JP2007294286A - Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it - Google Patents

Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it Download PDF

Info

Publication number
JP2007294286A
JP2007294286A JP2006121721A JP2006121721A JP2007294286A JP 2007294286 A JP2007294286 A JP 2007294286A JP 2006121721 A JP2006121721 A JP 2006121721A JP 2006121721 A JP2006121721 A JP 2006121721A JP 2007294286 A JP2007294286 A JP 2007294286A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006121721A
Other languages
Japanese (ja)
Other versions
JP5192657B2 (en
Inventor
Tsuguro Mori
嗣朗 森
Hisashi Satake
久史 佐竹
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2006121721A priority Critical patent/JP5192657B2/en
Publication of JP2007294286A publication Critical patent/JP2007294286A/en
Application granted granted Critical
Publication of JP5192657B2 publication Critical patent/JP5192657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a nonaqueous system secondary battery capable of discharging at a current density of several tens A/g with respect to the weight of negative active material, having high electrode density, and having high capacity per the weight of negative active material, responding to a high request level to high energy density and high output/high rate discharge characteristics in a power storage system, such as an ultra-high output device having an energy density of 100 Wh/L and an output characteristic exceeding 300 C, not present until now; and to provide a nonaqueous system secondary battery having high energy density/high output using this negative electrode. <P>SOLUTION: The negative electrode for the nonaqueous system secondary battery contains an insoluble infusible substrate having a ratio of hydrogen atom to carbon atom of 0.60-0.05 and a spacing of (002) planes of 3.6 Å or more, as the main component, and the average particle diameter of the insoluble infusible substrate is 2.0 μm or less, and lithium of 500 mAh/g or more with respect to the weight of the insoluble infusible substrate is previously carried. The nonaqueous system secondary battery using this negative electrode is manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高エネルギー密度かつ高出力/高率充電特性を有する非水系二次電池に用いる非水系二次電池用負極及びその負極を具備する非水系二次電池に関する。   The present invention relates to a negative electrode for a non-aqueous secondary battery used for a non-aqueous secondary battery having high energy density and high output / high rate charging characteristics, and a non-aqueous secondary battery including the negative electrode.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。その中、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システム側には高出力放電特性および/または高率充電特性が要求されている。この要求に対応する為、蓄電システムにおいてはリチウムイオン電池の高出力化あるいは電気二重層キャパシタに代表されるキャパシタの高エネルギー密度化が検討されている。   In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources. Yes. Among them, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), the engine or the fuel cell operates at maximum efficiency. In order to cope with output fluctuation or energy regeneration on the load side, high output discharge characteristics and / or high rate charging characteristics are required on the power storage system side. In order to meet this demand, in power storage systems, higher output of lithium ion batteries or higher energy density of capacitors represented by electric double layer capacitors are being studied.

高エネルギー密度二次電池の代表であるリチウムイオン電池は負極にはリチウムイオンのドープ・脱ドープ可能な黒鉛等の炭素材料が用いられてきた。リチウムイオン電池用負極材料として適用可能な材料としては、黒鉛、非晶質炭素材料が一般的であるが、昨今の高出力の非水系二次電池には、高出力放電特性/高率充電特性が黒鉛に比べ優れる、非晶質炭素材料の検討が進められている。   Lithium ion batteries, which are representative of high energy density secondary batteries, have been made of carbon materials such as graphite capable of being doped / undoped with lithium ions for the negative electrode. As materials that can be used as negative electrode materials for lithium ion batteries, graphite and amorphous carbon materials are generally used. However, high power non-aqueous secondary batteries have high output discharge characteristics / high rate charge characteristics. Amorphous carbon materials that are superior to graphite are being studied.

一方、リチウムイオンのドープ・脱ドープ可能な材料として炭素六角網面の周縁に水素が結合している材料群(最近、非特許文献1においてハイドログラフェンと総称されている)があり、例えば特許文献1に記載されている、炭素、水素および酸素から成る芳香族系縮合ポリマーの熱処理物であって、水素/炭素原子比が0.60〜0.15であり、ポリアセン系骨格構造を含有する不溶不融性基体がある。ポリアセン系骨格構造を含有する不溶不融性基体は非特許文献2にてPASと呼ばれ(PASはPolyacenic Semiconductorの略)、その特徴は、黒鉛の3倍程度のリチウムイオンをドープ/アンドープできることが非特許文献3に記載されている。また、このポリアセン系骨格構造を含有する不溶不融性基体を用い、リチウムを予め負極に担持(以下プリドープと呼ぶこともある)させて、高電圧を得て、高容量化した非水系二次電池が非特許文献4、特許文献2、非特許文献5、特許文献3に記載されているが、いずれもポリアセン系骨格構造を含有する不溶不融性基体(PAS)の特徴である高容量を活かした高エネルギータイプの電池へのアプローチであり、高エネルギー密度かつ高出力を有する非水系リチウムイオン電池への適用に関する記載はない。   On the other hand, there is a material group (generally referred to as hydrographene in Non-Patent Document 1) in which hydrogen is bonded to the periphery of the carbon hexagonal network as a material capable of doping and dedoping lithium ions. 1. A heat-treated product of an aromatic condensation polymer composed of carbon, hydrogen, and oxygen described in 1, having a hydrogen / carbon atom ratio of 0.60 to 0.15 and containing a polyacene skeleton structure There is an infusible substrate. An insoluble and infusible substrate containing a polyacene-based skeleton structure is called PAS in Non-Patent Document 2 (PAS is an abbreviation for Polyacenic Semiconductor), and its feature is that it can be doped / undoped with lithium ions about 3 times that of graphite. It is described in Non-Patent Document 3. In addition, a non-aqueous secondary material in which a high voltage is obtained by using a non-insoluble infusible substrate containing this polyacene-based skeleton structure and lithium is previously supported on the negative electrode (hereinafter sometimes referred to as pre-doping) to obtain a high voltage. The batteries are described in Non-Patent Document 4, Patent Document 2, Non-Patent Document 5, and Patent Document 3, all of which have a high capacity that is characteristic of an insoluble and infusible substrate (PAS) containing a polyacene-based skeleton structure. This is an approach to a high energy type battery that has been utilized, and there is no description regarding application to a non-aqueous lithium ion battery having high energy density and high output.

炭素六角網面の周縁に水素が結合している材料(ハイドログラフェン)の他の例は、ピッチを主成分とする原料を熱反応に供することにより得られ、水素/炭素の原子比が0.35〜0.05である材料があり、上記PASを上回る1000mAh/g以上のリチウムをドープ・脱ドープ可能であることが記載されている(特許文献4、非特許文献6)。この材料について非特許文献6、非特許文献7ではPAHs(Polycyclic Aromatic Hydrocarbonsの略称)と呼び、代表的な炭素六角網面の形状が円盤状であることが記載されている。また、非特許文献8には、このPAHsを負極に用いたリチウム系二次電池が開示されており、市販リチウムイオン電池の2倍程度の容量を有する小型二次電池が得られているが、これもPAHsの特徴である高容量を活かした高エネルギータイプの電池へのアプローチであり、高エネルギー密度かつ高出力を有する非水系リチウムイオン電池への適用に関する記載はない。   Another example of a material in which hydrogen is bonded to the periphery of the carbon hexagonal network surface (hydrographene) is obtained by subjecting a raw material mainly composed of pitch to a thermal reaction, and a hydrogen / carbon atomic ratio of 0.1. There is a material that is 35 to 0.05, and it is described that lithium of 1000 mAh / g or more exceeding the PAS can be doped / undoped (Patent Document 4, Non-Patent Document 6). Non-Patent Document 6 and Non-Patent Document 7 refer to this material as PAHs (abbreviation of Polycyclic Aromatic Hydrocarbons), which describes that the shape of a typical carbon hexagonal mesh surface is a disk shape. Non-Patent Document 8 discloses a lithium secondary battery using the PAHs as a negative electrode, and a small secondary battery having a capacity about twice that of a commercially available lithium ion battery is obtained. This is also an approach to a high energy type battery utilizing the high capacity that is characteristic of PAHs, and there is no description regarding application to a non-aqueous lithium ion battery having a high energy density and a high output.

最近、キャパシタの高エネルギー密度化が検討され始め、正極に活性炭、負極にリチウムイオンのドープ・脱ドープ可能な材料、電解液にリチウム塩を含むリチウム型キャパシタの開発も進められている(特許文献5)。また、非特許文献9および非特許文献10には上記PASを負極に用い、この負極にリチウムを予め担持させたリチウム系電解液を用いたキャパシタが開示されているが、そのエネルギー密度は20Wh/L(12Wh/kg)程度であり、上記要求を満たす為には、更なる高エネルギー密度化、高出力化が必要である。
T.Yamabe,M.Fujii,S.Mori,H.Kinoshita, S.Yata:Synth.Met.,145,31(2004) 特開昭59−3806号公報 S.Yata,Y.Hato,K.Sakurai,T.Osaki, K.Tanaka,T.Yamabe:Synth.Met., 18,645(1987) S.Yata,H.Kinoshita,M.Komori,N.Ando, T.Kashiwamura,T.Harada,K.Tanaka, T.Yamabe:Synth.Met.,62,153(1994) 矢田静邦,工業材料,Vol.40,No.5,32(1992) 特開平3−233860号公報 S.Yata,Y.Hato,H.Kinoshita,N.Ando, A.Anekawa,T.Hashimoto,M.Yamaguchi, K.Tanaka,T.Yamabe:Synth.Met., 73,273(1995) WO98/33227号公報 特開2000−251885号公報 S.Wang,S.Yata,J.Nagano,Y.Okano, H.Kinoshita,H.Kikuta,T.Yamabe :J.Electrochem.Soc.,147(7),2498(2000) 矢田静邦他:分子機能材料と素子開発,77(2004) 矢田静邦他:分子機能材料と素子開発,428(2004) WO2002/41420号公報 安東信雄他,リチウムイオンキャパシタの開発(1) 「第46回電池討論会講演要旨集」,2005年11月,1C12,p294 田崎信一他、リチウムイオンキャパシタの開発(2) 「第46回電池討論会講演要旨集」,2005年11月,1C13,p296
Recently, higher energy density of capacitors has begun to be studied, and development of lithium-type capacitors containing activated carbon for the positive electrode, materials capable of being doped / undoped with lithium ions for the negative electrode, and lithium salts in the electrolyte is also underway (Patent Literature). 5). Non-Patent Document 9 and Non-Patent Document 10 disclose capacitors using the above-mentioned PAS as a negative electrode and a lithium-based electrolyte in which lithium is supported on the negative electrode in advance. The energy density thereof is 20 Wh / It is about L (12 Wh / kg), and in order to satisfy the above requirements, further higher energy density and higher output are required.
T.A. Yamabe, M .; Fujii, S .; Mori, H .; Kinoshita, S .; Yata: Synth. Met. , 145, 31 (2004) JP 59-3806 S. Yata, Y. et al. Hato, K .; Sakurai, T .; Osaki, K .; Tanaka, T .; Yamabe: Synth. Met. , 18, 645 (1987) S. Yata, H .; Kinoshita, M .; Komori, N .; Ando, T.A. Kashiwamura, T .; Harada, K .; Tanaka, T .; Yamabe: Synth. Met. 62, 153 (1994) Shigeru Yada, Industrial Materials, Vol. 40, no. 5, 32 (1992) JP-A-3-233860 S. Yata, Y. et al. Hato, H .; Kinoshita, N .; Ando, A.D. Anekawa, T .; Hashimoto, M .; Yamaguchi, K .; Tanaka, T .; Yamabe: Synth. Met. 73, 273 (1995) WO98 / 33227 JP 2000-251885 A S. Wang, S.W. Yata, J .; Nagano, Y .; Okano, H.M. Kinoshita, H .; Kikuta, T .; Yamabe: J. et al. Electrochem. Soc. , 147 (7), 2498 (2000) Shigetaka Yada et al .: Molecular Functional Materials and Device Development, 77 (2004) Shigetoku Yada et al .: Molecular Functional Materials and Device Development, 428 (2004) WO2002 / 41420 Publication Nobuo Ando et al., Development of Lithium Ion Capacitors (1) "Abstracts of the 46th Battery Conference", November 2005, 1C12, p294 Shinichi Tazaki et al., Development of Lithium Ion Capacitors (2) “Abstracts of the 46th Battery Conference”, November 2005, 1C13, p296

蓄電システムにおける高エネルギー密度および高出力/高率充電特性への要求レベルは高く、例えば、従来にないエネルギー密度100Wh/Lかつ300Cを超える出力特性を有する超高出力デバイスの実現が希求されている。この超高出力デバイスの実現には、負極および正極ともに高容量かつ高出力/高率充電特性を兼ね備えた電極が必要となり、それぞれの重量あたり、あるいは、体積あたりの容量、出力特性に高いレベルが必要となる。このため、この超高出力デバイスの実現には、負極は、まず、活物質重量に対して数10A/g程度の電流密度で放電可能であり、それに加え電極密度が高く、負極活物質重量あたりの容量も高い必要がある。しかし、従来の、リチウムイオン電池用負極活物質では容量が重量あたり100〜300mAh/g程度、出力は負極厚みが実用的な厚み(例えば30μm以上)であるとき30Cレベルである。すなわち放電可能な電流密度は負極活物質重量あたり10A/g以下であり、上記要求を満たすものではない。従って、本発明はリチウムイオンがドープ・脱ドープ可能であり、容量に優れ、かつ、高エネルギー密度かつ従来にない高い出力特性を兼ね備えた非水系二次電池用負極及び高エネルギー密度・高出力非水系二次電池を提供することにある。   High levels of demand for high energy density and high output / high rate charging characteristics in power storage systems are high. For example, there is a demand for the realization of ultra-high output devices having unprecedented energy density of 100 Wh / L and output characteristics exceeding 300 C. . In order to realize this ultra-high output device, both the negative electrode and the positive electrode require electrodes with both high capacity and high output / high rate charging characteristics, and there is a high level of capacity and output characteristics per weight or volume. Necessary. For this reason, in order to realize this ultra-high output device, the negative electrode can first be discharged at a current density of about several tens of A / g with respect to the weight of the active material. Need to have a high capacity. However, in the conventional negative electrode active material for lithium ion batteries, the capacity is about 100 to 300 mAh / g per weight, and the output is 30 C level when the negative electrode thickness is a practical thickness (for example, 30 μm or more). That is, the dischargeable current density is 10 A / g or less per weight of the negative electrode active material and does not satisfy the above requirement. Therefore, the present invention is capable of doping and dedoping lithium ions, has a high capacity, and has a high energy density and unprecedented high output characteristics. The object is to provide an aqueous secondary battery.

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、負極に結晶面002面の面間隔が3.6Å以上である不溶不融性基体を用い、該不溶不融性基体の粒子径、かつ、該不溶不融性基体に予め担持させるリチウム量を制御することにより、従来にない高出力放電(例えば40A/gの電流密度で放電させた時、負極活物質重量あたり30mAh/g以上の放電)が可能な負極を見出し、本発明を完成するに至った。   As a result of conducting research while paying attention to the problems of the prior art as described above, the present inventor used an insoluble infusible substrate having a crystal plane 002 plane spacing of 3.6 mm or more for the negative electrode, By controlling the particle size of the insoluble and infusible substrate and the amount of lithium supported on the insoluble and infusible substrate in advance, a high output discharge (e.g., when discharging at a current density of 40 A / g) The inventors have found a negative electrode capable of discharging 30 mAh / g or more per active material weight, and have completed the present invention.

請求項1に記載の非水系二次電池用負極は、水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体を主成分とする非水系二次電池用負極において、不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてあることを特徴としている。   The negative electrode for a non-aqueous secondary battery according to claim 1 has a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and a crystal plane 002 plane spacing of 3.6 mm or more. In a negative electrode for a non-aqueous secondary battery having a fusible substrate as a main component, an insoluble infusible substrate having an average particle diameter of 2.0 μm or less and 500 mAh / g or more of lithium per weight of the insoluble infusible substrate It is characterized by being carried in advance.

請求項2に記載の非水系二次電池用負極は、電極密度が0.8g/cm以上であることを特徴としている。 The negative electrode for a non-aqueous secondary battery according to claim 2 is characterized in that the electrode density is 0.8 g / cm 3 or more.

請求項3に記載の非水系二次電池用負極は、電極厚みが30μm以上であることを特徴としている。   The negative electrode for a non-aqueous secondary battery according to claim 3 is characterized in that the electrode thickness is 30 μm or more.

請求項4に記載の非水系二次電池用負極は、不溶不融性基体の重量あたり40A/gの電流密度で放電させた時、不溶不融性基体の重量あたり30mAh/g以上の放電が可能であることを特徴としている。   The negative electrode for a non-aqueous secondary battery according to claim 4 has a discharge of 30 mAh / g or more per weight of the insoluble infusible substrate when discharged at a current density of 40 A / g per weight of the insoluble infusible substrate. It is characterized by being possible.

上記請求項1から4の構成によれば高エネルギー密度かつ従来にない高い出力特性を兼ね備えた非水系二次電池用負極を得ることができる。   According to the configuration of the first to fourth aspects, a negative electrode for a non-aqueous secondary battery having high energy density and unprecedented high output characteristics can be obtained.

請求項5に記載の非水系二次電池は、正極、負極、セパレータおよびリチウム塩が非水溶媒に溶解されてなる非水系電解液を具備する非水系二次電池において、請求項1から4のいずれかに記載の負極を用いることを特徴としている。   The non-aqueous secondary battery according to claim 5 is a non-aqueous secondary battery comprising a non-aqueous electrolyte solution in which a positive electrode, a negative electrode, a separator, and a lithium salt are dissolved in a non-aqueous solvent. Any one of the negative electrodes described above is used.

上記請求項5によれば高エネルギー密度かつ高出力を兼ね備えた非水系二次電池を得ることができる。   According to the fifth aspect, a non-aqueous secondary battery having both high energy density and high output can be obtained.

本発明の非水系二次電池用負極は、水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体を主成分とし、該不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてある。それゆえ、例えば、負極活物質重量あたり40A/g以上という非常に高い電流密度で放電可能な、高い出力特性及び高容量を有する非水系二次電池用負極を得ることができるという効果を奏する。また、この負極を用いることにより、高エネルギー密度かつ高出力を兼ね備えた非水系二次電池を得ることができるという効果を奏する。   The negative electrode for a non-aqueous secondary battery according to the present invention is an insoluble infusible substrate having a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and a surface spacing of crystal planes of 002 of 3.6 mm or more. The insoluble infusible substrate has an average particle size of 2.0 μm or less, and lithium of 500 mAh / g or more per weight of the insoluble infusible substrate is previously supported. Therefore, for example, it is possible to obtain a negative electrode for a non-aqueous secondary battery having high output characteristics and high capacity that can be discharged at a very high current density of 40 A / g or more per weight of the negative electrode active material. Further, by using this negative electrode, there is an effect that a non-aqueous secondary battery having both high energy density and high output can be obtained.

本発明の一実施形態について、説明すれば以下の通りである。   An embodiment of the present invention will be described as follows.

本発明の非水系二次電池用負極は、水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体を主成分とし、不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてあることを特徴とする。   The negative electrode for a non-aqueous secondary battery according to the present invention is an insoluble infusible substrate having a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and a surface spacing of crystal planes of 002 of 3.6 mm or more. The insoluble infusible substrate has an average particle size of 2.0 μm or less, and 500 mAh / g or more of lithium is previously supported per weight of the insoluble infusible substrate.

本発明における不溶不融性基体は、例えば、次の様な芳香族系縮合ポリマーを熱処理することにより得られる。芳香族系縮合ポリマーは芳香族炭化水素化合物の縮合物であり、例えば、芳香族炭化水素化合物とアルデヒド類の縮合物である。芳香族炭化水素化合物としては、例えば、フェノール、クレゾール、キシレノール等の如き、いわゆるフェノール類が好適である。例えば、メチレン・ビスフェノール類であることができ、或いはヒドロキシ・ビフェニル類、ヒドロキシナフタレン類であることもできる。これらの内、実用的にはフェノール類、特にフェノールが好適である。上記の芳香族系縮合ポリマーとしては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えば、キシレン、トルエン、アニリン等で置換した変性芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもでき、また、メラミン、尿素で置換した変性芳香族系縮合ポリマーを用いることもできる。また、フラン樹脂も好適である。また、上記アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、フルフラール等のアルデヒドを使用することができるが、ホルムアルデヒドが好適である。フェノールホルムアルデヒド縮合物としては、ノボラック型又はレゾール型或はそれらの混合物のいずれであってもよい。また、エポキシ樹脂、不飽和ポリエステル、アルキド樹脂、ウレタン樹脂、エボナイトなどの熱硬化性樹脂、椰子ガラ、木屑、竹等のセルロース系原料、ポリイミド等を熱処理することによっても得られる。本発明は不溶不融性基体の原料を限定するものではないが、本発明の不溶不融性基体は結晶面002面の面間隔が3.6Å以上と広いことを特徴とし、後述する熱処理時に液状化せずに、固相状態で不溶不融性基体に到る原料を選択すると、この構造が得られやすい。   The insoluble and infusible substrate in the present invention can be obtained, for example, by heat-treating the following aromatic condensation polymer. The aromatic condensation polymer is a condensate of an aromatic hydrocarbon compound, for example, a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, for example, so-called phenols such as phenol, cresol, xylenol and the like are suitable. For example, it may be methylene bisphenols, or may be hydroxy biphenyls or hydroxynaphthalenes. Of these, phenols, particularly phenol, are suitable for practical use. As the aromatic condensation polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline, etc. A modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde can also be used, and a modified aromatic condensation polymer substituted with melamine or urea can also be used. Furan resins are also suitable. Moreover, as said aldehyde, aldehydes, such as formaldehyde, acetaldehyde, a furfural, can be used, However, Formaldehyde is suitable. The phenol formaldehyde condensate may be novolak type, resol type, or a mixture thereof. It can also be obtained by heat-treating thermosetting resins such as epoxy resins, unsaturated polyesters, alkyd resins, urethane resins and ebonites, cellulose raw materials such as coconut shells, wood chips and bamboo, polyimides and the like. Although the present invention does not limit the raw material of the insoluble infusible substrate, the insoluble infusible substrate of the present invention is characterized in that the interplanar spacing of the crystal plane 002 is as large as 3.6 mm or more, and is subjected to a heat treatment described later. If a raw material that reaches the insoluble and infusible substrate in the solid phase without being liquefied is selected, this structure is easily obtained.

また、本発明の不溶不融性基体は、例えば、上記に例示した原料を熱処理することにより得られ、特開昭59−3806号公報、特開昭60−170163号公報等に記載されているポリアセン系骨格構造を有する不溶不融性基体はその一例である。本発明の不溶不融性基体は、例えば、次のようにして製造することができる。上記に例示した原料を、非酸化性雰囲気下(真空も含む)中で、例えば、400℃〜800℃の適当な温度まで徐々に加熱することにより、水素原子/炭素原子の原子比(以下H/Cと記す)が0.60〜0.05の不溶不融性基体を得ることができる。H/Cは、好ましくは0.50〜0.05、より好ましくは0.35〜0.05、更に好ましくは0.35〜0.1であり、H/Cが上限を越える場合、芳香族系多環構造が充分に発達していないため、リチウムのドーピング、脱ドーピングがスムーズに行うことができず、電池を組んだ時、充放電効率が低下したり、本発明の目的である出力が充分に得られない。また、H/Cが下限以下の場合、不溶不融性基体の容量が低下することにより、これを用いた電池のエネルギー密度が低下したり、本発明の目的である出力が充分に得られない。   The insoluble and infusible substrate of the present invention is obtained, for example, by heat-treating the raw materials exemplified above, and is described in JP-A-59-3806, JP-A-60-170163, and the like. One example is an insoluble and infusible substrate having a polyacene skeleton structure. The insoluble and infusible substrate of the present invention can be produced, for example, as follows. The raw materials exemplified above are gradually heated to an appropriate temperature of, for example, 400 ° C. to 800 ° C. in a non-oxidizing atmosphere (including a vacuum), whereby a hydrogen atom / carbon atom ratio (hereinafter referred to as H). / C)) can be obtained from 0.60 to 0.05 insoluble and infusible substrate. H / C is preferably 0.50 to 0.05, more preferably 0.35 to 0.05, still more preferably 0.35 to 0.1, and when H / C exceeds the upper limit, aromatic Since the polycyclic structure is not sufficiently developed, lithium doping and dedoping cannot be carried out smoothly. When a battery is assembled, the charge / discharge efficiency is reduced, or the output that is the object of the present invention is not achieved. Not enough. Further, when H / C is lower than the lower limit, the capacity of the insoluble and infusible substrate is decreased, so that the energy density of a battery using the same is decreased, or the output that is the object of the present invention cannot be sufficiently obtained. .

また、特開昭60−170163号公報等に記載されている方法で、600m/g以上のBET法による比表面積を有する不溶不融性基体を得ることもできる。例えば、芳香族系縮合ポリマーの初期縮合物と無機塩、例えば塩化亜鉛を含む溶液を調製し、該溶液を加熱して型内で硬化する。かくして得られた硬化体を、非酸化性雰囲気下(真空も含む)で、350℃〜800℃の温度まで、好ましくは400℃〜750℃の適当な温度まで徐々に加熱した後、水あるいは希塩酸等によって充分に洗浄することにより、上記H/Cを有し、かつ、例えば600m/g以上のBET法による比表面積を有する不溶不融性基体を得ることもできる。本発明における不溶不融性基体の比表面積は1000m/g未満、好ましくは700m/g未満であり、より好ましくは600m/g未満であり、比表面積が1000m/g以上の場合、不溶不融性基体を用いた負極密度が低下することにより、これを用いた電池のエネルギー密度が低下し好ましくない。 Further, an insoluble and infusible substrate having a specific surface area by the BET method of 600 m 2 / g or more can be obtained by the method described in JP-A-60-170163. For example, a solution containing an initial condensation product of an aromatic condensation polymer and an inorganic salt such as zinc chloride is prepared, and the solution is heated and cured in a mold. The cured product thus obtained is gradually heated to a temperature of 350 ° C. to 800 ° C., preferably 400 ° C. to 750 ° C. in a non-oxidizing atmosphere (including vacuum), and then water or dilute hydrochloric acid. By thoroughly washing with, for example, an insoluble and infusible substrate having the above H / C and having a specific surface area by the BET method of, for example, 600 m 2 / g or more can be obtained. When the specific surface area of the insoluble and infusible substrate in the present invention is less than 1000 m 2 / g, preferably less than 700 m 2 / g, more preferably less than 600 m 2 / g, and the specific surface area is 1000 m 2 / g or more, When the negative electrode density using the insoluble and infusible substrate is lowered, the energy density of the battery using the same is lowered, which is not preferable.

本発明に用いる不溶不融性基体は、X線回折(Cu−Kα)によれば、メイン・ピークの位置は2θで表して25°以下に存在し、また該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在する。25°以下に存在するメイン・ピークは結晶面002面に由来する。本発明に用いる不溶不融性基体の結晶面002面の面間隔は3.6Å以上であり、好ましくは3.7Å以上である。面間隔が3.6Å未満の場合では面間隔が狭い為、本発明の特徴である出力特性が得にくくなる。上限については特に限定しないが、面間隔4.5Å以下とすることが望ましく、4.5Åを超える場合、芳香族系多環構造が未発達であり、リチウムをドープすることが難しくなる。また、本発明の不溶不融性基体はアモルファス構造を有しているおり、メイン・ピークの半価幅から求まる結晶面002面C軸方向の結晶子長さは、好ましくは15Å以下であり、下限については5Å以上であることが好ましい。本発明の不溶不融性基体は上述の様なアモルファス構造を有している為、リチウムを大量かつ安定にドーピングでき、高い出力特性を得ることができる。   According to X-ray diffraction (Cu-Kα), the insoluble and infusible substrate used in the present invention has a main peak position represented by 2θ of 25 ° or less, and 41 to 41 in addition to the main peak. There is another broad peak between 46 °. The main peak existing at 25 ° or less is derived from the crystal plane 002. The spacing between the crystal planes 002 of the insoluble and infusible substrate used in the present invention is 3.6 mm or more, and preferably 3.7 mm or more. When the surface separation is less than 3.6 mm, the surface separation is narrow, and it is difficult to obtain the output characteristics that are the characteristics of the present invention. Although the upper limit is not particularly limited, it is desirable to set the surface interval to 4.5 mm or less, and when it exceeds 4.5 mm, the aromatic polycyclic structure is undeveloped and it becomes difficult to dope lithium. The insoluble infusible substrate of the present invention has an amorphous structure, and the crystallite length in the C-axis direction of the crystal plane 002, which is obtained from the half width of the main peak, is preferably 15 mm or less. The lower limit is preferably 5 mm or more. Since the insoluble and infusible substrate of the present invention has an amorphous structure as described above, lithium can be doped in a large amount and stably, and high output characteristics can be obtained.

かくして得られる上記不溶不融性基体は、リチウムイオンを従来高出力リチウムイオン電池用負極材料として検討されている黒鉛、炭素材料に比べ大量のリチウムをドープすることが可能であり、例えば、1000mAh/gを超えるリチウムをドープすることも可能であり、リチウムのドープ可能量幅の広い材料である。   The insoluble and infusible substrate thus obtained can be doped with a larger amount of lithium than graphite and carbon materials, which have been studied as a negative electrode material for a high-power lithium ion battery in the past, for example, 1000 mAh / It is possible to dope lithium exceeding g, and it is a material with a wide range of lithium doping capacity.

高エネルギー密度かつ高出力/高率充電を有する非水系二次電池実現のためには、大量のLiイオンが負極と電解液の間を高速で移動することが望まれる。低出力/低率充電時の場合には負極電極内全体において均一に出力/充電が進むと考えられるが、高出力/高率充電には負極電極内および負極活物質粒子内のリチウムイオン濃度の瞬間的な不均一が予想される。超高出力非水系二次電池には、この瞬間的なリチウムイオン濃度の不均一を許容するようなリチウムのドープ可能量幅の広い負極活物質材料を選択する必要がある。また予めプリドープしておくリチウム濃度もこの不均一を許容するようでなければならず、リチウムのドープ可能量幅の広い負極活物質材料が制御しやすい。また負極活物質粒子界面における移動を促進するため、負極活物質粒子径が充分小さい必要がある。電極密度が高いことは電解液の電極内の保液量の低下から、負極活物質材料粒子界面から電解液へのリチウム移動には不利であるが、同じ出力特性であっても電極体積を低く抑えることが出力密度を高めることであり、電極密度が一定のレベル以上の条件下で高出力を得る必要がある。   In order to realize a non-aqueous secondary battery having high energy density and high output / high rate charging, it is desired that a large amount of Li ions move at high speed between the negative electrode and the electrolyte. In the case of low output / low rate charge, it is considered that the output / charge proceeds uniformly throughout the negative electrode, but for high output / high rate charge, the lithium ion concentration in the negative electrode and negative electrode active material particles Instantaneous non-uniformity is expected. For the ultra-high power non-aqueous secondary battery, it is necessary to select a negative electrode active material having a wide width capable of doping lithium so as to allow this instantaneous non-uniform lithium ion concentration. In addition, the lithium concentration pre-doped in advance must allow for this non-uniformity, and it is easy to control a negative electrode active material having a wide range of lithium doping capacity. Moreover, in order to promote the movement in the negative electrode active material particle interface, the negative electrode active material particle diameter needs to be sufficiently small. A high electrode density is disadvantageous for lithium transfer from the negative electrode active material particle interface to the electrolyte due to a decrease in the amount of electrolyte retained in the electrode, but the electrode volume is reduced even with the same output characteristics. The suppression is to increase the output density, and it is necessary to obtain a high output under conditions where the electrode density is a certain level or higher.

本発明における不溶不融性基体の平均粒子径は2μm以下であり、好ましくは1μm以下である。下限については、小さければ小さいほど好ましいが、集電や電極成形を考慮した場合、実用的には0.05μm以上である。2μm以下の不溶不融性基体を得るには、例えば、所定の粒径となるまで、常法に従って、不溶不融性基体をボールミル、ジェットミル、ビーズミルなどの粉砕器で粉砕し、さらに必要ならば、分級する。平均粒子径が2μmを超える場合、本発明の目的である出力が充分に得られない。また、出力面から考えると不溶不融性基体の粒度分布における90%粒子径を10μm以下、好ましくは5μm以下にすることが望ましい。これら平均粒子径および粒度値は市販のレーザー回折式粒度分布測定装置で測定することができる。本発明における不溶不融性基体の粉末形状は特に限定されるものではなく、球状、繊維状、不定形粒子等から適宜選択されるものである。   The average particle size of the insoluble and infusible substrate in the present invention is 2 μm or less, preferably 1 μm or less. The lower limit is preferably as small as possible, but is 0.05 μm or more practically considering current collection and electrode forming. In order to obtain an insoluble infusible substrate of 2 μm or less, for example, the insoluble infusible substrate is pulverized with a pulverizer such as a ball mill, a jet mill, or a bead mill according to a conventional method until a predetermined particle diameter is obtained. Classify. When the average particle diameter exceeds 2 μm, the output that is the object of the present invention cannot be sufficiently obtained. From the viewpoint of output, it is desirable that the 90% particle size in the particle size distribution of the insoluble and infusible substrate is 10 μm or less, preferably 5 μm or less. These average particle size and particle size can be measured with a commercially available laser diffraction particle size distribution analyzer. The powder shape of the insoluble and infusible substrate in the present invention is not particularly limited, and is appropriately selected from spherical, fibrous, amorphous particles and the like.

本発明の非水系二次電池用負極は上記不溶不融性基体を主成分とし、必要に応じ、導電材、バインダーを用いて成形する。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、不溶不融性基体の平均粒子径、形状等により適宜決定されるものであるが、例えば、不溶不融性基体の重量の1〜30%程度の割合とすることが好ましい。また、導電材の種類、量は、特に限定されるものではないが、不溶不融性基体の平均粒子径、形状、H/C等により適宜決定されるものであり、材料としては、カーボンブラック、アセチレンブラック、黒鉛が例示される。導電材量は、特に限定されず、例えば、不溶不融性基体の重量の1〜20%程度の割合とすることが好ましい。本発明の非水系二次電池に用いる負極は、上記不溶不融性基体を、必要に応じ、導電材、バインダーを用いて、塗布成形、プレス成形、ロール成形等一般的な電極成形法を用いて製造することが可能である。   The negative electrode for a non-aqueous secondary battery of the present invention comprises the above insoluble and infusible substrate as a main component, and is molded using a conductive material and a binder as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited and is appropriately determined depending on the average particle diameter, shape, and the like of the insoluble and infusible substrate. For example, the amount is about 1 to 30% of the weight of the insoluble and infusible substrate. It is preferable. Further, the type and amount of the conductive material are not particularly limited, but are appropriately determined depending on the average particle diameter, shape, H / C, etc. of the insoluble and infusible substrate. And acetylene black and graphite. The amount of the conductive material is not particularly limited, and is preferably set to a ratio of about 1 to 20% of the weight of the insoluble and infusible substrate, for example. The negative electrode used in the non-aqueous secondary battery of the present invention uses the above-mentioned insoluble and infusible substrate by using a general electrode molding method such as coating molding, press molding, roll molding, etc., using a conductive material and a binder as necessary. Can be manufactured.

本発明の非水系二次電池用負極の電極密度(電極合材層:集電体は含まない)は容量・出力を考慮し適宜決定されるものであるが、0.8g/cm以上であることが好ましい。電極密度が0.8g/cm未満の場合、この負極を用いた非水系二次電池においてエネルギー密度が低下することから好ましくない。また上限については特に限定されるものではないが、不溶不融性基体の真密度から考えると、1.8g/cm以下である。 The electrode density (electrode mixture layer: not including the current collector) of the negative electrode for a non-aqueous secondary battery of the present invention is appropriately determined in consideration of capacity and output, but is 0.8 g / cm 3 or more. Preferably there is. When the electrode density is less than 0.8 g / cm 3 , the energy density is lowered in a non-aqueous secondary battery using this negative electrode, which is not preferable. The upper limit is not particularly limited, but is 1.8 g / cm 3 or less in view of the true density of the insoluble and infusible substrate.

本発明の非水系二次電池用負極の電極厚さ(電極合材層厚み:集電体は含まない、集電体の両面に形成される場合はその片側の厚み)は容量・出力を考慮し適宜決定されるものであるが、30μm以上であることが好ましい。電極厚さが30μm未満の場合、この負極を用いた非水系二次電池において集電体およびセパレータの占める体積比率が相対増加することによりエネルギー密度が低下することから好ましくない。また上限については特に限定されるものではないが、出力を考慮した場合200μm以下である。   The electrode thickness of the negative electrode for a non-aqueous secondary battery according to the present invention (electrode mixture layer thickness: does not include a current collector, or the thickness of one side when formed on both sides of the current collector) takes capacity and output into consideration. Although it is appropriately determined, it is preferably 30 μm or more. When the electrode thickness is less than 30 μm, it is not preferable because in the non-aqueous secondary battery using this negative electrode, the energy density decreases due to the relative increase in the volume ratio of the current collector and the separator. Moreover, although it does not specifically limit about an upper limit, when an output is considered, it is 200 micrometers or less.

本発明の非水系二次電池用負極は、集電体上に形成する、あるいは、シート状に成形された電極を集電体に圧着あるいは導電層を介して接着することが可能である。この集電体の材質などは、特に限定されず、銅、鉄、ステンレス等が使用できる。集電体の形状は、金属箔あるいは金属の隙間に電極が形成可能である構造体を用いることができ、例えば、エキスパンドメタル、網材、パンチングメタルなどを集電体として用いることもできる。   The negative electrode for a non-aqueous secondary battery of the present invention can be formed on a current collector, or an electrode formed into a sheet shape can be bonded to the current collector by pressure bonding or a conductive layer. The material of the current collector is not particularly limited, and copper, iron, stainless steel and the like can be used. As the shape of the current collector, a metal foil or a structure capable of forming an electrode in a metal gap can be used. For example, an expanded metal, a netting material, a punching metal, or the like can be used as the current collector.

本発明において、負極活物質である上記不溶不融性基体へ500mAh/g以上のリチウムを予め担持(プリドープ)させる。このプリドープ量については、負極活物質である上記不溶不融性基体へのリチウム担持量をCn(mAh)とし、初期充電時に正極から放出されてドーピング可能なリチウム量をCp(mAh)とし、負極の不溶不融性基体の重量をW(g)とする時、(Cn+Cp)/Wをプリドーピング量とする。プリドーピング量は負極の不溶不融性基体の重量あたり500mAh/g以上であり、好ましくは550mAh/g以上である。上限については、特に限定しないが、リチウム金属の析出を考慮して1300mAh/g以下とするのが好ましい。正極から放出されてドーピング可能なリチウムとは、電池組立時に正極中に含まれるリチウムであって、充電操作中に放出されて負極に取りこまれるリチウム量を意味する。例えば、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物などが、正極中に含まれるリチウムを含有する正極材料の代表例である。 In the present invention, 500 mAh / g or more of lithium is supported (pre-doped) in advance on the insoluble and infusible substrate as the negative electrode active material. Regarding the pre-doping amount, the amount of lithium supported on the insoluble and infusible substrate as the negative electrode active material is Cn (mAh), the amount of lithium released from the positive electrode during initial charging and Cd (mAh) is doped, and the negative electrode When the weight of the insoluble infusible substrate is W (g), (Cn + Cp) / W is the pre-doping amount. The pre-doping amount is 500 mAh / g or more, preferably 550 mAh / g or more per weight of the insoluble and infusible substrate of the negative electrode. The upper limit is not particularly limited, but is preferably set to 1300 mAh / g or less in consideration of precipitation of lithium metal. The lithium that can be doped by being released from the positive electrode means the amount of lithium contained in the positive electrode during battery assembly and released during the charging operation and taken into the negative electrode. For example, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are representative examples of positive electrode materials containing lithium contained in the positive electrode.

本発明の非水系二次電池用負極にリチウムを予め担持させる方法は、本発明では特に限定されるものではないが、公知の方法を用いることができる。例えば、本発明の負極材料を電極に成形した後、電気化学的に行うことができる。本発明ではその方法について特に限定しないが、例えば、電池組立前に、対極としてリチウム金属を用いる電気化学システムを組み立て、後述の非水系電解液中においてプリドープする方法、電解液を含浸した負極にリチウム金属を貼り合わせる方法が挙げられる。また、電池組立後に、リチウムのプリドープを行うには、リチウム金属などのリチウム源と負極とを貼り合わせなどの方法により、電気的に接触させておき、電池内に電解液を注液することにより、リチウムをプリドープすることが可能である。   The method for supporting lithium in advance on the negative electrode for a non-aqueous secondary battery of the present invention is not particularly limited in the present invention, but a known method can be used. For example, the negative electrode material of the present invention can be formed electrochemically after being formed into an electrode. In the present invention, the method is not particularly limited. For example, before assembling the battery, an electrochemical system using lithium metal as a counter electrode is assembled and pre-doped in a non-aqueous electrolyte described later, and the negative electrode impregnated with the electrolyte is charged with lithium. The method of bonding a metal is mentioned. In addition, in order to pre-dope lithium after battery assembly, a lithium source such as lithium metal and a negative electrode are electrically contacted by a method such as bonding, and an electrolyte is injected into the battery. It is possible to pre-dope lithium.

かくして得られる本発明における非水系二次電池用負極は、不溶不融性基体の重量あたり40A/gの電流密度で放電させた時、不溶不融性基体の重量あたり30mAh/g以上の放電が可能である。40A/gの電流密度で放電させた場合の負極の作動する電位範囲は、2.0V vs.Li/Li以下であることが好ましく、より好ましくは1.0V vs.Li/Li以下であり、この電位範囲で30mAh/gを得られることが好ましい。また負極の開放電位範囲は好ましくは1.0V vs.Li/Li以下であり、より好ましくは0.5V vs.Li/Li以下であることが好ましい。負極の作動する電位範囲の下限および開放電位範囲の下限については、当然のことながら0V vs.Li/Li以上である。 The negative electrode for a non-aqueous secondary battery in the present invention thus obtained has a discharge of 30 mAh / g or more per weight of the insoluble infusible substrate when discharged at a current density of 40 A / g per weight of the insoluble infusible substrate. Is possible. The potential range in which the negative electrode operates when discharged at a current density of 40 A / g is 2.0 V vs. Li / Li + or less is preferable, and 1.0 V vs. more preferably. Li / Li + or less, and it is preferable that 30 mAh / g can be obtained in this potential range. The open-circuit potential range of the negative electrode is preferably 1.0 V vs. Li / Li + or less, more preferably 0.5 V vs. Li / Li + or less is preferable. As for the lower limit of the potential range where the negative electrode operates and the lower limit of the open potential range, of course, 0 V vs. It is more than Li / Li + .

負極の出力特性を評価するための対極として、便宜上、活性炭電極を使用することができる。以下に示す実施例においても活性炭電極を対極として本発明の非水系二次電池用負極を評価しているが、本発明の負極を用いた非水系二次電池の正極は、これに何ら限定されるものではない。   For convenience, an activated carbon electrode can be used as a counter electrode for evaluating the output characteristics of the negative electrode. In the examples shown below, the negative electrode for a non-aqueous secondary battery of the present invention is evaluated using an activated carbon electrode as a counter electrode, but the positive electrode of the non-aqueous secondary battery using the negative electrode of the present invention is not limited to this. It is not something.

本発明の非水系二次電池用負極は正極、セパレータおよびリチウム塩が非水溶媒に溶解されてなる非水系電解液と組合わせ、本発明の非水系二次電池用負極を用いた非水系二次電池を構成することができる。   The negative electrode for a non-aqueous secondary battery of the present invention is combined with a non-aqueous electrolyte obtained by dissolving a positive electrode, a separator and a lithium salt in a non-aqueous solvent, and the non-aqueous secondary battery using the negative electrode for a non-aqueous secondary battery of the present invention is used. A secondary battery can be configured.

本発明における正極としては、リチウムをドープ・脱ドープ可能なものであれば特に限定されるものではないが、例えば、金属酸化物、金属硫化物、リチウム複合金属酸化物、導電性高分子等があり、リチウム複合金属酸化物としてはリチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、リチウム複合燐酸鉄、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができる。本発明の目的である高エネルギー密度かつ高出力を有する非水系二次電池を得る為には、例えば粒径の細かい酸化物を用いることが好ましい。   The positive electrode in the present invention is not particularly limited as long as it can be doped / undoped with lithium, and examples thereof include metal oxides, metal sulfides, lithium composite metal oxides, and conductive polymers. Yes, as lithium composite metal oxide, lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, lithium composite iron phosphate, or a mixture thereof, and more than one kind of different metal elements in these composite oxides An added system or the like can be used. In order to obtain a non-aqueous secondary battery having a high energy density and high output, which is the object of the present invention, it is preferable to use, for example, an oxide having a small particle size.

本発明の非水系二次電池は、リチウム塩が非水溶媒に溶解されてなる非水系電解液を用いる。本発明において用いる非水系電解液としては、リチウム塩を含む非水系電解液を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF、LiBF、LiClOなどのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種または2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。 The non-aqueous secondary battery of the present invention uses a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. As the non-aqueous electrolyte solution used in the present invention, a non-aqueous electrolyte solution containing a lithium salt can be used. According to the use conditions such as the type of the positive electrode material, the property of the negative electrode material, the charging voltage, etc. It is determined. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less.

本発明における非水系二次電池のセパレータは特に限定されるものではなく、ポリエチレン微多孔膜、ポリプロピレン微多孔膜、あるいはポリエチレンとポリプロピレンの積層膜、セルロース、ガラス繊維、ポリアラミド繊維、ポリアクリルニトリル繊維などからなる織布、あるいは不織布などがあり、その目的と状況に応じ、適宜決定することが可能である。   The separator of the non-aqueous secondary battery in the present invention is not particularly limited, and a polyethylene microporous film, a polypropylene microporous film, or a laminated film of polyethylene and polypropylene, cellulose, glass fiber, polyaramid fiber, polyacrylonitrile fiber, etc. There are woven fabrics, nonwoven fabrics, and the like, which can be appropriately determined according to the purpose and situation.

本発明の非水系二次電池の形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型等、その目的に応じ、適宜決定することが可能である。   The shape of the non-aqueous secondary battery of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin type, a cylindrical type, a square type, a film type, and the like.

以下に実施例を示し、本発明の特徴とするところをさらに明確化するが、本発明は実施例により何ら限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.

(1)フェノール樹脂硬化体を320gをステンレス製皿に入れ、この皿を角型炉(400×400×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。熱反応は、1℃/分の速度で、炉内温が室温から630℃となるまで昇温し、同温度で4時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出し、本発明の不溶不融性基体を得た。収量は192gであった。   (1) 320 g of the phenolic resin cured body was placed in a stainless steel dish, and this dish was placed in a square furnace (400 × 400 × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. The thermal reaction was performed at a rate of 1 ° C./minute until the furnace temperature was raised from room temperature to 630 ° C., held at that temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and the dish was removed from the furnace. The insoluble and infusible substrate of the present invention was obtained. The yield was 192g.

(2)得られた不溶不融性基体を遊星型ボールミルを用いて平均粒度0.8μmまで粉砕した。得られた不溶不融性基体材料について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400 シリーズII、CHNS/O)、およびBET法による比表面積(測定使用機:ユアサアイオニクス社製「NOVA1200」)の測定を行った。また、XRD(X線回折)法(測定使用機:マックサイエンス社製全自動X線回折装置「MXP」、発生X線はCu−Kα線である)による結晶構造の解析を行った。元素分析は水素原子/炭素原子の原子比が0.27であり、比表面積が570m/gであり、結晶面002面の面間隔が3.97Åであり、結晶面002面C軸方向の結晶子長さが10.2Åである不溶不融性基体(以下PAS)であった。X線回折パターンを図1の材料Aに示す。 (2) The obtained insoluble and infusible substrate was ground to an average particle size of 0.8 μm using a planetary ball mill. Element analysis (measurement machine: PE2400 series II, CHNS / O) manufactured by Perkin Elmer, and specific surface area by BET method (measurement machine: Yuasa Ionics) Measurement of “NOVA1200”). In addition, the crystal structure was analyzed by an XRD (X-ray diffraction) method (measurement machine: fully automatic X-ray diffractometer “MXP 3 ” manufactured by Mac Science Co., Ltd., and generated X-rays are Cu—Kα rays). In the elemental analysis, the atomic ratio of hydrogen atoms / carbon atoms is 0.27, the specific surface area is 570 m 2 / g, the interplanar spacing of the crystal plane 002 is 3.97 mm, and the crystal plane 002 plane is in the C-axis direction. It was an insoluble and infusible substrate (hereinafter referred to as PAS) having a crystallite length of 10.2 mm. An X-ray diffraction pattern is shown for material A in FIG.

(3)次いで、上記のPAS80重量部および導電材アセチレンブラック10重量部およびPVdF(ポリフッ化ビニリデン)10重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。このスラリーを厚さ18μmの銅箔の片面に塗布し、乾燥した後、プレス加工して電極を得た。電極密度および電極厚さについては表1に示す。   (3) Next, 80 parts by weight of the above PAS, 10 parts by weight of conductive material acetylene black, and 10 parts by weight of PVdF (polyvinylidene fluoride) are mixed with 230 parts by weight of NMP (N-methyl-2-pyrrolidone), and a negative electrode mixture slurry Got. This slurry was applied to one side of a 18 μm thick copper foil, dried, and then pressed to obtain an electrode. The electrode density and electrode thickness are shown in Table 1.

(4)上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり60mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり600mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。なお、この負極は上記操作においてリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は540mAh/gと高い容量を有している。 (4) The electrode obtained above is used as a working electrode, lithium metal is used as a counter electrode, and a concentration of 1 mol / l is added to a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution in which LiPF 6 was dissolved. Lithium doping is performed at a current of 60 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied against the lithium potential to perform doping of 600 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained. The negative electrode has a high capacity of 540 mAh / g when a constant voltage of 1 mV is applied to the lithium potential in the above operation for 12 hours and then discharged to 2.5 V at a current of 60 mA / g. Yes.

(5)正極については、市販活性炭93重量部および導電材ケッチェンブラック7重量部およびPVdF17重量部をNMP355重量部と混合し、正極合材スラリーを得た。黒鉛系導電性塗料を予め塗布した厚さ30μmのアルミ箔に、正極合材スラリーを片面に塗布し、乾燥した後、プレス加工して電極を得た。本実施例では出力特性に優れた負極の評価をする目的で正極に活性炭を用いているが、本発明の請求項5の非水系二次電池について、正極が活性炭に限定されるものではない。   (5) For the positive electrode, 93 parts by weight of commercially available activated carbon, 7 parts by weight of conductive material ketjen black and 17 parts by weight of PVdF were mixed with 355 parts by weight of NMP to obtain a positive electrode mixture slurry. A positive electrode mixture slurry was applied to one side of an aluminum foil having a thickness of 30 μm previously coated with a graphite-based conductive paint, dried, and then pressed to obtain an electrode. In this example, activated carbon is used for the positive electrode for the purpose of evaluating a negative electrode having excellent output characteristics. However, in the nonaqueous secondary battery according to claim 5 of the present invention, the positive electrode is not limited to activated carbon.

(6)上記で得られた負極と、上記で得られた厚さ84μmかつ密度0.60g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (6) The negative electrode obtained above and the above-obtained activated carbon electrode having a thickness of 84 μm and a density of 0.60 g / cm 3 are combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate are used as an electrolyte solution in a ratio of 3: 7 ( An electrochemical cell for negative electrode evaluation was prepared in a dry room by using a solution in which LiPF 6 was dissolved in a solvent mixed at a volume ratio of 1 mol / l.

(7)セルをPAS重量あたり4.8A/gの電流で4.0Vまで充電した後、95mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、84.9mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.8A/gの電流で放電した場合、容量はPAS重量に対し、70.8mAh/gであった。9.5A/gの電流で放電した場合、容量はPAS重量に対し、63.6mAh/gであった。28.6A/gの電流で放電した場合、容量はPAS重量に対し、47.1mAh/gであった。47.7A/gの電流で放電した場合、容量はPAS重量に対し、33.1mAh/gであった。   (7) The cell was charged to 4.0 V at a current of 4.8 A / g per weight of PAS, and then discharged to 2.0 V at a current of 95 mA / g. The capacity at this time was 84.9 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.8 A / g, the capacity was 70.8 mAh / g based on the weight of PAS. When discharged at a current of 9.5 A / g, the capacity was 63.6 mAh / g based on the weight of PAS. When discharged at a current of 28.6 A / g, the capacity was 47.1 mAh / g based on the weight of PAS. When discharged at a current of 47.7 A / g, the capacity was 33.1 mAh / g based on the weight of PAS.

(8)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり9.5Ω・cmであった。上記実施例1について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。 (8) The AC resistance of the cell was measured at 0.1 Hz and found to be 9.5 Ω · cm 2 per unit area. Table 1 summarizes the material and particle size used for the negative electrode material, the amount of lithium previously supported, the electrode properties, the output characteristics, and the AC resistance for Example 1.

(1)実施例1と同一の方法で得た電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり80mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり800mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 (1) An electrode obtained by the same method as in Example 1 was used as a working electrode, lithium metal was used as a counter electrode, and 1 mol of a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution of LiPF 6 dissolved to a concentration of 1 / l. Lithium doping is performed at a current of 80 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and a constant voltage of 1 mV is applied against the lithium potential to perform doping of 800 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained.

(2)上記で得られた負極と、実施例1と同一の方法で得られた厚さ86μmかつ密度0.61g/cmの活性炭電極を正極に、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (2) The negative electrode obtained above and an activated carbon electrode having a thickness of 86 μm and a density of 0.61 g / cm 3 obtained by the same method as in Example 1 were used as the positive electrode, and ethylene carbonate and methyl ethyl carbonate as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a solvent mixed with 3: 7 (volume ratio).

(3)PAS重量あたり4.8A/gの電流で4.0Vまで充電した後、95mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、90.7mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.8A/gの電流で放電した場合、容量はPAS重量に対し、76.2mAh/gであった。9.5A/gの電流で放電した場合、容量はPAS重量に対し、68.8mAh/gであった。28.6A/gの電流で放電した場合、容量はPAS重量に対し、53.0mAh/gであった。47.7A/gの電流で放電した場合、容量はPAS重量に対し、39.5mAh/gであった。   (3) After charging to 4.0 V at a current of 4.8 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 95 mA / g. The capacity at this time was 90.7 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.8 A / g, the capacity was 76.2 mAh / g based on the weight of PAS. When discharged at a current of 9.5 A / g, the capacity was 68.8 mAh / g based on the weight of PAS. When discharged at a current of 28.6 A / g, the capacity was 53.0 mAh / g based on the weight of PAS. When discharged at a current of 47.7 A / g, the capacity was 39.5 mAh / g based on the weight of PAS.

(4)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり8.5Ω・cmであった。上記実施例2について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。 (4) The AC resistance of the cell was measured at 0.1 Hz and found to be 8.5 Ω · cm 2 per unit area. Table 1 summarizes the material and particle size used for the negative electrode material, the amount of lithium previously supported, the electrode properties, the output characteristics, and the AC resistance for Example 2.

(1)実施例1と同一の方法で得た電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり100mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり1000mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 (1) An electrode obtained by the same method as in Example 1 was used as a working electrode, lithium metal was used as a counter electrode, and 1 mol of a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution of LiPF 6 dissolved to a concentration of 1 / l. Lithium doping is performed at a current of 100 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied against the lithium potential to perform doping of 1000 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained.

(2)上記で得られた負極と、実施例1と同一の方法で得られた厚さ86μmかつ密度0.59g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (2) The negative electrode obtained above and an activated carbon electrode having a thickness of 86 μm and a density of 0.59 g / cm 3 obtained by the same method as in Example 1 were combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(3)PAS重量あたり4.5A/gの電流で4.0Vまで充電した後、90mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、85.7mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.5A/gの電流で放電した場合、容量はPAS重量に対し、70.8mAh/gであった。9.0A/gの電流で放電した場合、容量はPAS重量に対し、63.4mAh/gであった。26.9A/gの電流で放電した場合、容量はPAS重量に対し、48.3mAh/gであった。44.8A/gの電流で放電した場合、容量はPAS重量に対し、36.1mAh/gであった。   (3) After charging to 4.0 V at a current of 4.5 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 90 mA / g. The capacity at this time was 85.7 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.5 A / g, the capacity was 70.8 mAh / g based on the weight of PAS. When discharged at a current of 9.0 A / g, the capacity was 63.4 mAh / g based on the weight of PAS. When discharged at a current of 26.9 A / g, the capacity was 48.3 mAh / g based on the weight of PAS. When discharged at a current of 44.8 A / g, the capacity was 36.1 mAh / g based on the weight of PAS.

(4)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり8.5Ω・cmであった。上記実施例3について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。
(比較例1)
(4) The AC resistance of the cell was measured at 0.1 Hz and found to be 8.5 Ω · cm 2 per unit area. Table 1 summarizes the material and particle size used for the negative electrode material, the amount of lithium carried in advance, electrode physical properties, output characteristics, and AC resistance for Example 3.
(Comparative Example 1)

(1)実施例1と同一の方法で得た電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり40mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり400mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 (1) An electrode obtained by the same method as in Example 1 was used as a working electrode, lithium metal was used as a counter electrode, and 1 mol of a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution of LiPF 6 dissolved to a concentration of 1 / l. Lithium doping is performed at a current of 40 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied to the lithium potential to perform doping of 400 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained.

(2)上記で得られた負極と、実施例1と同一の方法で得られた厚さ85μmかつ密度0.58g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (2) The negative electrode obtained above and an activated carbon electrode having a thickness of 85 μm and a density of 0.58 g / cm 3 obtained by the same method as in Example 1 were combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(3)PAS重量あたり4.1A/gの電流で4.0Vまで充電した後、81mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、69.1mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.1A/gの電流で放電した場合、容量はPAS重量に対し、46.9mAh/gであった。8.1A/gの電流で放電した場合、容量はPAS重量に対し、39.6mAh/gであった。24.4A/gの電流で放電した場合、容量はPAS重量に対し、21.7mAh/gであった。40.6A/gの電流で放電した場合、容量はPAS重量に対し、9.9mAh/gであった。   (3) After charging to 4.0 V at a current of 4.1 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 81 mA / g. The capacity at this time was 69.1 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.1 A / g, the capacity was 46.9 mAh / g based on the weight of PAS. When discharged at a current of 8.1 A / g, the capacity was 39.6 mAh / g based on the weight of PAS. When discharged at a current of 24.4 A / g, the capacity was 21.7 mAh / g based on the weight of PAS. When discharged at a current of 40.6 A / g, the capacity was 9.9 mAh / g based on the weight of PAS.

(4)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり14.6Ω・cmであった。上記比較例1について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。
(比較例2)
(4) The AC resistance of the cell was measured at 0.1 Hz and found to be 14.6 Ω · cm 2 per unit area. About the said comparative example 1, the material and particle size which were used for the negative electrode material, the amount of lithium carried beforehand, an electrode physical property, an output characteristic, and alternating current resistance are put together in Table 1.
(Comparative Example 2)

(1)実施例1と同様の方法で得られた不溶不融性基体を遊星型ボールミルを用いて平均粒度4.3μmまで粉砕した。得られた不溶不融性基体について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400 シリーズII、CHNS/O)、およびBET法による比表面積(測定使用機:ユアサアイオニクス社製「NOVA1200」)の測定を行った。また、XRD(X線回折)法(測定使用機:マックサイエンス社製全自動X線回折装置「MXP」、発生X線はCu−Kα線である)による結晶構造の解析を行った。元素分析は水素原子/炭素原子の原子比が0.27であり、比表面積が321m/gの不溶不融性基体(PAS)であり、結晶面002面の面間隔が3.77Åであり、結晶面002面C軸方向の結晶子長さが12.7Åである不溶不融性基体(以下PAS)であった。X線回折パターンを図1の材料Bに示す。 (1) The insoluble and infusible substrate obtained by the same method as in Example 1 was pulverized to an average particle size of 4.3 μm using a planetary ball mill. About the obtained insoluble and infusible substrate, elemental analysis (measurement machine: elemental analyzer “PE2400 series II, CHNS / O” manufactured by PerkinElmer Co., Ltd.) and specific surface area (measurement machine: Yuasa Ionics Co., Ltd.) "NOVA1200") was measured. In addition, the crystal structure was analyzed by an XRD (X-ray diffraction) method (measurement machine: fully automatic X-ray diffractometer “MXP 3 ” manufactured by Mac Science Co., Ltd., and generated X-rays are Cu—Kα rays). Elemental analysis shows an insoluble infusible substrate (PAS) having a hydrogen atom / carbon atom atomic ratio of 0.27, a specific surface area of 321 m 2 / g, and a crystal plane 002 plane spacing of 3.77 mm. This is an insoluble infusible substrate (hereinafter referred to as PAS) having a crystallite length of 12.7 mm in the C-axis direction of the crystal plane 002. The X-ray diffraction pattern is shown in Material B of FIG.

(2)次いで、上記のPAS80重量部および導電材アセチレンブラック10重量部およびPVdF10重量部をNMP230重量部と混合し、負極合材スラリーを得た。このスラリーを厚さ18μmの銅箔の片面に塗布し、乾燥した後、プレス加工して電極を得た。電極密度および電極厚さについては表1に示す。   (2) Next, 80 parts by weight of the above PAS, 10 parts by weight of conductive material acetylene black and 10 parts by weight of PVdF were mixed with 230 parts by weight of NMP to obtain a negative electrode mixture slurry. This slurry was applied to one side of a 18 μm thick copper foil, dried, and then pressed to obtain an electrode. The electrode density and electrode thickness are shown in Table 1.

(3)上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり60mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり600mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。なお、この負極は上記操作においてリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は490mAh/gと高い容量を有している。 (3) The electrode obtained above is used as a working electrode, lithium metal is used as a counter electrode, and a concentration of 1 mol / l is added to a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution in which LiPF 6 was dissolved. Lithium doping is performed at a current of 60 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied against the lithium potential to perform doping of 600 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained. The negative electrode has a high capacity of 490 mAh / g when a constant voltage of 1 mV is applied to the lithium potential in the above operation for 12 hours and then discharged to 2.5 V at a current of 60 mA / g. Yes.

(4)上記で得られた負極と、実施例1と同一の方法で得られた厚さ82μmかつ密度0.59g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (4) The negative electrode obtained above and an activated carbon electrode having a thickness of 82 μm and a density of 0.59 g / cm 3 obtained by the same method as in Example 1 were combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(5)PAS重量あたり4.0A/gの電流で4.0Vまで充電した後、79mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、71.9mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.0A/gの電流で放電した場合、容量はPAS重量に対し、54.9mAh/gであった。7.9A/gの電流で放電した場合、容量はPAS重量に対し、47.2mAh/gであった。23.7A/gの電流で放電した場合、容量はPAS重量に対し、30.4mAh/gであった。39.5A/gの電流で放電した場合、容量はPAS重量に対し、14.8mAh/gであった。   (5) After charging to 4.0 V at a current of 4.0 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 79 mA / g. The capacity at this time was 71.9 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.0 A / g, the capacity was 54.9 mAh / g based on the weight of PAS. When discharged at a current of 7.9 A / g, the capacity was 47.2 mAh / g based on the weight of PAS. When discharged at a current of 23.7 A / g, the capacity was 30.4 mAh / g based on the weight of PAS. When discharged at a current of 39.5 A / g, the capacity was 14.8 mAh / g based on the weight of PAS.

(6)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり15.3Ω・cmであった。上記比較例2について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。
(比較例3)
(6) The AC resistance of the cell was measured at 0.1 Hz and found to be 15.3 Ω · cm 2 per unit area. About the said comparative example 2, the material and particle size which were used for the negative electrode material, the amount of lithium carried beforehand, an electrode physical property, an output characteristic, and alternating current resistance are put together in Table 1.
(Comparative Example 3)

(1)比較例2と同一の方法で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり80mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり800mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 (1) An electrode obtained by the same method as in Comparative Example 2 was used as a working electrode, lithium metal was used as a counter electrode, and a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed as an electrolyte in a ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l. Lithium doping is performed at a current of 80 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and a constant voltage of 1 mV is applied against the lithium potential to perform doping of 800 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained.

(2)上記で得られた負極と、実施例1と同一の方法で得られた厚さ83μmかつ密度0.59g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (2) The negative electrode obtained above and an activated carbon electrode having a thickness of 83 μm and a density of 0.59 g / cm 3 obtained by the same method as in Example 1 were combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(3)PAS重量あたり4.4A/gの電流で4.0Vまで充電した後、89mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、87.8mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。4.4A/gの電流で放電した場合、容量はPAS重量に対し、67.2mAh/gであった。8.9A/gの電流で放電した場合、容量はPAS重量に対し、56.8mAh/gであった。26.6A/gの電流で放電した場合、容量はPAS重量に対し、36.2mAh/gであった。44.3A/gの電流で放電した場合、容量はPAS重量に対し、17.7mAh/gであった。   (3) After charging to 4.0 V at a current of 4.4 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 89 mA / g. The capacity at this time was 87.8 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 4.4 A / g, the capacity was 67.2 mAh / g based on the weight of PAS. When discharged at a current of 8.9 A / g, the capacity was 56.8 mAh / g based on the weight of PAS. When discharged at a current of 26.6 A / g, the capacity was 36.2 mAh / g based on the weight of PAS. When discharged at a current of 44.3 A / g, the capacity was 17.7 mAh / g based on the weight of PAS.

(4)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり15.0Ω・cmであった。上記比較例3について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。
(比較例4)
(4) The AC resistance of the cell was measured at 0.1 Hz and found to be 15.0 Ω · cm 2 per unit area. About the said comparative example 3, the material and particle size which were used for the negative electrode material, the amount of lithium carried beforehand, an electrode physical property, an output characteristic, and alternating current resistance are put together in Table 1.
(Comparative Example 4)

(1)比較例2と同一の方法で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAS重量あたり100mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAS重量あたり1000mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 (1) An electrode obtained by the same method as in Comparative Example 2 was used as a working electrode, lithium metal was used as a counter electrode, and a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed as an electrolyte in a ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l. Lithium doping is performed at a current of 100 mA / g per weight of PAS until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied against the lithium potential to perform doping of 1000 mAh / g per weight of PAS. A negative electrode on which lithium was previously supported was obtained.

(2)上記で得られた負極と、実施例1と同一の方法で得られた厚さ86μmかつ密度0.60g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (2) The negative electrode obtained above and an activated carbon electrode having a thickness of 86 μm and a density of 0.60 g / cm 3 obtained by the same method as in Example 1 were combined as the positive electrode, and ethylene carbonate and methyl ethyl carbonate were used as the electrolyte. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(3)PAS重量あたり3.9A/gの電流で4.0Vまで充電した後、78mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、80.2mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。3.9A/gの電流で放電した場合、容量はPAS重量に対し、64.2mAh/gであった。7.8A/gの電流で放電した場合、容量はPAS重量に対し、55.6mAh/gであった。23.5A/gの電流で放電した場合、容量はPAS重量に対し、38.7mAh/gであった。39.2A/gの電流で放電した場合、容量はPAS重量に対し、22.9mAh/gであった。   (3) After charging to 4.0 V at a current of 3.9 A / g per weight of PAS, the battery was discharged to 2.0 V at a current of 78 mA / g. The capacity at this time was 80.2 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 3.9 A / g, the capacity was 64.2 mAh / g based on the weight of PAS. When discharged at a current of 7.8 A / g, the capacity was 55.6 mAh / g based on the weight of PAS. When discharged at a current of 23.5 A / g, the capacity was 38.7 mAh / g based on the weight of PAS. When discharged at a current of 39.2 A / g, the capacity was 22.9 mAh / g based on the weight of PAS.

(4)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり12.9Ω・cmであった。上記比較例4について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。
(比較例5)
(4) The AC resistance of the cell was measured at 0.1 Hz and found to be 12.9 Ω · cm 2 per unit area. About the said comparative example 4, the material and particle size which were used for the negative electrode material, the amount of lithium carried beforehand, an electrode physical property, an output characteristic, and alternating current resistance are put together in Table 1.
(Comparative Example 5)

(1)軟化点270℃の等方性ピッチを600gをステンレス製皿に入れ、この皿を角型炉(400×400×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は10リットル/分とした。熱反応は、2℃/分の速度で、炉内温が室温から400℃となるまで昇温し、次いで1℃/分の速度で、炉内温が室温から665℃となるまで昇温し、同温度で12時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出した。得られた生成物は、原料の形状を留めておらず、不定形な不溶不融性基体であった。収量は485gであった。   (1) 600 g of an isotropic pitch having a softening point of 270 ° C. was placed in a stainless steel dish, and this dish was placed in a square furnace (400 × 400 × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 10 liters / minute. The thermal reaction is performed at a rate of 2 ° C./minute until the furnace temperature reaches from room temperature to 400 ° C., and then at a rate of 1 ° C./minute, the furnace temperature is increased from room temperature to 665 ° C. After maintaining at the same temperature for 12 hours, the plate was cooled to 60 ° C. by natural cooling, and the dish was taken out of the furnace. The obtained product did not retain the shape of the raw material, and was an amorphous insoluble and infusible substrate. The yield was 485g.

(2)上記で得られた不溶不融性基体を遊星型ボールミルを用いて平均粒度0.9μmまで粉砕し、負極活物質材料を得た。得られた負極材料について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400 シリーズII、CHNS/O)、およびBET法による比表面積(測定使用機:ユアサアイオニクス社製「NOVA1200」)の測定を行った。また、XRD(X線回折)法(測定使用機:マックサイエンス社製全自動X線回折装置「MXP」、発生X線はCu−Kα線である)による結晶構造の解析を行った。元素分析は水素原子/炭素原子の原子比が0.19であり、比表面積が98m/gの不溶不融性基体(以下PAHs)であり、結晶面002面の面間隔が3.44Åであり、結晶面002面C軸方向の結晶子長さが18.2Åであった。X線回折パターンを図1の材料Cに示す。 (2) The insoluble and infusible substrate obtained above was pulverized to an average particle size of 0.9 μm using a planetary ball mill to obtain a negative electrode active material. About the obtained negative electrode material, elemental analysis (measurement machine: PerkinElmer element analyzer “PE2400 series II, CHNS / O) and BET specific surface area (measurement machine: Yuasa Ionics“ NOVA1200 ”) ) Was measured. In addition, the crystal structure was analyzed by an XRD (X-ray diffraction) method (measurement machine: fully automatic X-ray diffractometer “MXP 3 ” manufactured by Mac Science Co., Ltd., and generated X-rays are Cu—Kα rays). Elemental analysis is an insoluble infusible substrate (hereinafter referred to as PAHs) having a hydrogen atom / carbon atom atomic ratio of 0.19, a specific surface area of 98 m 2 / g, and a crystal plane 002 plane spacing of 3.44 mm. And the crystallite length in the C-axis direction of the crystal plane 002 was 18.2 mm. The X-ray diffraction pattern is shown for material C in FIG.

(3)次いで、上記のPAHs80重量部および導電材アセチレンブラック10重量部およびPVdF10重量部をNMP205重量部と混合し、負極合材スラリーを得た。このスラリーを厚さ18μmの銅箔の片面に塗布し、乾燥した後、プレス加工して電極を得た。電極密度および電極厚さについては表1に示す。   (3) Next, 80 parts by weight of the above PAHs, 10 parts by weight of conductive material acetylene black and 10 parts by weight of PVdF were mixed with 205 parts by weight of NMP to obtain a negative electrode mixture slurry. This slurry was applied to one side of a 18 μm thick copper foil, dried, and then pressed to obtain an electrode. The electrode density and electrode thickness are shown in Table 1.

(4)上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライルーム中で作製した。リチウムのドーピングは、リチウム電位に対して1mVになるまでPAHs重量あたり60mA/gの電流で行い、さらにリチウム電位に対して1mVの定電圧を印加して、PAHs重量あたり600mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。なお、この負極は上記操作においてリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は753mAh/gと高い容量を有している。 (4) The electrode obtained above is used as a working electrode, lithium metal is used as a counter electrode, and a concentration of 1 mol / l is added to a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared in a dry room using a solution in which LiPF 6 was dissolved. Lithium doping is performed at a current of 60 mA / g per weight of PAHs until 1 mV with respect to the lithium potential, and further, a constant voltage of 1 mV is applied to the lithium potential to perform doping of 600 mAh / g per weight of PAHs, A negative electrode on which lithium was previously supported was obtained. The negative electrode has a high capacity of 753 mAh / g when a constant voltage of 1 mV is applied to the lithium potential in the above operation for 12 hours and then discharged to 2.5 V at a current of 60 mA / g. Yes.

(5)上記で得られた負極と、実施例1と同一の方法で得られた厚さ87μmかつ密度0.60g/cmの活性炭電極を正極として組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極評価用の電気化学セルをドライルーム中で作製した。 (5) A negative electrode obtained above and an activated carbon electrode having a thickness of 87 μm and a density of 0.60 g / cm 3 obtained by the same method as in Example 1 are combined as a positive electrode, and ethylene carbonate and methyl ethyl carbonate are used as electrolytes. An electrochemical cell for negative electrode evaluation was prepared in a dry room using a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent prepared by mixing 7 and 7 in a volume ratio.

(6)PAHs重量あたり3.23A/gの電流で4.0Vまで充電した後、65mA/gの電流で2.0Vまで放電した。この時の容量はPAS重量に対し、61.1mAh/gであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。3.2A/gの電流で放電した場合、容量はPAHs重量に対し、42.2mAh/gであった。6.5A/gの電流で放電した場合、容量はPAHs重量に対し、35.1mAh/gであった。19.4A/gの電流で放電した場合、容量はPAHs重量に対し、21.2mAh/gであった。32.3A/gの電流で放電した場合、容量はPAHs重量に対し、8.4mAh/gであった。   (6) After charging to 4.0 V at a current of 3.23 A / g per weight of PAHs, it was discharged to 2.0 V at a current of 65 mA / g. The capacity at this time was 61.1 mAh / g based on the weight of PAS. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 3.2 A / g, the capacity was 42.2 mAh / g based on the weight of PAHs. When discharged at a current of 6.5 A / g, the capacity was 35.1 mAh / g based on the weight of PAHs. When discharged at a current of 19.4 A / g, the capacity was 21.2 mAh / g based on the weight of PAHs. When discharged at a current of 32.3 A / g, the capacity was 8.4 mAh / g based on the weight of PAHs.

(7)セルの交流抵抗について、0.1Hzで測定したところ、単位面積当たり17.8Ω・cmであった。上記比較例5について、負極材料に用いた材料と粒径、予め担持させたリチウム量、電極物性、出力特性、交流抵抗について表1にまとめる。 (7) The AC resistance of the cell was measured at 0.1 Hz and found to be 17.8 Ω · cm 2 per unit area. About the said comparative example 5, the material and particle size which were used for the negative electrode material, the amount of lithium carried beforehand, an electrode physical property, an output characteristic, and alternating current resistance are put together in Table 1.

Figure 2007294286
Figure 2007294286

実施例1〜3および比較例1〜5に係る不溶不融性基体に係る不溶不融性基体の重量あたりの放電電流(電流密度)と、不溶不融性基体の重量あたりの放電容量について図2に示す。本発明の不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてある場合、図2の中にて斜線部に示すような不溶不融性基体の重量あたり40A/g以上の放電電流(電流密度)にて、不溶不融性基体の重量あたり30mAh/g以上の容量が得られ、本発明の不溶不融性基体は40A/g以上と非常に高い電流密度においても放電可能であることが明らかである。   The discharge current per unit weight (current density) of the insoluble infusible substrate according to Examples 1 to 3 and Comparative Examples 1 to 5 and the discharge capacity per unit weight of the insoluble infusible substrate It is shown in 2. In the case where the average particle diameter of the insoluble infusible substrate of the present invention is 2.0 μm or less and lithium of 500 mAh / g or more per weight of the insoluble infusible substrate is previously supported, a hatched line in FIG. A capacity of 30 mAh / g or more per weight of the insoluble infusible substrate can be obtained at a discharge current (current density) of 40 A / g or more per weight of the insoluble infusible substrate as shown in FIG. It is clear that the fusible substrate can be discharged even at a very high current density of 40 A / g or more.

本発明の非水系二次電池用負極の用途としては、例えば、ハイブリッド電気自動車、燃料電池電気自動車等の出力蓄電デバイスの用途等が挙げられる。特に、本非水系二次電池用負極は高エネルギー密度と従来にない高出力の両立を可能とすることができ、出力蓄電デバイスの小型、軽量化に貢献するものである。   As a use of the negative electrode for non-aqueous secondary batteries of this invention, the use of output electrical storage devices, such as a hybrid electric vehicle and a fuel cell electric vehicle, etc. are mentioned, for example. In particular, the negative electrode for a non-aqueous secondary battery can achieve both high energy density and unprecedented high output, and contributes to the reduction in size and weight of the output power storage device.

本発明の実施例および比較例に用いた各不溶不融性基体のX線回折パターンである。図中材料Aは実施例1〜3および比較例1で用い、図中材料Bは比較例2〜4で用い、図中材料Cは比較例5に用いた。It is an X-ray diffraction pattern of each insoluble and infusible substrate used in Examples and Comparative Examples of the present invention. The material A in the figure was used in Examples 1 to 3 and Comparative Example 1, the material B in the figure was used in Comparative Examples 2 to 4, and the material C in the figure was used in Comparative Example 5. 実施例1〜3および比較例1〜5に係る不溶不融性基体の重量あたりの放電電流(電流密度)と、不溶不融性基体の重量あたりの放電容量について説明した図である。It is the figure explaining the discharge current (current density) per weight of the insoluble infusible substrate according to Examples 1 to 3 and Comparative Examples 1 to 5, and the discharge capacity per weight of the insoluble infusible substrate.

Claims (5)

水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体を主成分とする非水系二次電池用負極において、不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてあることを特徴とする非水系二次電池用負極。   A negative electrode for a non-aqueous secondary battery whose main component is an insoluble infusible substrate having a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and an interplanar spacing of crystal plane 002 of 3.6 mm or more In which an average particle diameter of the insoluble and infusible substrate is 2.0 μm or less and lithium of 500 mAh / g or more per weight of the insoluble and infusible substrate is previously supported. Negative electrode. 上記非水系二次電池用負極において、電極密度が0.8g/cm以上であることを特徴とする請求項1に記載の非水系二次電池用負極。 The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the negative electrode for the non-aqueous secondary battery has an electrode density of 0.8 g / cm 3 or more. 上記非水系二次電池用負極において、電極厚みが30μm以上であることを特徴とする請求項1あるいは2に記載の非水系二次電池用負極。   The negative electrode for a non-aqueous secondary battery according to claim 1 or 2, wherein the negative electrode for the non-aqueous secondary battery has an electrode thickness of 30 µm or more. 上記非水系二次電池用負極において、不溶不融性基体の重量あたり40A/gの電流密度で放電させた時、不溶不融性基体の重量あたり30mAh/g以上の放電が可能であることを特徴とする請求項1から3のいずれかに記載の非水系二次電池用負極。   In the negative electrode for a non-aqueous secondary battery, when discharged at a current density of 40 A / g per weight of the insoluble infusible substrate, discharge of 30 mAh / g or more per weight of the insoluble infusible substrate is possible. The negative electrode for a non-aqueous secondary battery according to any one of claims 1 to 3. 正極、負極、セパレータおよびリチウム塩が非水溶媒に溶解されてなる非水系電解液を具備する非水系二次電池において、請求項1から4のいずれかに記載の負極を用いた非水系二次電池。
5. A non-aqueous secondary battery using the negative electrode according to claim 1, wherein the non-aqueous secondary battery includes a non-aqueous electrolyte solution in which a positive electrode, a negative electrode, a separator, and a lithium salt are dissolved in a non-aqueous solvent. battery.
JP2006121721A 2006-04-26 2006-04-26 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same Active JP5192657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121721A JP5192657B2 (en) 2006-04-26 2006-04-26 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121721A JP5192657B2 (en) 2006-04-26 2006-04-26 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007294286A true JP2007294286A (en) 2007-11-08
JP5192657B2 JP5192657B2 (en) 2013-05-08

Family

ID=38764693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121721A Active JP5192657B2 (en) 2006-04-26 2006-04-26 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5192657B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295769A (en) * 2008-06-05 2009-12-17 Nec Corp Led flash unit and electronic apparatus
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2011081959A (en) * 2009-10-05 2011-04-21 Kri Inc Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2013218856A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528985A (en) * 1991-07-19 1993-02-05 Kanebo Ltd Organic electrolyte battery
JPH05159807A (en) * 1991-12-05 1993-06-25 Kanebo Ltd Manufacture of organic electrolyte battery
JPH05159806A (en) * 1991-12-05 1993-06-25 Kanebo Ltd Organic electrolyte battery
JPH0620722A (en) * 1992-07-06 1994-01-28 Kanebo Ltd Organic electrolyte battery
JPH10284122A (en) * 1997-04-10 1998-10-23 Kanebo Ltd Organic electrolyte battery
JP2002329529A (en) * 2000-09-06 2002-11-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2003242979A (en) * 2002-02-21 2003-08-29 Yuasa Corp Electrode material and lithium battery using the same
JP2003263985A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same
JP2003263986A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528985A (en) * 1991-07-19 1993-02-05 Kanebo Ltd Organic electrolyte battery
JPH05159807A (en) * 1991-12-05 1993-06-25 Kanebo Ltd Manufacture of organic electrolyte battery
JPH05159806A (en) * 1991-12-05 1993-06-25 Kanebo Ltd Organic electrolyte battery
JPH0620722A (en) * 1992-07-06 1994-01-28 Kanebo Ltd Organic electrolyte battery
JPH10284122A (en) * 1997-04-10 1998-10-23 Kanebo Ltd Organic electrolyte battery
JP2002329529A (en) * 2000-09-06 2002-11-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2003242979A (en) * 2002-02-21 2003-08-29 Yuasa Corp Electrode material and lithium battery using the same
JP2003263985A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same
JP2003263986A (en) * 2002-03-11 2003-09-19 Yuasa Corp Electrode material and lithium battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295769A (en) * 2008-06-05 2009-12-17 Nec Corp Led flash unit and electronic apparatus
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2011081959A (en) * 2009-10-05 2011-04-21 Kri Inc Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2013218856A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5192657B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
EP1341247B1 (en) Nonaqueous lithium secondary cell
KR102132725B1 (en) An anode active material and an anode for an electrochemical device comprising the same
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
KR20180094747A (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
KR102519441B1 (en) Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode
KR20120080227A (en) Lithium secondary battery
JP2011081960A (en) Nonaqueous secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5192657B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2016031085A1 (en) Anode material for lithium ion battery
JP2003346803A (en) Negative electrode material, method for manufacturing the same, and battery element
JP4944472B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2008060028A (en) Power storage device
KR101772114B1 (en) Anode active material, anode and lithium battery containing the same, and preparation method thereof
JP5781267B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP3002123B2 (en) Organic electrolyte battery
KR102594627B1 (en) Method for manufacturing positive electrode active material
KR102266383B1 (en) Composite anode active material, a method of preparing the composite anode material, and Lithium secondary battery comprising the composite anode active material
JPH08162159A (en) Organic elctrolytic battery
US20230378445A1 (en) Anode active material for secondary battery and lithium secondary battery including the same
JP2912517B2 (en) Organic electrolyte battery
JP3261243B2 (en) Electrodes for organic electrolyte batteries
JP2869191B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Ref document number: 5192657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250