JP3020509B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP3020509B2
JP3020509B2 JP1103195A JP10319589A JP3020509B2 JP 3020509 B2 JP3020509 B2 JP 3020509B2 JP 1103195 A JP1103195 A JP 1103195A JP 10319589 A JP10319589 A JP 10319589A JP 3020509 B2 JP3020509 B2 JP 3020509B2
Authority
JP
Japan
Prior art keywords
battery
electrode
insoluble
infusible substrate
zinc chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103195A
Other languages
Japanese (ja)
Other versions
JPH02281573A (en
Inventor
之規 羽藤
久史 佐竹
信善 竹原
清 勝部
種男 岡本
静邦 矢田
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP1103195A priority Critical patent/JP3020509B2/en
Publication of JPH02281573A publication Critical patent/JPH02281573A/en
Application granted granted Critical
Publication of JP3020509B2 publication Critical patent/JP3020509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機電解質電池に係り、更に詳しくは半導体
の性能を有する不溶不融性基体粉末成形体を正極および
/又は負極とする有機電解質電池に関する。
Description: FIELD OF THE INVENTION The present invention relates to an organic electrolyte battery, and more particularly, to an organic electrolyte battery using a powdered insoluble and infusible substrate having semiconductor properties as a positive electrode and / or a negative electrode. About.

(従来の技術) 近年、電子機器の小型化、薄形化あるいは軽量化は目
覚ましく、それに伴い電源となる電池の小型化、薄形
化、軽量化の要望が大きい。小型で性能のよい電池とし
て現在は酸化銀電池が多用されており、又薄形化された
軽電池や、小型軽量な高性能電池として、リチウム電池
が開発され実用化されている。しかしこれらの電池は1
次電池であるため充放電を繰返して長時間使用すること
はできない。一方、高性能な2次電池としてニッケルカ
ドミウム電池が実用化されているが、小型化、薄形化、
軽量化という点で未だ不満足である。
(Prior Art) In recent years, electronic devices have been remarkably reduced in size, thickness, and weight, and accordingly, there has been a great demand for smaller, thinner, and lighter batteries serving as power supplies. At present, silver oxide batteries are frequently used as small and high-performance batteries, and lithium batteries have been developed and put into practical use as thin light batteries and small and lightweight high-performance batteries. But these batteries are 1
Because it is a secondary battery, it cannot be used for a long time by repeating charging and discharging. On the other hand, nickel cadmium batteries have been put to practical use as high performance secondary batteries,
It is still unsatisfactory in terms of weight reduction.

又、大容量の2次電池として従来より鉛蓄電池が種々
の産業分野で用いられているが、この電池の最大の欠点
は重いことである。これは電極として過酸化鉛及び鉛を
用いているため宿命的なものである。近年、電気自動車
用電池として該電池の軽量化及び性能改善が試みられた
が実用するに至らなかった。しかし蓄電池として大容量
で且つ軽量な2次電池に対する要望は強いものがある。
Although lead-acid batteries have been used in various industrial fields as large-capacity secondary batteries, the biggest disadvantage of these batteries is that they are heavy. This is fatal because lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large-capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一
短があり、それぞれ用途に応じて使い分けされている
が、電池の小型化、薄形化、或は軽量化に対するニーズ
は大きい。このようなニーズに応えようとする電池とし
て、近時、有機半導体である薄膜状ポリアセチレンに電
子供与性物質又は電子受容性物質をドーピングしたもの
を電極活物質として用いる電池が研究され、提案されて
いる。該電池は2次電池として高性能で且つ薄形化、軽
量化の可能性を有しているが、大きな欠点がある。それ
は有機半導体であるポリアセチレンが極めて不安定な物
質であり空気中の酸素により容易に酸化を受け、又熱に
より変質することである。従って電池製造は不活性ガス
雰囲気で行なわなければならず、又ポリアセチレンを電
極に適した形状に製造することにも制約を受ける。
As described above, batteries currently in practical use each have advantages and disadvantages, and are used properly according to their applications. However, there is a great need for batteries to be smaller, thinner, or lighter. As a battery that meets such needs, recently, a battery using a thin-film polyacetylene, which is an organic semiconductor, doped with an electron-donating substance or an electron-accepting substance as an electrode active material has been studied and proposed. I have. Although this battery has high performance as a secondary battery and has the potential of being thinner and lighter, it has major drawbacks. That is, polyacetylene, which is an organic semiconductor, is a very unstable substance, is easily oxidized by oxygen in the air, and is transformed by heat. Therefore, the battery must be manufactured in an inert gas atmosphere, and there is a limitation in manufacturing polyacetylene into a shape suitable for an electrode.

また、本願の出願人と同一出願人の出願にかかる先願
である特願昭59−24165号明細書には、炭素、水素およ
び酸素からなる芳香族系縮合ポリマーの熱処理物であっ
て、水素原子/炭素原子の原子比が0.05〜0.5であり、
且つBET法による比表面積値が600m2/g以上であるポリア
セン系骨格構造を含有する不溶不融性基体を正極及び/
又は負極とし、電解により該電極にドーピング可能なイ
オンを生成し得る化合物の非プロトン性有機溶媒溶液を
電解液とすることを特徴とする有機電解質電池が提案さ
れている。
Further, Japanese Patent Application No. 59-24165, which is a prior application filed by the same applicant as the applicant of the present application, discloses a heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen, The atomic ratio of atoms / carbon atoms is 0.05-0.5,
And an insoluble infusible substrate containing a polyacene-based skeletal structure having a specific surface area of at least 600 m 2 / g by a BET method,
Alternatively, there has been proposed an organic electrolyte battery in which an aprotic organic solvent solution of a compound capable of generating ions capable of doping the electrode by electrolysis is used as the negative electrode and the electrolyte is used as the electrolytic solution.

該電池は、高性能で、薄形化、軽量化の可能性も有し
ており、電極活物質の酸化安定性も高く、さらにその成
形も容易であるなど将来有望な2次電池である。
The battery is a promising secondary battery in that it has high performance, has the potential of being thin and lightweight, has high oxidation stability of the electrode active material, and is easy to mold.

この先願において、ポリアセン系骨格構造を含有する
不溶不融性基体は、フェノール系樹脂の成型体を熱処理
することにより製造されている。しかし生産性を考慮し
た場合、該成形体を高充填率で大量に電気炉に仕込む必
要があり、この条件で熱処理すると、例えばクレータ状
のふくれが生じる等の問題があった。
In this prior application, an insoluble and infusible substrate containing a polyacene-based skeleton structure is produced by heat-treating a molded product of a phenolic resin. However, in consideration of productivity, it is necessary to charge the compact in a large amount at a high filling rate in an electric furnace, and there is a problem that heat treatment under these conditions causes, for example, crater-like blisters.

(発明が解決しようとする課題) 本発明者らは上記問題点に鑑み、鋭意研究を続けた結
果、ポリアセン系骨格構造を含有する不溶不融性基体粉
末の成型物を電極として使用することを見い出し本発明
を完成したものである。
(Problems to be Solved by the Invention) In view of the above problems, the present inventors have conducted intensive studies and as a result, have found that a molded product of an insoluble and infusible base powder containing a polyacene skeleton structure is used as an electrode. The present invention has been completed.

本発明の目的は高容量の有機電解質電池を提供するに
ある。本発明の他の目的は半導体乃至伝導体の電気伝導
性を有し、且つ優れた物理的性質を有すると共に酸化安
定性にも優れた経済的で大量生産可能な電気伝導性有機
高分子系粉末材料を電極活物質とする有機電解質電池を
提供するにある。本発明のさらに他の目的および利点は
以下の説明から明らかとなろう。
An object of the present invention is to provide a high capacity organic electrolyte battery. Another object of the present invention is to provide an economically mass-producible electrically conductive organic polymer-based powder having electrical conductivity of a semiconductor or a conductor, excellent physical properties and excellent oxidation stability. An object of the present invention is to provide an organic electrolyte battery using a material as an electrode active material. Still other objects and advantages of the present invention will be apparent from the following description.

(課題を解決するための手段) 上述の目的は、水溶性フェノール系樹脂初期縮合物と
塩化亜鉛とを水性媒体中で撹拌下で反応して得られた粉
末状のフェノール系樹脂と塩化亜鉛との複合体を非酸化
性雰囲気下で熱処理して得られる、BET法による比表面
積値が少なくとも1500m2/gであり、且つ水素原子/炭素
原子の原子比が0.5〜0.05であるポリアセン系骨格構造
を含有する不溶不融性基体の粉末成形体を正極及び/又
は負極とし、電解により電極にドーピング可能なイオン
を生成し得る化合物の非プロトン性有機溶媒溶液を電解
液とすることを特徴とする有機電解質電池用電極の製造
法により達成される。
(Means for Solving the Problems) The above-described object is to provide a powdery phenolic resin obtained by reacting a water-soluble phenolic resin precondensate and zinc chloride in an aqueous medium with stirring, and zinc chloride. Having a specific surface area value of at least 1500 m 2 / g by a BET method and a hydrogen atom / carbon atom ratio of 0.5 to 0.05, which is obtained by heat-treating the composite of Example 1 in a non-oxidizing atmosphere. Wherein the powder molded body of the insoluble and infusible substrate containing is used as a positive electrode and / or a negative electrode, and an aprotic organic solvent solution of a compound capable of generating ions that can be doped into the electrode by electrolysis is used as an electrolytic solution. This is achieved by a method for producing an electrode for an organic electrolyte battery.

本発明に用いるフェノール系樹脂としては、(a)フ
ェノール・ホルムアルデヒド樹脂の如き、フェノール性
水酸基を有する芳香族系炭化水素化合物とアルデヒド類
の縮合物、(b)キシレン変性フェノール・ホルムアル
デヒド樹脂(フェノールの一部をキシレンで置換したも
の)の如き、フェノール性水酸基を有する芳香族系炭化
水素化合物が好適である。
Examples of the phenolic resin used in the present invention include (a) a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, such as a phenol-formaldehyde resin, and (b) a xylene-modified phenol-formaldehyde resin (a phenol-formaldehyde resin). Aromatic hydrocarbon compounds having a phenolic hydroxyl group, such as those partially substituted with xylene, are preferred.

本発明における不溶不融性基体は例えば次の様にして
製造することができる。
The insoluble and infusible substrate in the present invention can be produced, for example, as follows.

まずフェノール系樹脂の初期縮合物水溶液と塩化亜鉛
水溶液よりフェノール系樹脂・塩化亜鉛複合体を調製す
る。
First, a phenolic resin / zinc chloride composite is prepared from an aqueous solution of an initial condensate of a phenolic resin and an aqueous solution of zinc chloride.

従来の方法では、上記原料を十分に冷却しながら撹拌
混合することにより原料の均一混合液としその後加熱硬
化させるという2段階法で成型板として該複合体を製造
していたのであるが、本発明で上記原料を十分な冷却な
しに強制的に撹拌混合することにより、混合時に発生し
た熱で縮合反応を進行させ、且つ強制撹拌によって微粉
末化して粉末状の該複合体を作成する。撹拌中の冷却あ
るいは加熱温度条件は原料組成によって変わるが、縮合
反応が進行する程度の発熱量が取り出せれば特に制限さ
れるものではない。しかし20℃未満では塩化亜鉛水溶液
中の塩化亜鉛が析出し易い等の問題が生じる為、好まし
くは20℃以上である。また得られた該複合体の粒径は製
造条件によって変わるが、通常は100μm以下である。
またこれらの微粒の2次凝集体として得られることもあ
る。塩化亜鉛の混入量はフェノール系樹脂に対して重量
比で1/20〜10/1が好ましい。塩化亜鉛が少なすぎると該
複合体の粒径が100μm以上となり、後の熱処理工程で
大量に電気炉に仕込んだ場合、不均質なポリアセン骨格
構造を含有する不溶不融性基体しか得られなくなる。
In the conventional method, the composite was manufactured as a molded plate by a two-stage method in which the raw material was stirred and mixed while sufficiently cooling to obtain a uniform mixed solution of the raw material and then heated and cured. By forcibly stirring and mixing the above raw materials without sufficient cooling, the condensation reaction is advanced by the heat generated during the mixing, and the mixture is pulverized into fine powder by forced stirring to prepare the powdery composite. The cooling or heating temperature conditions during the stirring vary depending on the raw material composition, but are not particularly limited as long as a calorific value sufficient for the progress of the condensation reaction can be obtained. However, if the temperature is lower than 20 ° C., a problem such as easy precipitation of zinc chloride in the aqueous zinc chloride solution occurs. The particle size of the obtained composite varies depending on the production conditions, but is usually 100 μm or less.
In addition, they may be obtained as secondary aggregates of these fine particles. The mixing amount of zinc chloride is preferably 1/2 to 10/1 by weight relative to the phenolic resin. When the amount of zinc chloride is too small, the particle size of the composite becomes 100 μm or more, and when the composite is charged into an electric furnace in a large amount in a subsequent heat treatment step, only an insoluble and infusible substrate containing a heterogeneous polyacene skeleton structure can be obtained.

また塩化亜鉛水溶液の濃度も該混合物の形状、サイズ
に影響を与えるが、水/塩化亜鉛重量比で0.1〜1が好
ましい。濃度が低すぎると塩化亜鉛が析出固化し、均一
な混合が行い難く、一方高すぎると粒径が100μm以上
となり、前述と同様大量に電気炉に仕込んだ場合に後の
熱処理工程で均一な該基体が得られ難くなる。
The concentration of the aqueous zinc chloride solution also affects the shape and size of the mixture, but the water / zinc chloride weight ratio is preferably 0.1 to 1. If the concentration is too low, zinc chloride precipitates and solidifies, making it difficult to perform uniform mixing.On the other hand, if it is too high, the particle size becomes 100 μm or more. It becomes difficult to obtain a substrate.

さらに、撹拌混合中の縮合反応を制御する為に略球状
のフェノール系樹脂例えばペルパール(鐘紡(株)社
製)等の市販品を撹拌混合中に混入してもよい。ただし
該略球状フェノール系樹脂の混入量が多すぎると混合物
のかさ密度が低下し、生産性が低下する傾向にある。
Further, in order to control the condensation reaction during the stirring and mixing, a commercially available product such as a substantially spherical phenolic resin such as Perpearl (manufactured by Kanebo Co., Ltd.) may be mixed into the stirring and mixing. However, if the amount of the substantially spherical phenolic resin is too large, the bulk density of the mixture tends to decrease, and the productivity tends to decrease.

かくして得られた粉末状のフェノール系樹脂と塩化亜
鉛複合体とを非酸化性雰囲気中で400〜800℃の温度、好
ましくは450〜750℃の温度、特に好ましくは500〜700℃
の温度まで加熱する。この熱処理によって芳香族系縮合
ポリマーは、脱水素脱水反応をおこし、芳香環の縮合反
応によって、ポリアセン系骨格構造が形成される。
The powdery phenolic resin thus obtained and the zinc chloride composite are heated in a non-oxidizing atmosphere at a temperature of 400 to 800 ° C, preferably 450 to 750 ° C, particularly preferably 500 to 700 ° C.
Heat to the temperature of By this heat treatment, the aromatic condensation polymer undergoes a dehydrogenation dehydration reaction, and a polyacene skeleton structure is formed by the condensation reaction of the aromatic ring.

この反応は熱縮合重合の一種であり、反応度は最終生
成物の水素原子/炭素原子(以後H/Cと云う)で表され
る原子数比によって表される。不溶不融性基体のH/Cの
値は0.05〜0.6、好ましくは、0.15〜0.50である。不溶
不融性基体のH/Cの値が0.6より大きい場合は、ポリアセ
ン系骨格構造が未発達なため電気電導度が低く好ましく
ない。一方、H/Cの値が0.05より小さい場合、ドーピン
グできるドーパント量が少なくなる。
This reaction is a kind of thermal condensation polymerization, and the degree of reactivity is represented by the atomic ratio represented by hydrogen atoms / carbon atoms (hereinafter referred to as H / C) in the final product. The H / C value of the insoluble infusible substrate is 0.05 to 0.6, preferably 0.15 to 0.50. When the value of H / C of the insoluble infusible substrate is larger than 0.6, the electric conductivity is not preferred because the polyacene skeleton structure is not developed. On the other hand, when the value of H / C is smaller than 0.05, the amount of dopant that can be doped becomes small.

得られた熱処理体を水あるいは希塩酸等で十分洗浄す
ることによって、熱処理体中に含まれている無機塩を除
去する。
The obtained heat-treated body is sufficiently washed with water or diluted hydrochloric acid to remove the inorganic salt contained in the heat-treated body.

その後、これを乾燥することにより、本発明の不溶不
融性基体粉末が得られる。
Thereafter, by drying this, the insoluble infusible substrate powder of the present invention is obtained.

かくして得られる本発明の、不溶不融性基体粉末は、
BET法による比表面積値が、少なくとも1500m2/gであ
る。該粉末の比表面積値が600m2/g未満の場合、例え
ば、ClO4 -,BF4 -,AsF6 -,(C2H54N+等のイオン半径の大
きなドーパントを大量に且つ、円滑にドーピングし難
く、電池の性能、特に容量が低下する。
The insoluble infusible substrate powder of the present invention thus obtained is
The specific surface area by the BET method is at least 1500 m 2 / g. When the specific surface area of the powder is less than 600 m 2 / g, for example, a large amount of dopant having a large ionic radius such as ClO 4 , BF 4 , AsF 6 , (C 2 H 5 ) 4 N + It is difficult to dope smoothly, and the performance of the battery, particularly the capacity, is reduced.

次に、該不溶不融性基体粉末を成膜するわけである
が、不溶不融性基体粉末に導電材とバインダーを加える
ことにより、成膜が容易となる。導電剤は、製造された
電池用電極に適切な電気伝導度を与える為に加えられ
る。該電池用電極に適切な電気伝導度とは10-5S/cm以
上、好ましくは10-3S/cm以上である。電気伝導度が10-5
S/cm未満の場合、電極による内部抵抗が増大し、充放電
の効率を低下させる原因となり好ましくない。
Next, the insoluble infusible substrate powder is formed into a film. By adding a conductive material and a binder to the insoluble infusible substrate powder, the film can be easily formed. The conductive agent is added to provide an appropriate electrical conductivity to the manufactured battery electrode. The electric conductivity suitable for the battery electrode is 10 −5 S / cm or more, preferably 10 −3 S / cm or more. Electric conductivity 10 -5
If it is less than S / cm, the internal resistance due to the electrode increases, which causes a reduction in charge / discharge efficiency, which is not preferable.

導電剤の種類は特に限定されないが、例えば活性炭、
カーボンブラック、黒鉛等の炭素系のものが好ましく、
その粒径は小さければ小さいほど効果的である。導電材
として導電性高分子を用いることも可能である。導電材
の割合は不溶不融性基体粉末の電気伝導度、バインダー
の種類、成形法等の条件によって異なるが、全体量に対
して40〜2wt%必要である。
The type of the conductive agent is not particularly limited, for example, activated carbon,
Carbon-based ones such as carbon black and graphite are preferred,
The smaller the particle size, the more effective. It is also possible to use a conductive polymer as the conductive material. The proportion of the conductive material varies depending on conditions such as the electric conductivity of the insoluble and infusible base powder, the type of binder, and the molding method, but is required to be 40 to 2% by weight based on the total amount.

バインダーの種類は、電池を組む時に使用される電解
質を溶かす溶媒、例えばエチレンカーボネイト、プロピ
レンカーボネイト、γ−ブチロラクトン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、アセトニトリル、ジメトキシエタン、テトラヒドロ
フラン、ジオキソラン、スルホラン等の有機溶媒に不溶
のものであれば特に限定されない。例えばSBR等のゴム
系バインダー、ポリ四フッ化エチレン等のフッ素系樹
脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が
好ましく、ポリ四フッ化エチレンがその中でも特に好ま
しい。その混合比はその種類によって異るが全体量に対
して20wt%以下が望ましく、混合比が20wt%を越えると
電解液が十分に電極内部に入ることができず、容量が低
下する為好ましくない。
The type of binder is a solvent that dissolves the electrolyte used when assembling the battery, for example, organic solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, and sulfolane. There is no particular limitation as long as it is insoluble in the solvent. For example, rubber-based binders such as SBR, fluorine-based resins such as polytetrafluoroethylene, and thermoplastic resins such as polypropylene and polyethylene are preferable, and polytetrafluoroethylene is particularly preferable. The mixing ratio varies depending on the type, but is preferably 20% by weight or less based on the total amount. If the mixing ratio exceeds 20% by weight, the electrolyte cannot sufficiently enter the inside of the electrode, and the capacity decreases, which is not preferable. .

上記の如き不溶不融性基体の粉末、導電材のパインダ
ーを十分に混練し、成形して電極とする。
The powder of the insoluble infusible substrate and the binder of the conductive material as described above are sufficiently kneaded and molded to form an electrode.

本発明の方法による有機電解質電池は、上述の方法に
よって製造されるフェノール系樹脂の初期縮合物水溶液
と塩化亜鉛水溶液とを撹拌混合中に縮合することによっ
て得られる粉末状のフェノール系樹脂・塩化亜鉛複合体
を非酸化性雰囲気下で熱処理することによって得られ、
BET法による比表面積値が少くとも1500m2/gであり、且
つ水素原子/炭素原子の原子比が0.5〜0.05であるポリ
アセン系骨格構造を含有する不溶不融性基体粉末成形体
を正極及び/又は負極とし、電解により該電極にドーピ
ング可能なイオンを生成し得る化合物の非プロトン性有
機溶媒溶液を電解液とする。
The organic electrolyte battery according to the method of the present invention is a powdery phenolic resin / zinc chloride obtained by condensing an aqueous solution of an initial condensate of a phenolic resin and an aqueous zinc chloride solution produced by the above-described method during stirring and mixing. Obtained by heat treating the composite in a non-oxidizing atmosphere,
The insoluble and infusible substrate powder compact containing a polyacene skeleton structure having a specific surface area value of at least 1500 m 2 / g by a BET method and an atomic ratio of hydrogen atom / carbon atom of 0.5 to 0.05 is used as a positive electrode and / or Alternatively, an aprotic organic solvent solution of a compound capable of forming ions that can be doped into the electrode by electrolysis is used as an electrolyte.

電解液に用いられ、電極にドーピング可能なイオンを
生成し得る化合物としてはアルカリ金属又はテトラアル
キルアンモニウムのハロゲン化物,過塩素酸塩,6フッ化
銅酸塩,6フッ化砒酸塩,4弗化硼素酸塩等が挙げられ、具
体的にはLiI,NaI,NH4I,LiClO4,LiAsF6,LiBF4,KPF6,NaPF
4、テトラアルキルアンモニウムのClO4 -,AsF6 -,PF6 -,及
びBF4塩等がある。
Compounds used in the electrolyte that can generate ions that can be doped into the electrode include alkali metal or tetraalkylammonium halides, perchlorates, hexafluorocuprates, hexafluoroarsenates, and tetrafluorides. Borates and the like, specifically, LiI, NaI, NH 4 I, LiClO 4 , LiAsF 6 , LiBF 4 , KPF 6 , NaPF
4 , tetraalkyl ammonium salts such as ClO 4 , AsF 6 , PF 6 , and BF 4 salts.

前記化合物を溶解する非プロトン性有機溶媒として
は、エチレンカーボネート,プロピレンカーボネート,
γ−ブチロラクトン,ジメチルホルムアミド,ジメチル
アセトアミド,ジメチルスルホキシド,アセトニトリ
ル,ジメトキシエタン,テトラヒドロフラン,塩化メチ
レン及びこれらの混合物が挙げられるが、電解質として
用いる前記化合物の溶解性,電池性能等を考慮して選択
することが重要である。
Examples of the aprotic organic solvent for dissolving the compound include ethylene carbonate, propylene carbonate,
γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, and mixtures thereof. Selection should be made in consideration of the solubility of the compound used as an electrolyte, battery performance, and the like. is important.

電解液中の前記化合物の濃度は電解液による内部抵抗
を小さくするため少なくとも0.1モル/以上であるこ
とが最も好ましく、通常0.2〜1.5モル/の範囲とする
と好ましい結果が得られる。
Most preferably, the concentration of the compound in the electrolytic solution is at least 0.1 mol / or more in order to reduce the internal resistance due to the electrolytic solution, and usually a range of 0.2 to 1.5 mol / is preferable.

本発明の方法による電池はポリアセン系骨格構造を含
有する不溶不融性基体粉末成型体を正極又は/及び負極
とし、ドーピング剤を非プロトン性有機溶媒に溶解した
ものを電解質とするものであるが、その電池作用は電極
として用いる不溶不融性基体粉末へのドーピング剤の電
気化学的ドーピングと電気化学的アンドーピングを利用
するものである。即ち、エネルギーが不溶不融性基体粉
末へのドーピング剤の電気化学的ドーピングにより蓄え
られるか、或は外部に放出され電気化学的アンドーピン
グにより電気エネルギーとして外部に取出されるか、或
は内部に蓄えられる。
The battery according to the method of the present invention uses a powdered insoluble and infusible substrate containing a polyacene-based skeleton structure as a positive electrode and / or a negative electrode, and an electrolyte obtained by dissolving a doping agent in an aprotic organic solvent. The battery action utilizes electrochemical doping and electrochemical undoping of a doping agent into an insoluble infusible substrate powder used as an electrode. That is, energy is stored by electrochemical doping of the insoluble infusible substrate powder with the doping agent, or is released to the outside and is extracted as electrical energy by electrochemical undoping, or internally. It is stored.

本発明に係る電池は2つのタイプに分けられる。第1
のタイプは正極及び負極の両極に不溶不融性基体粉末成
型体を用いる電池であり、第2のタイプは正極に不溶不
融性基体粉末成型体を用い、負極にアルカリ金属又はそ
の合金からなる電極を用いる電池である。そして適用す
るアルカリ金属の具体例としては例えばセシウム,ルビ
ジウム,カリウム,ナトリウム,リチウム等が挙げら
れ、これらのうちリチウムが最も好ましい。
The batteries according to the present invention are divided into two types. First
The type is a battery using an insoluble and infusible substrate powder molded body for both the positive electrode and the negative electrode. The second type uses an insoluble and infusible substrate powder molded body for the positive electrode, and the negative electrode is composed of an alkali metal or an alloy thereof. This is a battery using electrodes. Specific examples of the alkali metal to be applied include, for example, cesium, rubidium, potassium, sodium, lithium and the like, and among these, lithium is most preferable.

電池内に配置される不溶不融性基体粉末成型体からな
る電極の形状,大きさは、目的とする電池により、適宜
に選択すればよいが電池反応は電極表面上の電気化学的
反応であるため電極は可能な限り、表面積を大きくする
のが有利である。又、該不溶不融性基体粉末から電池外
部に電流を取出するための集電体としては、該不溶不融
性基体粉末を用いてもよいが、ドーピング剤及び電解液
に対し耐食性のある他の導電性物質、例えば炭素,白
金,ニッケル,ステンレス等を用いることもできる。
The shape and size of the electrode formed of the powdered insoluble and infusible substrate disposed in the battery may be appropriately selected depending on the intended battery, but the battery reaction is an electrochemical reaction on the electrode surface. Therefore, it is advantageous to increase the surface area of the electrode as much as possible. As a current collector for extracting a current from the insoluble infusible substrate powder to the outside of the battery, the insoluble infusible substrate powder may be used. , Such as carbon, platinum, nickel, and stainless steel.

次に図面により本発明の実施態様の1例を説明する。
第1図は本発明に係る電池の説明図である。同図に於い
て、(1)は正極 (2)は負極 (3)は集電体
(4)は電解液 (5)はセパレーター (6)は電池
ケース(7)は外部端子を表わす。
Next, an example of an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a battery according to the present invention. In the figure, (1) is a positive electrode (2) is a negative electrode (3) is a current collector
(4) is an electrolyte (5) is a separator (6) is a battery case (7) is an external terminal.

まず、本発明の方法に係る電池の第1のタイプ、即ち
正極及び負極の両極に不溶不融性基体粉末成型体を用い
る電池について説明する。正極(1)はフィルム状、或
は板状の形状を有する不溶不融性基体粉末成型体であ
り、ドーピング剤がドーピングされていても、未ドーピ
ングでもよい。負極(2)はフィルム状、或は板状等の
形状を有する不溶不融性基体粉末成型体であり、ドーピ
ング剤がドーピングされていても、未ドーピングでもよ
い。電池を組み立てた後、外部電源より電圧を印加し
て、ドーピング剤をドーピングする。例えば両極共に未
ドーピング不溶不融性基体粉末成型体を用いた場合、電
池の組み立て後の電池の起電圧は0Vであり、外部電源に
より電圧を印加して、両極にドーピング剤をドーピング
することにより電池は起電力を有するようになる。集電
体(3)は各電極から外部に電流を取り出したり、電気
化学的ドーピング、即ち充電するために電流を供給する
ものであり、前述した方法により各電極及び外部端子
(7)に電圧降下を生じないように接続されている。電
解液(4)は、非プロトン性有機溶媒に正負両極にドー
ピング可能なイオンを生成し得る前記化合物が溶解され
ている。電解液は通常液状であるが、漏液を防止するた
めゲル状又は固体状にして用いることもできる。セパレ
ータ(5)は、正負両極の接触を阻止すること及び電解
液を保持することを目的として配置され電解液,ドーピ
ング剤,アルカリ金属等の電極活物質に対し耐久性のあ
る連続気孔を有する電子伝導性のない多孔体が好適であ
り、通常ガラス繊維,ポリエチレン,ポリプロピレン等
からなる布,不織布,多孔体等が用いられる。セパレー
ターの厚さは電池の内部抵抗を小さくするため薄い方が
好ましいが、電解液の保持量,流通性,強度等を勘案し
て決定される。正負両極及びセパレーターは、電池ケー
ス(6)内に実用上問題を生じない様に固定される。電
極の形状,大きさ等は、目的とする電池の形状,性能に
より適宜決定すればよい。例えば薄形電池を製造するに
は電極はフィルム状が好適であり、大容量電池を製造す
るにはフィルム状,板状等の電極を多数正負両極を交互
に積層することにより達成できる。
First, a first type of battery according to the method of the present invention, that is, a battery using an insoluble and infusible substrate powder molded body for both positive and negative electrodes will be described. The positive electrode (1) is a powdered insoluble and infusible substrate having a shape of a film or a plate, and may be doped with a doping agent or undoped. The negative electrode (2) is a molded powder of an insoluble and infusible substrate having a shape such as a film or a plate, and may be doped with a doping agent or undoped. After assembling the battery, a voltage is applied from an external power supply to dope the doping agent. For example, when using an undoped insoluble and infusible substrate powder molded body for both electrodes, the electromotive voltage of the battery after assembly of the battery is 0 V, and a voltage is applied from an external power supply to dope a doping agent to both electrodes. The battery will have an electromotive force. The current collector (3) is a device for extracting current from each electrode to the outside or supplying current for electrochemical doping, that is, charging, and a voltage drop to each electrode and the external terminal (7) by the method described above. Are connected so that no In the electrolyte solution (4), the compound capable of generating ions that can be doped into positive and negative electrodes is dissolved in an aprotic organic solvent. The electrolyte is usually in a liquid state, but may be used in a gel or solid state to prevent leakage. The separator (5) is disposed for the purpose of preventing contact between the positive and negative electrodes and holding the electrolyte, and has continuous pores that are durable to the electrode active material such as the electrolyte, the doping agent, and the alkali metal. A porous body having no conductivity is preferable, and a cloth, a nonwoven fabric, a porous body, or the like made of glass fiber, polyethylene, polypropylene, or the like is generally used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so as not to cause practical problems. The shape, size, and the like of the electrode may be appropriately determined depending on the shape and performance of the intended battery. For example, in order to manufacture a thin battery, the electrode is preferably in the form of a film. In order to manufacture a large capacity battery, it can be achieved by alternately laminating a large number of film and plate-like electrodes with both positive and negative electrodes alternately.

次に、本発明の方法に係る電池の第2のタイプ、即ち
正極(1)に不溶不融性基体粉末成型体を用に、負極
(2)にアルカリ金属又はその合金を用いる場合につい
て説明する。第1図の正極(1)は不溶不融性基体粉末
成型体、負極(2)はアルカリ金属あるいはその合金で
ある。そしてこの第2のタイプの場合、ドーピング機
構、即ち電池の作動機構は更に次の2つに大別される。
その1は、不溶不融性基体に電子受容性ドーピング剤が
ドーピングされるのが充電に対応し、アンドーピングさ
れるのが放電に対応する機構を備えた電池である。例え
ば電極として未ドーピング不溶不融性基体粉末成型体及
びリチウムを電解液としてLiClO4 1モル/プロピレン
カーボネート溶液を用いた場合、電池組み立て後の起動
力は2.5〜3.0Vである。次に外部電源により電圧を印加
してClO4イオンを該不溶不融性基体にドーピングする
と、起動力は3.5〜4.5Vとなる。その2は、不溶不融性
基体粉末に電子供与性ドーピング剤をドーピングするの
が放電に対応し、アンドーピングするのが充電に対応す
る機構の電池である。例えば上記した電池構成では電池
組み立て後の起電圧は2.5〜3.0Vであり、外部に電流を
放出することにより、不溶不融性基体にリチウムイオン
をドーピングすると起動力は1.0〜2.5Vとなるが、外部
電源により電圧を印加し、リチウムイオンをアンドーピ
ングすると再び起電力は2.5〜3.0Vとなる。
Next, a second type of battery according to the method of the present invention, that is, a case where an insoluble and infusible substrate powder molded body is used for the positive electrode (1) and an alkali metal or an alloy thereof is used for the negative electrode (2) will be described. . The positive electrode (1) in FIG. 1 is an insoluble and infusible substrate powder molded body, and the negative electrode (2) is an alkali metal or an alloy thereof. In the case of the second type, the doping mechanism, that is, the operation mechanism of the battery is further roughly classified into the following two.
The first is a battery provided with a mechanism in which doping of an insoluble infusible substrate with an electron-accepting doping agent corresponds to charging and undoping thereof corresponds to discharging. For example, when an undoped insoluble infusible base powder compact and an electrolyte of lithium and LiClO 4 1 mol / propylene carbonate solution are used as electrodes, the starting force after battery assembly is 2.5 to 3.0 V. Next, when a voltage is applied from an external power supply to dope the insoluble and infusible substrate with ClO 4 ions, the starting force becomes 3.5 to 4.5 V. The second is a battery having a mechanism in which doping an insoluble infusible substrate powder with an electron-donating doping agent corresponds to discharging, and undoping corresponds to charging. For example, in the above-described battery configuration, the electromotive voltage after battery assembly is 2.5 to 3.0 V, and the starting force becomes 1.0 to 2.5 V when lithium ions are doped into the insoluble and infusible substrate by discharging current to the outside. When a voltage is applied from an external power supply and lithium ions are undoped, the electromotive force becomes 2.5 to 3.0 V again.

ドーピング又はアンドーピングは一定電流下でも一定
電圧下でも、また電流及び電圧の変化する条件下のいず
れで行ってもよいが、不溶不融性基体粉末にドーピング
されるドーピング剤の量は、不溶不融性基体の炭素原子
1個に対するドーピングされるイオン数を百分率で換算
して0.5〜20%が好ましい。
The doping or undoping may be performed under a constant current, a constant voltage, or under a condition where the current and the voltage change, but the amount of the doping agent doped into the insoluble infusible substrate powder may be The number of ions to be doped with respect to one carbon atom of the fusible substrate is preferably 0.5 to 20% in terms of percentage.

(発明の効果) 本発明の方法による有機電解質電池は、ポリアセン系
骨格構造を含有するクレータ状のふくれ等が発生しない
不溶不融性基体粉末を成形し、電極として用いる電池で
ある。
(Effect of the Invention) The organic electrolyte battery according to the method of the present invention is a battery which is used as an electrode by molding an insoluble and infusible substrate powder containing a polyacene-based skeletal structure and not generating crater-like blisters or the like.

又、該電池は生産性が高く、フィルム状,板状等任意
の形状に成形できるポリアセン系骨格構造を含有する不
溶不融性基体粉末成型体を電極とし、該電極に電子供与
性又は、電子受容性物質をドーピングしたものを電極活
物質とし、電解により電極にドーピング可能なイオンを
生成する化合物を非プロトン性有機溶媒に溶解したもの
を電解液とする電池であり、小型化,薄形化,軽量化が
可能で且つ高容量、高出力で長寿命の高性能電池であ
る。
In addition, the battery has high productivity, and an electrode is formed of an insoluble and infusible base powder containing a polyacene-based skeleton structure which can be formed into an arbitrary shape such as a film or a plate. This battery uses an electrode active material that is doped with a receptive substance, and an electrolyte that is a solution in which a compound that generates ions that can be doped into the electrode by electrolysis is dissolved in an aprotic organic solvent. It is a high-performance battery that can be reduced in weight, has a high capacity, a high output, and a long life.

以下、実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

実施例1 (1) ポリアセン系骨格構造を含有する不溶不融性基
体の製造法。
Example 1 (1) A method for producing an insoluble and infusible substrate containing a polyacene-based skeletal structure.

水溶性レゾール(60%濃度)に塩化亜鉛水溶液(85%
濃度)を10:30の割合で加え、40℃で加温しながら撹拌
具としてスクリュービーターを装着したDMV型万能撹拌
機((株)三英製作所)にて70r.p.mで撹拌混合を行っ
たところ、約3分で硬化反応による変色がおこり初め、
10分後に100μm以下の粉末状のフェノール系樹脂・塩
化亜鉛複合体を得た。該複合体10kgを角型電気炉に仕込
み、窒素気流下40℃/時間の速度で昇温して500℃まで
熱処理を行った。次にこの熱処理物を希塩酸で洗浄した
後水洗し、その後乾燥したところ不溶不融性基体粉末が
得られた。
Aqueous zinc chloride solution (85%)
Concentration) at a ratio of 10:30, and the mixture was heated and mixed at 70 rpm using a DMV type universal stirrer (Sanei Seisakusho) equipped with a screw beater as a stirrer while heating at 40 ° C. However, discoloration due to the curing reaction started in about 3 minutes,
After 10 minutes, a powdery phenolic resin / zinc chloride composite of 100 μm or less was obtained. 10 kg of the composite was charged into a square electric furnace, and heated at a rate of 40 ° C./hour under a nitrogen stream to perform a heat treatment to 500 ° C. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and then dried to obtain an insoluble and infusible base powder.

該不溶不融性基体粉末のBET法による比表面積値は230
0m2/gであり、また水素原子/炭素原子の原子比は0.24
であった。
The specific surface area value of the insoluble infusible substrate powder by the BET method is 230.
0 m 2 / g, and the atomic ratio of hydrogen atom / carbon atom is 0.24
Met.

(2) 上記の不溶不融性基体粉末100部に対し、ポリ
四フッ化エチレンをバインダーとして5部カーボンブラ
ックを10部加え充分に混練し、厚さ700μmの板状成型
体を得た。該成型体を直径15φmmの円板状に打ち抜い
た。
(2) To 100 parts of the insoluble and infusible base powder, 10 parts of carbon black and 5 parts of polytetrafluoroethylene as a binder were added and kneaded sufficiently to obtain a plate-like molded body having a thickness of 700 μm. The molded body was punched into a disk having a diameter of 15 mm.

(3) 次に充分に脱水したプロピレンカーボネートに
LiClO4を溶解させ、約1.0モル/の溶液を調整した。
この溶液を電解液として、集電体としてステンレスメッ
シュを用い、セパレーターとしてはガラス不織布を使用
し、また正極及び負極に上記(2)で作成した円板状成
型体をそれぞれ用いて第1図に示されるような電池を組
んだ。
(3) Next to fully dehydrated propylene carbonate
LiClO 4 was dissolved to prepare a solution of about 1.0 mol /.
This solution was used as an electrolyte, a stainless steel mesh was used as a current collector, a glass nonwoven fabric was used as a separator, and the disk-shaped molded bodies prepared in (2) above were used as a positive electrode and a negative electrode, respectively, as shown in FIG. Assembled batteries as shown.

(4) 上記(3)で得られたNo.1〜No.3の該電池に、
室温で外部電源により2.5Vの電圧を1時間印加すること
により電池を充電した。充電後の起電力は2.5Vであっ
た。次に1時間当りのアンドーピング量が3%となる速
度で放電したところ、1時間で電池の電圧は0にもどっ
た。
(4) No. 1 to No. 3 batteries obtained in (3) above
The battery was charged at room temperature by applying a voltage of 2.5 V for 1 hour from an external power supply. The electromotive force after charging was 2.5V. Next, when the battery was discharged at a rate at which the undoping amount per hour was 3%, the voltage of the battery returned to 0 in one hour.

比較例1 実施例1と同様の組成比で20℃の冷却分で十分に冷却
しながら均一な原料混合溶液を調製し、50×50×5mmの
型枠に流し込み、100℃の温度で60分間硬化反応を進
め、厚み約5mmの板状複合成型体を得た。該複合成型体1
0kgを実施例1と同じ角型電気炉に仕込み、窒素気流下4
0℃/時間の速度で昇温して500℃まで熱処理を行なった
が、クレータ状のふくれが多量に発生し取出が非常に困
難であった。
Comparative Example 1 A uniform raw material mixed solution was prepared while sufficiently cooling with a cooling ratio of 20 ° C. at the same composition ratio as in Example 1, poured into a mold of 50 × 50 × 5 mm, and heated at a temperature of 100 ° C. for 60 minutes. The curing reaction was advanced to obtain a plate-like composite molded body having a thickness of about 5 mm. The composite molded body 1
0 kg was charged into the same square electric furnace as in Example 1, and was placed in a nitrogen stream 4
Although the temperature was raised at a rate of 0 ° C./hour and the heat treatment was performed up to 500 ° C., a large amount of crater-like blisters were generated, and it was extremely difficult to remove the same.

実施例2〜4 (1) 第1表に示す混合組成で、実施例1と同様の方
法により不溶不融性基体粉末を得た。いずれの場合も該
基本粉末は均質であり、ふくれ等の発生はなかった。
Examples 2 to 4 (1) Insoluble and infusible base powders were obtained in the same manner as in Example 1 with the mixed compositions shown in Table 1. In each case, the basic powder was homogeneous, and no blistering occurred.

上記該基体の比表面積値を第1表に示す。 Table 1 shows the specific surface area of the substrate.

(2) 該基体を実施例1と同様の方法により電極と
し、さらに電池を作成した。実施例1と同様で測定した
0Vになるまでの放電時間を第1表に示す。
(2) The substrate was used as an electrode in the same manner as in Example 1, and a battery was produced. Measured in the same manner as in Example 1.
Table 1 shows the discharge time up to 0V.

実施例5 (1) ポリアセン系骨格構造を有する不溶不融性基体
の製造。
Example 5 (1) Production of an insoluble and infusible substrate having a polyacene skeleton structure.

水溶性レゾール(75%濃度)に球状フェノール樹脂
(鐘紡(株)社製ベルパール)と塩化亜鉛水溶液(85%
濃度)を10/10/50の割合で加え、60℃で10分間撹拌、混
合することにより粒状のフェノール系樹脂・塩化亜鉛複
合体を得た。該複合体を実施例1と同様の方法により、
不溶不融性基体粉末を得た。該基体粉末は均質であり、
ふくれ等の発生はなかった。該基体粉末の比表面積は22
50m2/gであった。
A water-soluble resol (75% concentration) is mixed with a spherical phenol resin (Bellepearl manufactured by Kanebo Co., Ltd.) and an aqueous zinc chloride solution (85%
Concentration) at a ratio of 10/10/50, and stirred and mixed at 60 ° C. for 10 minutes to obtain a granular phenolic resin / zinc chloride composite. The complex was prepared in the same manner as in Example 1.
An insoluble infusible substrate powder was obtained. The substrate powder is homogeneous;
No blistering occurred. The specific surface area of the substrate powder is 22
It was 50 m 2 / g.

(2) 該基体を実施例1と同様の方法により、電極と
しさらに電池を作成した。実施例1と同様の方法で容量
を測定をしたところ、1時間で電池の電圧は0に戻っ
た。
(2) The substrate was used as an electrode in the same manner as in Example 1 to further form a battery. When the capacity was measured in the same manner as in Example 1, the voltage of the battery returned to 0 in one hour.

実施例6 実施例1(2)で得られたNo.2の不溶不融性基体粉末
を実施例1と同様の条件で成形し、これを正極とし、負
極にリチウム金属、セパレーターにガラス不織布/の
LiClO4を溶解させた溶液を使用し、第1図に示すような
電池を構成した。
Example 6 The No. 2 insoluble and infusible substrate powder obtained in Example 1 (2) was molded under the same conditions as in Example 1 to form a positive electrode, a lithium metal as a negative electrode, and a glass nonwoven fabric as a separator. of
Using the solution in which LiClO 4 was dissolved, a battery as shown in FIG. 1 was constructed.

電池を組んだ時の開路電圧は3.0Vであり、該電池に外
部電源により約4.0Vの電圧を印加し、2mAの電流で電池
電圧が2.0Vになるまで放電したところ、エネルギー密度
は電極密度で120wh/と大きい値であった。
When the battery was assembled, the open-circuit voltage was 3.0 V, and a voltage of about 4.0 V was applied to the battery from an external power supply, and the battery was discharged at a current of 2 mA until the battery voltage reached 2.0 V. Was as large as 120 wh /.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る電池の基本構成を示すものであ
り、(1)は正極、(2)は負極、(3),(3′)は
集電体、(4)は電解液、(5)はセパレーター、
(6)は電池ケース、(7),(7′)は外部端子を表
わす。
FIG. 1 shows a basic structure of a battery according to the present invention, wherein (1) is a positive electrode, (2) is a negative electrode, (3) and (3 ') are current collectors, (4) is an electrolytic solution, (5) is a separator,
(6) indicates a battery case, and (7) and (7 ') indicate external terminals.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 種男 大阪府大阪市東淀川区上新庄2丁目15番 24号 (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6―13 審査官 三宅 正之 (56)参考文献 特開 昭60−170163(JP,A) 特開 昭61−80773(JP,A) 特開 昭63−218160(JP,A) 特開 昭63−301460(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/60 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Taneo Okamoto 2-15-24, Kamishinjo, Higashiyodogawa-ku, Osaka-shi, Osaka Masayuki Miyake (56) References JP-A-60-170163 (JP, A) JP-A-61-80773 (JP, A) JP-A-63-218160 (JP, A) JP-A-63-301460 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/60 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水溶性フェノール系樹脂初期縮合物と塩化
亜鉛とを水性媒体中で撹拌下で反応して得られた粉末状
のフェノール系樹脂と塩化亜鉛との複合体を非酸化性雰
囲気下で熱処理して得られる、BET法による比表面積値
が少なくとも1500m2/gであり、且つ水素原子/炭素原子
の原子比が0.5〜0.05であるポリアセン系骨格構造を含
有する不溶不融性基体の粉末成形体を正極及び/又は負
極とし、電解により電極にドーピング可能なイオンを生
成し得る化合物の非プロトン性有機溶媒溶液を電解液と
することを特徴とする有機電解質電池用電極の製造法。
1. A powdery phenolic resin-zinc chloride complex obtained by reacting a water-soluble phenolic resin precondensate with zinc chloride in an aqueous medium with stirring, in a non-oxidizing atmosphere. Of an insoluble infusible substrate containing a polyacene-based skeletal structure having a specific surface area value of at least 1500 m 2 / g by a BET method and a hydrogen atom / carbon atom atomic ratio of 0.5 to 0.05 obtained by heat treatment at A method for producing an electrode for an organic electrolyte battery, comprising: using a powder compact as a positive electrode and / or a negative electrode; and using an aprotic organic solvent solution of a compound capable of generating ions capable of doping the electrode by electrolysis as an electrolytic solution.
JP1103195A 1989-04-22 1989-04-22 Organic electrolyte battery Expired - Lifetime JP3020509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103195A JP3020509B2 (en) 1989-04-22 1989-04-22 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103195A JP3020509B2 (en) 1989-04-22 1989-04-22 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02281573A JPH02281573A (en) 1990-11-19
JP3020509B2 true JP3020509B2 (en) 2000-03-15

Family

ID=14347737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103195A Expired - Lifetime JP3020509B2 (en) 1989-04-22 1989-04-22 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3020509B2 (en)

Also Published As

Publication number Publication date
JPH02281573A (en) 1990-11-19

Similar Documents

Publication Publication Date Title
EP0196055B1 (en) Porous article having open pores prepared from aromatic condensation polymer and use thereof
JPH0324024B2 (en)
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP3020509B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JPH0630260B2 (en) Organic electrolyte battery
JP2627033B2 (en) Manufacturing method of organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPH08255633A (en) Organic electrolyte battery
JP2919848B2 (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2556408B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2519180B2 (en) Organic electrolyte battery
JP2869355B2 (en) Organic electrolyte battery
JP2556407B2 (en) Organic electrolyte battery
JP2616775B2 (en) Organic electrolyte battery with ternary composite as cathode
JP2920070B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JP2601776B2 (en) Organic electrolyte battery
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode
JP2681888B2 (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10