JPS6231961A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS6231961A
JPS6231961A JP60171670A JP17167085A JPS6231961A JP S6231961 A JPS6231961 A JP S6231961A JP 60171670 A JP60171670 A JP 60171670A JP 17167085 A JP17167085 A JP 17167085A JP S6231961 A JPS6231961 A JP S6231961A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
organic electrolyte
electrolyte battery
butyrolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60171670A
Other languages
Japanese (ja)
Other versions
JPH0624160B2 (en
Inventor
Shizukuni Yada
静邦 矢田
Kazuro Sakurai
桜井 和朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60171670A priority Critical patent/JPH0624160B2/en
Publication of JPS6231961A publication Critical patent/JPS6231961A/en
Publication of JPH0624160B2 publication Critical patent/JPH0624160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent self discharge by using electrolyte comprising tetraalkyl ammonium salt serving as electrolyte and gamma-butyrolactone or a mixture of gamma- butyrolactone and propylene carbonate serving as solvent. CONSTITUTION:Solvent of electrolyte 4 is gamma-butyrolactone or a mixture of gamma- butyrolactone and propylene carbonate of a ratio of 10:0-2:8 by weight. Electrolyte dissolved in the solvent is tetraalkyl ammonium salt. The electrolyte and solvent are used after the completion of dehydration. The concentration of electrolyte in the electrolyte 4 is 0.1mol/l or more in order to reduce the internal resistance of a battery.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機電解質電池に係シ、更に詳しくは半導体の
性能を有する不溶不融性基体を正極および負極とする有
機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an organic electrolyte battery, and more particularly to an organic electrolyte battery in which an insoluble and infusible substrate having semiconductor properties is used as a positive electrode and a negative electrode.

(従来の技術) 近年、X子機器の小型化、薄形化あるいは軽輩、化は目
覚ましく、それに伴い電源となる電池の小型化、薄形化
、軽量化の要望が大きい。小型で性能のよい電池として
現在は酸化銀電池が多用されておシ、又薄形化され九乾
電池や小型軽量な高性能電池としてリチウム電池が開発
され、実用化されている。しかしこれらの電池は1次電
池であるため充放1!を繰返して長時間使用することは
できない。一方、高性能な2次電池としてニッケルカド
ミウム電池が実用化されているが、小型化、薄形化、軽
量化という点で未だ不満足である。
(Prior Art) In recent years, X-device devices have become increasingly smaller, thinner, and lighter, and as a result, there is a strong demand for smaller, thinner, and lighter batteries that serve as power sources. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium batteries have been developed and put into practical use as thinner nine-dry batteries and small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they can only be charged once! cannot be used repeatedly for a long time. On the other hand, although nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, they are still unsatisfactory in terms of miniaturization, thinness, and weight reduction.

又、大容量の2次電池として従来よシ鉛蓄電池が種々の
産業分野で用いられているが、この電池の最大の欠点は
重いことである。これは電極として過酸他船及び鉛を用
いているため宿命的なものである。近年、電気自動車用
電池として該電池の軽量化及び性能改善が試みられたが
、実用するに至らなかった。しかし、蓄電池として大容
量で且つ軽量な2次電池に対する要望は強いものがある
Further, although lead storage batteries have conventionally been used as large capacity secondary batteries in various industrial fields, the biggest drawback of these batteries is that they are heavy. This is due to the fact that peracid and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一短
があシ、それぞれ用途に応じて使い分けされているが、
電池の小型化、薄形化、或は軽量化に対するニーズは大
きい。このようなニーズに応えようとする電池として、
近時、有機半導体である薄膜状ポリアセチレンに電子供
与性物質又は電子受容性物質をドーピングしたものを電
極活物質として用いる電池が研究され、提案されている
As mentioned above, each of the batteries currently in practical use has advantages and disadvantages, and each is used differently depending on its purpose.
There is a great need for smaller, thinner, and lighter batteries. As a battery that attempts to meet these needs,
BACKGROUND ART Recently, batteries have been researched and proposed in which thin film polyacetylene, which is an organic semiconductor, is doped with an electron-donating substance or an electron-accepting substance as an electrode active material.

該電池は2次電池として高性能で几つ薄形化、軽量化の
可能性を有しているが、大きな欠点がある。
Although this battery has high performance as a secondary battery and has the potential to be made thinner and lighter, it has a major drawback.

それは、有機半導体であるポリアセチレンが極めて不安
定な物質でアシ、空気中の酸素によシ容易に酸化を受け
、又熱によシ変質することである。
The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance and is easily oxidized by reeds and oxygen in the air, and is also deteriorated by heat.

従って電池製造は不活性ガス雰囲気で行jわなければな
らず、又ポリアセチレンを電極に適した形状に製造する
ことにも制約を受ける。
Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyacetylene into a shape suitable for electrodes.

また、特願昭59−24165号には、炭素。Further, Japanese Patent Application No. 59-24165 describes carbon.

水素および酸素からなる芳香族系縮合ポリマーの熱処理
物であって、水素原子/炭素原子の原子比がo、 05
−’−0,5であり、且つBET法による比表I面積値
が、600m/f以上であるポリアセン系骨格構造を有
する不溶不融性基体を正極及び/又は負極とし、電解に
よシ該電極にドーピング可能なイオンを生成し得る化合
物の非プロトン性有機溶媒溶液を電解液とすることを特
徴とする有機電解質電池が提案されている。
A heat-treated product of an aromatic condensation polymer consisting of hydrogen and oxygen, wherein the atomic ratio of hydrogen atoms/carbon atoms is o, 05
-'-0.5 and a specific surface I area value of 600 m/f or more according to the BET method, an insoluble and infusible substrate having a polyacene skeleton structure is used as a positive electrode and/or a negative electrode, An organic electrolyte battery has been proposed in which the electrolyte is an aprotic organic solvent solution of a compound capable of producing ions that can be doped into the electrode.

該電池は、高性能で薄形化、軽量化の可能性も有してお
り電極活物質の酸化安定性も高く、さらにその成形も容
易である寿ど将来有望な2次電池である。ところが該電
池の実用化を進めるにはいくつかの課題が残されていた
。これらの課題の中に、自己放電が比較的大きいという
問題があった本発明の目的は自己放電の小さい有機電解
質電池を提供することにある。
This battery has high performance, has the possibility of being made thinner and lighter, has a high oxidation stability of the electrode active material, and can be easily molded, making it a promising secondary battery with a long lifespan. However, several issues remain to be solved in order to put this battery into practical use. Among these problems, the problem of relatively high self-discharge has been addressed.An object of the present invention is to provide an organic electrolyte battery with low self-discharge.

本発明のさらに他の目的はポリアセン系骨格構造金持つ
不溶不融性基体から成る有機半導体な電極活物質とする
有機電解質電池を提供することにある。
Still another object of the present invention is to provide an organic electrolyte battery using an organic semiconductor electrode active material comprising an insoluble and infusible substrate having a polyacene skeleton structure of gold.

本発明のさらに他の目的は、内部抵抗が小さく。Still another object of the present invention is to reduce internal resistance.

しかも長期に亘って充電、放電が可能な二次電池を提供
することにある。
Moreover, it is an object of the present invention to provide a secondary battery that can be charged and discharged for a long period of time.

(問題点を解決するための手段および作用)本発明によ
れば、本発明のかかる目的および利点は、炭素、水素及
び酸素からなる芳香族系縮合ポリマーの熱処理物であっ
て水素原子/炭素原子の原子比が0.05〜0.5であ
り、且つBE’I’法による比表面積が600?7//
f以上であるポリアセン系骨格構造を含む不溶不融性基
体を正極及び負極とする電池において、(A)電解質と
して%テトラアルキルアンモニウム塩と、(B)溶媒と
してφγ−ブチロラクトン又はγ−ブチロラクトンとプ
ロピレンカーボネイトとの混合液、とからなる電解液を
使用することを特徴とする有機電解質電池によシ達成さ
れる。
(Means and effects for solving the problems) According to the present invention, the objects and advantages of the present invention are a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen, wherein hydrogen atoms/carbon atoms The atomic ratio of is 0.05 to 0.5, and the specific surface area by BE'I' method is 600?7//
In a battery in which the positive and negative electrodes are insoluble and infusible substrates containing a polyacene skeleton structure of f or more, (A) % tetraalkylammonium salt as an electrolyte, and (B) φγ-butyrolactone or γ-butyrolactone and propylene as a solvent. This is achieved by an organic electrolyte battery characterized in that it uses an electrolytic solution consisting of a mixture of carbonate and carbonate.

本発明において最も重要なことは、特定の電解質と、特
定の溶媒とからなる電解液を特定の電極を構成要素とす
る電池に適用することによって。
The most important thing in the present invention is that an electrolytic solution consisting of a specific electrolyte and a specific solvent is applied to a battery having a specific electrode as a component.

該電池の自己放電を防止し得た点にある。The point is that self-discharge of the battery can be prevented.

上記の通シ、特定の電解液と特定の電極によ多構成され
る本発明に係る電池は特に自己放電が小さいものであっ
て1例えば電極として前記本発明に係る不融性基体を電
解液として前記本発明に係る特定の電解液とを適用した
電池7f!:2Vで充電した場合のリーク電流は、電解
液のみを最も漂準的な(02H5)4NOIO41モi
v/lプロピレンカーボネイト溶液に代替した電池のそ
れに比し2〜20倍少なくなり電圧の保持率が高くなる
。同様にLiCIO41モIL’/lアセトニトリμ溶
液を電解液とした電池のそれに比し10〜100倍程度
リーク電流が少なくなる。
As per the above, the battery according to the present invention, which is composed of a specific electrolyte and a specific electrode, has particularly low self-discharge. A battery 7f to which the specific electrolyte according to the present invention is applied! :The leakage current when charging at 2V is the most drifting (02H5)4NOIO41moi when only the electrolyte is charged.
The voltage is 2 to 20 times lower than that of a battery substituted with a v/l propylene carbonate solution, resulting in a higher voltage retention rate. Similarly, the leakage current is about 10 to 100 times lower than that of a battery using a LiCIO41molIL'/l acetonitrile μ solution as an electrolyte.

本発明に使用される電解液の溶媒は、スルホラン又はス
ルホランとγ−ブチロラクトンとの混合液である。スル
ホラン単独でも自己放電に関しては良好な結果が得られ
るが、γ−ブチロラクトン/プロピレンカーボネイト=
1010〜2/8 (重量比)の混合溶媒は、自己放電
を少なくする効果に加えて内部抵抗減少効果も併用し好
ましいものであυ上記γ−ブチロラクトン/プロピレン
カーボネイト=1010〜515の混合液は、最も好ま
しいものである。
The solvent of the electrolytic solution used in the present invention is sulfolane or a mixture of sulfolane and γ-butyrolactone. Good results regarding self-discharge can be obtained with sulfolane alone, but γ-butyrolactone/propylene carbonate =
A mixed solvent of 1010 to 2/8 (weight ratio) is preferable because it has the effect of reducing internal resistance in addition to the effect of reducing self-discharge. , is the most preferred.

上記本発明に係る溶媒に溶解せしめる電解質はテトラア
ルキルアンモニウム塩であるが、具体的には例えば下記
式で示されるものが挙げられる。
The electrolyte to be dissolved in the solvent according to the present invention is a tetraalkylammonium salt, and specific examples thereof include those represented by the following formula.

そして上式にて示される化合物中(C2I(5)4NO
IQ、4゜(C2■5)4NBF4.(n′−C4I■
、)4NC104及び(n二04EI、)4NBF4 
 は特に好ましいものである。
And in the compound represented by the above formula (C2I(5)4NO
IQ, 4° (C2■5)4NBF4. (n'-C4I■
,)4NC104 and (n204EI,)4NBF4
is particularly preferred.

上記電解質及び溶媒は充分脱水したものを使用するのが
好ましい。電解液は電解質を溶媒に溶解することによシ
容易に調製されるが電m液中の電解質の濃度は、電解液
によゐ内部抵抗を小さくするため少なくとも0.1モ)
v/1以上とするのが好ましく通常0.2〜1,5モル
/lとするのがよシ好ましい。
It is preferable to use the electrolyte and solvent that have been sufficiently dehydrated. The electrolyte solution is easily prepared by dissolving the electrolyte in a solvent, but the concentration of the electrolyte in the electrolyte solution should be at least 0.1 molar in order to reduce the internal resistance of the electrolyte solution.
It is preferably at least v/1, and more preferably from 0.2 to 1.5 mol/l.

本発明における芳香族系縮合ポリマーは、フエ 1ノー
ル性水酸基を有する芳香族炭化水素化合物とアルデヒド
類との縮合物でおる。かかる芳香族炭化水素化合物とし
ては1例えばフェノ−〃、クレゾール、キシレノールの
如きいわゆるフェノール類が好適であるが、これらに限
られない。例えば下記式 で表わされるメチレン−ビスフェ ノール類であることができ、あるいはヒドロキシービフ
゛エニル類、ヒドロキシナフタレン類であることもでき
る。これらのうち、実用的にはフェノール類特にフェノ
ールが好適である。
The aromatic condensation polymer in the present invention is a condensate of an aromatic hydrocarbon compound having an phenolic hydroxyl group and an aldehyde. Suitable examples of such aromatic hydrocarbon compounds include so-called phenols such as phenol, cresol, and xylenol, but they are not limited thereto. For example, it can be methylene-bisphenols represented by the following formula, or hydroxybiphenols or hydroxynaphthalenes. Among these, phenols, particularly phenol, are practically preferred.

本発明における芳香族縮合ポリマーとしては。The aromatic condensation polymer in the present invention includes:

さらにフェノール性水酸基を有する芳香族炭化水素化合
物の1部をフェノール性水酸基を有さない芳香族炭化水
素化合物例えばキシレン、トルエン等で置換した変性芳
香族系ポリマー例えばフェノールとキシレンとホルムア
ルデヒドとの縮合物である変性芳香族系ポリマーを用い
ることもできる。
Further, a modified aromatic polymer in which a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is replaced with an aromatic hydrocarbon compound not having a phenolic hydroxyl group, such as xylene, toluene, etc., such as a condensation product of phenol, xylene, and formaldehyde. It is also possible to use a modified aromatic polymer.

まにアルデヒドとしてはホルムアルデヒドのみならず、
アセトアルデヒド、フルフラーμの如きその他のアルデ
ヒドも使用することができるが、ホルムアルデヒドが好
適である。フェノールホルムアルデヒド縮合物としては
、ノボラック型又はレゾール型或はそれらの複合物のい
ずれであってもよい。
In addition to formaldehyde, aldehydes include
Formaldehyde is preferred, although other aldehydes such as acetaldehyde and furfurer μ may also be used. The phenol formaldehyde condensate may be a novolac type, a resol type, or a composite thereof.

本発明における不溶不融性基体は、上記の如き芳香族系
縮合ポリマーの熱処理物であって例えば次のようにして
製造することができる。
The insoluble and infusible substrate in the present invention is a heat-treated product of the aromatic condensation polymer as described above, and can be produced, for example, as follows.

フェノール性水酸基を有する芳香族炭化水素化合物又は
フェノール検水酸基を有さない芳香族炭化水素化合物お
よびアルデヒド類の初期縮合物を準備し、この初期縮合
物と無機塩とを含む水溶液を調整し、この水溶液を適当
な型に流し込み加熱して′該型内で例えば板状、フィル
ム状あるいは円筒状等の形態に硬化し且つ変換し、その
後この硬化体を非酸化性雰囲気中で350°〜800℃
の温度まで加熱し熱処理し1次いで得られ九熱処理体を
洗浄して該熱処理体に含有される無機塩を除去する。
Prepare an initial condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group or an aromatic hydrocarbon compound without a phenolic hydroxyl group and aldehydes, prepare an aqueous solution containing this initial condensate and an inorganic salt, and prepare an aqueous solution containing this initial condensate and an inorganic salt. The aqueous solution is poured into a suitable mold and heated to harden and convert it into a plate-like, film-like, or cylindrical shape within the mold, and then the cured product is heated at 350° to 800°C in a non-oxidizing atmosphere.
The heat-treated body is then washed to remove the inorganic salt contained in the heat-treated body.

初期縮合物と共に用いる上記無機塩は後の工程で除去さ
れるものであシ1本発明の不溶不融性基体に60077
//g以上の比表面積値を持たせるための助剤であるが
1例えば塩化亜鉛、リン酸ナトリウム、水酸化カリウム
あるいは硫化カリウム等である。これらのうち、塩化亜
鉛が特に好ましく用いられる。無機塩は、初期縮合物の
例えば0.05〜10重量倍の量で用いることができる
。下限より少ない量では比表面積値が600vl/f以
上とはならず、また上限よシ多い量では最終的に得られ
る成形体の機械的強度が低下する傾向が大きくなり望ま
しくない。
The above-mentioned inorganic salt used together with the initial condensate is one that will be removed in a later step.
Examples of auxiliary agents for providing a specific surface area value of //g or more include zinc chloride, sodium phosphate, potassium hydroxide, and potassium sulfide. Among these, zinc chloride is particularly preferably used. The inorganic salt can be used in an amount of, for example, 0.05 to 10 times the weight of the initial condensate. If the amount is less than the lower limit, the specific surface area value will not be 600 vl/f or more, and if the amount is more than the upper limit, the mechanical strength of the final molded product will tend to decrease, which is not desirable.

初期縮合物と無機塩の水溶液は、使用する無機塩の種類
によっても異るが例えば無機塩の0.1〜1重量倍の水
を用いて調整することができ、該水溶液は適当な型に流
し込まれ例えば50〜200°CのIffで加熱し、成
形硬化する。
The aqueous solution of the initial condensate and the inorganic salt can be prepared using, for example, 0.1 to 1 times the weight of the inorganic salt in water, although it varies depending on the type of the inorganic salt used, and the aqueous solution can be prepared in an appropriate mold. It is poured and heated at Iff of 50 to 200°C, for example, to form and harden.

また上記した初期縮合物と無機塩を混合し、水溶液とす
る際にフェノール系繊維(例えば日本カイノール社製の
カイノール繊維)′f、共に混ぜ込んでも良いし、該繊
維からなる布、フェルト等に上記した水溶液を充分に含
浸させたプリプレグを利用して成形硬化してもよい。
In addition, when the above-mentioned initial condensate and inorganic salt are mixed and made into an aqueous solution, phenolic fiber (for example, Kynol fiber manufactured by Nippon Kynol Co., Ltd.) may be mixed together, or cloth, felt, etc. made of the fiber may be mixed. A prepreg sufficiently impregnated with the above-mentioned aqueous solution may be used for molding and curing.

キ また、特願昭60−58604に示した様に無機塩を初
期縮合物の2.5〜10倍量とし、混合された水溶液の
粘度を100.000〜100センチポイズに調整し、
加熱時に水溶液中の水分の蒸発を抑止する様にすると水
溶液中において初期縮合物は加熱を受けて徐々に硬化し
、平均孔径10μ以下の連通気孔を有した3次元網目状
構造に成長させることも可能である。
Additionally, as shown in Japanese Patent Application No. 60-58604, the amount of inorganic salt is 2.5 to 10 times that of the initial condensate, and the viscosity of the mixed aqueous solution is adjusted to 100.000 to 100 centipoise.
If the evaporation of water in the aqueous solution is suppressed during heating, the initial condensate in the aqueous solution will be heated and gradually harden, allowing it to grow into a three-dimensional network structure with continuous pores with an average pore diameter of 10μ or less. It is possible.

かくして得られた硬化体は1次いで非酸化性雰囲気(真
空状態も含む)中で350〜800″Cの温度、好まし
くは350〜700 ’Cの温度特に好ましくは400
〜600°Cの温度まで加熱され熱処理される。
The thus obtained cured product is then heated in a non-oxidizing atmosphere (including vacuum) at a temperature of 350-800'C, preferably 350-700'C, particularly preferably 400'C.
Heat treated by heating to a temperature of ~600°C.

熱処理の際の好ましい昇温速度は、使用する芳1香族系
縮合ポリマー又はその硬化処理の程度あるいはその形状
等によって多少相違するが、一般に室温から300°C
程度の温度までは比較的大きな昇温速度とすることが可
能であシ1例えば100’O/時間の速度とすることも
可能である。300°C以上の温度になると、該芳香族
系縮合ポリマーの熱分解が開始し、水蒸気(H2O)、
水素、メタン。
The preferred rate of temperature increase during heat treatment varies somewhat depending on the aromatic condensation polymer used, the degree of its curing treatment, its shape, etc., but generally it is from room temperature to 300°C.
It is possible to increase the temperature at a relatively high rate up to a temperature of 100°C, for example, 100'O/hour. When the temperature reaches 300°C or higher, thermal decomposition of the aromatic condensation polymer starts, and water vapor (H2O),
Hydrogen, methane.

−酸化炭素の如きガスが発生し始めるため、充分に遅い
速度で昇温せしめるのが有利である。
- It is advantageous to raise the temperature at a sufficiently slow rate, since gases such as carbon oxides begin to evolve.

芳香族系縮合ポリマーのかかる加熱、熱処理1非酸化性
雰囲気下において行なわれる。非酸化性雰囲気は1例え
ば窒素、アルゴンヘリウム、ネオン、二酸化炭素等であ
り、窒素が好ましく用いられる。かかる非酸化性雰囲気
は静止していても流動していてもさしつかえない。
Such heating and heat treatment of the aromatic condensation polymer is carried out in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include nitrogen, argon-helium, neon, carbon dioxide, etc., with nitrogen being preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.

得られた熱処理体を水あるいは希塩酸等によって十分に
洗浄することによって、熱処理体中に含まれる無機塩を
除去することができ、その後これを乾燥すると、水素原
子/炭素原子の原子比(以下Hン′C比という)が0.
5〜0.05好ましくは0.35〜0.1のポリアセン
系骨格構造を有しかつBET法による比表面積値が60
0d/f/以上を持つ不溶不融性基体が得られる。
By thoroughly washing the obtained heat-treated body with water or dilute hydrochloric acid, the inorganic salts contained in the heat-treated body can be removed, and then when it is dried, the atomic ratio of hydrogen atoms/carbon atoms (hereinafter referred to as H (referred to as 'C ratio) is 0.
5 to 0.05, preferably 0.35 to 0.1, and has a specific surface area value of 60 by the BET method.
An insoluble and infusible substrate having a ratio of 0d/f/ or more is obtained.

XS回折(0uKa )によれば、メイン・ピークの位
置は2θで表わして20.5〜23.5°の間に存在し
、まな該メイン・ピークの他に41〜46″の間にブロ
ードな他のピークが存在する。また赤外線吸収ヌベク)
/L/によればDe=D2000〜2940/D156
0〜1640)の吸光度比は通常0.5以下、好ましく
は0.3以下である。
According to XS diffraction (0uKa), the position of the main peak exists between 20.5 and 23.5 degrees in 2θ, and in addition to the main peak, there is a broad peak between 41 and 46". Other peaks exist.Also infrared absorption)
According to /L/, De=D2000~2940/D156
The absorbance ratio of 0 to 1640) is usually 0.5 or less, preferably 0.3 or less.

すなわち、上記不溶不融性基体は、ポリアセン系のベン
ゼンの多環構造がポリアセン系分子間に均−且つ適度に
発達したものであると理解される。
That is, it is understood that the above-mentioned insoluble and infusible substrate is one in which the polycyclic structure of polyacene-based benzene is evenly and appropriately developed between polyacene-based molecules.

H/ O比が0.5ヲ越える場合あるいは0.05よシ
小さい場合には、該基体を後に示す方法に従って2次電
池の電極として用いたときの充放電の効率が低下し好ま
しくない。
If the H/O ratio exceeds 0.5 or is smaller than 0.05, the efficiency of charging and discharging when the substrate is used as an electrode of a secondary battery according to the method shown later is undesirable.

又、該ポリアセン系骨格構造を含有する不溶不融性基体
のBET法による比表面積値は塩化亜鉛等の無機塩を使
用して製造しているため極めて大きな値となシ1本発明
では600m/f以上であるものが用いられる。600
772’/f未満の場合には1例えば該基体を電極とし
た2次電池の充電時における、充電電圧を高くする必要
が生ずる九めエネルギー密度等が低下し、又電解液の劣
化をさそうため好ましくない。ま九特願昭60−586
0″′fy″に示し友様に無機塩を初期縮合物の2.5
〜10倍量として水溶液の粘ff?100,000〜1
00センチボイズに調整し、加熱時に水分の蒸発を抑止
する様にして硬化された成形体を使用して非酸化性雰囲
気下、熱処理すると平均孔径10μ以下の連通気孔を有
する多孔状の本発明の不溶不融性基体が得られる。該基
体を電極とすると電解液が該連通孔を通じて細部まで自
由に出入シし易いため。
In addition, the specific surface area value of the insoluble and infusible substrate containing the polyacene skeleton structure by the BET method is extremely large because it is manufactured using an inorganic salt such as zinc chloride. Those that are equal to or greater than f are used. 600
If it is less than 772'/f, for example, when charging a secondary battery using the substrate as an electrode, the charging voltage will need to be increased.The energy density, etc. will decrease, and the electrolyte will deteriorate. Undesirable. Magaku special request 1986-586
0'''fy'' shows the inorganic salt as 2.5 of the initial condensate.
~10 times the volume of the aqueous solution ff? 100,000~1
When heat-treated in a non-oxidizing atmosphere using a molded body adjusted to 0.00 centivoise and cured in such a way as to inhibit moisture evaporation during heating, the porous insoluble material of the present invention having continuous pores with an average pore diameter of 10 μm or less is produced. An infusible substrate is obtained. When the base body is used as an electrode, the electrolyte can easily enter and exit through the communication holes.

よシ好ましい。I really like it.

また、上記不溶不融性基体の電気伝導度は通常1(11
1〜101Ω−1番01K”である。そして後述すると
おりi解質イオンをドーピングして電極材として利用す
る場合には伝導度が大巾に増大するため、集電性を兼ね
た電極材となる。
Further, the electric conductivity of the above-mentioned insoluble and infusible substrate is usually 1 (11
1 to 101Ω-101K".As will be described later, when doping with i-solite ions and using it as an electrode material, the conductivity increases significantly, so it is necessary to use an electrode material that also has current collecting properties. Become.

また不溶不融性基体は例えばフィルム板等々の種々の形
態をとることができるため電極材とじて用いたとき小型
電池、薄型電池あるいは軽量電池等を可能とする。
Furthermore, since the insoluble and infusible substrate can take various forms, such as a film plate, when used together with electrode materials, it enables small batteries, thin batteries, lightweight batteries, etc.

本発明で用いられている上記多孔性不溶不融性基体は6
00nf/f以上の大きい比表面積値を有するにもかか
わらず現実には空気中に長時間放置しても電気伝導度醇
の物性に変化はなく、酸化安定性に優れている。また耐
熱性、耐薬品性に優れているため電極材として用い、電
池を構成する場合電極劣化の問題が生じない。
The porous insoluble and infusible substrate used in the present invention is 6
Despite having a large specific surface area value of 00 nf/f or more, in reality, there is no change in the physical properties of the electrical conductivity even if it is left in the air for a long time, and it has excellent oxidation stability. In addition, since it has excellent heat resistance and chemical resistance, when it is used as an electrode material to construct a battery, there is no problem of electrode deterioration.

本発明の有機電解質電池は上記のとおシ上記の不溶不融
性基体を正極及び負極とし、電解質としてテトラアルキ
ルアンモニウム塩、溶媒としてγ−ブチロラクトンとプ
ロピレンカーボネイトの混合溶媒(γ−ブチロラクトン
単独をも含む)を用いた有機電解質電池である。
The organic electrolyte battery of the present invention uses the above insoluble and infusible substrate as a positive electrode and a negative electrode, uses a tetraalkylammonium salt as an electrolyte, and uses a mixed solvent of γ-butyrolactone and propylene carbonate (including γ-butyrolactone alone) as a solvent. ) is an organic electrolyte battery using

本発明の電池の電池作用は電極として用いる不溶不融性
基体への上記した電解質イオンの電気化学的ドーピング
と電気化学的アンド−ピングを利 。
The battery action of the battery of the present invention utilizes electrochemical doping and electrochemical undoping of the above-mentioned electrolyte ions onto the insoluble and infusible substrate used as the electrode.

用するものである。即ち、エネルギーが不溶不融性基体
へのドーピングによって蓄えられ、アンド−ピングによ
って電気エネルギーとして外部に取p出される。
It is used for That is, energy is stored by doping the insoluble and infusible substrate, and is taken out as electrical energy by undoping.

電池内に配置される不溶不融性基体からなる電極の形状
、大きさは目的とする電池の種類によシ任意に選ぶこと
ができるが、電池反応は電極表面上の電気化学的反応で
あるため、電極は可能な限夛表面積を大きくすることが
有利である。又、該基体よ〕電池外部に電流を取出すた
めの集電体としては不溶不融性基体を用いることもでき
るが、耐食性のある他の導電性物質1例えば炭素、白金
The shape and size of the electrodes, which are made of insoluble and infusible substrates placed inside the battery, can be chosen arbitrarily depending on the type of battery intended, but the battery reaction is an electrochemical reaction on the electrode surface. Therefore, it is advantageous for the electrode to have as large a surface area as possible. Although an insoluble and infusible substrate can be used as a current collector for extracting current from the substrate to the outside of the battery, other conductive materials having corrosion resistance such as carbon and platinum may also be used.

ニッケル、ステンレス等を用いることもできる。Nickel, stainless steel, etc. can also be used.

次に図によシ本発明の実施態様を説明する。第1図は本
発明に係る電池の基本構成図である。第1図においては
、(1)は正極であり、フィルム状あるいは板状等であ
る不溶不融性基体であ!り、(2)は負極であり、同様
にフィルム状あるいは板状等である不溶不融性基体であ
る。電池の組み立て後。
Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention. In FIG. 1, (1) is a positive electrode, which is an insoluble and infusible substrate in the form of a film or a plate! (2) is a negative electrode, which is also an insoluble and infusible substrate in the form of a film or a plate. After assembling the battery.

該電池の起電圧はOvであり、外部電源により電圧を印
加して、両極に電解質イオンをドーピングすることによ
p該電池は起電圧を有するようになる。(3) j (
3)’は各電極から外部に電流を取シ出したシ、電気化
学的ドーピング、即ち充電するために電流を供給するた
めの集電体であり、各電極及び外部端子(7) # (
7)’に電圧降下を生じないように接続されている、(
A)は電解液であ、り、(5)は正負両極の接触を阻止
すること及び電解液を保持することを目的として配置さ
れたセパレーターである。該セパレーターは耐久性のあ
る連続気孔を有する電子伝導性のない多孔体であシ1通
常ガラス繊維、ポリエチレン或はポリプロピレン等から
なる布、不織布或は多孔体が用いられる。セパレーター
の厚さは電池の内部抵抗を小さくするため薄い方が好ま
しいが、電解液の保持量、流通性1強度を勘案して決定
される。正極、負極及びセパレーターは電池ケース内に
、実用上問題が生じないよう固定される。電極の形状、
大きさ等は目的とする電池の形状、性能によシ適立法め
られる0例えば薄形電池を製造するには電極はフィルム
状が適し、大容量電池を製造するにはフィルム状或いは
板状等の電極を多数枚正負両極を交互に積層することに
よシ達成できる。
The electromotive voltage of the battery is Ov, and by applying a voltage from an external power source and doping both electrodes with electrolyte ions, the battery comes to have an electromotive voltage. (3) j (
3)' is a current collector for supplying current for electrochemical doping, that is, charging, from which current is extracted from each electrode to the outside, and each electrode and external terminal (7) # (
7)' is connected so as not to cause a voltage drop to (
A) is an electrolytic solution, and (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolytic solution. The separator is a durable porous material with continuous pores and no electron conductivity. Usually, a cloth, nonwoven fabric, or porous material made of glass fiber, polyethylene, polypropylene, etc. is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, and strength. The positive electrode, negative electrode, and separator are fixed within the battery case so as not to cause any practical problems. shape of electrode,
The size etc. are determined depending on the shape and performance of the target battery. For example, to manufacture thin batteries, film-shaped electrodes are suitable, and to manufacture large-capacity batteries, film-shaped or plate-shaped electrodes are suitable. This can be achieved by stacking a large number of positive and negative electrodes alternately.

ドーピング又はアンド−ピングは一定電流下でも一定電
圧下でも、また電流及び電圧の変化する条件下のいずれ
で行ってもよいが、不溶不融性基体にドーピングされる
ドーピング剤の量は該基体の炭素原子1個に対するドー
ピングされるイオン数の百分率で0.5〜20%が好ま
しい。不溶不融性基体を電極として用いる本発明の電池
は充放電を繰返し作動させることのできる2次電池であ
シ。
Doping or undoping may be carried out under constant current, constant voltage, or under varying conditions of current and voltage, but the amount of doping agent doped into the insoluble and infusible substrate depends on the amount of the substrate. The percentage of the number of doped ions per carbon atom is preferably 0.5 to 20%. The battery of the present invention using an insoluble and infusible substrate as an electrode is a secondary battery that can be repeatedly charged and discharged.

その起電圧は該電池のドーピング量(充電量)によって
異なるが1.0〜3゜5Vである。また本発明の電池を
構成する不溶不融性基体及び電解液の比重が小さいため
重量当りの容量が大きい。又パワー密度については電池
の構成によシ差はあるが鉛蓄電池よシ、はるかに大きな
パワー密度を有している。更に本発明における不溶不融
性基体を電極として使用すると、内部抵抗が小さく、繰
シ返し充放電の可能な、長期にわたって電池性能の低下
しない2次電池會製造することができる。
The electromotive voltage varies depending on the doping amount (charge amount) of the battery, but is 1.0 to 3.5 V. Furthermore, since the specific gravity of the insoluble and infusible substrate and the electrolytic solution constituting the battery of the present invention is small, the capacity per weight is large. In addition, although there are differences in power density depending on the structure of the battery, lead-acid batteries have a much higher power density than lead-acid batteries. Furthermore, when the insoluble and infusible substrate of the present invention is used as an electrode, it is possible to produce a secondary battery that has a low internal resistance, can be repeatedly charged and discharged, and has no deterioration in battery performance over a long period of time.

(発明の効果) 本発明によって製造される2次電池は、従来公知の有機
半導体に比較して耐酸化性、耐熱性、成形性及び機械的
強度に優れたポリアセン系骨格構造を含有する不溶不融
性基体を電極とし、テトラアルキルアンモニウム塩をγ
−ブチロラクトンとプロピレンカーボネイトの混合溶媒
に溶解させた溶液を電解液とする電池であシュ小型化、
薄形イし軽量化が可能で且つ高容量高出力でしかも自己
放電の小さい2次電池である。以下実施例圧よって本発
明を具体的に説明する。
(Effects of the Invention) The secondary battery manufactured by the present invention is an insoluble insoluble material containing a polyacene skeleton structure that has superior oxidation resistance, heat resistance, moldability, and mechanical strength compared to conventionally known organic semiconductors. The fusible substrate is used as an electrode, and the tetraalkylammonium salt is
- Miniaturization of batteries using a solution of a mixed solvent of butyrolactone and propylene carbonate as the electrolyte;
It is a secondary battery that is thin and lightweight, has high capacity and high output, and has low self-discharge. The present invention will be specifically explained below with reference to examples.

実施例1 □; 水溶性レゾ−/l/(約60%濃度)/塩化亜V
水を重量比で10/25/4の割合で混合した水溶液を
フィルムアプリケーターでガラス板上に成膜した0次に
成膜した水溶液上にガラス板を被せ水分が蒸発しない様
にした後、約100℃の温度で1時間加熱して硬化させ
た。
Example 1 □; Water-soluble reso-/l/(approximately 60% concentration)/sulfur chloride
An aqueous solution prepared by mixing water in a weight ratio of 10/25/4 was formed on a glass plate using a film applicator. After covering the aqueous solution with a glass plate to prevent the water from evaporating, approx. It was cured by heating at a temperature of 100° C. for 1 hour.

該フェノール樹脂フィルムをシリコニット電気l炉中に
入れ窒素気流下で40°C/時間の速度で昇温して50
0℃まで熱処理を行っまた。次に該熱処理物で希塩酸で
洗った後、水洗し、その後乾燥することによってフィル
ム状の多孔体を得た。該フィルムの厚みは約200μm
でアシ、見掛けの密度は約0.35f/cIIであシ1
機械的強度に優れ六フィルムであった1次に該フィルム
の電気伝導度を室温で直流4端子法で測定し喪ところ1
O−4(Ω・cIrL)−1であった。また元素分析を
行ったところ水素原子/炭素原子の原子比は0.27で
あった。X線回折からのピークの形状はポリアセン系骨
格構造に基因するパターンであυ、2θで20〜22°
付近にブロードなメインピークが存在しまた41〜46
″ 付近に小さなピークが確認された。
The phenolic resin film was placed in a siliconite electric furnace and heated at a rate of 40°C/hour under a nitrogen stream to 50°C.
Also heat treated to 0℃. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and then dried to obtain a film-like porous body. The thickness of the film is approximately 200 μm
The apparent density is approximately 0.35f/cII.
The electrical conductivity of the first film, which had excellent mechanical strength, was measured using the DC four-terminal method at room temperature.
It was O-4(Ω·cIrL)-1. Further, elemental analysis revealed that the atomic ratio of hydrogen atoms/carbon atoms was 0.27. The shape of the peak from X-ray diffraction is a pattern based on the polyacene skeleton structure υ, 20 to 22 degrees in 2θ.
There is a broad main peak nearby and 41-46
A small peak was confirmed near .

またBET法による比表面積の測定を行ったところ21
0(1//)と極めて大きな値であった。
In addition, when the specific surface area was measured using the BET method, 21
It was an extremely large value of 0 (1//).

2. 次に充分に脱水したγ−ブチロラクトンとプロピ
レンカーボネイトの混合溶媒(重量比で2=1)に(C
2■5)4NCI04′(il−1モ/I//lの濃度
で溶解させたものを電解液として、約400℃で真空乾
燥させた上記の不溶不融性基体を正極及び負極として第
1図の様に電池を組んだ、集電体としてはステンレスメ
ツシュを用いセパレーターとしてはガラス繊維からなる
フェルトを用いた。
2. Next, add (C
2■5) 4NCI04' (il-1 mo/I//l dissolved at a concentration of The battery was assembled as shown in the figure, using stainless steel mesh as the current collector and felt made of glass fiber as the separator.

ドーピング−量は多孔性フィルム基体の炭素原子1個当
りのドーピングされるイオンの数で表わすこととしたが
、本発明ではドーピングされるイオンの数は回路を流れ
た電流量より求めたものである。電池を組んだ直後の電
圧はOvであった。次に外部電源によ、92.5 Vの
電圧を印加して約1時間正極K 0IO4−イオン負極
(C2■5)4N+イオンをドーピングすることによっ
て充電した。電池の起電圧は当然のことながら2.5■
であった。
The amount of doping is expressed as the number of ions doped per carbon atom of the porous film substrate, but in the present invention, the number of ions doped is determined from the amount of current flowing through the circuit. . The voltage immediately after the battery was assembled was Ov. Next, a voltage of 92.5 V was applied using an external power source, and the battery was charged by doping the positive electrode K0IO4- ions and the negative electrode (C2■5)4N+ ions for about 1 hour. Naturally, the electromotive voltage of the battery is 2.5■
Met.

次に1時間当)のアンド−ピング量が3%となる速度で
放電したところ、約1時間で電池の電圧はOVに戻った
Next, when the battery was discharged at a rate such that the amount of and-ping per hour was 3%, the voltage of the battery returned to OV in about 1 hour.

次に該電池を再び外部電源によjD、2.OVの電圧を
印加して1時間充電を行った。充電終了時点に回路に流
れるリーク電流はF5.・//Aであった。この時点で
の該電池の起電圧は2.Ovであったが10時間放置し
た後の起電圧を調べ九ところ1.94■であり、自己放
電が極めて少さい事が判明した実施例2〜4 実施例1と同様にして得た約200μ厚のフェノ−/I
’al脂フィルムをシリコニット電気炉にて窒素気流下
約30°C/時間の速度で昇温して第1表に示した種々
の所定温度まで加熱し、熱処理を行った。その後希塩酸
及び水にて洗浄し、乾燥することによって不溶不融性基
体フィルムを得た。
Next, connect the battery to an external power source again, 2. Charging was performed for 1 hour by applying a voltage of OV. The leakage current flowing into the circuit at the end of charging is F5.・//It was A. The electromotive voltage of the battery at this point is 2. Examples 2 to 4 About 200μ obtained in the same manner as Example 1. Thick phenol/I
The 'Al fat film was heated in a siliconite electric furnace at a rate of about 30° C./hour under a nitrogen stream to various predetermined temperatures shown in Table 1 to perform heat treatment. Thereafter, it was washed with dilute hydrochloric acid and water and dried to obtain an insoluble and infusible base film.

得られた基体フィルムについて元素分析及びBET法に
よる比表面積値の測定を行った。結果はまとめて第1表
に示す。
The obtained base film was subjected to elemental analysis and measurement of the specific surface area value by the BET method. The results are summarized in Table 1.

次に充分脱水したγ−ブチロラクトンとプロピレンカー
ボネイトの混合溶媒(重量比で3対1)に(CI、1l
ET5)4NBF4を1モ/I//lの濃度で溶解させ
た溶液を電解液として、上記した基体′フィルムを正極
及び負極とし、その他の条件は実施例1と同様にして自
己放電を調べた。2.OVで充電した後。
Next, add (CI, 1 liter) a mixed solvent of sufficiently dehydrated γ-butyrolactone and propylene carbonate (3:1 by weight).
ET5) Self-discharge was investigated using a solution in which 4NBF4 was dissolved at a concentration of 1 mo/I//l as the electrolytic solution, the above-mentioned base film as the positive and negative electrodes, and other conditions being the same as in Example 1. . 2. After charging with OV.

10時間放置した時点での起電圧を第1表に示を第1表 いずれの場合ても小さい自己放電を示した。Table 1 shows the electromotive force after being left for 10 hours. In both cases, small self-discharge was observed.

実施例5 実施例1で得られたフィルム状不溶不融性基体を正極及
び負極として充分に脱水したγ−ブチロラクトン及びプ
ロピレンカーボネイトを第2表に示す割合(重量比)に
混合した溶媒に (C2H6)4NOIO4を1モ/I//lの濃度で溶
かせた溶液を電解液として、電池を組んで実施例1と同
じ方法にて自己放電’fe RWRべた。これらをまと
めて第2表 比較例1 電解液としテ(02H3) 4NOIO41モ/L’ 
/ II 7” 0ピレンカーボネート溶液を使った以
外は実施例1と同様にして自己放電を調べた。2.OV
で充電した後、10時間放置したところ電池の起電圧は
1.85Vとなっていた。
Example 5 The film-like insoluble infusible substrate obtained in Example 1 was used as a positive electrode and a negative electrode, and sufficiently dehydrated γ-butyrolactone and propylene carbonate were mixed in a solvent (C2H6) in the ratio (weight ratio) shown in Table 2. )4NOIO4 at a concentration of 1 mo/l/l was used as the electrolyte, a battery was assembled, and a self-discharge 'fe RWR was conducted in the same manner as in Example 1. These are summarized in Table 2 Comparative Example 1 Electrolyte (02H3) 4NOIO41Mo/L'
/ II 7"0 Self-discharge was investigated in the same manner as in Example 1 except that pyrene carbonate solution was used. 2.OV
When the battery was left for 10 hours after being charged, the electromotive voltage of the battery was 1.85V.

比較例2 電解液としてLi0A’041モiv/lジメトキシエ
タン溶液を使った以外は全〈実施例1と同様にして自己
放電を調べた。2.OVで充電し友後、1゜24一 時間放置したところ電池の起電圧は1.65 Vとなっ
ていた。
Comparative Example 2 Self-discharge was investigated in the same manner as in Example 1 except that a Li0A'041 moiv/l dimethoxyethane solution was used as the electrolyte. 2. After charging with OV and leaving it for 1 hour at 1°24, the electromotive voltage of the battery was 1.65 V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電池の基本構成を示すものであシ
(1)は正極(2)は負極、(3) # (3J’は集
電体(4)は電解液(5)はセパレーター、(6)は電
池ケース、(7)。 (7)′は外部端子を表わす。 VJ1国
Figure 1 shows the basic configuration of the battery according to the present invention, in which (1) is the positive electrode (2) is the negative electrode, (3J' is the current collector (4) and the electrolyte (5) is Separator, (6) represents battery case, (7). (7)' represents external terminal. VJ1 country

Claims (1)

【特許請求の範囲】 (1)炭素、水素及び酸素からなる芳香族系縮合ポリマ
ーの熱処理物てあって水素原子/炭素原子の原子比が0
.05〜0.5であり、且つBET法による比素面積値
が600m^2/g以上であるポリアセン系骨格構造を
含む不溶不融性基体を正極及び負極とする電池において
、(A)電解質としてテトラアルキルアンモニウム塩、
(B)溶媒として、γ−ブチロラクトン又はγ−ブチロ
ラクトンとプロピレンカーボネイトの混合液とからなる
電解液を使用することを特徴とする有機電解質電池。 (2)芳香族縮合ポリマーがフェノールとホルムアルデ
ヒドとの縮合物である特許請求の範囲第1項記載の有機
電解質電池。 (3)水素原子/炭素原子の原子比が0.1〜0.35
である特許請求の範囲第1項又は第2項に記載の有機電
解質電池。 (4)不溶不融性基体が平均孔径10μ以下の多数の連
通孔を有するものである特許請求の範囲第1項乃至第3
項に記載の有機電解質電池(5)テトラアルキルアンモ
ニウム塩が (C_2H_5)_4NClO_4、(C_2H_5)
_4NBF_4、(n−C_4H_9)_4NClO_
4又は(n−C_4H_9)_4NBF_4である特許
請求の範囲第1項乃至第4項に記載の有機電解質電池。 (6)溶媒が重量比でγ−ブチロラクトン/プロピレン
カーボネイト=10/0〜5/5の範囲の混合溶媒であ
る特許請求の範囲第1項乃至第5項に記載の有機電解質
電池。
[Scope of Claims] (1) A heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen, in which the atomic ratio of hydrogen atoms/carbon atoms is 0.
.. 05 to 0.5 and whose specific elemental area value by the BET method is 600 m^2/g or more in a battery using an insoluble and infusible substrate containing a polyacene skeleton structure as a positive electrode and a negative electrode, (A) as an electrolyte. tetraalkylammonium salt,
(B) An organic electrolyte battery characterized in that an electrolytic solution consisting of γ-butyrolactone or a mixed solution of γ-butyrolactone and propylene carbonate is used as a solvent. (2) The organic electrolyte battery according to claim 1, wherein the aromatic condensation polymer is a condensate of phenol and formaldehyde. (3) Atomic ratio of hydrogen atom/carbon atom is 0.1 to 0.35
An organic electrolyte battery according to claim 1 or 2. (4) Claims 1 to 3, wherein the insoluble and infusible substrate has a large number of communicating pores with an average pore diameter of 10 μm or less.
The organic electrolyte battery (5) tetraalkyl ammonium salt described in section (C_2H_5)_4NClO_4, (C_2H_5)
_4NBF_4, (n-C_4H_9)_4NClO_
4 or (n-C_4H_9)_4NBF_4. The organic electrolyte battery according to claims 1 to 4. (6) The organic electrolyte battery according to any one of claims 1 to 5, wherein the solvent is a mixed solvent of γ-butyrolactone/propylene carbonate in a weight ratio of 10/0 to 5/5.
JP60171670A 1985-08-02 1985-08-02 Organic electrolyte battery Expired - Fee Related JPH0624160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171670A JPH0624160B2 (en) 1985-08-02 1985-08-02 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171670A JPH0624160B2 (en) 1985-08-02 1985-08-02 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6231961A true JPS6231961A (en) 1987-02-10
JPH0624160B2 JPH0624160B2 (en) 1994-03-30

Family

ID=15927513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171670A Expired - Fee Related JPH0624160B2 (en) 1985-08-02 1985-08-02 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0624160B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128369A (en) * 1987-10-13 1989-05-22 American Teleph & Telegr Co <Att> Nonhydrant solid cell
JPH01163974A (en) * 1987-12-18 1989-06-28 Sanyo Electric Co Ltd Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128369A (en) * 1987-10-13 1989-05-22 American Teleph & Telegr Co <Att> Nonhydrant solid cell
JPH01163974A (en) * 1987-12-18 1989-06-28 Sanyo Electric Co Ltd Secondary battery

Also Published As

Publication number Publication date
JPH0624160B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPH046072B2 (en)
JPH0324024B2 (en)
JPH0630260B2 (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JPS6231961A (en) Organic electrolyte battery
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2588404B2 (en) Organic electrolyte battery
JP2534490B2 (en) Organic electrolyte battery
JPH0624159B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JPH0624157B2 (en) Organic electrolyte battery
JP2632427B2 (en) Organic electrolyte battery
JPH0624158B2 (en) Organic electrolyte battery
JP2519180B2 (en) Organic electrolyte battery
JP2749605B2 (en) Organic electrolyte battery
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode
JP2614724B2 (en) Organic electrolyte battery with metal sulfide composite as positive electrode
JPS61225761A (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2646461B2 (en) Organic electrolyte battery
JPS63298982A (en) Organic electrolyte battery using tetrahydrofuran
JPH0658799B2 (en) Battery electrode manufacturing method
JP2532879B2 (en) Method for manufacturing electrode for organic electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees