolytic solution 140 was compared with the comparative example 1 in Example 1, although the injection amount was the same amount (124 g). The liquid level could be increased.

これにより、実施例1では、比較例1に比べて、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を増大させることができた。その結果、実施例1では、比較例1に比べて、非水電解液140が捲回塗工部150dの内部に浸透する速度が速くなり、含浸が完了する(非水電解液140が捲回塗工部150dの内部全体に行き渡る)までの時間を短くすることができたといえる。   Thereby, in Example 1, compared with the comparative example 1, the area (liquid contact area) of the part which the non-aqueous electrolyte solution 140 contacts among the axial direction both ends of the winding coating part 150d can be increased. It was. As a result, in Example 1, compared with Comparative Example 1, the speed at which the nonaqueous electrolyte 140 penetrates into the wound coating portion 150d is increased, and the impregnation is completed (the nonaqueous electrolyte 140 is wound). It can be said that the time until the entire interior of the coating part 150d) was shortened.

しかも、実施例1では、実施例1よりも注液量の多い比較例2と比べても、含浸完了時間が短くなっている。
以上より、実施例1では、非水電解液140を短時間で捲回塗工部150dの内部に含浸させることができるといえる。これにより、電池の製造時間が短縮されるので、実施例1の非水電解液二次電池100は、安価な電池となる。
In addition, the impregnation completion time is shorter in Example 1 than in Comparative Example 2 in which the amount of liquid injection is larger than in Example 1.
From the above, in Example 1, it can be said that the non-aqueous electrolyte 140 can be impregnated in the wound coating part 150d in a short time. Thereby, since the manufacturing time of a battery is shortened, the nonaqueous electrolyte secondary battery 100 of Example 1 becomes an inexpensive battery.

(サイクル充放電試験)
次に、実施例1及び比較例1,2の非水電解液二次電池について、サイクル充放電試験を行った。
(Cycle charge / discharge test)
Next, a cycle charge / discharge test was performed on the nonaqueous electrolyte secondary batteries of Example 1 and Comparative Examples 1 and 2.

具体的には、各々の二次電池について、25℃の温度環境下で、充放電サイクルを行った。具体的には、各々の二次電池をSOC20%の状態とし、まず、200A(8.8C)の一定電流値で、10秒間、充電を行う。次いで、5秒間休止した後、200A(8.8C)の一定電流値で、10秒間、放電を行う。その後、5秒間休止する。この充放電を1サイクルとして、各二次電池について、複数サイクルの充放電を行った。このように、本試験では、ハイレート(8.8C)で、充放電サイクルを行っている。   Specifically, each secondary battery was subjected to a charge / discharge cycle in a temperature environment of 25 ° C. Specifically, each secondary battery is brought into a state where the SOC is 20%, and first, charging is performed for 10 seconds at a constant current value of 200 A (8.8 C). Next, after resting for 5 seconds, discharging is performed for 10 seconds at a constant current value of 200 A (8.8 C). Then pause for 5 seconds. This charging / discharging was made into 1 cycle, and charging / discharging of multiple cycles was performed about each secondary battery. Thus, in this test, the charge / discharge cycle is performed at a high rate (8.8 C).

このサイクル充放電試験では、所定サイクル毎に、各二次電池のIV抵抗値を測定し、測定されたIV抵抗値が、初期(サイクル充放電試験前)のIV抵抗値の1.5倍となったときのサイクル数を、劣化サイクル数として求めた。その結果を表1に示す。   In this cycle charge / discharge test, the IV resistance value of each secondary battery is measured every predetermined cycle, and the measured IV resistance value is 1.5 times the initial IV resistance value (before the cycle charge / discharge test). The number of cycles at the time was determined as the number of deterioration cycles. The results are shown in Table 1.

なお、IV抵抗値は、以下のようにして求めている。具体的には、各々の二次電池について、SOC20%の状態に調整し、25℃の温度環境下で、1Cの一定電流値で、10秒間放電を行い、放電終了時の電池電圧値を測定した。さらに、放電電流値のみを、3C、5C、10Cと異ならせて、それ以外は上記と同様の条件で放電を行って、それぞれの放電電流値による10秒間放電終了時の電池電圧値を測定した。   The IV resistance value is obtained as follows. Specifically, each secondary battery is adjusted to a SOC of 20%, discharged at a constant current value of 1 C for 10 seconds in a temperature environment of 25 ° C., and the battery voltage value at the end of discharge is measured. did. Furthermore, only the discharge current value was different from 3C, 5C, and 10C, and discharge was performed under the same conditions as above, and the battery voltage value at the end of discharge for 10 seconds was measured according to each discharge current value. .

その後、各二次電池について、横軸を放電電流値、縦軸を放電終了時の電池電圧値とした座標平面に、上記の放電により得られたデータをプロットした。そして、各二次電池について、これらのプロットデータに基づいて、最小二乗法により近似直線(一次式)を算出した。その傾きを各二次電池のIV抵抗値として得た。   Thereafter, for each secondary battery, the data obtained by the above discharge was plotted on a coordinate plane with the horizontal axis representing the discharge current value and the vertical axis representing the battery voltage value at the end of discharge. And about each secondary battery, the approximate straight line (primary formula) was computed by the least squares method based on these plot data. The inclination was obtained as the IV resistance value of each secondary battery.

表1に示すように、比較例1では、劣化サイクル数が7500サイクルとなった。すなわち、7500サイクルのハイレート充放電を行うことで、電池のIV抵抗値が、初期値の1.5倍に上昇した。   As shown in Table 1, in Comparative Example 1, the number of deterioration cycles was 7500. That is, by performing high-rate charge / discharge of 7500 cycles, the IV resistance value of the battery increased to 1.5 times the initial value.

一方、比較例2では、劣化サイクル数が2400サイクルとなった。すなわち、2400サイクルのハイレート充放電を行うことで、電池のIV抵抗値が、初期値の1.5倍に上昇した。このように、比較例2では、比較例1に比べて、劣化サイクル数が1/3以下にまで低下し、サイクル充放電特性が極めて大きく低下した。   On the other hand, in Comparative Example 2, the number of deterioration cycles was 2400. That is, by performing high-rate charge / discharge of 2400 cycles, the IV resistance value of the battery increased to 1.5 times the initial value. Thus, in the comparative example 2, compared with the comparative example 1, the deterioration cycle number fell to 1/3 or less, and the cycle charging / discharging characteristic fell very large.

その要因は、比較例2では、非水電解液140を電池ケース内に注入したときの液面高さを高くするために、比較例1に比べて、多量の(規定量よりも4g多い)非水電解液140を電池ケース内に注入したことにある。過剰な非水電解液140が電池内に存在していることが原因で、ハイレート充放電サイクルにより、早期に、電池の内部抵抗(IV抵抗)が上昇してしまったと考えられる。   The reason for this is that in Comparative Example 2, in order to increase the liquid level when the nonaqueous electrolytic solution 140 is injected into the battery case, the amount is higher than that of Comparative Example 1 (4 g more than the specified amount). That is, the nonaqueous electrolyte solution 140 is injected into the battery case. It is considered that the internal resistance (IV resistance) of the battery was raised early due to the high-rate charge / discharge cycle due to the presence of excess nonaqueous electrolyte solution 140 in the battery.

これに対し、実施例1では、劣化サイクル数が7800サイクルとなった。すなわち、7800サイクルのハイレート充放電を行うことで、電池のIV抵抗値が、初期値の1.5倍に上昇した。このように、実施例1では、劣化サイクル数が比較例1を上回り、サイクル充放電特性が向上した。   On the other hand, in Example 1, the number of degradation cycles was 7800 cycles. That is, by performing high-rate charge / discharge for 7800 cycles, the IV resistance value of the battery increased to 1.5 times the initial value. As described above, in Example 1, the number of deterioration cycles exceeded that of Comparative Example 1, and the cycle charge / discharge characteristics were improved.

以上の結果より、実施例1の製造方法では、電池のサイクル充放電特性を低下させることなく(詳細には、サイクル充放電特性を良好にして)、非水電解液を短時間で扁平捲回電極体の捲回塗工部内に含浸させることができたといえる(表1参照)。また、実施例1の電池は、サイクル充放電特性が良好で、且つ、安価な電池であるといえる。   From the above results, in the manufacturing method of Example 1, the non-aqueous electrolyte solution was flattened in a short time without reducing the cycle charge / discharge characteristics of the battery (specifically, improving the cycle charge / discharge characteristics). It can be said that the wound coating part of the electrode body could be impregnated (see Table 1). Moreover, it can be said that the battery of Example 1 is an inexpensive battery having good cycle charge / discharge characteristics.

(実施例2)
次に、実施例2の非水電解液二次電池200について説明する。本実施例2の非水電解液二次電池200は、実施例1の非水電解液二次電池100と比較して、電池ケースのケース本体部の形態が異なり、その他については同様である(図10、図11参照)。
(Example 2)
Next, the nonaqueous electrolyte secondary battery 200 of Example 2 will be described. The non-aqueous electrolyte secondary battery 200 of the second embodiment is different from the non-aqueous electrolyte secondary battery 100 of the first embodiment in the form of the case body of the battery case, and the others are the same ( (Refer FIG. 10, FIG. 11).

具体的には、本実施例2の電池ケース260(ケース本体部210)は、直方体形状のケースの内部のうち、扁平捲回電極体150の第1切断面150bと軸線AX方向(図10において左右方向)に対向する位置に、スペーサー216を有している。このスペーサー216は、ケース本体部210と一体となって、ケース本体部210の壁部212の一部を構成する。   Specifically, the battery case 260 (case main body 210) of the second embodiment has a first cut surface 150b of the flat wound electrode body 150 and an axis AX direction (in FIG. 10) in the inside of the rectangular parallelepiped case. A spacer 216 is provided at a position facing the left and right direction. The spacer 216 is integrated with the case main body 210 and constitutes a part of the wall 212 of the case main body 210.

なお、スペーサー216は、ポリフェニレンサルファイド(PPS)樹脂製で、直方体形状をなしている。スペーサー216の外寸は、14mm(電池ケース260の幅方向寸法、図10において左右方向寸法)×35mm(電池ケース260の高さ方向寸法、図10において上下方向寸法)×24mm(電池ケース260の奥行き方向寸法、図10において紙面に直交する方向の寸法)である。スペーサー216の奥行き寸法は、電池ケース260(ケース本体部210)の奥行き内寸(図11のC寸法)と一致している。   The spacer 216 is made of polyphenylene sulfide (PPS) resin and has a rectangular parallelepiped shape. The outer dimension of the spacer 216 is 14 mm (width direction dimension of the battery case 260, horizontal dimension in FIG. 10) × 35 mm (height direction dimension of the battery case 260, vertical dimension in FIG. 10) × 24 mm (battery case 260 dimension). It is a dimension in the depth direction, a dimension in a direction perpendicular to the paper surface in FIG. The depth dimension of the spacer 216 coincides with the inner depth dimension (C dimension in FIG. 11) of the battery case 260 (case main body 210).

このような電池ケース260でも、実施例1の電池ケース160と同様に、適切に、第1対向面212bを、第1上方内側面212cよりも軸線AX方向について電池ケースの内側(図10において左側)に位置させることができる。具体的には、スペーサー216の側面のうち、扁平捲回電極体150の第1切断面150bと軸線AX方向に対向する面(図10において左側を向く面)が、第1対向面212bとなる。この第1対向面212bは、第1上方内側面212cよりも軸線AX方向について電池ケースの内側に位置している(図10参照)。   In such a battery case 260 as well, similarly to the battery case 160 of the first embodiment, the first facing surface 212b is appropriately placed on the inner side of the battery case (on the left side in FIG. 10) in the axis AX direction with respect to the first upper inner surface 212c. ). Specifically, of the side surfaces of the spacer 216, the surface facing the first cut surface 150b of the flat wound electrode body 150 in the axis AX direction (the surface facing the left side in FIG. 10) is the first facing surface 212b. . The first opposing surface 212b is located on the inner side of the battery case in the axis AX direction than the first upper inner surface 212c (see FIG. 10).

さらに、本実施例2の電池ケース260(ケース本体部210)は、直方体形状の電池ケースの内部のうち、扁平捲回電極体150の第2切断面150cと軸線AX方向(図10において左右方向)に対向する位置にも、スペーサー217を有している。このスペーサー217も、ケース本体部210と一体となって、ケース本体部210の壁部212の一部を構成する。なお、スペーサー217は、スペーサー216と同等品であり、同一形状である。   Furthermore, the battery case 260 (case body portion 210) of the second embodiment has the second cut surface 150c of the flat wound electrode body 150 and the axis AX direction (the left-right direction in FIG. 10) in the inside of the rectangular parallelepiped battery case. A spacer 217 is also provided at a position opposite to. The spacer 217 also forms a part of the wall 212 of the case body 210 together with the case body 210. The spacer 217 is equivalent to the spacer 216 and has the same shape.

これにより、実施例1の電池ケース160と同様に、適切に、第2対向面212fを、第2上方内側面212gよりも軸線AX方向について電池ケースの内側(図10において右側)に位置させることができる。具体的には、スペーサー217の側面のうち扁平捲回電極体150の第2切断面150cと軸線AX方向に対向する面(図10において右側を向く面)が、第2対向面212fとなる。この第2対向面212fは、第2上方内側面212gよりも軸線AX方向について電池ケースの内側に位置している(図10参照)。   Thus, similarly to the battery case 160 of the first embodiment, the second facing surface 212f is appropriately positioned on the inner side (right side in FIG. 10) of the second upper inner surface 212g in the axis AX direction. Can do. Specifically, of the side surfaces of the spacer 217, the surface facing the second cut surface 150c of the flat wound electrode body 150 in the axis AX direction (the surface facing the right side in FIG. 10) is the second facing surface 212f. The second facing surface 212f is located on the inner side of the battery case in the axis AX direction than the second upper inner surface 212g (see FIG. 10).

なお、本実施例2では、電池ケース260のケース本体部210の内寸を、以下のようにしている。具体的には、図11を参照して説明すると、幅方向(扁平捲回電極体150の軸線方向に一致する方向)の内寸Aを152mm、深さ方向(図11において上下方向)の内寸Bを88mm、奥行きの内寸Cを24mmとしている。   In the second embodiment, the internal dimensions of the case body 210 of the battery case 260 are as follows. Specifically, with reference to FIG. 11, the inner dimension A in the width direction (the direction corresponding to the axial direction of the flat wound electrode body 150) is 152 mm, and the inner dimension A is in the depth direction (the vertical direction in FIG. 11). The dimension B is 88 mm, and the inner dimension C of the depth is 24 mm.

さらに、第1対向面212bの高さ寸法D(図11において上下方向寸法)を35mm、第1対向面112bの突出寸法E(第1上方内側面212cから第1対向面212bまでの軸線AX方向距離に相当)を14mmとしている。さらに、第2対向面212fの高さ寸法F(図11において上下方向寸法)を35mm、第2対向面212bの突出寸法G(第2上方内側面212gから第2対向面212fまでの軸線AX方向距離に相当)を14mmとしている。
要するに、本実施例2の電池ケース260は、比較例1の電池ケース560の内部に、スペーサー216,217を配置したものに相当する。
Furthermore, the height dimension D (vertical direction dimension in FIG. 11) of the first facing surface 212b is 35 mm, and the projecting dimension E of the first facing surface 112b (the axis AX direction from the first upper inner side surface 212c to the first facing surface 212b) (Corresponding to the distance) is 14 mm. Furthermore, the height dimension F (vertical dimension in FIG. 11) of the second facing surface 212f is 35 mm, and the protruding dimension G of the second facing surface 212b (axis AX direction from the second upper inner surface 212g to the second facing surface 212f) (Corresponding to the distance) is 14 mm.
In short, the battery case 260 of the second embodiment corresponds to a case where the spacers 216 and 217 are arranged inside the battery case 560 of the first comparative example.

このような電池ケース260(ケース本体部210)でも、実施例1の電池ケース160と同様に、底面215(下面)から第1対向面212b及び第2対向面212fの上端に至るまでの内部空間S1(図11においてD,Fで示す高さ寸法部分の空間)の単位高さ当たりの容量(ケース本体部210の底面積に一致する)を、これよりも上方の内部空間S2の単位高さ当たりの容量(比較例1の電池ケース560の底面積に一致する)よりも小さくすることができる。従って、実施例2の電池ケース260は、従来の直方体形状の電池ケース560(図12、図13参照)に比べて、下方側(底面側)の容量が小さくなる。   In such a battery case 260 (case body portion 210) as well as the battery case 160 of Example 1, the internal space from the bottom surface 215 (lower surface) to the upper ends of the first opposing surface 212b and the second opposing surface 212f. The capacity per unit height (corresponding to the bottom area of the case body 210) of S1 (the space of the height dimension portion indicated by D and F in FIG. 11) is the unit height of the internal space S2 above this. It can be made smaller than the hit capacity (corresponding to the bottom area of the battery case 560 of Comparative Example 1). Therefore, the battery case 260 of Example 2 has a lower capacity (bottom side) than the conventional rectangular battery case 560 (see FIGS. 12 and 13).

これにより、本実施例2でも、実施例1と同様に、注液工程において、一定量(規定量)の非水電解液140を電池ケース260内に注入したとき、従来の直方体形状の電池ケース560(内面が直方体形状)に比べて、非水電解液140の液面を高くすることができる。従って、本実施例2の電池ケース260を用いることで、従来の電池ケース560を用いる場合に比べて、捲回塗工部の軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を増大させることができる。   Thereby, also in the present Example 2, when a fixed amount (a prescribed amount) of the non-aqueous electrolyte solution 140 is injected into the battery case 260 in the injection process, as in Example 1, a conventional rectangular parallelepiped battery case Compared to 560 (inner surface is a rectangular parallelepiped shape), the liquid level of the non-aqueous electrolyte 140 can be increased. Therefore, by using the battery case 260 of the second embodiment, compared to the case of using the conventional battery case 560, the area of the portion where the nonaqueous electrolyte solution 140 is in contact with each other in the axial direction both end faces of the wound coating portion. (Liquid contact area) can be increased.

従って、本実施例2では、含浸工程において、非水電解液140を短時間で捲回塗工部150dの内部に含浸させることができる。しかも、非水電解液140の液面を高くするため(液接触面積を増大させるため)に、電池ケース260内に過剰な非水電解液140を注入する必要がないので、電池のサイクル充放電特性を低下させてしまうこともない。   Therefore, in the second embodiment, in the impregnation step, the non-aqueous electrolyte 140 can be impregnated in the wound coating portion 150d in a short time. In addition, in order to increase the liquid level of the non-aqueous electrolyte 140 (in order to increase the liquid contact area), it is not necessary to inject an excessive amount of the non-aqueous electrolyte 140 into the battery case 260. The characteristics are not deteriorated.

(含浸完了時間の調査)
実施例2についても、実施例1と同様な方法により、非水電解液140の含浸完了時間を調査した。その結果を表2に示す。なお、本実施例2との比較のため、前述の比較例1,2の結果も、表2に示す。
(Investigation of impregnation completion time)
Also in Example 2, the completion time of impregnation with the nonaqueous electrolyte solution 140 was investigated by the same method as in Example 1. The results are shown in Table 2. For comparison with Example 2, the results of Comparative Examples 1 and 2 are also shown in Table 2.

Figure 2013097980
Figure 2013097980

実施例2では、実施例1と同様に、含浸完了時間が12時間となった。すなわち、非水電解液140を電池ケース260内に注入してから、捲回塗工部150dの内部への非水電解液140の含浸が完了するまでに、12時間を費やした。   In Example 2, as in Example 1, the impregnation completion time was 12 hours. That is, 12 hours were spent from injecting the nonaqueous electrolyte solution 140 into the battery case 260 until the impregnation of the nonaqueous electrolyte solution 140 into the wound coating portion 150d was completed.

このように、実施例2では、比較例1に比べて、含浸完了時間を20時間も短縮することができた。その理由は、実施例1と同様である。具体的には、前述のような形態の電池ケース260(ケース本体部210)を用いることで、比較例1に比べて、捲回塗工部150dの軸線方向両端面のうち非水電解液140が接触する部分の面積(液接触面積)を増大させることができたからである。その結果、実施例2では、比較例1に比べて、非水電解液140が捲回塗工部150dの内部に浸透する速度が速くなり、含浸が完了する(非水電解液140が捲回塗工部150dの内部全体に行き渡る)までの時間を短くすることができたといえる。   Thus, in Example 2, compared with Comparative Example 1, the impregnation completion time could be shortened by 20 hours. The reason is the same as in the first embodiment. Specifically, by using the battery case 260 (the case main body portion 210) having the above-described form, the non-aqueous electrolyte solution 140 of both end surfaces in the axial direction of the wound coating portion 150d is compared with Comparative Example 1. It is because the area (liquid contact area) of the part which contacts can be increased. As a result, in Example 2, compared with Comparative Example 1, the speed at which the nonaqueous electrolyte 140 penetrates into the wound coating portion 150d is increased, and the impregnation is completed (the nonaqueous electrolyte 140 is wound). It can be said that the time until the entire interior of the coating part 150d) was shortened.

しかも、実施例2では、実施例2よりも注液量の多い比較例2と比べても、含浸完了時間が短くなっている。
以上より、実施例2では、非水電解液140を短時間で捲回塗工部150dの内部に含浸させることができるといえる。これにより、電池の製造時間が短縮されるので、実施例2の非水電解液二次電池200は、安価な電池となる。
In addition, the impregnation completion time is shorter in Example 2 than in Comparative Example 2 in which the amount of liquid injection is larger than in Example 2.
From the above, in Example 2, it can be said that the non-aqueous electrolyte 140 can be impregnated in the wound coating part 150d in a short time. Thereby, since the manufacturing time of the battery is shortened, the nonaqueous electrolyte secondary battery 200 of Example 2 is an inexpensive battery.

(サイクル充放電試験)
また、実施例2についても、実施例1と同様な方法により、サイクル充放電を行って、電池のIV抵抗値が、初期(サイクル充放電試験前)のIV抵抗値の1.5倍となったときのサイクル数を、劣化サイクル数として求めた。その結果も表2に示す。
(Cycle charge / discharge test)
In Example 2, cycle charge / discharge is performed in the same manner as in Example 1, and the IV resistance value of the battery is 1.5 times the initial IV resistance value (before the cycle charge / discharge test). The number of cycles was determined as the number of deterioration cycles. The results are also shown in Table 2.

実施例2では、劣化サイクル数が7500サイクルとなった。すなわち、7500サイクルのハイレート充放電を行うことで、電池のIV抵抗値が、初期値の1.5倍に上昇した。このように、実施例2では、比較例1に比べて含浸完了時間を大幅に短縮しつつも、劣化サイクル数が比較例1と同等となり、サイクル充放電特性が良好となった。   In Example 2, the number of deterioration cycles was 7500. That is, by performing high-rate charge / discharge of 7500 cycles, the IV resistance value of the battery increased to 1.5 times the initial value. Thus, in Example 2, while the impregnation completion time was significantly shortened compared with Comparative Example 1, the number of deteriorated cycles was equivalent to that of Comparative Example 1, and the cycle charge / discharge characteristics were good.

以上の結果より、実施例2では、電池のサイクル充放電特性を低下させることなく、非水電解液を短時間で扁平捲回電極体の捲回塗工部内に含浸させることができたといえる(表2参照)。また、実施例2の電池は、サイクル充放電特性が良好で、且つ、安価な電池であるといえる。   From the above results, it can be said that in Example 2, the non-aqueous electrolyte solution could be impregnated in the wound coating portion of the flat wound electrode body in a short time without reducing the cycle charge / discharge characteristics of the battery ( (See Table 2). Moreover, it can be said that the battery of Example 2 is an inexpensive battery having good cycle charge / discharge characteristics.

以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.

100,200 非水電解液二次電池
160,260 電池ケース
110,210 ケース本体部
111,211 壁部
111b 第1対向壁部
111c 第1上方壁部
111f 第2対向壁部
111g 第2上方壁部
112,212 内側面
112b,212b 第1対向面
112c,212c 第1上方内側面
112f,212f 第2対向面
112g,212g 第2上方内側面
120 正極集電端子部材
130 負極集電端子部材
170 蓋部
170b 注液孔
140 非水電解液
150 扁平捲回電極体
150b 第1切断面
150c 第2切断面
150d 捲回塗工部
155 正極
155b 正極合材層未塗工部
155c 正極合材層塗工部
155d 正極捲回未塗工部
155f 下方正極未塗工部
156 負極
156b 負極合材層未塗工部
156c 負極合材層塗工部
156d 負極捲回未塗工部
156f 下方負極未塗工部
157 セパレータ
216,217 スペーサー
AX 軸線
100, 200 Nonaqueous electrolyte secondary battery 160, 260 Battery case 110, 210 Case main body 111, 211 Wall 111b First opposing wall 111c First upper wall 111f Second opposing wall 111g Second upper wall 112, 212 Inner side surfaces 112b, 212b First opposing surface 112c, 212c First upper inner side surface 112f, 212f Second opposing surface 112g, 212g Second upper inner side surface 120 Positive electrode current collecting terminal member 130 Negative electrode current collecting terminal member 170 Lid 170b Injection hole 140 Nonaqueous electrolyte 150 Flat wound electrode body 150b First cut surface 150c Second cut surface 150d Winding coating portion 155 Positive electrode 155b Positive electrode mixture layer uncoated portion 155c Positive electrode mixture layer coating portion 155d Positive electrode winding uncoated portion 155f Lower positive electrode uncoated portion 156 Negative electrode 156b Negative electrode mixture layer uncoated portion 156c Negative electrode mixture layer coated portion 56d Fukyokumeku times uncoated portion 156f lower negative electrode uncoated portion 157 a separator 216, 217 spacer AX axis

Claims (6)

正極、負極、及び、セパレータを扁平形状に捲回してなる扁平捲回電極体と、
上記扁平捲回電極体を収容する角形の電池ケースと、
上記扁平捲回電極体内に含浸している非水電解液と、
集電端子部材と、を備え、
上記扁平捲回電極体は、
上記正極の合材層塗工部、上記負極の合材層塗工部、及び、上記セパレータが捲回されてなる捲回塗工部と、
上記扁平捲回電極体の軸線方向両端部に位置し、上記正極の合材層未塗工部と上記負極の合材層未塗工部とがそれぞれ捲回されてなる捲回未塗工部と、を有し、
上記集電端子部材は、上記捲回未塗工部に溶接されてなる
非水電解液二次電池の製造方法において、
上記正極、上記負極、及び、上記セパレータを扁平形状に捲回して扁平捲回電極体を形成する捲回工程と、
上記扁平捲回電極体の上記捲回未塗工部のうち、上記扁平捲回電極体を上記電池ケース内に収容する姿勢としたときに上記集電端子部材を溶接する予定部位または溶接した部位よりも下方に位置する下方未塗工部、を切除する切除工程と、
上記下方未塗工部を切除した上記扁平捲回電極体を、上記電池ケース内に収容する工程と、
上記扁平捲回電極体を収容した上記電池ケース内に、上記非水電解液を注入する注液工程と、
上記電池ケース内に注入した上記非水電解液を上記捲回塗工部内に含浸させる含浸工程と、を備え、
上記電池ケースとして、当該電池ケースの内側面のうち上記下方未塗工部を切除した上記扁平捲回電極体の切断面と上記軸線方向に対向する対向面を、これより上方の位置で上記捲回未塗工部の端面と上記軸線方向に対向する上方内側面よりも、上記軸線方向について上記電池ケースの内側に位置させた形態の電池ケースを用いる
非水電解液二次電池の製造方法。
A flat wound electrode body obtained by winding a positive electrode, a negative electrode, and a separator into a flat shape;
A rectangular battery case that houses the flat wound electrode body;
A non-aqueous electrolyte impregnated in the flat wound electrode body;
A current collecting terminal member,
The flat wound electrode body is
A positive electrode mixture layer coating portion, a negative electrode mixture layer coating portion, and a wound coating portion formed by winding the separator;
A wound uncoated portion that is located at both ends in the axial direction of the flat wound electrode body, and in which the positive electrode mixture layer uncoated portion and the negative electrode mixture layer uncoated portion are respectively wound. And having
In the method for producing a non-aqueous electrolyte secondary battery, the current collecting terminal member is welded to the wound uncoated portion.
A winding step of winding the positive electrode, the negative electrode, and the separator into a flat shape to form a flat wound electrode body;
Of the uncoated portion of the flat wound electrode body, when the flat wound electrode body is in a posture to be accommodated in the battery case, the current collecting terminal member is to be welded or welded. An excision step of excising the lower uncoated part located below,
Storing the flat wound electrode body with the lower uncoated portion removed in the battery case; and
Injecting the non-aqueous electrolyte into the battery case containing the flat wound electrode body,
An impregnation step of impregnating the wound coating portion with the non-aqueous electrolyte injected into the battery case, and
As the battery case, a cutting surface of the flat wound electrode body obtained by excising the lower uncoated portion of the inner side surface of the battery case and a facing surface facing the axial direction are positioned at a position above the upper surface. A non-aqueous electrolyte secondary battery manufacturing method using a battery case in a form that is positioned on the inner side of the battery case in the axial direction rather than an upper inner surface facing the end surface of the uncoated part in the axial direction.
請求項1に記載の非水電解液二次電池の製造方法であって、
前記電池ケースは、当該電池ケースの壁部のうち前記対向面を有する対向壁部が、前記上方内側面を有する上方壁部よりも、前記軸線方向について上記電池ケースの内側に凹んだ形態とすることにより、上記対向面を上記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置させてなる
非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery according to claim 1,
The battery case is configured such that, of the wall portions of the battery case, the facing wall portion having the facing surface is recessed toward the inner side of the battery case in the axial direction than the upper wall portion having the upper inner surface. By this, the manufacturing method of the non-aqueous electrolyte secondary battery which makes the said opposing surface be located inside the said battery case about the said axial direction rather than the said upper inner surface.
請求項1に記載の非水電解液二次電池の製造方法であって、
前記電池ケースは、
直方体形状のケースの内部のうち前記扁平捲回電極体の前記切断面と前記軸線方向に対向する位置に配置されたスペーサーを有し、
上記スペーサーの側面であって上記切断面と上記軸線方向に対向する前記対向面が、前記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる
非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery according to claim 1,
The battery case is
A spacer disposed in a position facing the cut surface of the flat wound electrode body and the axial direction among the inside of a rectangular parallelepiped case,
A nonaqueous electrolyte secondary battery in which a side surface of the spacer and the facing surface facing the cut surface in the axial direction is located inside the battery case in the axial direction with respect to the upper inner surface. Production method.
正極、負極、及び、セパレータを扁平形状に捲回してなる扁平捲回電極体と、
上記扁平捲回電極体を収容する角形の電池ケースと、
上記扁平捲回電極体内に含浸している非水電解液と、
集電端子部材と、を備え、
上記扁平捲回電極体は、
上記正極の合材層塗工部、上記負極の合材層塗工部、及び、上記セパレータが捲回されてなる捲回塗工部と、
上記扁平捲回電極体の軸線方向両端部に位置し、上記正極の合材層未塗工部と上記負極の合材層未塗工部とがそれぞれ捲回されてなる捲回未塗工部と、を有し、
上記集電端子部材は、上記捲回未塗工部に溶接されてなる
非水電解液二次電池において、
上記捲回未塗工部のうち、上記集電端子部材が溶接されている部位よりも下方に位置する下方未塗工部が、切除されてなり、
上記電池ケースの内側面のうち上記下方未塗工部を切除した上記扁平捲回電極体の切断面と上記軸線方向に対向する対向面が、これより上方の位置で上記捲回未塗工部の端面と上記軸線方向に対向する上方内側面よりも、上記軸線方向について上記電池ケースの内側に位置してなる
非水電解液二次電池。
A flat wound electrode body obtained by winding a positive electrode, a negative electrode, and a separator into a flat shape;
A rectangular battery case that houses the flat wound electrode body;
A non-aqueous electrolyte impregnated in the flat wound electrode body;
A current collecting terminal member,
The flat wound electrode body is
A positive electrode mixture layer coating portion, a negative electrode mixture layer coating portion, and a wound coating portion formed by winding the separator;
A wound uncoated portion that is located at both ends in the axial direction of the flat wound electrode body, and in which the positive electrode mixture layer uncoated portion and the negative electrode mixture layer uncoated portion are respectively wound. And having
In the nonaqueous electrolyte secondary battery formed by welding the current collecting terminal member to the wound uncoated portion,
Of the winding uncoated part, the lower uncoated part located below the part where the current collecting terminal member is welded is cut off,
A cut surface of the flat wound electrode body obtained by excising the lower uncoated portion of the inner side surface of the battery case and a facing surface facing the axial direction are positioned above the wound uncoated portion. A non-aqueous electrolyte secondary battery that is located inside the battery case in the axial direction from the upper inner surface that faces the end surface of the battery in the axial direction.
請求項4に記載の非水電解液二次電池であって、
前記電池ケースの壁部のうち前記対向面を有する対向壁部を、前記上方内側面を有する上方壁部よりも、前記軸線方向について上記電池ケースの内側に凹んだ形態とすることにより、上記対向面が、上記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる
非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 4,
The opposing wall portion having the opposing surface among the wall portions of the battery case is configured to be recessed inward of the battery case with respect to the axial direction rather than the upper wall portion having the upper inner surface. A non-aqueous electrolyte secondary battery in which a surface is located inside the battery case in the axial direction with respect to the upper inner surface.
請求項4に記載の非水電解液二次電池であって、
前記電池ケースは、
直方体形状のケースの内部のうち前記扁平捲回電極体の前記切断面と前記軸線方向に対向する位置に配置されたスペーサーを有し、
上記スペーサーの側面であって上記切断面と上記軸線方向に対向する前記対向面が、前記上方内側面よりも上記軸線方向について上記電池ケースの内側に位置してなる
非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 4,
The battery case is
A spacer disposed in a position facing the cut surface of the flat wound electrode body and the axial direction among the inside of a rectangular parallelepiped case,
A non-aqueous electrolyte secondary battery in which a side surface of the spacer that is opposed to the cut surface in the axial direction is located inside the battery case in the axial direction with respect to the upper inner surface.
JP2011239035A 2011-10-31 2011-10-31 Nonaqueous electrolyte secondary battery and manufacturing method thereof Pending JP2013097980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239035A JP2013097980A (en) 2011-10-31 2011-10-31 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239035A JP2013097980A (en) 2011-10-31 2011-10-31 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013097980A true JP2013097980A (en) 2013-05-20

Family

ID=48619725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239035A Pending JP2013097980A (en) 2011-10-31 2011-10-31 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2013097980A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
EP2822057A1 (en) * 2013-07-04 2015-01-07 Wyon AG Battery with a wound construction
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2015106496A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Secondary battery
JP2016051544A (en) * 2014-08-29 2016-04-11 日立オートモティブシステムズ株式会社 Flat wound secondary battery
JP2017045654A (en) * 2015-08-27 2017-03-02 古河電池株式会社 Metal-air battery
WO2017209101A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Battery and method for manufacturing same
WO2018055875A1 (en) * 2016-09-20 2018-03-29 株式会社村田製作所 Power storage device
JP2018166080A (en) * 2017-03-28 2018-10-25 株式会社Soken Manufacturing method of secondary battery
WO2019039334A1 (en) * 2017-08-24 2019-02-28 株式会社村田製作所 Electricity storage device
DE102018218213A1 (en) * 2018-10-24 2020-04-30 Robert Bosch Gmbh Battery cell and battery module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
EP2822057A1 (en) * 2013-07-04 2015-01-07 Wyon AG Battery with a wound construction
JP2015079578A (en) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2015106496A (en) * 2013-11-29 2015-06-08 日立オートモティブシステムズ株式会社 Secondary battery
JP2016051544A (en) * 2014-08-29 2016-04-11 日立オートモティブシステムズ株式会社 Flat wound secondary battery
JP2017045654A (en) * 2015-08-27 2017-03-02 古河電池株式会社 Metal-air battery
WO2017209101A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Battery and method for manufacturing same
CN109075395A (en) * 2016-05-31 2018-12-21 株式会社村田制作所 Battery and its manufacturing method
US10797298B2 (en) 2016-05-31 2020-10-06 Murata Manufacturing Co., Ltd. Battery and manufacturing method therefor
CN109075395B (en) * 2016-05-31 2021-08-03 株式会社村田制作所 Battery and method for manufacturing same
WO2018055875A1 (en) * 2016-09-20 2018-03-29 株式会社村田製作所 Power storage device
JP2018166080A (en) * 2017-03-28 2018-10-25 株式会社Soken Manufacturing method of secondary battery
WO2019039334A1 (en) * 2017-08-24 2019-02-28 株式会社村田製作所 Electricity storage device
DE102018218213A1 (en) * 2018-10-24 2020-04-30 Robert Bosch Gmbh Battery cell and battery module

Similar Documents

Publication Publication Date Title
JP2013097980A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
US10516188B2 (en) Wound electrode body lithium ion battery having active electrode material layers of different widths
KR101871081B1 (en) Lithium-ion secondary battery and manufacturing method thereof
CN105009330A (en) Lithium electrode and lithium secondary battery comprising same
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
KR101941796B1 (en) Nonaqueous electrolyte secondary battery
KR101742609B1 (en) Electrode for a lithium secondary battery and lithium secondary battery comprising the same
JP6260835B2 (en) Screening method for reusable non-aqueous electrolyte secondary battery
JP6796445B2 (en) Non-aqueous secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
KR101866963B1 (en) Nonaqueous electrolyte secondary battery and vehicle
JP2012109102A (en) Nonaqueous electrolyte secondary battery
JP2012079560A (en) Nonaqueous electrolyte secondary battery
JP6249233B2 (en) Method for producing non-aqueous secondary battery
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP2012243455A (en) Lithium ion secondary battery
JP2018163858A (en) Manufacturing method of square secondary battery
JP7008275B2 (en) Power storage element
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2013062050A (en) Manufacturing method of nonaqueous electrolyte secondary cell
JP5783415B2 (en) Lithium ion secondary battery
JPWO2019103019A1 (en) Power storage element and power storage device
JP2019096521A (en) Manufacturing method of sealed battery
JP2017103106A (en) Lithium ion secondary battery