JPH06201908A - Production of stamper for diffraction grating - Google Patents

Production of stamper for diffraction grating

Info

Publication number
JPH06201908A
JPH06201908A JP36065792A JP36065792A JPH06201908A JP H06201908 A JPH06201908 A JP H06201908A JP 36065792 A JP36065792 A JP 36065792A JP 36065792 A JP36065792 A JP 36065792A JP H06201908 A JPH06201908 A JP H06201908A
Authority
JP
Japan
Prior art keywords
thin film
fluororesin
glass substrate
diffraction grating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36065792A
Other languages
Japanese (ja)
Inventor
Yoshiki Nitta
佳樹 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP36065792A priority Critical patent/JPH06201908A/en
Publication of JPH06201908A publication Critical patent/JPH06201908A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To improve the transferability of a diffraction grating shape and the release property of a master disk from molded goods. CONSTITUTION:Diffraction grating patterns 2 are formed by using a resist on a glass substrate 1. A conductive thin film 3 consisting of a composite film made by uniformly dispersing a fluororesin and Cr is formed by a two-element vapor deposition method on the diffraction grating patterns 2. An Ni electrocasting layer 4 is thereafter formed on the conductive thin film 3 by an electrocasting method and a glass substrate 1 is released with the conductive thin film 3 as a boundary, to obtain the stamper 5. The fluororesin incorporated in the conductive thin film 3 has an excellent release property from the glass substrate 1 and the molded goods 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回折格子用スタンパー
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a stamper for a diffraction grating.

【0002】[0002]

【従来の技術】従来の回折格子複製用スタンパーの製造
方法としては、公知のように、ガラス基板上にレジスト
を塗布した後、マスクを用いてUV照射後現像し熱処理
を施してパターンを形成する。そして、ドライプロセス
またはウエットプロセスにて導電膜を形成した後、Ni
電鋳を行いパターンを反転形成する。かかる工程におい
て微細な形状を正確に転写することは重要な点であり、
反転工程においては高い密着性を必要とする。しかしな
がら高い密着性は脱型時においてレジスト残渣あるいは
ガラス基板破壊等を引き起こすといった問題がある。
2. Description of the Related Art As a conventional method of manufacturing a stamper for replicating a diffraction grating, a resist is coated on a glass substrate, UV irradiation is performed using a mask, development is performed, and heat treatment is applied to form a pattern. . Then, after forming a conductive film by a dry process or a wet process, Ni
Electroforming is performed to reverse the pattern. It is an important point to accurately transfer a fine shape in such a process,
High adhesion is required in the inversion process. However, the high adhesion has a problem that it causes a resist residue or glass substrate destruction at the time of demolding.

【0003】かかる問題に対して特開平2−30382
0号公報のような製造方法が示されている。この製造方
法は、ガラス基板上にパターンを形成した後、スパッタ
リング法や真空蒸着法により500Å以上の厚さのNi
による第1金属薄膜を形成する。この第1金属薄膜に対
して重クロム酸カリウムや高濃度オゾンにより表面酸化
処理を行い離型促進皮膜を形成する。この離型促進皮膜
の表面に第1金属薄膜と同様な手段で第2金属薄膜を形
成した後、電鋳法にてよりNi層を形成する。そして、
転写後、離型促進皮膜を境に脱型を行いスタンパーを得
るというものである。
To solve this problem, Japanese Patent Laid-Open No. 30382/1990
A manufacturing method as disclosed in Japanese Patent No. 0 is shown. In this manufacturing method, after a pattern is formed on a glass substrate, a Ni film having a thickness of 500 Å or more is formed by a sputtering method or a vacuum evaporation method.
To form a first metal thin film. The first metal thin film is subjected to surface oxidation treatment with potassium dichromate or high-concentration ozone to form a release promoting film. A second metal thin film is formed on the surface of the release promoting film by the same method as the first metal thin film, and then a Ni layer is formed by electroforming. And
After transfer, the stamper is obtained by demolding at the boundary of the release promoting film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
2−303820号公報の方法では充分な転写性及び離
型性を得ることはできない。なぜなら、離型促進皮膜を
境に脱型しているためにスタンパーは、パターン上に形
成された離型促進皮膜を有する第1金属薄膜を転写して
いることになり、パターンそのものを転写していない。
したがって、微細形状の正確な転写を充分に行うことは
出来ない。回折格子においては、溝深さ、矩形上部・下
部の割合、エッジの再現性は回折効率に大きく影響を及
ぼすという特徴があるために正確な転写は特に重要であ
る。
However, it is not possible to obtain sufficient transferability and releasability with the method disclosed in JP-A-2-303820. This is because the stamper transfers the first metal thin film having the release promoting film formed on the pattern because it is released from the release promoting film as a boundary, and the pattern itself is transferred. Absent.
Therefore, it is not possible to sufficiently perform accurate transfer of a fine shape. Accurate transfer is particularly important in the diffraction grating, because the groove depth, the ratio of the upper and lower portions of the rectangle, and the reproducibility of the edges greatly affect the diffraction efficiency.

【0005】また、脱型時に第1金属薄膜がスタンパー
側に剥離してしまうという問題がある。というのは公知
の技術においてはガラス基板上に形成していた導電膜と
ガラス基板の離型性を利用して脱型していた経過があ
り、その離型性は公知である。しかしながら、公報記載
の従来技術においては、基板側と電鋳側を独立に保持
し、機械的な引っ張りにより瞬時に剥離を行う脱型工程
において、ガラス基板と第1金属薄膜の密着度が脱型時
に発生する力に耐えられないために剥離してしまう。そ
の原因としては、離型を引き起こす界面が、ガラス基板
と第1金属薄膜及び第1金属薄膜上の離型促進皮膜と第
2金属薄膜といった2つの界面が存在していて、さらに
矩形の上部、下部及び側面にかかる脱型時の力が分散し
て、ガラス基板と第1金属薄膜の界面にその密着力以上
の離型力が働いてしまう部位が発生するために、ガラス
基板と第1金属薄膜の剥離が発生してしまう。したがっ
て、脱型時において良好な離型は得られない。
Further, there is a problem that the first metal thin film is peeled off to the stamper side at the time of demolding. In the known technique, there is a process in which the conductive film formed on the glass substrate and the glass substrate are used for demolding, and the mold releasability is known. However, in the prior art described in the publication, in the demolding step of holding the substrate side and the electroformed side independently and instantaneously peeling by mechanical pulling, the adhesion between the glass substrate and the first metal thin film is demolded. It peels off because it cannot withstand the forces that sometimes occur. The cause is that there are two interfaces, that is, the glass substrate and the first metal thin film, and the release promoting film and the second metal thin film on the first metal thin film, and the upper part of the rectangle. Since the force at the time of demolding that is applied to the lower and side surfaces is dispersed, and a part where a demolding force greater than the adhesive force acts on the interface between the glass substrate and the first metal thin film, the glass substrate and the first metal thin film are generated. The peeling of the thin film occurs. Therefore, good demolding cannot be obtained at the time of demolding.

【0006】さらに、得られたスタンパーを用いて行う
成形工程において、樹脂との良好な離型は得らないとい
う問題がある。本来、回折格子は矩形形状であるため
に、成形型の離型性悪化の原因となるヌキ勾配0°の部
位がかなり多く存在している。そのために成形品取り出
しが困難になり、スタンパーの矩形部に樹脂が貼り付い
て取れなくなるといった問題が発生する。かかる問題に
対して、従来技術においては離型促進皮膜は第1金属薄
膜側に形成されるために、脱型後のスタンパーには第2
金属薄膜が付いているのみであり、スタンパー表面には
離型促進皮膜は存在しない。そのために、成形時におい
ては、樹脂が第2金属薄膜に貼り付いてしまうという問
題がそのまま発生する。したがって、従来技術では成形
工程において樹脂との良好な離型は得られない。
Further, there is a problem in that a good mold release from the resin cannot be obtained in the molding process using the obtained stamper. Originally, since the diffraction grating has a rectangular shape, there are quite a lot of parts having a slope of 0 ° which causes deterioration of the mold releasing property. Therefore, it becomes difficult to take out the molded product, and there arises a problem that the resin is stuck to the rectangular portion of the stamper and cannot be removed. In order to solve this problem, in the prior art, the mold release promoting film is formed on the side of the first metal thin film, so that the stamper after the mold releasing has the second
Only the metal thin film is attached, and there is no release promoting film on the stamper surface. Therefore, at the time of molding, the problem of the resin sticking to the second metal thin film still occurs. Therefore, in the conventional technique, good mold release from the resin cannot be obtained in the molding process.

【0007】本発明は、上記従来技術の問題点に鑑みな
されたもので、微細な回折格子形状の転写性に優れると
ともに、原盤との離型性に優れ、かつ成形時において樹
脂との離型に優れる回折格子スタンパーの製造方法を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in transferability of a fine diffraction grating shape, excellent in releasability from a master, and releasable from resin during molding. It is an object of the present invention to provide a method of manufacturing a diffraction grating stamper that is excellent in manufacturing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ガラス基板上にレジストを用いて回折格
子パターンを形成した後、電通用の導電膜を形成し、電
鋳法にてNi電鋳層を形成した後脱型してスタンパーを
得る製造方法において、前記導電膜を金属とフッ素樹脂
の複合膜から構成した。そして、前記導電膜は、物理的
成膜方法により製造してもよい。さらに、前記導電膜
は、フッ素樹脂の組成化がガラス基板側からNi電鋳側
に向かって減少するような傾斜組成導電膜としてもよ
い。
In order to achieve the above object, the present invention provides a method for forming an electroconductive film by forming a diffraction grating pattern on a glass substrate using a resist and then applying the electroforming method. In the manufacturing method of obtaining a stamper by forming a Ni electroformed layer by removing the Ni electroformed layer, the conductive film is composed of a composite film of metal and fluororesin. Then, the conductive film may be manufactured by a physical film forming method. Further, the conductive film may be a gradient composition conductive film in which the composition of the fluororesin decreases from the glass substrate side toward the Ni electroformed side.

【0009】[0009]

【作用】次に、上記工程の本発明の回折格子用スタンパ
ーの製造方法の作用について詳細に説明する。フォトリ
ソグラフィーによってガラス基板上にレジストを用いて
所望の回折格子パターンを形成する。良好な回折効率を
得るためには、以降の工程において、この回折格子パタ
ーンをいかに正確にスタンパーに転写するにかかってい
る。ガラス基板上に正確んパターンを形成した後、電鋳
用の導電膜を形成する。
Next, the operation of the method of manufacturing a stamp for a diffraction grating of the present invention in the above steps will be described in detail. A desired diffraction grating pattern is formed on the glass substrate by photolithography using a resist. In order to obtain good diffraction efficiency, it depends on how accurately this diffraction grating pattern is transferred to the stamper in the subsequent steps. After forming an accurate pattern on the glass substrate, a conductive film for electroforming is formed.

【0010】導電膜形成には、ドライプロセス及びウエ
ットプロセスが考えられる。しかしながら、無電解メッ
キのようなウエットプロセスにおいては、折出が進むに
つれてメッキ浴が劣化しないように管理することが困難
であり、そのために析出効率が異なり、均質なメッキ層
を均一な厚さで形成されることが不可能である。このた
め、脱型後の内部応力、線膨張差により微細パターンを
正確に維持することが困難となる。
A dry process and a wet process can be considered for forming the conductive film. However, in a wet process such as electroless plating, it is difficult to control the plating bath so that it does not deteriorate as the protrusion progresses. It cannot be formed. For this reason, it becomes difficult to accurately maintain the fine pattern due to the internal stress and the difference in linear expansion after demolding.

【0011】したがって、導電膜形成には均質で均一な
厚さに制御可能なドライプロセスによる成膜を選択す
る。ドライプロセスには、物理的成膜方法および化学的
成膜方法がある。一般的には物理的成膜方法を用いる。
具体的に言うと、真空蒸着法、スパッタリング法及びイ
オンプレーティング法等である。
Therefore, for the formation of the conductive film, film formation by a dry process capable of controlling a uniform and uniform thickness is selected. The dry process includes a physical film forming method and a chemical film forming method. Generally, a physical film forming method is used.
Specifically, it is a vacuum vapor deposition method, a sputtering method, an ion plating method, or the like.

【0012】導電性薄膜としての成膜材料は2種類あ
り、1つは導電性を担う金属であり、Ni,Cr等が考
えられる。もう一つの成膜材料は離型性をになうフッ素
樹脂である。フッ素樹脂の特性としては、フッ素と炭素
の間の強い結合エネルギーと小さい分極率によって表面
エネルギーが大きく低下しているために被粘着性に富み
離型性に優れることである。上記2種類の材料をドライ
プロセスを用いて同時に基板上に成膜する。形成された
導電性薄膜は、金属膜中にフッ素樹脂が均一に分散した
複合膜である。導電性薄膜成膜後は電鋳法により、Ni
電鋳層を形成し、原盤の転写を完了する。
There are two types of film-forming materials for the electroconductive thin film, and one is a metal having electroconductivity, and Ni, Cr and the like are considered. Another film-forming material is a fluororesin, which has releasability. The characteristics of the fluororesin are that it has a strong bond energy between fluorine and carbon and a small polarizability, so that the surface energy is greatly reduced, so that it is rich in adhesiveness and excellent in releasability. The above two kinds of materials are simultaneously formed on a substrate by using a dry process. The formed conductive thin film is a composite film in which the fluororesin is uniformly dispersed in the metal film. After forming the conductive thin film, Ni is formed by electroforming.
An electroformed layer is formed, and the transfer of the master is completed.

【0013】主な組成材料が金属で形成されている導電
性薄膜とNi電鋳層の密着性は良好である。このため脱
型は、ガラス基板と導電性薄膜の間で行われる。脱型に
おいてフッ素樹脂の特性である優れた離型性が作用し
て、導電膜がガラス基板側に剥離するといった現象を抑
えて良好な脱型を可能としている。また脱型後、導電性
薄膜は、そのままスタンパーそのものを転写しているた
め、回折効率に大きく影響をおよぼす正確な転写という
課題に対して充分な効果がある。
The adhesion between the electroconductive thin film whose main composition material is metal and the Ni electroformed layer is good. Therefore, demolding is performed between the glass substrate and the conductive thin film. The excellent releasability, which is a characteristic of the fluororesin, acts on the demolding to suppress the phenomenon that the conductive film is peeled off to the glass substrate side, thereby enabling the good demolding. Further, since the conductive thin film directly transfers the stamper itself after the mold is removed, it has a sufficient effect on the problem of accurate transfer that greatly affects the diffraction efficiency.

【0014】上記構成においては、フッ素樹脂を均一に
分散した複合膜がスタンパー表面を形成しているため、
成形用樹脂は、フッ素樹脂を均一に分散した複合膜と直
接接触している。フッ素樹脂は、成形用樹脂に対しても
優れた離型性を有している。したがって、成形時におい
て成形用樹脂がスタンパーに貼り付いてしまうという問
題を抑えて良好な離型が可能である。
In the above structure, since the composite film in which the fluororesin is uniformly dispersed forms the stamper surface,
The molding resin is in direct contact with the composite film in which the fluororesin is uniformly dispersed. The fluororesin has excellent releasability with respect to the molding resin. Therefore, it is possible to suppress the problem of the molding resin sticking to the stamper at the time of molding and perform good mold release.

【0015】また、フッ素樹脂の組成を、ガラス基板側
から電鋳層側へ減少するような傾斜組成導電膜となるよ
うに形成した場合は、以下に示す特性を有する。まず、
ガラス基板と直接に接する導電性薄膜中のフッ素樹脂の
組成比が高くなるということから脱型時の離型に優れ
る。これはフッ素原子密度に比例して離型性が向上する
ことにほかならない。さらに、電鋳層と直接に接する導
電性薄膜中のフッ素樹脂の組成比が低くなるということ
から導電性薄膜と電鋳層との密着性が優れる。これはフ
ッ素原子密度が低いために導電性薄膜の表面エネルギー
が高くなり、電鋳層との密着性が向上するためである。
したがって、傾斜組成導電膜を形成することにより、さ
らにガラス基板との離型性と電鋳層との密着性が向上す
る。
Further, when the composition of the fluororesin is formed so as to form a gradient composition conductive film which decreases from the glass substrate side to the electroformed layer side, it has the following characteristics. First,
Since the composition ratio of the fluororesin in the conductive thin film that is in direct contact with the glass substrate is high, it is excellent in demolding at the time of demolding. This is nothing but an improvement in releasability in proportion to the fluorine atom density. Further, since the composition ratio of the fluororesin in the conductive thin film that is in direct contact with the electroformed layer is low, the adhesion between the conductive thin film and the electroformed layer is excellent. This is because the surface energy of the conductive thin film is high due to the low fluorine atom density, and the adhesion with the electroformed layer is improved.
Therefore, by forming the gradient composition conductive film, the releasability from the glass substrate and the adhesion to the electroformed layer are further improved.

【0016】[0016]

【実施例1】本発明の実施例1を図1の工程に基づき説
明する。まず、ガラス基板1にレジストを塗布した後、
UV照射して露光し、さらに現像し熱処理を施してレジ
ストパターンを形成する。本実施例においては、回折格
子パターンは矩形形状である。この矩形パターンの形状
において、溝深さ、矩形上部・下部の割合、エッジの角
度等のパラメータがあり、良好な回折効率を得るために
はそれぞれが最適形状であることを必要とする。±1次
回折強度を上げるためには矩形上部・下部の割合が1対
1で側面が垂直に切り立っていて矩形上部・下部のエッ
ジが90度であることを必要としている。
[Embodiment 1] Embodiment 1 of the present invention will be described based on the steps of FIG. First, after applying a resist to the glass substrate 1,
The resist pattern is formed by UV irradiation, exposure, development, and heat treatment. In this embodiment, the diffraction grating pattern has a rectangular shape. In the shape of this rectangular pattern, there are parameters such as the groove depth, the ratio of the upper and lower parts of the rectangle, and the angle of the edge, and it is necessary that each be an optimum shape in order to obtain good diffraction efficiency. In order to increase the ± first-order diffraction intensity, it is necessary that the ratio of the upper and lower parts of the rectangle is 1: 1 and the side faces are vertically raised, and the edges of the upper and lower parts of the rectangle are 90 degrees.

【0017】さらに、RIEによってガラス基板1をエ
ッチングした後、酸素プラズマ照射処理を施して図1
(A)に示す回折格子パターン2を形成したガラス基板
1を作成する。回折格子パターン2のピッチは3μm、
溝深さは0.4μm程度である。これは780nmの波
長をもつ半導体レーザー光に用いる回折格子である。
Further, after the glass substrate 1 is etched by RIE, an oxygen plasma irradiation treatment is applied to the glass substrate 1 shown in FIG.
The glass substrate 1 having the diffraction grating pattern 2 shown in FIG. The pitch of the diffraction grating pattern 2 is 3 μm,
The groove depth is about 0.4 μm. This is a diffraction grating used for semiconductor laser light having a wavelength of 780 nm.

【0018】このガラス基板1を真空蒸着装置にセット
した後、Crを電子線加熱蒸着法により蒸発させると同
時に、フッ素樹脂を抵抗加熱法により蒸発させる、いわ
ゆる2元蒸着法により、導電性薄膜3を形成する(図1
(B)参照)。組成比は、およそCr:フッ素樹脂=
4:6で、膜圧は1000Åで形成する。
After the glass substrate 1 is set in a vacuum vapor deposition apparatus, Cr is vaporized by an electron beam heating vapor deposition method and, at the same time, a fluororesin is vaporized by a resistance heating method. To form (Fig. 1
(See (B)). The composition ratio is approximately Cr: fluororesin =
At 4: 6, the film pressure is 1000Å.

【0019】その後、約1mol/lのスルファミン酸
水溶液で活性化をおこない、ニッケルアノードと対向す
るようにスルファミン酸ニッケルを主成分とした電解溶
液に浸漬し、攪拌しながら直流を通電して電鋳を行い、
図1(C)に示すように電鋳Ni層4を形成する。その
後、ガラス基板1との脱型を行った後所望の形状に機械
加工を行いスタンパー5を得る(図1(D)参照)。そ
して、スタンパー5を入子として金型に組み込み、金型
を射出成形機に取り付けた後、PMMA樹脂を用いて成
形を行い、回折格子パターンを転写した成形品6を得る
(図1(E)参照)。
After that, activation is carried out with an aqueous solution of sulfamic acid of about 1 mol / l, the surface is immersed in an electrolytic solution containing nickel sulfamate as a main component so as to face the nickel anode, and direct current is applied while stirring to perform electroforming. And then
An electroformed Ni layer 4 is formed as shown in FIG. After that, the glass substrate 1 is demolded, and then machined into a desired shape to obtain a stamper 5 (see FIG. 1D). Then, the stamper 5 is incorporated into a mold as a nest, the mold is attached to an injection molding machine, and then molding is performed using PMMA resin to obtain a molded product 6 in which a diffraction grating pattern is transferred (FIG. 1 (E)). reference).

【0020】本実施例によれば、金属(導電性薄膜3)
と金属(電鋳Ni層4)との密着力は、金属とガラスと
の密着力より強いので、導電性薄膜3は電鋳Ni層4に
密着しているガラス基板1から剥離、すなわち、ガラス
基板1と導電性薄膜3の間で脱型しているため、回折格
子パターン2が正確にスタンパー5に転写させることが
できる。また、脱型時において、導電性薄膜3中に均一
に分散したフッ素樹脂の優れた離型性により、導電性薄
膜3の剥離のない良好な脱型が可能である。さらに、成
形時において、スタンパー5表面の導電性薄膜3に均一
に分散したフッ素樹脂が成形用樹脂との優れた離型性を
有するのでは、成形品取り出し時に発生し易い樹脂の貼
り付きを抑えて、良好な成形品取り出しが可能となる。
According to this embodiment, metal (conductive thin film 3)
Since the adhesion between the metal and the metal (electroformed Ni layer 4) is stronger than the adhesion between the metal and glass, the conductive thin film 3 is peeled off from the glass substrate 1 adhered to the electroformed Ni layer 4, that is, the glass. Since the mold is removed between the substrate 1 and the conductive thin film 3, the diffraction grating pattern 2 can be accurately transferred to the stamper 5. Further, at the time of demolding, the excellent demolding property of the fluororesin uniformly dispersed in the conductive thin film 3 enables good demolding without peeling of the conductive thin film 3. Further, since the fluororesin uniformly dispersed in the conductive thin film 3 on the stamper 5 surface at the time of molding has an excellent releasability from the molding resin, the sticking of the resin, which easily occurs at the time of taking out the molded product, is suppressed. As a result, a good molded product can be taken out.

【0021】[0021]

【実施例2】本発明の実施例2を図1〜図3を用いて説
明する。実施例1と同様に回折格子パターン2を形成し
たガラス基板1を真空蒸着装置にセットした後、Crを
電子線加熱蒸着法により蒸着させると同時に、フッ素樹
脂を抵抗加熱法により蒸発させる、いわゆる2元蒸着法
を行う。このとき、図2に示すように蒸着速度を徐々に
変化させて導電性薄膜3を1000Åの厚さに蒸着す
る。組成比、図3に示すように電鋳側に近づくにつれて
フッ素樹脂の組成比が減少するように変化させる。その
後、実施例1と同様に電鋳、脱型、加工を行いスタンパ
ー5を得て射出成形法によりPMMA樹脂やPC樹脂の
成形品6を得る。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. After setting the glass substrate 1 on which the diffraction grating pattern 2 is formed in the same manner as in Example 1, Cr is vapor-deposited by the electron beam heating vapor deposition method, and at the same time, the fluororesin is vaporized by the resistance heating method. Perform the original vapor deposition method. At this time, as shown in FIG. 2, the deposition rate is gradually changed to deposit the conductive thin film 3 to a thickness of 1000 Å. The composition ratio is changed so that the composition ratio of the fluororesin decreases toward the electroforming side as shown in FIG. Thereafter, electroforming, demolding and processing are performed in the same manner as in Example 1 to obtain a stamper 5 and a molded product 6 of PMMA resin or PC resin is obtained by an injection molding method.

【0022】本実施例によれば、実施例1と同様の効果
を得るだけでなく、導電性薄膜3のCrとフッ素樹脂と
の組成比を徐々に変化させ、ガラス基板1と直接に接す
る部分の導電性薄膜3におけるフッ素樹脂の割合を高く
しているため、さらに離型性が向上する。また、電鋳層
に直接接する部分のCrの組成比が高いため、導電性薄
膜3と電鋳層4との密着性が向上する。このため、小さ
な機械力による脱型が可能となる。さらに、成形時にお
いては、樹脂に接する部分のフッ素樹脂の組成比が高く
なるため、樹脂との離型に優れ、より小さな機械力によ
る成形品6の取り出しが可能となる。
According to the present embodiment, not only the same effects as in Embodiment 1 are obtained, but also the composition ratio of Cr and fluororesin of the conductive thin film 3 is gradually changed so as to directly contact the glass substrate 1. Since the ratio of the fluororesin in the conductive thin film 3 is increased, the releasability is further improved. Further, since the composition ratio of Cr in the portion which is in direct contact with the electroformed layer is high, the adhesion between the conductive thin film 3 and the electroformed layer 4 is improved. Therefore, it is possible to remove the mold with a small mechanical force. Further, at the time of molding, since the composition ratio of the fluororesin in the portion in contact with the resin is high, the mold release from the resin is excellent, and the molded product 6 can be taken out by a smaller mechanical force.

【0023】[0023]

【実施例3】本発明の実施例3を図1,図4及び図5を
用いて説明する。実施例1と同様にガラス基板1上に回
折格子パターン2を形成した後、スパッタリング法によ
り導電性薄膜3を形成する。ターゲットはNiとフッ素
樹脂の2つを用いてNiをスパッタすると同時に、フッ
素樹脂をスパッタする、いわゆる2元スパッタ法により
導電性薄膜3を形成する。このとき、図4に示すように
Niとフッ素樹脂の投入電力を徐々に変化させて導電性
薄膜3を500Åの厚さに成膜する。組成比は、図5に
示すように電鋳層側に近ずくにつれてフッ素樹脂の組成
比が減少するように変化させる。その後、実施例1と同
様に、電鋳、脱型、加工を行いスタンパー5を得て、射
出成形法によりPMMA樹脂やPC樹脂の成形品6を得
る。
Third Embodiment A third embodiment of the present invention will be described with reference to FIGS. 1, 4 and 5. After forming the diffraction grating pattern 2 on the glass substrate 1 in the same manner as in Example 1, the conductive thin film 3 is formed by the sputtering method. The target is formed of the conductive thin film 3 by a so-called two-way sputtering method in which Ni is sputtered using Ni and fluororesin, and at the same time, fluororesin is sputtered. At this time, as shown in FIG. 4, the input power of Ni and the fluororesin is gradually changed to form the conductive thin film 3 with a thickness of 500 Å. As shown in FIG. 5, the composition ratio is changed so that the composition ratio of the fluororesin decreases toward the electroformed layer side. Then, similarly to Example 1, electroforming, demolding, and processing are performed to obtain the stamper 5, and a molded product 6 of PMMA resin or PC resin is obtained by the injection molding method.

【0024】本実施例によれば、実施例2と同様の効果
を得るだけでなく、蒸着法では熱で分解し易いために使
用不可能であるような種類のフッ素樹脂を利用すること
が可能となる。
According to this embodiment, not only the same effects as in Embodiment 2 can be obtained, but also the kind of fluororesin which cannot be used because it is easily decomposed by heat in the vapor deposition method can be used. Becomes

【0025】[0025]

【実施例4】本発明の実施例4を図6を用いて説明す
る。ガラス基板1上に図6に示すようなブレーズ状の回
折格子パターン7を実施例1と同様に形成する。次に、
実施例2と同様に導電性薄膜3を成膜した後、電鋳、脱
型、加工を行いスタンパー8を得て、射出成形法により
PMMAやPCの成形品9を得る。
Fourth Embodiment A fourth embodiment of the present invention will be described with reference to FIG. A blazed diffraction grating pattern 7 as shown in FIG. 6 is formed on the glass substrate 1 in the same manner as in the first embodiment. next,
After forming the conductive thin film 3 in the same manner as in Example 2, electroforming, demolding, and processing are performed to obtain a stamper 8, and a molded product 9 of PMMA or PC is obtained by an injection molding method.

【0026】本実施例によれば、実施例2と同様の効果
を得るだけでなく、ブレーズ格子状の回折格子を得るこ
とがで出来る。
According to the present embodiment, not only the same effect as that of the second embodiment can be obtained, but also the blazed grating diffraction grating can be obtained.

【0027】[0027]

【発明の効果】以上のように、本発明によれば、ガラス
基板と導電性薄膜の間で脱型しているために、回折格子
パターン2を正確にスタンパー5に転写させることがで
きる。また、脱型時において、導電性薄膜中に均一に分
散したフッ素樹脂の優れた離型性により導電性薄膜の剥
離のない良好な脱型が可能となる。さらに、成形時にお
いて、スタンパー表面の導電性薄膜に均一に分散したフ
ッ素樹脂が成形用樹脂との優れた離型性を示して成形品
取り出し時に発生し易い樹脂の貼り付きを抑えて、良好
な成形品取り出しが可能となる。
As described above, according to the present invention, since the mold is removed between the glass substrate and the conductive thin film, the diffraction grating pattern 2 can be accurately transferred to the stamper 5. Further, at the time of demolding, the excellent demolding property of the fluororesin uniformly dispersed in the conductive thin film enables good demolding without peeling of the conductive thin film. Further, at the time of molding, the fluororesin evenly dispersed in the conductive thin film on the stamper surface exhibits excellent mold release properties with the molding resin, and suppresses sticking of the resin that is likely to occur at the time of taking out the molded product, thus achieving good The molded product can be taken out.

【0028】また、傾斜組成導電性薄膜とし、ガラス基
板側のフッ素樹脂の組成比を高くすると、ガラス基板と
の脱型及び成形品との離型がさらに向上するとともに、
電鋳層との密着性が向上する。
Further, when the composition thin film having a gradient composition is used and the composition ratio of the fluororesin on the glass substrate side is increased, the mold release from the glass substrate and the mold release from the molded product are further improved, and
Adhesion with the electroformed layer is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜3を示す工程図である。FIG. 1 is a process chart showing Examples 1 to 3 of the present invention.

【図2】本発明の実施例2におけるフッ素樹脂とCrと
の蒸着速度を示すグラフ図である。
FIG. 2 is a graph showing vapor deposition rates of fluororesin and Cr in Example 2 of the present invention.

【図3】本発明の実施例2におけるフッ素樹脂とCrと
の組成比を示すグラフ図である。
FIG. 3 is a graph showing the composition ratio of fluororesin and Cr in Example 2 of the present invention.

【図4】本発明の実施例3におけるフッ素樹脂とCrと
の蒸着速度を示すグラフ図である。
FIG. 4 is a graph showing vapor deposition rates of fluororesin and Cr in Example 3 of the present invention.

【図5】本発明の実施例3におけるフッ素樹脂とCrと
の組成比を示すグラフ図である。
FIG. 5 is a graph showing the composition ratio of fluororesin and Cr in Example 3 of the present invention.

【図6】本発明の実施例4を示す工程図である。FIG. 6 is a process chart showing Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 回折格子パターン 3 導電性薄膜 4 電鋳Ni層 5,8 スタンパー 1 Glass Substrate 2 Diffraction Grating Pattern 3 Conductive Thin Film 4 Electroformed Ni Layer 5,8 Stamper

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月8日[Submission date] July 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】かかる問題に対して特開平2−30382
0号公報のような製造方法が示されている。この製造方
法は、ガラス基板上にパターンを形成した後、スパッタ
リング法や真空蒸着法により500Å以上の厚さのNi
による第1金属薄膜を形成する。この第1金属薄膜に対
して重クロム酸カリウムや高濃度オゾンにより表面酸化
処理を行い離型促進皮膜を形成する。この離型促進皮膜
の表面に第1金属薄膜と同様な手段で第2金属薄膜を形
成した後、電鋳法によりNi層を形成する。そして、転
写後、離型促進皮膜を境に脱型を行いスタンパーを得る
というものである。
To solve this problem, Japanese Patent Laid-Open No. 30382/1990
A manufacturing method as disclosed in Japanese Patent No. 0 is shown. In this manufacturing method, after a pattern is formed on a glass substrate, a Ni film having a thickness of 500 Å or more is formed by a sputtering method or a vacuum evaporation method.
To form a first metal thin film. The first metal thin film is subjected to surface oxidation treatment with potassium dichromate or high-concentration ozone to form a release promoting film. A second metal thin film is formed on the surface of the release promoting film by the same means as the first metal thin film, and then a Ni layer is formed by electroforming . After the transfer, the stamper is obtained by demolding with the release promoting film as a boundary.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ガラス基板上にレジストを用いて回折格
子パターンを形成した後、通電用の導電膜を形成し、電
鋳法にてNi電鋳層を形成した後脱型してスタンパーを
得る製造方法において、前記導電膜を金属とフッ素樹脂
の複合膜から構成した。そして、前記導電膜は、物理的
成膜方法により製造してもよい。さらに、前記導電膜
は、フッ素樹脂の組成比がガラス基板側からNi電鋳側
に向かって減少するような傾斜組成導電膜としてもよ
い。
In order to achieve the above-mentioned object, the present invention provides a conductive film for energization after forming a diffraction grating pattern on a glass substrate by using a resist, and applying the electroforming method. In the manufacturing method of obtaining a stamper by forming a Ni electroformed layer by removing the Ni electroformed layer, the conductive film is composed of a composite film of metal and fluororesin. Then, the conductive film may be manufactured by a physical film forming method. Further, the conductive film may be a gradient composition conductive film in which the composition ratio of the fluororesin decreases from the glass substrate side toward the Ni electroformed side.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【作用】次に、上記工程の本発明の回折格子用スタンパ
ーの製造方法の作用について詳細に説明する。フォトリ
ソグラフィーによってガラス基板上にレジストを用いて
所望の回折格子パターンを形成する。良好な回折効率を
得るためには、以降の工程において、この回折格子パタ
ーンをいかに正確にスタンパーに転写するにかかってい
る。ガラス基板上に正確なパターンを形成した後、電鋳
用の導電膜を形成する。
Next, the operation of the method of manufacturing a stamp for a diffraction grating of the present invention in the above steps will be described in detail. A desired diffraction grating pattern is formed on the glass substrate by photolithography using a resist. In order to obtain good diffraction efficiency, it depends on how accurately this diffraction grating pattern is transferred to the stamper in the subsequent steps. After forming an accurate pattern on the glass substrate, a conductive film for electroforming is formed.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】導電性薄膜としての成膜材料は2種類あ
り、1つは導電性を担う金属であり、Ni,Cr等が考
えられる。もう一つの成膜材料は離型性をになうフッ素
樹脂である。フッ素樹脂の特性としては、フッ素と炭素
の間の強い結合エネルギーと小さい分極率によって表面
エネルギーが大きく低下しているために非粘着性に富み
離型性に優れることである。上記2種類の材料をドライ
プロセスを用いて同時に基板上に成膜する。形成された
導電性薄膜は、金属膜中にフッ素樹脂が均一に分散した
複合膜である。導電性薄膜成膜後は電鋳法により、Ni
電鋳層を形成し、原盤の転写を完了する。
There are two types of film-forming materials for the electroconductive thin film, and one is a metal having electroconductivity, and Ni, Cr and the like are considered. Another film-forming material is a fluororesin, which has releasability. The characteristics of the fluororesin are that it is highly non-tacky and has excellent releasability because the surface energy is greatly reduced due to the strong bond energy between fluorine and carbon and the small polarizability. The above two kinds of materials are simultaneously formed on a substrate by using a dry process. The formed conductive thin film is a composite film in which the fluororesin is uniformly dispersed in the metal film. After forming the conductive thin film, Ni is formed by electroforming.
An electroformed layer is formed, and the transfer of the master is completed.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】このガラス基板1を真空蒸着装置にセット
した後、Crを電子線加熱蒸着法により蒸発させると同
時に、フッ素樹脂を抵抗加熱法により蒸発させる、いわ
ゆる2元蒸着法により、導電性薄膜3を形成する(図1
(B)参照)。組成比は、およそCr:フッ素樹脂=
4:6で、膜厚は1000Åで形成する。
After the glass substrate 1 is set in a vacuum vapor deposition apparatus, Cr is vaporized by an electron beam heating vapor deposition method and, at the same time, a fluororesin is vaporized by a resistance heating method. To form (Fig. 1
(See (B)). The composition ratio is approximately Cr: fluororesin =
It is formed with a thickness of 1000Å at 4: 6.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】本実施例によれば、金属(導電性薄膜3)
と金属(電鋳Ni層4)との密着力は、金属(導電性薄
膜3)とガラスとの密着力より強いので、導電性薄膜3
は電鋳Ni層4に密着しているガラス基板1から剥離、
すなわち、ガラス基板1と導電性薄膜3の間で脱型して
いるため、回折格子パターン2が正確にスタンパー5に
転写させることができる。また、脱型時において、導電
性薄膜3中に均一に分散したフッ素樹脂の優れた離型性
により、導電性薄膜3の剥離のない良好な脱型が可能で
ある。さらに、成形時において、スタンパー5表面の導
電性薄膜3に均一に分散したフッ素樹脂が成形用樹脂と
の優れた離型性を有するので、成形品取り出し時に発生
し易い樹脂の貼り付きを抑えて、良好な成形品取り出し
が可能となる。
According to this embodiment, metal (conductive thin film 3)
Adhesion between the metal (electroformed Ni layer 4) is a metal (conductive thin
Since the adhesion between the film 3) and the glass is stronger, the conductive thin film 3
Is separated from the glass substrate 1 that is in close contact with the electroformed Ni layer 4,
That is, since the mold is removed between the glass substrate 1 and the conductive thin film 3, the diffraction grating pattern 2 can be accurately transferred to the stamper 5. Further, at the time of demolding, the excellent demolding property of the fluororesin uniformly dispersed in the conductive thin film 3 enables good demolding without peeling of the conductive thin film 3. Further, at the time of molding, since the uniformly dispersed fluorine resin to the conductive thin film 3 of the stamper 5 surface has excellent releasability from the molding resin, to suppress the sticking of easy resin occurs during demolding Therefore, it becomes possible to take out a good molded product.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【実施例2】本発明の実施例2を図1〜図3を用いて説
明する。実施例1と同様に回折格子パターン2を形成し
たガラス基板1を真空蒸着装置にセットした後、Crを
電子線加熱蒸着法により蒸着させると同時に、フッ素樹
脂を抵抗加熱法により蒸発させる、いわゆる2元蒸着法
を行う。このとき、図2に示すように蒸着速度を徐々に
変化させて導電性薄膜3を1000Åの厚さに蒸着す
る。組成比は図3に示すように電鋳側に近づくにつれて
フッ素樹脂の組成比が減少するように変化させる。その
後、実施例1と同様に電鋳、脱型、加工を行いスタンパ
ー5を得て射出成形法によりPMMA樹脂やPC樹脂の
成形品6を得る。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. After setting the glass substrate 1 on which the diffraction grating pattern 2 is formed in the same manner as in Example 1, Cr is vapor-deposited by the electron beam heating vapor deposition method, and at the same time, the fluororesin is vaporized by the resistance heating method. Perform the original vapor deposition method. At this time, as shown in FIG. 2, the deposition rate is gradually changed to deposit the conductive thin film 3 to a thickness of 1000 Å. As shown in FIG. 3, the composition ratio is changed so that the composition ratio of the fluororesin decreases toward the electroformed side. Thereafter, electroforming, demolding and processing are performed in the same manner as in Example 1 to obtain a stamper 5 and a molded product 6 of PMMA resin or PC resin is obtained by an injection molding method.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜3を示す工程図である。FIG. 1 is a process chart showing Examples 1 to 3 of the present invention.

【図2】本発明の実施例2におけるフッ素樹脂とCrと
の蒸着速度を示すグラフ図である。
FIG. 2 is a graph showing vapor deposition rates of fluororesin and Cr in Example 2 of the present invention.

【図3】本発明の実施例2におけるフッ素樹脂とCrと
の組成比を示すグラフ図である。
FIG. 3 is a graph showing the composition ratio of fluororesin and Cr in Example 2 of the present invention.

【図4】本発明の実施例3におけるフッ素樹脂とNiへ
の投入電力を示すグラフ図である。
[Fig. 4] Fluorine resin and Ni in Example 3 of the present invention
It is a graph showing the input power of.

【図5】本発明の実施例3におけるフッ素樹脂とNiと
の組成比を示すグラフ図であるる。
FIG. 5 shows a fluororesin and Ni in Example 3 of the present invention .
It is a graph which shows the composition ratio of.

【図6】本発明の実施例4を示す工程図である。FIG. 6 is a process chart showing Example 4 of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上にレジストを用いて回折格
子パターンを形成した後、電通用の導電膜を形成し、電
鋳法にてNi電鋳層を形成した後脱型してスタンパーを
得る製造方法において、前記導電膜が金属とフッ素樹脂
の複合膜からなることを特徴とする回折格子用スタンパ
ーの製造方法。
1. A stamper is obtained by forming a diffraction grating pattern on a glass substrate using a resist, forming a conductive film for electric conduction, forming an Ni electroformed layer by an electroforming method, and then demolding. The method for producing a stamper for a diffraction grating, wherein the conductive film comprises a composite film of metal and fluororesin.
【請求項2】 前記導電膜が物理的成膜方法により製造
されることを特徴とする請求項1記載の回折格子用スタ
ンパーの製造方法。
2. The method for manufacturing a stamper for a diffraction grating according to claim 1, wherein the conductive film is manufactured by a physical film forming method.
【請求項3】 前記導電膜を、フッ素樹脂の組成化がガ
ラス基板側からNi電鋳側に向かって減少するような傾
斜組成導電膜としたことを特徴とする請求項1記載の回
折格子用スタンパーの製造方法。
3. The diffraction grating according to claim 1, wherein the conductive film is a gradient composition conductive film in which the composition of the fluororesin decreases from the glass substrate side toward the Ni electroformed side. Stamper manufacturing method.
JP36065792A 1992-12-29 1992-12-29 Production of stamper for diffraction grating Withdrawn JPH06201908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36065792A JPH06201908A (en) 1992-12-29 1992-12-29 Production of stamper for diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36065792A JPH06201908A (en) 1992-12-29 1992-12-29 Production of stamper for diffraction grating

Publications (1)

Publication Number Publication Date
JPH06201908A true JPH06201908A (en) 1994-07-22

Family

ID=18470356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36065792A Withdrawn JPH06201908A (en) 1992-12-29 1992-12-29 Production of stamper for diffraction grating

Country Status (1)

Country Link
JP (1) JPH06201908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429063C (en) * 2003-07-31 2008-10-29 阿尔卑斯电气株式会社 Optical component mold and method of manufacturing optical component using the same
US8308965B2 (en) 2010-06-30 2012-11-13 Kabushiki Kaisha Toshiba Stamper, method of manufacturing the stamper, and magnetic recording medium manufacturing method using the stamper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429063C (en) * 2003-07-31 2008-10-29 阿尔卑斯电气株式会社 Optical component mold and method of manufacturing optical component using the same
US8308965B2 (en) 2010-06-30 2012-11-13 Kabushiki Kaisha Toshiba Stamper, method of manufacturing the stamper, and magnetic recording medium manufacturing method using the stamper

Similar Documents

Publication Publication Date Title
US20050285308A1 (en) Stamper, imprinting method, and method of manufacturing an information recording medium
US20080187719A1 (en) Nano-imprinting mold, method of manufacture of nano-imprinting mold, and recording medium manufactured with nano-imprinting mold
US20100308496A1 (en) Method of manufacturing stamper
JP2010017865A (en) Method for manufacturing mold for nanoimprinting
JPH06201908A (en) Production of stamper for diffraction grating
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
JP2008208431A (en) Electroforming mold, method of manufacturing electroforming mold and method of manufacturing electroformed component
JP4183101B2 (en) Mold fine processing method, mold and molded product
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
JP2006028604A (en) Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold
JPH07113193A (en) Production of metal mold for molding diffraction grating
JP2633088B2 (en) Manufacturing method of stamper
JPH05205321A (en) Manufacture of stamper
JPH04151220A (en) Forming method for very finely processed core for injection molding
JPH0688254B2 (en) Method for manufacturing mold for fine pattern duplication
JPH04351731A (en) Production of stamper
JPH05234153A (en) Molding die of optical disk and its production
TW201029823A (en) Composite stamp for embossing
JPH05326381A (en) Manufacture of double-sided absorber x-ray mask
JPS6185649A (en) Production of stamper
JP3871494B2 (en) How to create a stamper
JPH04195941A (en) Manufacture of stamper
JPS6148146A (en) Stamper for optical disc
JPH11170265A (en) Electroformed mold for optical information recording medium, and its production
TWI262497B (en) Preparation method of disc master

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307