JP2919848B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP2919848B2
JP2919848B2 JP1041062A JP4106289A JP2919848B2 JP 2919848 B2 JP2919848 B2 JP 2919848B2 JP 1041062 A JP1041062 A JP 1041062A JP 4106289 A JP4106289 A JP 4106289A JP 2919848 B2 JP2919848 B2 JP 2919848B2
Authority
JP
Japan
Prior art keywords
insoluble
battery
infusible substrate
electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1041062A
Other languages
Japanese (ja)
Other versions
JPH02220368A (en
Inventor
久史 佐竹
種男 岡本
之規 羽藤
正敏 小森
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP1041062A priority Critical patent/JP2919848B2/en
Publication of JPH02220368A publication Critical patent/JPH02220368A/en
Application granted granted Critical
Publication of JP2919848B2 publication Critical patent/JP2919848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機電解質電池に係り、更に詳しくは半導体
の性能を有する不溶不融性基体粉末成形体を正極および
負極とする有機電解質電池に関する。
Description: TECHNICAL FIELD The present invention relates to an organic electrolyte battery, and more particularly, to an organic electrolyte battery using a powdered insoluble and infusible substrate having semiconductor properties as a positive electrode and a negative electrode.

(従来の技術) 近年、電子機器の小型化、薄形化あるいは軽量化は目
覚ましく、それに伴い電源となる電池の小型化、薄形
化、軽量化の要望が大きい。小型で性能のよい電池とし
て現在は酸化銀電池が多用されており、又薄形化された
乾電池や、小型軽量な高性能電池として、リチウム電池
が開発され実用化されている。しかしこれらの電池は1
次電池であるため充放電を繰返して長時間使用すること
はできない。一方、高性能な2次電池としてニッケルカ
ドミウム電池が実用化されているが、小型化、薄形化、
軽量化という点で未だ不満足である。
(Prior Art) In recent years, electronic devices have been remarkably reduced in size, thickness, and weight, and accordingly, there has been a great demand for smaller, thinner, and lighter batteries serving as power supplies. At present, silver oxide batteries are frequently used as small and high-performance batteries, and lithium batteries have been developed and put into practical use as thinned dry batteries and small and lightweight high-performance batteries. But these batteries are 1
Because it is a secondary battery, it cannot be used for a long time by repeating charging and discharging. On the other hand, nickel cadmium batteries have been put to practical use as high performance secondary batteries,
It is still unsatisfactory in terms of weight reduction.

又、大容量の2次電池として従来より鉛蓄電池が種々
の産業分野で用いられているが、この電池の最大の欠点
は重いことである。これは電極として過酸化鉛及び鉛を
用いているため宿命的なものである。近年、電気自動車
用電池として該電池の軽量化及び性能改善が試みられた
が実用化される迄には至らなかった。しかし蓄電池とし
て大容量で且つ軽量な2次電池に対する要望は強いもの
がある。
Although lead-acid batteries have been used in various industrial fields as large-capacity secondary batteries, the biggest disadvantage of these batteries is that they are heavy. This is fatal because lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large-capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一
短があり、それぞれ用途に応じて使い分けされている
が、電池の小型化、薄形化、或は軽量化に対するニーズ
は大きい。このようなニーズに応えようとする電池とし
て、近時、有機半導体である薄膜状ポリアセチレンに電
子供与性物質又は電子受容性物質をドーピングしたもの
を電極活物質として用いる電池が研究され、提案されて
いる。該電池は2次電池として高性能で且つ薄形化、軽
量化の可能性を有しているが、大きな欠点がある。それ
は有機半導体であるポリアセチレンが極めて不安定な物
質であり空気中の酸素により容易に酸化を受け、又熱に
より変質することである。従って電池製造は不活性ガス
雰囲気で行なわなければならず、又ポリアセチレンを電
極に適した形状に製造することにも制約を受ける。
As described above, batteries currently in practical use each have advantages and disadvantages, and are used properly according to their applications. However, there is a great need for batteries to be smaller, thinner, or lighter. As a battery that meets such needs, recently, a battery using a thin-film polyacetylene, which is an organic semiconductor, doped with an electron-donating substance or an electron-accepting substance as an electrode active material has been studied and proposed. I have. Although this battery has high performance as a secondary battery and has the potential of being thinner and lighter, it has major drawbacks. That is, polyacetylene, which is an organic semiconductor, is a very unstable substance, is easily oxidized by oxygen in the air, and is transformed by heat. Therefore, the battery must be manufactured in an inert gas atmosphere, and there is a limitation in manufacturing polyacetylene into a shape suitable for an electrode.

また、本願の出願人と同一出願人の出願にかかる先願
である特願昭59−24165号明細書には、炭素、水素およ
び酸素からなる芳香族系縮合ポリマーの熱処理物であっ
て、水素原子/炭素原子の原子比が0.05〜0.5であり、
且つBET法による比表面積値が600m2/g以上であるポリア
セン系骨格構造を有する不溶不融性基体を正極及び/又
は負極とし、電解により該電極にドーピング可能なイオ
ンを生成し得る化合物の非プロトン性有機溶媒溶液を電
解液とすることを特徴とする有機電解質電池が提案され
ている。
Further, Japanese Patent Application No. 59-24165, which is a prior application filed by the same applicant as the applicant of the present application, discloses a heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen, The atomic ratio of atoms / carbon atoms is 0.05-0.5,
In addition, the insoluble and infusible substrate having a polyacene-based skeleton structure having a specific surface area value of 600 m 2 / g or more according to the BET method is used as a positive electrode and / or a negative electrode. An organic electrolyte battery characterized by using a protic organic solvent solution as an electrolyte has been proposed.

該電池は、高性能で、薄形化、軽量化の可能性も有し
ており、電極活物質の酸化安定性も高く、さらにその成
形も容易であるなど将来有望な2次電池である。しかし
ながら、この先願においても、ポリアセン系骨格構造を
有する不溶不融性基体からなる有機高分子材料を粉砕せ
ずに板状、円筒状等の成形体とする時熱処理時の寸法安
定性に問題があり、正確な寸法の材料を得る事は難し
く、また、大きなサイズの成形体を得ようとした時、熱
処理時にクラック等が発生するという問題が残されてい
た。
The battery is a promising secondary battery in that it has high performance, has the potential of being thin and lightweight, has high oxidation stability of the electrode active material, and is easy to mold. However, even in this prior application, there is a problem in dimensional stability at the time of heat treatment when an organic polymer material comprising an insoluble and infusible substrate having a polyacene-based skeleton structure is formed into a plate-like or cylindrical-shaped molded body without being pulverized. In addition, it is difficult to obtain a material having accurate dimensions, and there has been a problem that cracks and the like are generated during heat treatment when a large-sized molded body is to be obtained.

一方、電池用電極は一般に、その製造のしやすさか
ら、電極活物質粉末をバインダー等で成形し製造され
る。しかしながら上述の不溶不融性基体の性能を低下さ
せずに高性能であり、かつ高強度な電極を用いた有機電
解質電池は未だ開発されていない。
On the other hand, a battery electrode is generally manufactured by molding an electrode active material powder with a binder or the like because of its ease of manufacture. However, an organic electrolyte battery using a high-performance and high-strength electrode without deteriorating the performance of the insoluble infusible substrate has not been developed yet.

(発明が解決しようとする課題) 本発明者らはポリアセン系骨格構造を含有する不溶不
融性基体を粉砕し粉末とし、該基体粉末の成形体を電極
として使用することを見い出し本発明を完成したもので
ある。
(Problems to be Solved by the Invention) The present inventors have found that an insoluble and infusible substrate containing a polyacene-based skeleton structure is pulverized into a powder, and a molded product of the substrate powder is used as an electrode, thereby completing the present invention. It was done.

本発明の目的は高容量の有機電解質電池を提供するに
ある。
An object of the present invention is to provide a high capacity organic electrolyte battery.

本発明の他の目的は半導体ないし伝導体の電気伝導性
を有し、且つ優れた物理的性質を有するうえ酸化安定性
にも優れた電気伝導性有機高分子系粉末材料を電極活物
質とする有機電解質電池を提供するにある。
Another object of the present invention is to use an electrically conductive organic polymer powder material having the electrical conductivity of a semiconductor or a conductor, excellent physical properties, and excellent oxidation stability as an electrode active material. An organic electrolyte battery is provided.

本発明の更に他の目的は電極の製造が容易で経済的な
有機電解質電池を提供するにある。
Still another object of the present invention is to provide an organic electrolyte battery in which electrodes can be easily manufactured and which is economical.

本発明のさらに他の目的および利点は以下の説明から
明らかとなろう。
Still other objects and advantages of the present invention will be apparent from the following description.

(課題を解決するための手段) 本発明によれば本発明のかかる目的および利点は、炭
素、水素および酸素から成る芳香族系縮合ポリマーの熱
処理物であって、平均粒径が2.0〜0.1μmであり、且つ
水素原子/炭素原子の原子比が0.5〜0.05であるポリア
セン系骨格構造を含有する不溶不融性基体の、BET法に
よる比表面積値が少くとも1500m2/gの粉末成形体を、正
極及び/又は負極とし電解により電極にドーピング可能
なイオンを生成し得る化合物の非プロトン性有機溶媒溶
液を電解液とすることを特徴とする有機電解質電池によ
って達成される。
(Means for Solving the Problems) According to the present invention, an object and an advantage of the present invention are a heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen, which has an average particle size of 2.0 to 0.1 μm. And a powder molded body having a specific surface area value of at least 1500 m 2 / g by a BET method of an insoluble infusible substrate containing a polyacene-based skeleton structure having an atomic ratio of hydrogen atom / carbon atom of 0.5 to 0.05. The present invention is also achieved by an organic electrolyte battery characterized by using, as an electrolyte, an aprotic organic solvent solution of a compound serving as a positive electrode and / or a negative electrode capable of generating ions that can be doped into an electrode by electrolysis.

本発明におけるポリアセン系骨格構造を含有する不溶
不融性基体(以下不溶不融性基体と記す)は本願の出願
人の出願にかかる特開昭59−3806号公報に記載されてい
る芳香族系縮合ポリマーを特定の条件で熱処理すること
により得られる。
The insoluble infusible substrate containing a polyacene-based skeleton structure in the present invention (hereinafter referred to as insoluble infusible substrate) is an aromatic insoluble insoluble substrate described in JP-A-59-3806 filed by the present applicant. It is obtained by subjecting the condensation polymer to heat treatment under specific conditions.

具体的には本発明に用いる該芳香族系縮合ポリマーは
(a)フェノール、ホルムアルデヒド樹脂の如きフェノ
ール性水酸基を有する芳香族系炭化水素化合物とアルデ
ヒド類の縮合物、(b)キシレン変性フェノール、ホル
ムアルデヒド樹脂(フェノールの一部をキシレンで置換
したもの)の如きフェノール性水酸基を有する芳香族系
炭化水素化合物、フェノール性水酸基を有さない芳香族
系炭化水素化合物およびアルデヒドの縮合物並びに
(c)フラン樹脂が好適である。
Specifically, the aromatic condensation polymer used in the present invention is (a) a condensate of an aldehyde with an aromatic hydrocarbon compound having a phenolic hydroxyl group such as phenol or formaldehyde resin, and (b) a xylene-modified phenol or formaldehyde. An aromatic hydrocarbon compound having a phenolic hydroxyl group, such as a resin (in which a part of phenol is substituted with xylene), an aromatic hydrocarbon compound having no phenolic hydroxyl group, a condensate of an aldehyde, and (c) furan Resins are preferred.

本発明における不溶不融性基体は、上記の如き芳香族
系縮合ポリマーの熱処理物であって例えば次のようにし
て製造することができる。
The insoluble and infusible substrate in the present invention is a heat-treated product of the aromatic condensation polymer as described above, and can be produced, for example, as follows.

前記した芳香族系縮合ポリマーに塩化亜鉛、リン酸ナ
トリウム等の無機塩を混合する。これにより、不溶不融
性基体に多孔性を付与することができる。混入する量
は、無機塩の種類及び目的とする電極の形状、性能によ
って異なるが、重量比で10/1〜1/7が好ましい。また、
多孔性でありかつ連通孔を有する基体を得る場合には、
無機塩を芳香族系縮合ポリマーの2.5〜10重量倍の量で
用いることが好ましい。このようにして得られた無機塩
と芳香族系縮合ポリマーの混合物を、フィルム状、板状
等の目的とする形となし、50〜180℃の温度で2〜90分
間加熱することにより硬化成形する。
An inorganic salt such as zinc chloride or sodium phosphate is mixed with the aromatic condensation polymer. Thereby, porosity can be provided to the insoluble and infusible substrate. The amount to be mixed varies depending on the type of the inorganic salt and the shape and performance of the target electrode, but is preferably 10/1 to 1/7 by weight. Also,
When obtaining a substrate that is porous and has communication holes,
It is preferable to use the inorganic salt in an amount of 2.5 to 10 times the weight of the aromatic condensation polymer. The mixture of the inorganic salt and the aromatic condensation polymer obtained in this manner is formed into a target shape such as a film, a plate, or the like, and cured at a temperature of 50 to 180 ° C. for 2 to 90 minutes for curing and molding. I do.

かくして得られた硬化体を、次いで非酸化性雰囲気中
で400〜800℃の温度、好ましくは450〜750℃の温度、特
に好ましくは500〜700℃の温度まで加熱する。この熱処
理によって芳香族系縮合ポリマーは、脱水素脱水反応を
おこし、芳香環の縮合反応によって、ポリアセン系骨格
構造が形成される。
The cured product thus obtained is then heated in a non-oxidizing atmosphere to a temperature of 400-800C, preferably 450-750C, particularly preferably 500-700C. By this heat treatment, the aromatic condensation polymer undergoes a dehydrogenation dehydration reaction, and a polyacene skeleton structure is formed by the condensation reaction of the aromatic ring.

この反応は熱縮合重合の一種であり、反応度は最終生
成物の水素原子/炭素原子(以後H/Cと云う)で表され
る原子数比によって表される。不溶不融性基体のH/Cの
値は0.05〜0.5、好ましくは、0.1〜0.35である。不溶不
融性基体のH/Cの値が0.5より大きい場合は、ポリアセン
系骨格構造が未発達なため電気電導度が低く好ましくな
い。一方、H/Cの値が0.05より小さい場合は、炭素化が
進みすぎており、電極構成物質としての性能が低い。
This reaction is a kind of thermal condensation polymerization, and the degree of reactivity is represented by the atomic ratio represented by hydrogen atoms / carbon atoms (hereinafter referred to as H / C) in the final product. The H / C value of the insoluble infusible substrate is 0.05 to 0.5, preferably 0.1 to 0.35. If the H / C value of the insoluble and infusible substrate is larger than 0.5, the polyacene-based skeletal structure is undeveloped, and the electric conductivity is undesirably low. On the other hand, when the value of H / C is smaller than 0.05, carbonization has progressed too much, and the performance as an electrode constituent material is low.

得られた熱処理体を水あるいは希塩酸等で十分洗浄す
ることによって、熱処理体中に含まれている無機塩を除
去する。
The obtained heat-treated body is sufficiently washed with water or diluted hydrochloric acid to remove the inorganic salt contained in the heat-treated body.

その後、これを乾燥すると、不溶不融性基体が得られ
る。
Thereafter, when this is dried, an insoluble and infusible substrate is obtained.

次に該不溶不融性基体を粉砕することによって本発明
の不溶不融性基体粉末を得ることができる。当然のこと
ながら本発明の不溶不融性基体粉末を得るためには、粉
砕前の不溶不融性基体が、BET法による比表面積値1500m
2/g以上である必要がある。
Next, the insoluble infusible substrate powder of the present invention can be obtained by pulverizing the insoluble infusible substrate. Needless to say, in order to obtain the insoluble infusible substrate powder of the present invention, the insoluble infusible substrate before pulverization has a specific surface area of 1500 m by the BET method.
It must be at least 2 / g.

本発明の粉末材料は該不溶不融性基体を粉砕すること
により製造される。この際不溶不融性基体中に存在する
細孔をくずすと比表面積が大幅に低下してしまうことか
ら、細孔をくずさずに粉末化することが極めて重要であ
る。この点について、種々検討したところ、粉砕時の衝
激力が大きく寄与し、不溶不融性基体に対する作用面の
ヌープ硬度が100以下の粉砕手段を適用し粉末化すると
細孔破壊が起り難いとの知見を得た。粉砕手段としては
ボールミル、振動ミル、ジェットミル、混練機等公知の
粉砕手段から適宜選定して適用すればよいが、上記の通
り不溶不融性基体に対する作用面のヌープ硬度が100以
下のものを用いると好ましい結果が得られる。ヌープ硬
度が100以下の材質としては例えばポリエチレン樹脂、
フェノール樹脂、ポリウレタン、ナイロン等の合成樹脂
があり、これらの材質で粉砕手段の作用面を形成すると
好適である。上記条件に適った粉砕手段としてボールの
全部、少なく共表層部をナイロンで形成したボールとボ
ールミルの全部又は少なく共内層部をナイロンで形成し
たボールミルがある。このナイロンボールミルによる粉
砕の場合、該不溶不融性基体の比表面値を低下させずに
弱い衝激力で目的とする粒径まで粉砕でき、本発明の該
不溶不融性基体粉末を得ることができる。粉砕機の材質
がHk=100を上廻る高硬度のものでは衝激力が大きく細
孔をつぶしてしまい、比表面積値が低下する。すなわち
Hk=100以下の低い硬度の材質で作用面を形成した衝激
力を弱くした粉砕機を選定すると、比表面積値を低下さ
せずに、本発明の目的とする粒径まで粉砕することがで
き、好ましい結果が得られる。ここでヌープ硬度(Hk)
とは圧痕が菱形となるような特殊形状のダイヤモンド圧
子(対稜角172.5゜と130゜)を用い圧痕の長手方向の対
角線の長さを測定した値(kg/mm2)である。
The powder material of the present invention is produced by grinding the insoluble and infusible substrate. At this time, if the pores existing in the insoluble and infusible substrate are destroyed, the specific surface area is greatly reduced. Therefore, it is extremely important to powder without destroying the pores. Regarding this point, after various investigations, the impact force at the time of pulverization greatly contributes, and when Knoop hardness of the working surface to the insoluble and infusible substrate is applied and pulverization is performed by applying pulverization means of 100 or less, it is difficult to cause pore destruction. Was obtained. The pulverizing means may be appropriately selected and applied from known pulverizing means such as a ball mill, a vibration mill, a jet mill, and a kneading machine, and those having a Knoop hardness of 100 or less on the working surface with respect to the insoluble and infusible substrate as described above. Preferred results are obtained when used. As a material having a Knoop hardness of 100 or less, for example, polyethylene resin,
There are synthetic resins such as phenolic resin, polyurethane, and nylon, and it is preferable that these materials form the working surface of the crushing means. As a pulverizing means suitable for the above conditions, there is a ball mill in which all or at least the co-layer portion is formed of nylon and a ball mill in which all or at least a co-inner layer portion is formed of nylon. In the case of pulverization by the nylon ball mill, the powder can be pulverized to a target particle size with a weak impact without lowering the specific surface value of the insoluble infusible substrate, and the insoluble infusible substrate powder of the present invention can be obtained. Can be. If the material of the pulverizer has a high hardness exceeding Hk = 100, the impact force is large and the pores are crushed, and the specific surface area value is reduced. Ie
If a crusher with a low impact strength is formed by forming a working surface with a material having a low hardness of Hk = 100 or less, the crushing machine can be crushed to the particle size aimed at by the present invention without lowering the specific surface area. A favorable result is obtained. Where Knoop hardness (Hk)
Is a value (kg / mm 2 ) obtained by measuring the length of the diagonal in the longitudinal direction of the indentation using a diamond indenter having a special shape such that the indentation has a diamond shape (diagonal angles of 172.5 ° and 130 °).

かくして得られる本発明の不溶不融性基体粉末はBET
法による比表面積値が、少なくとも1500m2/gである。
The insoluble infusible substrate powder of the present invention thus obtained is BET
The specific surface area by the method is at least 1500 m 2 / g.

該粉末の比表面積値が1500m2/g以下である場合、粉砕
により細孔の一部、あるいは全部がくずれてしまい例え
ば、ClO4 -,BF4 -,AsF5 -,(C2H54N+等のイオン半径の大
きなドーパントを大量にかつスムーズにドーピングする
のが難しく、電池の性能、特に容量が低下する。
If the specific surface area of the powder is 1500 m 2 / g or less, some or all of the pores are destroyed by pulverization. For example, ClO 4 , BF 4 , AsF 5 , (C 2 H 5 ) It is difficult to smoothly and smoothly dope a dopant having a large ionic radius such as 4 N + , and the performance of the battery, particularly the capacity, is reduced.

さらに該粉末の平均粒径は2μm〜0.1μmである。
平均粒径が上限より大きい場合、該粉末を成形して、電
極とした時実用的に十分な強度が得にくく下限より小さ
い場合、粉砕効率、粉砕時間の点から実用的でない。
Further, the average particle size of the powder is 2 μm to 0.1 μm.
When the average particle size is larger than the upper limit, when the powder is molded and used as an electrode, practically sufficient strength is not obtained, and when the powder is smaller than the lower limit, it is not practical in terms of pulverization efficiency and pulverization time.

次に該不溶不融性基体粉末を成膜する。成膜に際して
は不溶不融性基体粉末に導電材とバインダーを加えると
容易になる。導電剤は製造された電池用電極に適切な電
気伝導度を与える為に加えられる。
Next, the insoluble infusible substrate powder is formed into a film. At the time of film formation, it becomes easier if a conductive material and a binder are added to the insoluble and infusible substrate powder. The conductive agent is added to provide an appropriate electrical conductivity to the manufactured battery electrode.

該電池用電極に適切な電気伝導度とは10-5S/cm以上、
好ましくは10-3S/cm以上である。電気伝導度が10-5S/cm
以下の場合、電極による内部抵抗が増大し、充放電の効
率を低下させる原因となり好ましくない。
Suitable electrical conductivity for the battery electrode is 10 -5 S / cm or more,
It is preferably at least 10 −3 S / cm. Electric conductivity 10 -5 S / cm
In the following cases, the internal resistance due to the electrodes is increased, which causes a reduction in charge / discharge efficiency, which is not preferable.

導電剤の種類は特に限定されないが、例えば活性炭、
カーボンブラック、黒鉛等の炭素系のものが好ましく、
その粒径は小さければ小さいほど効果的である。導電材
として導電性高分子を用いることも可能である。導電材
の割合は不溶不融性基体粉末の電気伝導度、バインダー
の種類、成形法等の条件によって異なるが、全体量に対
して40〜2wt%必要である。
The type of the conductive agent is not particularly limited, for example, activated carbon,
Carbon-based ones such as carbon black and graphite are preferred,
The smaller the particle size, the more effective. It is also possible to use a conductive polymer as the conductive material. The proportion of the conductive material varies depending on conditions such as the electric conductivity of the insoluble and infusible base powder, the type of binder, and the molding method, but is required to be 40 to 2% by weight based on the total amount.

バインダーの種類は、電池を組む時に使用される電解
質を溶かす溶媒、例えばエチレンカーボネイト、プロピ
レンカーボネイト、γ−ブチロラクトン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、アセトニトリル、ジメトキシエタン、テトラヒドロ
フラン、ジオキソラン、スルホラン等の有機溶媒に不溶
のものであれば特に限定されない。例えばSBR等のゴム
系バインダー、ポリ四フッ化エチレン等のフッ素系樹
脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が
好ましく、ポリ四フッ化エチレンがその中でも特に好ま
しい。その混合比はその種類によって異なるが全体量に
対して20wt%以下が望ましく、混合比が20wt%を越える
と電解液が十分に電極内部に入ることができず、容量が
低下する為好ましくない。
The type of binder is a solvent that dissolves the electrolyte used when assembling the battery, for example, organic solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, and sulfolane. There is no particular limitation as long as it is insoluble in the solvent. For example, rubber-based binders such as SBR, fluorine-based resins such as polytetrafluoroethylene, and thermoplastic resins such as polypropylene and polyethylene are preferable, and polytetrafluoroethylene is particularly preferable. The mixing ratio varies depending on the type, but is preferably 20% by weight or less based on the total amount. If the mixing ratio exceeds 20% by weight, the electrolyte cannot sufficiently enter the inside of the electrode, and the capacity is undesirably reduced.

上記の如き不溶不融性基体の粉末、導電材、パインダ
ーを十分に混練し、成形して電極とする。
The powder of the insoluble and infusible substrate, the conductive material, and the binder as described above are sufficiently kneaded and molded to form an electrode.

本発明の有機電解質電池は、上述の方法によって作成
されるBET法による比表面積値が少くとも1500m2/gであ
り、平均粒径が2.0〜0.1μm、且つ水素原子/炭素原子
の原子比が0.5〜0.05であるポリアセン系骨格構造を含
有する不溶不融性基体粉末成形体を正極及び/又は負極
とし、電解により該電極に、ドーピング可能なイオンを
生成し得る化合物の非プロトン性有機溶媒溶液を電解液
とする。
The organic electrolyte battery of the present invention has a specific surface area value of at least 1500 m 2 / g by the BET method prepared by the above-described method, an average particle size of 2.0 to 0.1 μm, and an atomic ratio of hydrogen atom / carbon atom. An aprotic organic solvent solution of a compound capable of forming a dopable ion in the electrode by electrolysis as a positive electrode and / or a negative electrode using an insoluble infusible substrate powder compact containing a polyacene-based skeleton structure of 0.5 to 0.05; Is an electrolyte.

電解液に用いられ、電極にドーピング可能なイオンを
生成し得る化合物としてはアルカリ金属又はテトラアル
キルアンモニウムのハロゲン化物、過塩素酸塩、6フッ
化隣酸塩、6フッ化砒酸塩、4弗化朋素酸塩等が挙げら
れ、具体的にはLiI,NaI,NH4I,LiClO4,LiAsF6,LiBF4,KPF
6,NaPF6,R4NClO4,R4NAsF6,R4NPF6,R4BF4(Rは同種又は
異種のアルキル基を示す。)等がある。
Compounds that can be used in the electrolyte and generate ions that can be doped into the electrode include alkali metal or tetraalkylammonium halides, perchlorates, hexafluorophosphate, hexafluoroarsenate, and tetrafluoride. Formates and the like, specifically, LiI, NaI, NH 4 I, LiClO 4 , LiAsF 6 , LiBF 4 , KPF
6 , NaPF 6 , R 4 NClO 4 , R 4 NAsF 6 , R 4 NPF 6 , R 4 BF 4 (R represents the same or different alkyl group).

前記化合物を溶解する非プロトン性有機溶媒として
は、エチレンカーボネート,プロピレンカーボネート,
γ−ブチロラクトン,ジメチルホルムアミド,ジメチル
アセトアミド,ジメチルスルホキシド,アセトニトリ
ル,ジメトキシエタン,テトラヒドロフラン,塩化メチ
レン及びこれらの混合物が挙げられるが、電解質として
用いる前記化合物の溶解性,電池性能等を考慮して選択
することが重要である。
Examples of the aprotic organic solvent for dissolving the compound include ethylene carbonate, propylene carbonate,
γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, and mixtures thereof. Selection should be made in consideration of the solubility of the compound used as an electrolyte, battery performance, and the like. is important.

電解液中の前記化合物の濃度は電解液による内部抵抗
を小さくするため少なくとも0.1モル/以上であるこ
とが最も好ましく、通常0.2〜1.5モル/の範囲とする
と好ましい結果が得られる。
Most preferably, the concentration of the compound in the electrolytic solution is at least 0.1 mol / or more in order to reduce the internal resistance due to the electrolytic solution, and usually a range of 0.2 to 1.5 mol / is preferable.

本発明の電池はポリアセン系骨格構造を有する不溶不
融性基体粉末成形体を正極又は/及び負極とし、ドーピ
ング剤を非プロトン性有機溶媒に溶解したものを電解質
とするものであるが、その電池作用は電極として用いる
不溶不融性基体粉末へのドーピング剤の電気化学的ドー
ピングと電気化学的アンドーピングを利用するものであ
る。即ち、エネルギーが不溶不融性基体粉末へのドーピ
ング剤の電気化学的ドーピングにより蓄えられるか、或
は外部に放出され電気化学的アンドーピングにより電気
エネルギーとして外部に取出されるか、或は内部に蓄え
られる。
The battery of the present invention uses a powdered insoluble and infusible substrate having a polyacene skeleton structure as a positive electrode and / or a negative electrode, and uses an electrolyte obtained by dissolving a doping agent in an aprotic organic solvent. The function utilizes electrochemical doping and electrochemical undoping of a doping agent into an insoluble infusible substrate powder used as an electrode. That is, energy is stored by electrochemical doping of the insoluble infusible substrate powder with the doping agent, or is released to the outside and is extracted as electrical energy by electrochemical undoping, or internally. It is stored.

本発明に係る電池は2つのタイプに分けられる。第1
のタイプは正極及び負極の両極の不溶不融性基体粉末成
型体を用いる電池であり、第2のタイプは正極に不溶不
融性基体粉末成型体を用い、負極にアルカリ金属又はそ
の合金からなる電極を用いる電池である。そして適用す
るアルカリ金属の具体例としては例えばセシウム,ルビ
ジウム,カリウム,ナトリウム,リチウム等が挙げら
れ、これらのうちリチウムが最も好ましい。
The batteries according to the present invention are divided into two types. First
The type is a battery using an insoluble and infusible substrate powder molded body of both the positive electrode and the negative electrode. The second type uses an insoluble and infusible substrate powder molded body for the positive electrode, and the negative electrode is made of an alkali metal or an alloy thereof. This is a battery using electrodes. Specific examples of the alkali metal to be applied include, for example, cesium, rubidium, potassium, sodium, lithium and the like, and among these, lithium is most preferable.

電池内に配置される不溶不融性基体粉末成型体からな
る電極の形状、大きさは、目的とする電池により、適宜
に選択すればよいが電池反応は電極表面上の電気化学的
反応であるため電極は可能な限り、表面積を大きくする
のが有利である。又、該不溶不融性基体粉末から電池外
部に電流を取出するための集電体としては、該不溶不融
性基体粉末或はドーピング剤でドーピングした不溶不融
性基体粉末を用いてもよいが、ドーピング剤及び電解液
に対し耐食性のある他の導電性物質、例えば炭素,白
金,ニッケル,ステンレス等を用いることもできる。
The shape and size of the electrode composed of the powdered insoluble and infusible substrate disposed in the battery may be appropriately selected depending on the intended battery, but the battery reaction is an electrochemical reaction on the electrode surface. Therefore, it is advantageous to increase the surface area of the electrode as much as possible. Further, as the current collector for extracting a current from the insoluble infusible substrate powder to the outside of the battery, the insoluble infusible substrate powder or the insoluble infusible substrate powder doped with a doping agent may be used. However, other conductive substances having corrosion resistance to the doping agent and the electrolytic solution, such as carbon, platinum, nickel, and stainless steel, can also be used.

次に図面により本発明の実施態様の1例を説明する。
第1図は本発明に係る電池の説明図である。同図におい
て(1)正極、(2)は負極、(3)は集電体、(4)
は電解液、(5)はセパレーター、(6)は電池ケー
ス、(7)は外部端子を表わす。
Next, an example of an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a battery according to the present invention. In the figure, (1) positive electrode, (2) negative electrode, (3) current collector, (4)
Denotes an electrolytic solution, (5) denotes a separator, (6) denotes a battery case, and (7) denotes an external terminal.

まず、本発明に係る電池の第1のタイプ、即ち正極及
び負極の両極に不溶不融性基体粉末成型体を用いる電池
について説明する。正極(1)はフイルム状、或は板状
の形状を有する不溶不融性基体粉末成型体であり、ドー
ピング剤がドーピングされていても、未ドーピングもよ
い。負極(2)はフイルム状、或は板状等の形状を有す
る不溶不融性基体粉末成型体であり、ドーピング剤がド
ーピングされていても、未ドーピングでもよい。電池を
組み立てた後、外部電源より電圧を印加して、ドーピン
グ剤をドーピングする。例えば両極共に未ドーピング不
溶不融性基体粉末成型体を用いた場合、電池の組み立て
後の電池の起電圧はOVであり、外部電源により電圧を印
加して、両極にドーピング剤をドーピングすることによ
り電池は起電力を有するようになる。集電体(3)は各
電極から外部に電流を取り出したり、電気化学的ドーピ
ング、即ち充電するために電流を供給するものであり、
前述した方法により各電極及び外部端子(7)に電圧降
下を生じないように接続されている。電解液(4)は、
非プロトン性有機溶媒を正負両極にドーピング可能なイ
オンを生成し得る前記化合物が溶解されている。電解液
は通常液状であるが、漏液を防止するためゲル状又は固
体状にして用いることもできる。セパレーター(5)
は、正負両極の接触を阻止すること及び電解液を保持す
ることを目的として配置され電解液、ドーピング剤、ア
ルカリ金属等の電極活物質に対し耐久性のある連続気孔
を有する電子伝導性のない多孔性が好適であり、通常ガ
ラス繊維、ポリエチレン、ポリプロピレン等からなる
布、不織布、多孔体等が用いられる。セパレーターの厚
さは電池の内部抵抗を小さくするため薄い方が好ましい
が、電解液の保持量、流通性、強度等を勘案して決定さ
れる。正負両極及びセパレーターは、電池ケース(6)
内に実用上問題が生じない様に設定される。電極の形
状、大きさ等は、目的とする電池の形状、性能により適
宜決定すればよい。例えば薄形電池を製造するには電極
はフイルム状好適であり、大容量電池を製造するにはフ
イルム状、板状等の電極を多数正負両極を交互に積層す
ることにより達成できる。
First, a first type of battery according to the present invention, that is, a battery using an insoluble and infusible substrate powder molded body for both positive and negative electrodes will be described. The positive electrode (1) is a film-shaped or plate-shaped insoluble infusible substrate powder molded body, which may be doped with a doping agent or may be undoped. The negative electrode (2) is an insoluble and infusible substrate powder molded body having a shape such as a film shape or a plate shape, and may be doped with a doping agent or undoped. After assembling the battery, a voltage is applied from an external power supply to dope the doping agent. For example, when the undoped insoluble infusible substrate powder molded body is used for both electrodes, the electromotive voltage of the battery after assembling the battery is OV, and a voltage is applied from an external power supply to dope a doping agent to both electrodes. The battery will have an electromotive force. The current collector (3) extracts current from each electrode to the outside, or supplies current for electrochemical doping, that is, charging,
The electrodes and the external terminal (7) are connected so as not to cause a voltage drop by the method described above. The electrolyte (4)
The compound capable of forming ions capable of doping an aprotic organic solvent into both positive and negative electrodes is dissolved. The electrolyte is usually in a liquid state, but may be used in a gel or solid state to prevent leakage. Separator (5)
Is arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolyte, and has continuous pores that are durable to the electrode active material such as an electrolyte, a doping agent, and an alkali metal. Porosity is preferred, and cloths, nonwoven fabrics, porous bodies, and the like made of glass fiber, polyethylene, polypropylene, or the like are usually used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like. Both the positive and negative electrodes and the separator are the battery case (6)
Is set so as not to cause a practical problem. The shape, size, and the like of the electrode may be appropriately determined depending on the shape and performance of the intended battery. For example, in order to manufacture a thin battery, the electrode is preferably in the form of a film. In order to manufacture a large-capacity battery, it can be achieved by laminating a large number of film and plate-like electrodes alternately on both positive and negative electrodes.

次に、本発明に係る電池の第2のタイプ、即ち正極
(1)に不溶不融性基体粉末成型体を用い、負極(2)
にアルカリ、金属又はその合金を用いる場合について説
明する。第1図の正極(1)は不溶不融性基体粉末成型
体、負極(2)はアルカリ金属あるいはその合金であ
る。そしてこの第2のタイプの場合、ドーピンク機構、
即ち電池の作動機構は更に次の2つに大別される。その
1は、不溶不融性基体に電子受容性ドーピング剤がドー
ピングされるのが充電に対応し、アンドーピングされる
のが放電に対応する機構を備えた電池である。例えば電
極として未ドーピング不溶不融性基体粉末成型体及びリ
チウムを電解液としてLiClO4 1モル/プロピレンカー
ボネート溶液を用いた場合、電池組み立て後の起動力は
2.5〜3.0Vである。次に外部電源により電圧を印加してC
lO4イオンを該不溶不融性基体にドーピングすると、起
電力は3.5〜4.5Vとなる。その2は、不溶不融性基体粉
末に電子供与性ドーピング剤をドーピングするのが放電
に対応し、アンドーピングするのが充電に対応する機構
の電池である。例えば上記した電池構成では電池組み立
て後の起電圧は2.5〜3.0Vであり、外部に電流を放出す
ることにより、不溶不融性基体にリチウムイオンをドー
ピングすると起動力は1.0〜2.5Vとなるが、外部電源に
より電圧を印加し、リチウムイオンをアンドーピングす
ると再び起電力は2.5〜3.0Vとなる。
Next, the second type of the battery according to the present invention, that is, using the insoluble and infusible substrate powder molded body for the positive electrode (1) and the negative electrode (2)
The case where an alkali, a metal, or an alloy thereof is used for the above will be described. The positive electrode (1) in FIG. 1 is an insoluble and infusible substrate powder molded body, and the negative electrode (2) is an alkali metal or an alloy thereof. And in the case of this second type, the do pink mechanism,
That is, the operation mechanism of the battery is further roughly classified into the following two. The first is a battery provided with a mechanism in which doping of an insoluble infusible substrate with an electron-accepting doping agent corresponds to charging and undoping thereof corresponds to discharging. For example, when an undoped insoluble infusible base powder molded body is used as an electrode and LiClO 4 1 mol / propylene carbonate solution is used as an electrolyte for lithium, the starting force after assembling the battery is
2.5-3.0V. Next, apply a voltage from an external power supply to
When the lO 4 ions doped into the insoluble and infusible substrate, the electromotive force becomes 3.5~4.5V. The second is a battery having a mechanism in which doping an insoluble infusible substrate powder with an electron-donating doping agent corresponds to discharging, and undoping corresponds to charging. For example, in the above-described battery configuration, the electromotive voltage after battery assembly is 2.5 to 3.0 V, and the starting force becomes 1.0 to 2.5 V when lithium ions are doped into the insoluble and infusible substrate by discharging current to the outside. When a voltage is applied from an external power supply and lithium ions are undoped, the electromotive force becomes 2.5 to 3.0 V again.

ドーピング又はアンドーピングは一定電流下でも一定
電圧下でも、また電流及び電圧の変化する条件下のいず
れで行ってもよいが、不溶不融性基体粉末にドーピング
されるドーピング剤の量は、不溶不融性基体の炭素原子
1個に対するドーピングされるイオン数を百分率で換算
して0.5〜20%が好ましい。
The doping or undoping may be performed under a constant current, a constant voltage, or under a condition where the current and the voltage change, but the amount of the doping agent doped into the insoluble infusible substrate powder may be The number of ions to be doped with respect to one carbon atom of the fusible substrate is preferably 0.5 to 20% in terms of percentage.

(発明の効果) 本発明で有機電解質電池はフイルム状、板状等任意の
形状に成形できるポリアセン系骨格構造を有する不溶不
融性基体粉末成型体を電極とし、該電極に電子供与性又
は、電子受容性物質をドーピングしたものを電極活物質
とし、電解により電極にドーピング可能なイオンを生成
する化合物を非プロトン性有機溶媒に溶解したものを電
解液とする電池であり、小型化、薄形化、軽量化が可能
で且つ高容量、高出力で長寿命の高性能電池である。特
に、本発明の有機電解質電池は、ポリアセン系骨格構造
を含有する不溶不融性基体粉末の平均粒径を2.0〜0.1μ
mというきわめて小さな粒径とし、比表面積値を少なく
とも1500m2/gにすることにより、不溶不融性基体の性能
を低下させることなく高性能を保ちながら高強度を得る
という効果を奏しうるのである。
(Effect of the Invention) In the present invention, the organic electrolyte battery is an electrode formed of an insoluble and infusible substrate powder having a polyacene-based skeleton structure which can be formed into an arbitrary shape such as a film or a plate. A battery that uses an electron-accepting substance doped as an electrode active material and an electrolyte containing a compound that produces ions that can be doped into the electrode by electrolysis dissolved in an aprotic organic solvent. It is a high-performance, long-life, high-capacity, high-output battery that can be reduced in weight and weight. In particular, the organic electrolyte battery of the present invention has an average particle size of the insoluble infusible substrate powder containing a polyacene-based skeleton structure of 2.0 to 0.1 μm.
With a very small particle size of m and a specific surface area of at least 1500 m 2 / g, it is possible to obtain the effect of obtaining high strength while maintaining high performance without deteriorating the performance of the insoluble infusible substrate. .

以下実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

なお、実施例において、不溶不融性基体の平均粒径は
次のように測定された値である。即ち平均粒径()と
は試料粉末について1000〜10000倍の電子顕微鏡写真を
撮影し、この写真の任意の一方向を決め、任意に選んだ
粒子のその方向における長さ(li)を測定し、次式によ
り計算した値である。
In the examples, the average particle size of the insoluble and infusible substrate is a value measured as follows. That is, the average particle size () means that a sample powder is taken with an electron microscope photograph of 1000 to 10,000 times, an arbitrary direction of this photograph is determined, and the length (li) of the arbitrarily selected particle in that direction is measured. , Calculated by the following equation.

実施例1 (1) ポリアセン系骨格構造を有する不溶不融性基体
の製造法: 水溶性レゾール(約60%濃度)/塩化亜鉛/水を重量
比で10/25/4の割合で混合した水溶液を100mm×100mm/2m
mの型に流し込みその上にガラス板を被せ水分が蒸発し
ない様にした後、約100℃の温度で1時間加熱して硬化
させた。
Example 1 (1) Method for producing insoluble infusible substrate having polyacene skeleton structure: aqueous solution obtained by mixing water-soluble resol (about 60% concentration) / zinc chloride / water at a weight ratio of 10/25/4 Is 100mm × 100mm / 2m
It was poured into a mold of m and covered with a glass plate to prevent moisture from evaporating, and then cured by heating at a temperature of about 100 ° C. for 1 hour.

該フェノール樹脂をシリコニット電気炉中に入れ窒素
気流下で40℃/時間の速度で昇温して、500℃まで熱処
理を行った。次に該熱処理物を希塩酸で洗った後、水洗
し、その後乾燥することによって板状の不溶不融性基体
を得た。
The phenol resin was placed in a siliconite electric furnace, and the temperature was increased at a rate of 40 ° C./hour under a nitrogen stream to perform a heat treatment to 500 ° C. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and then dried to obtain a plate-like insoluble and infusible substrate.

該不溶不融性基体に対してBET法による比表面積値の
測定を行なったところ2300m2/gであった。また元素分析
を行ったところ、水素原子/炭素原子の原子比は0.24で
あった。
The specific surface area of the insoluble and infusible substrate was measured by the BET method and found to be 2300 m 2 / g. Elemental analysis revealed that the atomic ratio of hydrogen atoms / carbon atoms was 0.24.

(2) 上記(1)の不溶不融性基体をヌープ硬度Hk7
のナイロンからなるナイロンボールミルで平均粒径2.0
μmの不溶不融性基体粉末が得られるように粉砕した。
該粉末に対してBET法による比表面積値を測定したとこ
ろ2000m2/gであった(No.1)。同様に該不溶不融性基体
を平均粒径1.0μmの不溶不融性基体粉末を粉砕時間を
長くし得た。BET法による比表面積値は1900m2/gであっ
た(No.2)。さらに粉砕を行ない、平均粒径0.5μmの
時の比表面積値は、1650m2/gという値であった(No.
3)。
(2) The insoluble and infusible substrate of (1) is used for Knoop hardness Hk7.
Nylon ball mill made of nylon with an average particle size of 2.0
It was pulverized so as to obtain a μm insoluble infusible substrate powder.
The specific surface area of the powder measured by the BET method was 2000 m 2 / g (No. 1). Similarly, the grinding time of the insoluble infusible substrate powder having an average particle size of 1.0 μm could be prolonged. The specific surface area value by the BET method was 1900 m 2 / g (No. 2). Further pulverization was performed, and the specific surface area value when the average particle size was 0.5 μm was 1650 m 2 / g (No.
3).

上記No.1〜No.3の該粉末100部に対し、ポリ四フッ化
エチレンをバインダーとして5部、カーボンブラックを
10部加え、充分に混練し、厚さ700μmの板状成形体を
得た。それぞれの該成形体を直径15φmmの円板状に打ち
ぬいた。
For 100 parts of the powder of No. 1 to No. 3, 5 parts of polytetrafluoroethylene as a binder and carbon black were used.
10 parts were added and sufficiently kneaded to obtain a plate-like molded body having a thickness of 700 μm. Each of the molded bodies was punched into a disk having a diameter of 15 mm.

(3) 次に充分に脱水したプロピレンカーボネートに
LiClO4を溶解させ、約1.0モル/の溶液を調整した。
この溶液を電解液として、集電体にはステンレスメッシ
ュを用い、セパレーターとしてはガラス不織布を使用
し、また正極及び負極に上記(2)で作成した円板状成
型体(No.1〜3)をそれぞれ用いて第1図に示されるよ
うな電池を組んだ。
(3) Next to fully dehydrated propylene carbonate
LiClO 4 was dissolved to prepare a solution of about 1.0 mol /.
This solution was used as an electrolytic solution, a stainless steel mesh was used as a current collector, a glass nonwoven fabric was used as a separator, and a disk-shaped molded body (No. 1 to 3) prepared in (2) above for a positive electrode and a negative electrode. Were used to assemble batteries as shown in FIG.

(4) 上記(3)で得られたNo.1〜No.3の該電池に、
室温で外部電源により2.5Vの電圧を1時間印加すること
により電池を充電した。充電後の起電力は2.5Vであっ
た。次に2mAで定電流放電を行なったところ電池の電圧
がOVになるまでNo.1では1.5時間を要した。同様にNo.2
では1.48時間、No.3では1.48時間を要した。結果を第1
表に示す。
(4) No. 1 to No. 3 batteries obtained in (3) above
The battery was charged at room temperature by applying a voltage of 2.5 V for 1 hour from an external power supply. The electromotive force after charging was 2.5V. Next, when constant current discharge was performed at 2 mA, it took 1.5 hours for No. 1 until the battery voltage reached OV. No.2
It took 1.48 hours for No.3 and 1.48 hours for No.3. First result
It is shown in the table.

実施例2 実施例1(2)で得られたNo.2の不溶不融性基体粉末
を全く同様の条件で成形し、これを正極とし、負極にリ
チウム金属、セパレーターにガラス不織布、集電体にス
テンレスメッシュを用い、電解液にプロピレンカーボネ
ートに1モル/のLiClO4を溶解させた溶液を使用し、
第1図に示すような電池を構成した。
Example 2 The insoluble and infusible substrate powder No. 2 obtained in Example 1 (2) was molded under exactly the same conditions, and this was used as a positive electrode, a lithium metal was used as a negative electrode, a glass nonwoven fabric was used as a separator, and a current collector was used. Using a stainless mesh, a solution in which 1 mol / LiClO 4 is dissolved in propylene carbonate in an electrolytic solution,
A battery as shown in FIG. 1 was constructed.

電池を組んだ時の開路電圧は3.0Vであり、該電池に外
部電源により約4.0Vの電圧を印加し、2mAの電流で電池
電圧が2.0Vになるまで放電したところ、エネルギー密度
は電極密度で120WH/と大きい値であった。
When the battery was assembled, the open-circuit voltage was 3.0 V, and a voltage of about 4.0 V was applied to the battery from an external power supply, and the battery was discharged at a current of 2 mA until the battery voltage reached 2.0 V. Was as large as 120 WH /.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る電池の基本構成の一例を示すもの
であり、(1)は正極、(2)は負極、(3),
(3)′は集電体、(4)は電解液、(5)はセパレー
ター、(6)電池ケース、(7),(7)′は外部端子
を表わす。
FIG. 1 shows an example of the basic configuration of a battery according to the present invention, wherein (1) is a positive electrode, (2) is a negative electrode, and (3),
(3) 'is a current collector, (4) is an electrolyte, (5) is a separator, (6) is a battery case, and (7) and (7)' are external terminals.

フロントページの続き 合議体 審判長 吉田 敏明 審判官 鈴木 正紀 審判官 金澤 俊郎 (56)参考文献 特開 昭63−301460(JP,A) 特開 昭63−218160(JP,A) 特開 昭63−216267(JP,A)Continuation of the front page Jury President Toshiaki Yoshida Judge Masaki Suzuki Judge Toshio Kanazawa (56) References JP-A-63-301460 (JP, A) JP-A-63-218160 (JP, A) JP-A 63-218160 216267 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素,水素および酸素から成る芳香族系縮
合ポリマーの熱処理物であって、平均粒径が2.0〜0.1μ
mであり、且つ水素原子/炭素原子の原子比が0.5〜0.0
5であるポリアセン系骨格構造を含有する不溶不融性基
体の、BET法による比表面積値が少なくとも1500m2/gの
粉末成形体を、正極及び/又は負極とし電解により電極
にドーピング可能なイオンを生成し得る化合物の非プロ
トン性有機溶媒溶液を電解液とすることを特徴とする有
機電解質電池。
1. A heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen, having an average particle size of 2.0 to 0.1 μm.
m, and the atomic ratio of hydrogen atom / carbon atom is 0.5 to 0.0
A powder molded body having a specific surface area value of at least 1500 m 2 / g by the BET method of an insoluble and infusible substrate containing a polyacene-based skeleton structure of 5 is used as a positive electrode and / or a negative electrode. An organic electrolyte battery, wherein an aprotic organic solvent solution of a compound that can be produced is used as an electrolytic solution.
JP1041062A 1989-02-20 1989-02-20 Organic electrolyte battery Expired - Lifetime JP2919848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041062A JP2919848B2 (en) 1989-02-20 1989-02-20 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041062A JP2919848B2 (en) 1989-02-20 1989-02-20 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02220368A JPH02220368A (en) 1990-09-03
JP2919848B2 true JP2919848B2 (en) 1999-07-19

Family

ID=12597942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041062A Expired - Lifetime JP2919848B2 (en) 1989-02-20 1989-02-20 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2919848B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216267A (en) * 1987-03-03 1988-09-08 Asahi Glass Co Ltd Nonaqueous electrolyte secondary cell
JP2519180B2 (en) * 1987-03-06 1996-07-31 鐘紡株式会社 Organic electrolyte battery
JPS63301460A (en) * 1987-05-30 1988-12-08 Kanebo Ltd Manufacture of electrode for battery

Also Published As

Publication number Publication date
JPH02220368A (en) 1990-09-03

Similar Documents

Publication Publication Date Title
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP2919848B2 (en) Organic electrolyte battery
JPH0630260B2 (en) Organic electrolyte battery
JP2627033B2 (en) Manufacturing method of organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP2614725B2 (en) Organic electrolyte battery with activated carbon metal sulfide composite as cathode
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JP2968097B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JP2519180B2 (en) Organic electrolyte battery
JP3020509B2 (en) Organic electrolyte battery
JP2556408B2 (en) Organic electrolyte battery
JP2703696B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2616775B2 (en) Organic electrolyte battery with ternary composite as cathode
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2556407B2 (en) Organic electrolyte battery
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JPS63213267A (en) Nonaqueous electrolyte secondary cell
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode
JP2681888B2 (en) Organic electrolyte battery
JP2601776B2 (en) Organic electrolyte battery
JP2614724B2 (en) Organic electrolyte battery with metal sulfide composite as positive electrode

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term