JP2601777B2 - Electrodes for organic electrolyte batteries - Google Patents
Electrodes for organic electrolyte batteriesInfo
- Publication number
- JP2601777B2 JP2601777B2 JP2030627A JP3062790A JP2601777B2 JP 2601777 B2 JP2601777 B2 JP 2601777B2 JP 2030627 A JP2030627 A JP 2030627A JP 3062790 A JP3062790 A JP 3062790A JP 2601777 B2 JP2601777 B2 JP 2601777B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- weight
- insoluble
- resin component
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機電解質電池用電極に係り、更に詳しく
は、ポリアセン系骨格構造を含有する不溶不融性基体粉
末の成形した有機電解質電池用電極に関する。Description: TECHNICAL FIELD The present invention relates to an electrode for an organic electrolyte battery, and more particularly, to an electrode for an organic electrolyte battery formed by molding an insoluble and infusible base powder containing a polyacene skeleton structure. About.
近年、電子機器の小形化,薄形化或は軽量化は目ざま
しく、それに伴い電源となる電池の小形化,薄形化,軽
量化の要望が大きい。小形で性能のよい電池として現在
は酸化銀電池が多用されており、又薄形化された乾電池
や、小形軽量な高性能電池としてリチウム電池が開発さ
れ実用化されている。しかし、これらの電池は一次電池
であるため充放電を繰り返して長時間使用することはで
きない。一方、高性能な二次電池としてニッケル−カド
ミウム電池が実用化されているが、小形化,薄形化,軽
量化という点で未だ不満足である。2. Description of the Related Art In recent years, electronic devices have been remarkably reduced in size, thickness, and weight, and accordingly, there has been a great demand for smaller, thinner, and lighter batteries serving as power supplies. At present, silver oxide batteries are frequently used as small and high-performance batteries, and lithium batteries have been developed and commercialized as thin dry batteries and small and lightweight high-performance batteries. However, since these batteries are primary batteries, they cannot be repeatedly used and used for a long time. On the other hand, nickel-cadmium batteries have been put to practical use as high-performance secondary batteries, but they are still unsatisfactory in terms of miniaturization, thinning, and weight reduction.
又、大容量の二次電池として従来より鉛蓄電池が種々
の産業分野で用いられているが、この電池の最大の欠点
は重いことである。これは電極として過酸化鉛及び鉛を
用いているため宿命的なものである。近年、電気自動車
用電池として該電池の軽量化及び性能改善が試みられた
が実用するに至らなかった。いまもなおエネルギー源と
して大容量で且つ軽量な二次電池に対する要望は強い。In addition, lead storage batteries have conventionally been used in various industrial fields as large capacity secondary batteries, but the biggest disadvantage of these batteries is that they are heavy. This is fatal because lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. There is still a strong demand for a large-capacity and lightweight secondary battery as an energy source.
以上のように現在実用化されている電池は、夫々一長
一短が有りそれぞれ用途に応じて使い分けされている
が、電池の小形化,薄形化,或は軽量化に対するニーズ
は大きい。このようなニーズに応える電池として、近
時、有機半導体である薄膜状ポリアセチレンに電子供与
物質又は電子受容性物質をドーピングしたものを電極活
物質として用いる電池が研究され提案されている。該電
池は二次電池として高性能で且つ薄形化,軽量化の可能
性を有しているが、大きな欠点がある。それは、有機半
導体であるポリアセチレンが極めて不安定な物質であ
り、空気中の酸素により容易に酸化を受け、又熱により
変質することがある。従って電池製造は不活性ガス雰囲
気で行なわなければならず、又ポリアセチレンを電極に
適した形状に製造する事にも制約を受ける。As described above, batteries that are currently in practical use have advantages and disadvantages and are used properly according to their applications. However, there is a great need for batteries that are smaller, thinner, or lighter. In recent years, as a battery that meets such needs, a battery using, as an electrode active material, a thin-film polyacetylene that is an organic semiconductor doped with an electron donor or an electron acceptor has been studied and proposed. Although this battery has high performance as a secondary battery and has the potential of being thinner and lighter, it has major drawbacks. It is a substance in which polyacetylene, an organic semiconductor, is extremely unstable, and is easily oxidized by oxygen in the air and may be deteriorated by heat. Therefore, the battery must be manufactured in an inert gas atmosphere, and there is a limitation in manufacturing polyacetylene into a shape suitable for an electrode.
これに対し、本願の出願人による特開昭60−170163号
公報には、炭素,水素および酸素からなる芳香族系縮合
ポリマーの熱処理物であって、水素原子/炭素原子の原
子比が0.05〜0.5であり、且つBET法による比表面積値が
600m2/g以上であるポリアセン系骨格構造を有する不溶
不融性基体を正極及び/又は負極とし、電解により該電
極にドーピング可能なイオンを生成し得る化合物の非プ
ロトン性有機溶媒溶液を電解液とすることを特徴とする
有機電解質電池が提案されている。On the other hand, JP-A-60-170163 by the applicant of the present application discloses a heat-treated product of an aromatic condensation polymer composed of carbon, hydrogen and oxygen, wherein the atomic ratio of hydrogen atoms / carbon atoms is 0.05 to 0.05. 0.5 and the specific surface area by BET method is
An insoluble and infusible substrate having a polyacene-based skeleton structure of at least 600 m 2 / g is used as a positive electrode and / or a negative electrode, and an aprotic organic solvent solution of a compound capable of generating ions that can be doped into the electrode by electrolysis is used as an electrolyte. An organic electrolyte battery characterized by the following has been proposed.
該電池において電極として用いられるポリアセン系骨
格構造を有する不溶不融性基体は、空気中で安定であ
り、工業材料として実用的でもある為、有機電解質電池
用電極として好適である。The insoluble and infusible substrate having a polyacene-based skeleton structure used as an electrode in the battery is stable in air and practical as an industrial material, and thus is suitable as an electrode for an organic electrolyte battery.
さらに、本願の出願人による特開昭62−133283号公報
には、フェノール系樹脂の熱処理物であって、水素原子
/炭素原子数比が0.5〜0.05であるポリアセン系骨格構
造を有し、BET法による比表面積値が少なくとも600m2/g
である不溶不融性基体より成る電池用電極の製造法にお
いて、該不溶不融性基体の粉末を導電材及びバインダー
と混合し、該混合物を加圧成形する又は支持体上に塗布
又は加圧付着させることを特徴とする電池用電極の製造
法が提案されている。Further, Japanese Patent Application Laid-Open No. 62-133283 by the applicant of the present application discloses a heat-treated phenolic resin having a polyacene skeleton structure having a hydrogen atom / carbon atom ratio of 0.5 to 0.05, and a BET At least 600m 2 / g
In the method for producing a battery electrode comprising an insoluble infusible substrate, the powder of the insoluble infusible substrate is mixed with a conductive material and a binder, and the mixture is molded under pressure or applied or pressed on a support. A method for producing a battery electrode characterized in that the electrode is attached is proposed.
該電極の製造法は、簡便で成形性にすぐれ且つきわめ
て実用的であり、生産性が高い。しかしながら、電池の
最も重要な性能の一つである単位体積当りの容量という
点では未だ不満足であった。The method for producing the electrode is simple, has excellent moldability, is extremely practical, and has high productivity. However, it was still unsatisfactory in terms of the capacity per unit volume, which is one of the most important performances of the battery.
一般に単位体積当りの容量は次式で表わされる。 Generally, the capacity per unit volume is expressed by the following equation.
単位体積当りの容量=単位重量当りの容量×電極密度 すなわち、単位重量当りの容量が一定の場合電極密度
が高いほど有利であると言える。ところが上述の従来の
方法では、電極密度を上げようとすると単位重量当りの
容量が激減してしまい、単位体積当りの容量を大きく増
加させる事はできなかった。Capacity per unit volume = capacity per unit weight × electrode density That is, when the capacity per unit weight is constant, it can be said that the higher the electrode density, the more advantageous. However, in the above-described conventional method, when the electrode density is to be increased, the capacity per unit weight is drastically reduced, and the capacity per unit volume cannot be greatly increased.
本発明者らは、既存の有機電解質電池用電極の有する
上述の問題点に鑑み鋭意研究を重ねた結果本発明を完成
したものであって、その目的とするところは、単位体積
当り高い容量を有する有機電解質電池用電極を提供する
にある。本発明の他の目的は製造が容易且つ任意の形状
に加工可能な有機電解質電池用電極を提供するにある。The present inventors have completed the present invention as a result of intensive studies in view of the above-mentioned problems of the existing electrode for an organic electrolyte battery, and the purpose thereof is to achieve a high capacity per unit volume. To provide an electrode for an organic electrolyte battery having the same. Another object of the present invention is to provide an electrode for an organic electrolyte battery which is easy to manufacture and can be processed into an arbitrary shape.
上述の目的は (1)窒素を含む熱硬化性樹脂成分を少なくとも10重量
%以上含有する芳香族系樹脂の熱処理物であって、 (a)水素原子/炭素原子の原子数比が0.05〜0.5且つ
窒素原子/炭素原子の原子数比が少なくとも0.01である
ポリアセン系骨格構造を有し、 (b)BET法による比表面積値が少なくとも600m2/gであ
りそして、 (c)タップ密度が0.35g/cm3以上である 不溶不融性基体粉末の成形体より成る有機電解質電池用
電極によって達成される。The above objects are (1) a heat-treated aromatic resin containing at least 10% by weight or more of a thermosetting resin component containing nitrogen, and (a) a hydrogen atom / carbon atom number ratio of 0.05 to 0.5. And a polyacene skeleton structure having an atomic ratio of nitrogen atoms / carbon atoms of at least 0.01; (b) a specific surface area value of at least 600 m 2 / g by a BET method; and (c) a tap density of 0.35 g. / cm 3 or more, which is achieved by an electrode for an organic electrolyte battery comprising a molded product of an insoluble and infusible substrate powder.
本発明において、窒素を含む熱硬化性樹脂成分を含有
する芳香族系樹脂とは、窒素を含む熱硬化性樹脂と芳香
族系樹脂とのブレンド樹脂であっても、又所定量の窒素
を含む熱硬化性樹脂成分と芳香族系樹脂成分との縮合物
であっても、更に窒素を含む熱硬化性樹脂成分から構成
される芳香族系樹脂であってもよい。窒素を含む熱硬化
性樹脂成分としては、アルデヒド類と酸性あるいは、塩
基性下で縮合するもの、例えばメラミン,尿素,アニリ
ン等が好適なものとして挙げられる。また本発明におけ
る芳香族系樹脂成分としてはフェノール系樹脂が一般的
である。In the present invention, the aromatic resin containing a thermosetting resin component containing nitrogen is a blend resin of a thermosetting resin containing nitrogen and an aromatic resin, and also contains a predetermined amount of nitrogen. It may be a condensate of a thermosetting resin component and an aromatic resin component, or may be an aromatic resin composed of a thermosetting resin component further containing nitrogen. Preferred examples of the thermosetting resin component containing nitrogen include those which condense with aldehydes under acidic or basic conditions, such as melamine, urea, and aniline. In addition, a phenolic resin is generally used as the aromatic resin component in the present invention.
ここでフェノール系樹脂とは、フェノール性水酸基を
有する芳香族炭化水素化合物とアルデヒド類との縮合物
である。芳香族炭化水素化合物としては、例えばフェノ
ール,クレゾール,キシレノールのごときいわゆるフェ
ノール類が好適であるが、これらに限られない。例えば
下記式 で表されるメチレンビスフェノール類であることがで
き、或はヒドロキシ−ビフェニル類,ヒドロキシナフタ
レン類であることもできる。これらの内、実用的にはフ
ェノール類、特にフェノールが好適である。Here, the phenolic resin is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group with an aldehyde. As the aromatic hydrocarbon compound, for example, so-called phenols such as phenol, cresol and xylenol are suitable, but not limited thereto. For example, Methylene bisphenols, or hydroxy-biphenyls and hydroxynaphthalenes. Of these, phenols, particularly phenol, are practically preferred.
本発明におけるフェノール系樹脂として、上記のフェ
ノール性水酸基を有する芳香族炭化水素化合物の1部を
フェノール性水酸基を有さない芳香族炭化水素化合物例
えばキシレン,トルエン,アニリン等で置換した変性芳
香族ポリマー例えばフェノールとキシレンとホルムアル
デヒドとの縮合物を用いることもでき、さらにはフラン
樹脂を用いることができる。アルデヒドとしてはホルム
アルデヒド,アセトアルデヒド,フルフラール等を使用
することができるが、ホルムアルデヒドが好適である。As the phenolic resin in the present invention, a modified aromatic polymer obtained by substituting a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline, etc. For example, a condensate of phenol, xylene and formaldehyde can be used, and furthermore, a furan resin can be used. As the aldehyde, formaldehyde, acetaldehyde, furfural and the like can be used, but formaldehyde is preferred.
本発明において、窒素を含有する熱硬化性樹脂成分
は、芳香族系樹脂全量に対して10重量%以上であること
が必要であり好ましくは40〜70重量%である。窒素を含
む熱硬化性樹脂成分が10重量%より少ない場合、電極の
密度を増加させると、単位重量当りの容量が低下する。In the present invention, the content of the nitrogen-containing thermosetting resin component is required to be 10% by weight or more, preferably 40 to 70% by weight, based on the total amount of the aromatic resin. If the thermosetting resin component containing nitrogen is less than 10% by weight, increasing the density of the electrode will decrease the capacity per unit weight.
本発明における窒素を含む熱硬化性樹脂成分を少なく
とも10重量%以上含有する芳香族系樹脂は例えばメラミ
ン樹脂等の窒素を含む熱硬化性樹脂と水溶性レゾール等
のフェノール系樹脂とアルデヒドとの初期縮合物を混合
する方法、窒素を含む熱硬化性樹脂成分(モノマー)と
フェノール系樹脂成分(モノマー)とアルデヒド類とを
共縮合する方法、あるいはこらにさらに芳香族系樹脂を
ブレンドする方法等により製造できる。In the present invention, the aromatic resin containing at least 10% by weight or more of the nitrogen-containing thermosetting resin component is, for example, an initial mixture of a nitrogen-containing thermosetting resin such as a melamine resin, a phenolic resin such as a water-soluble resol, and an aldehyde. A method of mixing a condensate, a method of co-condensing a thermosetting resin component (monomer) containing nitrogen, a phenolic resin component (monomer) and aldehydes, or a method of further blending an aromatic resin therewith Can be manufactured.
本発明において用いられるポリアセン系骨格構造を含
有する不溶不融性基体粉末は、例えば次の様にして製造
することができる。The insoluble and infusible base powder having a polyacene-based skeleton structure used in the present invention can be produced, for example, as follows.
窒素を含む熱硬化性樹脂成分とフェノール系樹脂成分
との初期縮合物、および塩化亜鉛等の無機塩の水溶液と
を混合したスラリーを調製し、該スラリーを加熱し硬化
させる。この際窒素を含む熱硬化性樹脂成分は、粉末状
や溶液状などのような形態でもよいが、特に略球状のも
のが好ましい。A slurry is prepared by mixing an initial condensate of a thermosetting resin component containing nitrogen and a phenolic resin component, and an aqueous solution of an inorganic salt such as zinc chloride, and the slurry is heated and cured. At this time, the thermosetting resin component containing nitrogen may be in the form of a powder, a solution, or the like, but is preferably a substantially spherical one.
この様な略球状の窒素を含む熱硬化性樹脂成分として
は、平均粒径が200μm以下のものが望ましく、例えば
ユニチカ(株)製メラミン樹脂WACタイプ等の市販品を
用いる事ができる。この窒素を含む略球状の熱硬化性樹
脂成分の平均粒径が200μmを越えると分散性が極端に
悪くなる。従って該窒素を含む略球状の熱硬化性樹脂の
平均粒径はできるかぎり小さい方が好ましく、例えば20
μm以下であるのが好ましい。更に該窒素を含む略球状
の熱硬化性樹脂成分の形状は真球でなくてもよく、真球
が変形した例えば卵状の形状であってもよい。重要なこ
とは、他成分との混合時に、窒素を含む略球状の熱硬化
性樹脂成分が十分に均質に分散できるよう流れの良い粉
末であることである。As such a thermosetting resin component containing substantially spherical nitrogen, those having an average particle diameter of 200 μm or less are desirable, and commercially available products such as a melamine resin WAC type manufactured by Unitika Ltd. can be used. If the average particle size of the substantially spherical thermosetting resin component containing nitrogen exceeds 200 μm, the dispersibility becomes extremely poor. Therefore, the average particle size of the substantially spherical thermosetting resin containing nitrogen is preferably as small as possible.
It is preferably not more than μm. Further, the shape of the substantially spherical thermosetting resin component containing nitrogen may not be a true sphere, and may be, for example, an oval shape in which the true sphere is deformed. What is important is that the powder has a good flow so that the substantially spherical thermosetting resin component containing nitrogen can be sufficiently homogeneously dispersed when mixed with other components.
混合時に初期縮合物と共に用いる上記塩化亜鉛は後の
工程で除去され、硬化体に細孔を付与し、高比表面を形
成する孔形成剤として作用する塩化亜鉛は樹脂成分に対
して2.5〜10重量倍の量用いることができる。2.5重量倍
未満では高比表面積を有する多孔体が得難く、また10重
量倍を上廻ると熱処理物の収量が低下する。初期縮合物
と塩化亜鉛の水溶液は、例えば塩化亜鉛の0.1〜1.0重量
倍の水を用いて調整することができる。The zinc chloride used together with the initial condensate at the time of mixing is removed in a later step, imparts pores to the cured product, and acts as a pore forming agent for forming a high specific surface. It can be used in a weight-fold amount. If it is less than 2.5 times by weight, it is difficult to obtain a porous body having a high specific surface area, and if it exceeds 10 times by weight, the yield of the heat-treated product is reduced. The aqueous solution of the initial condensate and zinc chloride can be adjusted using, for example, 0.1 to 1.0 times the weight of zinc chloride.
かくして得られた硬化体は次いで非酸化性雰囲気中で
350〜800℃の温度、好ましくは350〜700℃の温度、特に
好ましくは400〜600℃の温度まで加熱され、熱処理され
る。The cured product thus obtained is then placed in a non-oxidizing atmosphere
It is heated to a temperature of 350 to 800 ° C, preferably to a temperature of 350 to 700 ° C, particularly preferably to a temperature of 400 to 600 ° C, and heat-treated.
熱処理の際の好ましい昇音速度は、硬化処理の程度あ
るいはその形状等によって多少相違するが、一般に室温
から300℃程度の温度までは比較的大きな昇温速度とす
ることが可能であり、例えば100℃/時間の速度とする
ことも可能である。The preferred sound heating rate during the heat treatment is slightly different depending on the degree of the curing treatment or the shape thereof, but it is generally possible to use a relatively large heating rate from room temperature to a temperature of about 300 ° C. A rate of ° C./hour is also possible.
樹脂硬化体のかかる加熱熱処理は、非酸化性雰囲気下
において行なわれる。非酸化性雰囲気は、例えば窒素,
アルゴン,ヘリウム,ネオン,二酸化炭素雰囲気あるい
は真空であり、窒素が好ましく用いられる。かかる非酸
化性雰囲気は静止していても流動していてもさしつかえ
ない。Such heat treatment of the cured resin is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is, for example, nitrogen,
It is an atmosphere of argon, helium, neon, carbon dioxide or vacuum, and nitrogen is preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.
得られた熱処理体を水あるいは希塩酸等によって充分
に洗浄することによって、熱処理体中に含まれる塩化亜
鉛を除去することができ、その後これを乾燥すると比表
面積の大きな多孔性硬化縮合物を得ることができる。By sufficiently washing the obtained heat-treated body with water or dilute hydrochloric acid, etc., zinc chloride contained in the heat-treated body can be removed, and then dried to obtain a porous cured condensate having a large specific surface area. Can be.
かくして、上記加熱熱処理により、水素原子/炭素原
子の原子数比(以下H/C比という)が0.5〜0.05、好まし
くは0.35〜0.1、窒素原子/炭素原子の原子数比が0.01
以上、好ましくは0.5〜0.01のポリアセン系骨格構造を
有する不溶不融性基体が得られる。Thus, by the heat treatment, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as H / C ratio) is 0.5 to 0.05, preferably 0.35 to 0.1, and the atomic ratio of nitrogen atoms / carbon atoms is 0.01 to 0.01.
As described above, an insoluble and infusible substrate having a polyacene skeleton structure of preferably 0.5 to 0.01 is obtained.
上記不溶不融性基体は、ポリアセン系の多環構造の一
部の炭素が窒素で置き換った構造がポリアセン系分子間
に均一且つ適度に発達したものであると理解される。It is understood that the insoluble infusible substrate has a structure in which a part of carbons of a polyacene-based polycyclic structure is replaced with nitrogen, which is uniformly and appropriately developed between polyacene-based molecules.
本発明における有機電解質電池用電極は、上述の方法
で得られるポリアセン系骨格構造を含有する不溶不融性
基体の粉末を成形する事によって得られる。そして不溶
不融性基体粉末はタップ密度が0.35g/cm3以上であるこ
とが必要である。The electrode for an organic electrolyte battery in the present invention is obtained by molding a powder of an insoluble and infusible substrate containing a polyacene-based skeleton structure obtained by the above-described method. The insoluble and infusible substrate powder needs to have a tap density of 0.35 g / cm 3 or more.
ここで「タップ密度」とは、粉末に軽い衝撃を繰り返
し与えて容器に充填したときの嵩密度を意味し、粉末の
粒径やパッキング性等を示す指標となるものである。タ
ップ密度が0.35g/cm3未満の場合、粉末を成形して得ら
れる電極の密度を大きくすることが難しく、従って単位
体積当りの容量の大きい電極は得難い。また、窒素を含
む熱硬化性樹脂成分が10重量%未満の芳香族系樹脂の熱
処理物からなる不溶不融性基体粉末を用いる場合、タッ
プ密度が0.35g/cm3以上になったときには、確かに成形
体の密度を大きくする事ができる。しかし、同時に単位
重量当りの容量が大きく低下してしまい結局単位体積当
りの容量の大きな電極を得ることができない。Here, the “tap density” means a bulk density when the powder is repeatedly subjected to a light impact and filled into a container, and is an index indicating the particle size of the powder, packing property, and the like. When the tap density is less than 0.35 g / cm 3, it is difficult to increase the density of the electrode obtained by molding the powder, and thus it is difficult to obtain an electrode having a large capacity per unit volume. When using an insoluble and infusible base powder composed of a heat-treated aromatic resin containing less than 10% by weight of a thermosetting resin component containing nitrogen, when the tap density becomes 0.35 g / cm 3 or more, In addition, the density of the compact can be increased. However, at the same time, the capacity per unit weight is greatly reduced, so that an electrode having a large capacity per unit volume cannot be obtained.
ところが、窒素を含む熱硬化性樹脂成分を少なくとも
10重量%以上含有する芳香族系樹脂の熱処理物からなる
不溶不融性基体粉末を用いるときにのみ、タップ密度を
0.35g/cm3以上にしても単位重量当りの容量が低下しな
い、即ち単位体積当りの容量を大きくする事が可能とな
る。However, at least a thermosetting resin component containing nitrogen is used.
Only when using an insoluble and infusible substrate powder consisting of a heat-treated aromatic resin containing 10% by weight or more, the tap density is reduced.
Even if 0.35 g / cm 3 or more, the capacity per unit weight does not decrease, that is, the capacity per unit volume can be increased.
タップ密度が0.35g/cm3以上の比較的粉砕度の高い粉
末をより短時間に製造するには、比較的強力な粉砕方法
例えばアルミナボールミル等を用いるのが好ましい。こ
の場合粉砕時間は10〜200時間に納めるのが好ましい
が、粉砕量や目的とする粉末物性等によって適宜決定す
べきである。In order to produce a relatively high pulverization powder having a tap density of 0.35 g / cm 3 or more in a shorter time, it is preferable to use a relatively powerful pulverization method such as an alumina ball mill. In this case, the pulverization time is preferably set within 10 to 200 hours, but should be appropriately determined depending on the amount of pulverization and physical properties of the desired powder.
ただし、粉砕した粉末のBET法による比表面積値は600
m2/g以上にすることが好ましい。比表面積値は600m2/g
未満の場合には、本発明の電極を用いた二次電池の充電
時における充電電圧を高くする必要が生じるためエネル
ギー密度等が低下し、又電解液の劣化を招来する。However, the specific surface area of the ground powder by the BET method is 600.
It is preferably at least m 2 / g. Specific surface area value is 600m 2 / g
If it is less than 7, it is necessary to increase the charging voltage when charging the secondary battery using the electrode of the present invention, so that the energy density and the like are reduced, and the electrolyte is deteriorated.
かくして得られた不溶不融性基体粉末を成形すること
により本発明の目的とする有機電解質電池用電極が得ら
れる。粉末の成形は公知の適宜方法から選択して行えば
よく、例えば該不溶不融性基体粉末に集電剤を加え、有
機バインダーで結着する方法等がある。使用する集電剤
としてはカーボンブラッック,アセチレンブラック等が
好ましく、また有機バインダーはテフロン系のものが好
適である。By shaping the insoluble and infusible substrate powder thus obtained, the electrode for an organic electrolyte battery aimed at by the present invention can be obtained. The molding of the powder may be carried out by selecting a known appropriate method, for example, a method of adding a current collector to the insoluble and infusible base powder and binding with an organic binder. As a current collector to be used, carbon black, acetylene black and the like are preferable, and a Teflon-based organic binder is preferable.
(発明の効果) かくして得られる本発明の有機電解質電池用電極は、
従来品に比べ高密度であり、かつ単位重量当りの高容量
を保持している。すなわち該有機電解質電池用電極は単
位体積当りの容量にすぐれたものである。(Effect of the Invention) The electrode for an organic electrolyte battery of the present invention thus obtained is
Higher density than conventional products and high capacity per unit weight. That is, the electrode for an organic electrolyte battery has an excellent capacity per unit volume.
以下実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.
実施例1 平均粒径が60μmの略球状のメラミン樹脂とレゾール
タイプのフェノール系樹脂水溶液(樹脂成分75%)とを
樹脂固形分比で1対1の重量比となる様混合し該混合物
の固形分に対し3倍重量の塩化亜鉛と3/5倍重量の水と
を混合したスラリーを金型に流し込み、約100℃で2時
間加熱して硬化させた。Example 1 A substantially spherical melamine resin having an average particle diameter of 60 μm and an aqueous solution of a resol-type phenolic resin (resin component: 75%) were mixed so as to have a weight ratio of 1: 1 in terms of resin solid content, and the solid content of the mixture was determined. A slurry obtained by mixing zinc chloride three times the weight and water five times the weight in a minute was poured into a mold and heated at about 100 ° C. for 2 hours to cure.
該硬化体をシリコンニット電気炉に入れ窒素気流下で
40℃/時間の速度で昇温して550℃まで熱処理を行っ
た。次に該熱処理物を希塩酸で洗浄後水洗,乾燥するこ
とにより、不溶不融性基体を得た。この不溶不融性基体
のBET法による比表面積値は2120m2/gであった。Put the cured product in a silicon knit electric furnace under a nitrogen stream
The temperature was raised at a rate of 40 ° C./hour and heat treatment was performed up to 550 ° C. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and dried to obtain an insoluble and infusible substrate. The specific surface area of this insoluble and infusible substrate determined by the BET method was 2120 m 2 / g.
次いでこの不溶不融性基体をアルミナボールミルで粉
砕し、粉砕後のちがう2種類の粉末比較例Aと実施例B
とを得た。これらの粉末のタップ密度はそれぞれ0.32g/
cm3及び0.38g/cm3であり、またBET法による比表面積は1
650m2/g及び1030m2/gであった。Then, the insoluble and infusible substrate was pulverized by an alumina ball mill, and two kinds of powders after pulverization Comparative Example A and Example B
And got. The tap density of each of these powders is 0.32 g /
cm 3 and and 0.38 g / cm 3, also the BET specific surface area 1
650 m 2 / g and 1030 m 2 / g.
次にこれらの粉末のそれぞれ100重量部に対してバイ
ンダーとしてポリ四フッ化エチレン5重量部を加え乳鉢
で混練後ローラーで板状に成膜し2種類の電極を得た。Next, 5 parts by weight of polytetrafluoroethylene as a binder was added to 100 parts by weight of each of these powders, kneaded in a mortar, and formed into a plate-like film with a roller to obtain two types of electrodes.
こうして得られた成形体をそれぞれ正極に、リチウム
金属を負極に、また充分に脱水したプロピレンカーボネ
イト1に対しLiClO41.0molを溶解したものを電解液と
して2種類電池を作製した。これら電池に対して0.5mA/
cm2の電流密度で2V〜4Vの充放電を行ってそれぞれ容量
を測定した。結果を第1表に示す。Two types of batteries were prepared using the thus obtained molded articles as a positive electrode, lithium metal as a negative electrode, and 1.0 mol of LiClO 4 dissolved in 1 of sufficiently dehydrated propylene carbonate as an electrolyte. 0.5mA /
Charge and discharge were performed at 2 V to 4 V at a current density of cm 2, and the capacities were measured. The results are shown in Table 1.
第1表に示したごとく、メラミン樹脂を混合した比較
例Aと実施例Bを比較すると、実施例Bはタップ密度の
上昇に伴って電極密度も大きく増加するが,重量当りの
容量がほぼ維持され、このため体積当りの容量は比較例
Aの55mAh/cm3から実施例Bの65.6mAh/cm3と大きく増加
することがわかる。 As shown in Table 1, when comparing Comparative Example A and Example B in which melamine resin was mixed, Example B showed a large increase in the electrode density with an increase in tap density, but the capacity per weight was almost maintained. is the capacity of this order per volume is seen to increase significantly from 55mAh / cm 3 Comparative example a and 65.6mAh / cm 3 in example B.
実施例2 レゾール型フェノール樹脂水溶液(樹脂成分75%)の
みからなる芳香族ポリマーに対し、樹脂成分の3倍重量
の塩化亜鉛と3/5倍重量の水とを混合したスラリーを調
製し、実施例1とまったく同様に硬化,焼成,洗浄を行
い不溶不融性基体を得た。この不溶不融性基体のBET法
による比表面積値は2200m2/gであった。Example 2 A slurry was prepared by mixing zinc chloride three times the weight of a resin component and water three times the weight of a resin component with respect to an aromatic polymer consisting only of a resole type phenol resin aqueous solution (resin component 75%). Hardening, baking and washing were performed in exactly the same manner as in Example 1 to obtain an insoluble and infusible substrate. The specific surface area of this insoluble and infusible substrate as measured by the BET method was 2200 m 2 / g.
次にこれを実施例1と同様に時間を変えて粉砕し、タ
ップ密度がそれぞれ0.33g/cm3及び0.38g/cm3である2種
類の粉末比較例Cと比較例Dとを得た。またこれらの粉
末のBET法による比表面積値はそれぞれ1610m2/g及び109
0m2/gであった。Next, the powder was pulverized at different times in the same manner as in Example 1 to obtain two types of powder Comparative Examples C and D having tap densities of 0.33 g / cm 3 and 0.38 g / cm 3 , respectively. The specific surface area values of these powders by the BET method were 1610 m 2 / g and 109
It was 0 m 2 / g.
さらにこれらの粉末をそれぞれ実施例1と同様に成形
し電極とした後、リチウム電池を作製しその容量を測定
した。結果を併せて上記第1表に示す。Each of these powders was molded in the same manner as in Example 1 to form an electrode, and then a lithium battery was produced and its capacity was measured. The results are shown in Table 1 above.
第1表に示したごとく、レラミン樹脂を混合しない比
較例CおよびDと、メラミン樹脂を混合する比較例Aお
よび実施例Bを比較すると、比較例Dは比較例Cよりも
タップ密度の上昇と共に電極密度は大きく増加してい
る。しかしながら、実施例Bのごとく重量当りの容量が
維持されるのでは無く、それどころか比較例Cの75.1mA
h/gから比較例Dの54.0mAh/gへと激減してしまい、この
ため単位体積当りの容量は増加するどころか低下してし
まうことがわかる。As shown in Table 1, when Comparative Examples C and D in which relamine resin was not mixed and Comparative Examples A and Example B in which melamine resin was mixed, Comparative Example D showed an increase in tap density more than Comparative Example C. The electrode density has increased significantly. However, the capacity per weight was not maintained as in Example B, but rather, 75.1 mA of Comparative Example C.
h / g was drastically reduced to 54.0 mAh / g in Comparative Example D, and thus the capacity per unit volume was found to decrease rather than increase.
実施例3 平均粒径が60μmである略球状のメラミン樹脂とレゾ
ール型フェノール樹脂水溶液(樹脂固形分75%)中の樹
脂成分の重量比を第2表に示す様に6通りに変化させた
芳香族系樹脂に対し、実施例1と同様の重量比の塩化亜
鉛,水を混合したスラリーを調製した。これを実施例1
と同じ方法で熱処理,洗浄等を行って不溶不融性基体を
得た。Example 3 Fragrance in which the weight ratio of a substantially spherical melamine resin having an average particle diameter of 60 μm to a resin component in a resol-type phenol resin aqueous solution (resin solid content: 75%) was changed in six ways as shown in Table 2. A slurry was prepared by mixing zinc chloride and water in the same weight ratio as in Example 1 with respect to the group-based resin. Example 1
Heat treatment, washing, and the like were performed in the same manner as described above to obtain an insoluble and infusible substrate.
次いでディスクミルを用いてこれらを90〜100分程度
粉砕した。さらにこれらの粉末を成形し、実施例1と同
様にリチウム電池を作成し、それぞれの容量を測定し
た。タップ密度,電極密度及び電池容量を第2表に示
す。Next, these were ground for about 90 to 100 minutes using a disk mill. Further, these powders were molded, lithium batteries were prepared in the same manner as in Example 1, and their capacities were measured. Table 2 shows the tap density, electrode density, and battery capacity.
Claims (1)
10重量%以上含有する芳香族系樹脂の熱処理物であっ
て、 (a)水素原子/炭素原子の原子数比が0.05〜0.5且つ
窒素原子/炭素原子の原子数比が少なくとも0.01である
ポリアセン系骨格構造を有し、 (b)BET法による比表面積値が少なくとも600m2/gであ
りそして、 (c)タップ密度が0.35g/cm3以上である 不溶不融性基体粉末の成形体より成る有機電解質電池用
電極。(1) a thermosetting resin component containing nitrogen,
A heat-treated aromatic resin containing 10% by weight or more of: (a) a polyacene-based resin having an atomic ratio of hydrogen atoms / carbon atoms of 0.05 to 0.5 and an atomic ratio of nitrogen atoms / carbon atoms of at least 0.01. (B) having a specific surface area value of at least 600 m 2 / g by a BET method, and (c) having a tap density of not less than 0.35 g / cm 3 , comprising a molded body of an insoluble and infusible base powder. Electrodes for organic electrolyte batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2030627A JP2601777B2 (en) | 1990-02-09 | 1990-02-09 | Electrodes for organic electrolyte batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2030627A JP2601777B2 (en) | 1990-02-09 | 1990-02-09 | Electrodes for organic electrolyte batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03236158A JPH03236158A (en) | 1991-10-22 |
JP2601777B2 true JP2601777B2 (en) | 1997-04-16 |
Family
ID=12309090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2030627A Expired - Fee Related JP2601777B2 (en) | 1990-02-09 | 1990-02-09 | Electrodes for organic electrolyte batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2601777B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63301464A (en) * | 1987-05-30 | 1988-12-08 | Kanebo Ltd | Organic electrolyte battery with nitrogen-including substrate as electrode |
-
1990
- 1990-02-09 JP JP2030627A patent/JP2601777B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63301464A (en) * | 1987-05-30 | 1988-12-08 | Kanebo Ltd | Organic electrolyte battery with nitrogen-including substrate as electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH03236158A (en) | 1991-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2601777B2 (en) | Electrodes for organic electrolyte batteries | |
JP2574730B2 (en) | Organic electrolyte battery | |
JP2627033B2 (en) | Manufacturing method of organic electrolyte battery | |
JPS63301460A (en) | Manufacture of electrode for battery | |
JP2016136452A (en) | Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode | |
JP2968097B2 (en) | Organic electrolyte battery | |
JP2003068307A (en) | Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode | |
JP2556408B2 (en) | Organic electrolyte battery | |
JP2744555B2 (en) | Battery electrode | |
JP4402184B2 (en) | Carbon material for secondary battery negative electrode material and method for producing the same | |
JP2556407B2 (en) | Organic electrolyte battery | |
JP2524184B2 (en) | Organic electrolyte battery containing composite electrodes | |
JP2703696B2 (en) | Organic electrolyte battery | |
JP3403894B2 (en) | Organic electrolyte battery | |
JP2646461B2 (en) | Organic electrolyte battery | |
JP2519180B2 (en) | Organic electrolyte battery | |
JPS63301465A (en) | Organic electrolyte battery with composite matter of aniline as positive electrode | |
JP2519454B2 (en) | Organic electrolyte battery using nitrogen-containing substrate as electrode | |
JP3020509B2 (en) | Organic electrolyte battery | |
JP2813215B2 (en) | Electrodes for organic electrolyte batteries | |
JP2649298B2 (en) | Manufacturing method of battery electrode | |
JP2646462B2 (en) | Organic electrolyte battery | |
JP2614724B2 (en) | Organic electrolyte battery with metal sulfide composite as positive electrode | |
JP2824093B2 (en) | Electrodes for organic electrolyte batteries | |
JP2704689B2 (en) | Manufacturing method of battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100129 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |