JPH06204468A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH06204468A
JPH06204468A JP36002692A JP36002692A JPH06204468A JP H06204468 A JPH06204468 A JP H06204468A JP 36002692 A JP36002692 A JP 36002692A JP 36002692 A JP36002692 A JP 36002692A JP H06204468 A JPH06204468 A JP H06204468A
Authority
JP
Japan
Prior art keywords
gate
electric field
drain
length
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36002692A
Other languages
Japanese (ja)
Inventor
Isamu Yunoki
勇 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36002692A priority Critical patent/JPH06204468A/en
Publication of JPH06204468A publication Critical patent/JPH06204468A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To relax electric field concentration near a drain and eliminate the device characteristic inhibiting causes by fixing the length of the part of a gate which faces the drain by the specific gate width ratio. CONSTITUTION:The conventional rectangle flat-shape of the gate 2 of a MOSFET with a gate length 0.5mum or shorter is changed and the width of a drain side gate 5 which faces a drain 3 is permitted to be 1.5 or more times wider than the width of a gate 4 which faces a source 1. Since electric field near the drain is relaxed, the gate length can be shortened compared with the field effect transistor of the conventional structure. Higher operation voltage can be applied by the electric field relaxation and high speed operation is allowed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIの主要構成要素
である電界効果トランジスタ(FET)の構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a field effect transistor (FET) which is a main constituent element of LSI.

【0002】[0002]

【従来の技術】従来のFETにおいては、同じ大きさの
ソースとドレインが長方形状のゲートをその両長辺から
挟んだ構造をとっている(例えば、S.M.Sze 著「半導体
デバイス」(産業図書)の“MOSFET”の項参
照)。
2. Description of the Related Art A conventional FET has a structure in which a source and a drain of the same size sandwich a rectangular gate from both long sides thereof (for example, see "Semiconductor Device" (Industrial Books) by SMSze). See "MOSFET" section).

【0003】図5に、その概略を示す。以下、本明細書
では、各図の断面図における紙面横方向、即ち、電流の
流れる方向を「水平」、これに直交する紙面縦方向を
「垂直」と称する。また、単に「長さ」と称した場合に
は、電流に沿った長さを意味し、単に「幅」と称した場
合には、電流に直交した方向の長さ(例えば、図5の平
面図における紙面縦方向の長さ)を意味する。
FIG. 5 shows its outline. Hereinafter, in the present specification, the horizontal direction of the paper in each of the cross-sectional views, that is, the direction of current flow is referred to as “horizontal”, and the vertical direction of the paper orthogonal to this is referred to as “vertical”. Further, when simply referred to as “length”, it means a length along the current, and when simply referred to as “width”, the length in the direction orthogonal to the current (for example, the plane of FIG. 5). (Length in the vertical direction of the paper surface in the figure).

【0004】[0004]

【発明が解決しようとする課題】この図5に示したよう
なFETでは、構造はゲート2を挟んで対称であるにも
かかわらず、ソース1とドレイン3の間に動作電圧を印
加するとドレイン3の近傍に電界の集中が起こる。この
様子をゲート長0.5μmのnMOSFETについてシ
ミュレーションした結果を図6に示す。デバイス・シミ
ュレータにはSilvaco 社のS−PISCESIIBを用
い、易動度モデルに不純物濃度依存性のみ、キャリアに
は電子のみを考慮した。横軸はソースからドレインに至
る空間軸を示し、縦軸は電界の水平成分である。nチャ
ネルFETを想定したシミュレーションなので電界の符
号が負であるが、ドレイン近傍に電界の集中が見られ
る。後述するように、この電界の集中は、ゲート長7が
短くなるにつれてより顕著となる。なお、図5におい
て、4はソース側ゲート幅、5はドレイン側ゲート幅を
夫々示し、これらは何れも長方形状のゲートの長辺であ
るゲート幅6に等しい。
In the FET as shown in FIG. 5, although the structure is symmetrical with the gate 2 in between, when the operating voltage is applied between the source 1 and the drain 3, the drain 3 Concentration of electric field occurs in the vicinity of. FIG. 6 shows a result of simulating this state for an nMOSFET having a gate length of 0.5 μm. As the device simulator, S-PISCESIIB manufactured by Silvaco was used, and only the impurity concentration dependency was considered in the mobility model and only electrons were considered as carriers. The horizontal axis shows the spatial axis from the source to the drain, and the vertical axis shows the horizontal component of the electric field. Since the simulation assumes an n-channel FET, the electric field has a negative sign, but the electric field is concentrated near the drain. As will be described later, this electric field concentration becomes more remarkable as the gate length 7 becomes shorter. In FIG. 5, 4 indicates the source side gate width, and 5 indicates the drain side gate width, which are all equal to the gate width 6 which is the long side of the rectangular gate.

【0005】電界が過度に集中すると、飽和速度を越え
るキャリアの加速或いはインパクトイオン化等の現象を
引き起こし、デバイスの電気的特性に悪影響を及ぼす。
なお、ゲート長の縮小に対応して動作電圧を下げれば電
界集中は問題とならないが、ノイズ対策、高速動作或い
は従来デバイスとの互換性の確保等の要求があるため、
動作電圧を極端に下げることはできない。従って、デバ
イスの縮小化が進むに連れて、電界緩和の重要性が増す
こととなる。特に、種々の電子デバイスのうち、最も微
細化の進んでいるMOSFETでは、次世代若しくは次
々世代デバイスにおいて、電界集中の緩和が避けて通れ
ない課題となっている。
If the electric field is excessively concentrated, phenomena such as carrier acceleration exceeding the saturation speed or impact ionization are caused, which adversely affects the electrical characteristics of the device.
If the operating voltage is reduced in response to the reduction of the gate length, electric field concentration will not be a problem, but there are demands for noise countermeasures, high-speed operation, or compatibility with conventional devices.
The operating voltage cannot be extremely lowered. Therefore, as device miniaturization advances, the importance of electric field relaxation increases. In particular, in the most miniaturized MOSFET among various electronic devices, mitigation of electric field concentration is an unavoidable issue in the next-generation or next-generation devices.

【0006】そこで、本発明の目的は、デバイスの微細
化に伴って顕著となるドレイン近傍での電界集中を緩和
し、その電界集中に起因するインパクトイオン化等のデ
バイス特性阻害要因を除去することである。
Therefore, an object of the present invention is to alleviate the electric field concentration in the vicinity of the drain, which becomes conspicuous with the miniaturization of the device, and to eliminate the device characteristic inhibiting factors such as impact ionization due to the electric field concentration. is there.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の電界効果トランジスタでは、ゲートの
ドレインに対向した部分の長さが、ゲートのソースに対
向した部分の長さの1.5倍以上である。
In order to solve the above-mentioned problems, in the field effect transistor of the present invention, the length of the portion of the gate facing the drain is 1 times the length of the portion of the gate facing the source. It is more than 5 times.

【0008】[0008]

【作用】本発明の作用を図2を用いて説明する。この図
2は、図1に示したリング状のゲートを有する電界効果
トランジスタのゲート直下の電束を模式的に示したもの
である。なお、本明細書において、ゲートのドレインに
対向した部分の長さ及びゲートのソースに対向した部分
の長さを夫々「ドレイン側ゲート幅」及び「ソース側ゲ
ート幅」と称する。また、ドレイン側ゲート幅のソース
側ゲート幅に対する比を「ゲート幅比」と定義する。
The operation of the present invention will be described with reference to FIG. FIG. 2 schematically shows the electric flux just below the gate of the field effect transistor having the ring-shaped gate shown in FIG. In this specification, the length of the portion of the gate facing the drain and the length of the portion of the gate facing the source are referred to as the “drain side gate width” and the “source side gate width”, respectively. Further, the ratio of the drain side gate width to the source side gate width is defined as “gate width ratio”.

【0009】pMOSFETを例にとれば、ドレインに
入る電束は、ソースから出る電束9と、チャネル内に存
在する電荷8から出る電束との和に等しい。電荷の分布
が変わらないとすれば、ゲート幅比を“1”よりも大き
くすることにより、ソースから出た電束のドレイン近傍
での密度を小さくすることができる。電界は電束密度と
実質的に同義と考えられるので、この方法により電界の
集中を防止することができる。
Taking the pMOSFET as an example, the electric flux entering the drain is equal to the electric flux 9 emerging from the source and the electric flux emerging from the charge 8 existing in the channel. If the charge distribution does not change, the gate width ratio can be made larger than "1" to reduce the density of the electric flux emitted from the source near the drain. Since the electric field is considered to have substantially the same meaning as the electric flux density, this method can prevent the electric field from being concentrated.

【0010】nMOSFETにおいても、電界の向きが
逆になるだけで、電界緩和の作用は同じである。
Also in the nMOSFET, the action of the electric field relaxation is the same except that the direction of the electric field is reversed.

【0011】[0011]

【実施例】以下、本発明を実施例につき説明する。な
お、これらの実施例において、図5に示した従来例と対
応する部分には同一の符号を付す。
EXAMPLES The present invention will be described below with reference to examples. In these embodiments, parts corresponding to those of the conventional example shown in FIG.

【0012】実施例1 図1に、ゲート幅比が“3”となる本発明の最も典型的
なMOSFETの例を示す。図中、1はソース、2はゲ
ート、3はドレインである。このMOSFETのゲート
長7は、図5の従来のMOSFETのゲート長7に等し
い。なお、電極は省略してある。
Embodiment 1 FIG. 1 shows an example of the most typical MOSFET of the present invention in which the gate width ratio is "3". In the figure, 1 is a source, 2 is a gate, and 3 is a drain. The gate length 7 of this MOSFET is equal to the gate length 7 of the conventional MOSFET of FIG. The electrodes are omitted.

【0013】以下の表1に、両者のゲート長7が1.0
0〜0.24μmの場合についてデバイスシミュレーシ
ョンを行った時のゲート直下の電界の水平成分の最大値
をまとめて示す。この表1において、電界緩和率は、 1−(本発明型での最大電界)/(従来型での最大電
界) で定義している。
In Table 1 below, the gate length 7 of both is 1.0.
The maximum value of the horizontal component of the electric field immediately below the gate when the device simulation is performed for the case of 0 to 0.24 μm is collectively shown. In Table 1, the electric field relaxation rate is defined by 1- (maximum electric field in the present invention type) / (maximum electric field in the conventional type).

【0014】[0014]

【表1】 表1 電界の水平成分の最大値(単位:kV/cm) ────────────────────────────────── ゲート長(μm) 1.00 0.70 0.50 0.34 0.24 ────────────────────────────────── 従来構造 174 185 200 233 275 本発明の構造 146 148 154 164 176 ────────────────────────────────── 電界緩和率(%) 16 20 23 30 36 ──────────────────────────────────[Table 1] Table 1 Maximum value of horizontal component of electric field (unit: kV / cm) ─────────────────────────────── ──── Gate length (μm) 1.00 0.70 0.50 0.34 0.24 ─────────────────────────── ──────── Conventional structure 174 185 200 233 275 Structure of the present invention 146 148 154 164 176 ─────────────────────────── ──────── Electric field relaxation rate (%) 16 20 23 30 36 ─────────────────────────────── ───

【0015】この表1は、電界緩和率が、ゲート長が短
くなるほど大きくなり、従って、デバイスサイズが小さ
くなるに連れて本発明の効果が大きくなることを示して
いる。なお、ここではMOSFETを例にとったが、電
界緩和の効果はソースからドレインに向かって電界が拡
がることに起因しているので、JFETにおいても同じ
と考えられる。
Table 1 shows that the electric field relaxation rate increases as the gate length decreases, and thus the effect of the present invention increases as the device size decreases. Although the MOSFET is taken as an example here, the effect of electric field relaxation is caused by the electric field spreading from the source to the drain, and is therefore considered to be the same in JFET.

【0016】次に、ゲート長7が0.50μmの場合に
おける電界緩和率に及ぼすゲート幅比の寄与を表2に示
す。
Table 2 shows the contribution of the gate width ratio to the electric field relaxation rate when the gate length 7 is 0.50 μm.

【0017】[0017]

【表2】 表2 電界緩和率のゲート幅比依存性 ─────────────────────────────── ゲート幅比 3 2 1.7 1.5 1.3 電界緩和率(%) 23 18 17 16 14 ───────────────────────────────[Table 2] Table 2 Dependence of electric field relaxation rate on gate width ratio ─────────────────────────────── Gate width ratio 3 2 1.7 1.5 1.3 Electric field relaxation rate (%) 23 18 17 16 14 14 ─────────────────────────────── ──

【0018】作用上からも当然のことであるが、この表
2から、電界緩和の効果はゲート幅比が大きいほど顕著
であることが分かり、特に、15%以上の緩和効果を得
ようとすれば1.5以上のゲート幅比が必要であること
が分かる。
As is obvious from the viewpoint of operation, it can be seen from Table 2 that the electric field relaxation effect is more remarkable as the gate width ratio is larger, and in particular, it is desired to obtain a relaxation effect of 15% or more. For example, it can be seen that a gate width ratio of 1.5 or more is necessary.

【0019】実施例2 図3に、図1に示した実施例1の改良例を示す。実施例
1のFETでは、ソース1及びゲート2に対する配線が
比較的困難であるが、図3の改良例では、ゲート2を半
円形とすることで、それらに対する配線のスペースを確
保している。
Embodiment 2 FIG. 3 shows an improved example of Embodiment 1 shown in FIG. In the FET of the first embodiment, wiring for the source 1 and the gate 2 is relatively difficult, but in the improved example of FIG. 3, the gate 2 has a semicircular shape to secure a wiring space for them.

【0020】当然のことながら、円の一部を切り欠け
ば、ソース1及びゲート2に対する配線は容易であるか
ら、ゲート2の中心角は必ずしも180°(半円)であ
る必要はなく、任意の角度であって良い。その場合、ソ
ース1の外径とドレイン3の内径の関係が実施例1と同
じであれば、当然、電界緩和の効果も実施例1と同じで
ある。
As a matter of course, if a part of the circle is cut out, the wiring for the source 1 and the gate 2 is easy, so that the central angle of the gate 2 does not necessarily need to be 180 ° (half circle), and it is optional. Can be any angle. In that case, if the relationship between the outer diameter of the source 1 and the inner diameter of the drain 3 is the same as that of the first embodiment, the effect of alleviating the electric field is naturally the same as that of the first embodiment.

【0021】実施例3 図4に、本発明のデバイスを直線のみで構成した例を示
す。マスクパターン作成に用いるCADに円弧描画能力
がない場合には、実施例1及び2の構成ではマスク設計
が困難である。また、デバイスを密に多数配列する場合
には、実施例1及び2の構成では無駄なスペースが多く
なる。これに対し、この例では、パターンが全て直線で
構成されるので、上述の不都合は生じない。
Embodiment 3 FIG. 4 shows an example in which the device of the present invention is constituted by only straight lines. If the CAD used to create the mask pattern does not have the arc drawing capability, the mask design is difficult with the configurations of the first and second embodiments. Further, when a large number of devices are densely arranged, useless space is increased in the configurations of the first and second embodiments. On the other hand, in this example, since the patterns are all composed of straight lines, the above-mentioned inconvenience does not occur.

【0022】しかも、ゲート幅比は約2.3となり、ソ
ース1を出た電束はドレイン3に向かって拡がることと
なり、実施例2と同様の電界緩和効果を示す。なお、こ
の例の構造を実際のLSI製造プロセスで作成すると、
打ち込み不純物の拡散によって角が丸くなり、実施例2
と類似の構造になる。
Moreover, the gate width ratio becomes about 2.3, and the electric flux emitted from the source 1 spreads toward the drain 3 and exhibits the same electric field relaxation effect as that of the second embodiment. If the structure of this example is created in an actual LSI manufacturing process,
The corners are rounded due to the diffusion of the implanted impurities.
It has a similar structure to.

【0023】[0023]

【発明の効果】本発明の電界効果トランジスタによれ
ば、ドレイン近傍の電界が緩和されるので、従来構造の
電界効果トランジスタに比べてゲート長を短くすること
ができる。また、電界が緩和される分だけ高い動作電圧
を採用することができるので、高速動作が可能となる。
According to the field effect transistor of the present invention, the electric field in the vicinity of the drain is relaxed, so that the gate length can be shortened as compared with the field effect transistor of the conventional structure. Further, since an operating voltage as high as the electric field is relieved can be adopted, high speed operation becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による電界効果トランジス
タの構成を示す概略平面図及び断面図である。
FIG. 1 is a schematic plan view and a sectional view showing a configuration of a field effect transistor according to a first embodiment of the present invention.

【図2】本発明の作用を説明するためのゲート直下の電
束を示す模式図である。
FIG. 2 is a schematic diagram showing an electric flux just below a gate for explaining the operation of the present invention.

【図3】本発明の第2実施例による電界効果トランジス
タの概略平面図である。
FIG. 3 is a schematic plan view of a field effect transistor according to a second embodiment of the present invention.

【図4】本発明の第3実施例による電界効果トランジス
タの概略平面図である。
FIG. 4 is a schematic plan view of a field effect transistor according to a third embodiment of the present invention.

【図5】従来の電界効果トランジスタの構成を示す概略
平面図及び断面図である。
5A and 5B are a schematic plan view and a sectional view showing the configuration of a conventional field effect transistor.

【図6】図5の電界効果トランジスタのゲート直下の電
界の水平成分を示すグラフである。
6 is a graph showing the horizontal component of the electric field just below the gate of the field effect transistor of FIG.

【符号の説明】[Explanation of symbols]

1 ソース 2 ゲート 3 ドレイン 4 ソース側ゲート幅 5 ドレイン側ゲート幅 6 ゲート幅 7 ゲート長 1 Source 2 Gate 3 Drain 4 Source Side Gate Width 5 Drain Side Gate Width 6 Gate Width 7 Gate Length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲートのドレインに対向した部分の長さ
が、ゲートのソースに対向した部分の長さの1.5倍以
上であることを特徴とする電界効果トランジスタ。
1. The field effect transistor, wherein the length of the portion of the gate facing the drain is 1.5 times or more the length of the portion of the gate facing the source.
JP36002692A 1992-12-28 1992-12-28 Field-effect transistor Withdrawn JPH06204468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36002692A JPH06204468A (en) 1992-12-28 1992-12-28 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36002692A JPH06204468A (en) 1992-12-28 1992-12-28 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH06204468A true JPH06204468A (en) 1994-07-22

Family

ID=18467519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36002692A Withdrawn JPH06204468A (en) 1992-12-28 1992-12-28 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH06204468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007225A1 (en) * 2000-07-14 2002-01-24 Yamatake Corporation Insulated-gate semicondcutor device for rectifier
FR2812753A1 (en) * 2000-08-03 2002-02-08 St Microelectronics Sa Point memory of read-only type in ring-form integrated circuit implementation, for use in information technology
FR2880982A1 (en) * 2005-01-19 2006-07-21 St Microelectronics Sa Complementary MOS read only memory for storing information, has memory cells with storage transistors having gate in shape of window whose inner and outer borders delimit respectively central drain region and source regions in substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007225A1 (en) * 2000-07-14 2002-01-24 Yamatake Corporation Insulated-gate semicondcutor device for rectifier
US6649985B1 (en) 2000-07-14 2003-11-18 Yamatake Corporation Insulated-gate semiconductor device for a rectifier
FR2812753A1 (en) * 2000-08-03 2002-02-08 St Microelectronics Sa Point memory of read-only type in ring-form integrated circuit implementation, for use in information technology
FR2880982A1 (en) * 2005-01-19 2006-07-21 St Microelectronics Sa Complementary MOS read only memory for storing information, has memory cells with storage transistors having gate in shape of window whose inner and outer borders delimit respectively central drain region and source regions in substrate
US7646069B2 (en) 2005-01-19 2010-01-12 Stmicroelectronics Sa High density integrated read-only memory (ROM) with reduced access time

Similar Documents

Publication Publication Date Title
JP3242416B2 (en) Method for manufacturing field effect transistor
KR960032767A (en) Semiconductor device with electrostatic discharge protection structure and method of forming
WO2011093472A1 (en) Semiconductor device
JP2007299790A (en) Semiconductor integrated circuit and system lsi having the same
KR950012705A (en) Transistor of electrostatic discharge protection circuit and its manufacturing method
JPH06204468A (en) Field-effect transistor
US20040104437A1 (en) Arrangement and method for ESD protection
US7888701B2 (en) Integrated circuit arrangement with Shockley diode or thyristor and method for production and use of a thyristor
KR101948481B1 (en) Total ionization dose effect and single event effect hardened three dimensional mosfet structure
US6552393B2 (en) Power MOS transistor having increased drain current path
JP2006114823A (en) Semiconductor integrated device
JPH0410473A (en) Semiconductor device with mis type field-effect transistor
TWI556430B (en) A tunneling transistor with an asymmetric gate
JPH0563202A (en) Semiconductor device
Lai et al. Comparison of threshold modulation in narrow MOSFETs with different isolation structures
JPH03209759A (en) Semiconductor device
JP2002176347A (en) Overcurrent limiting semiconductor device
JPH098317A (en) Thin film transistor
JPS59200465A (en) Mis-type transistor and manufacture thereof
JP4644768B2 (en) Silicon carbide (SiC) transistor
JPS60142567A (en) Semiconductor device
KR100228375B1 (en) Transistor with separated current paths for high field area at the ending part of gate and for the current between source and drain of it
JPS5863159A (en) Semiconductor device
JPS6355976A (en) Field effect semiconductor device
JPS629679A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307