JPH05205321A - Manufacture of stamper - Google Patents

Manufacture of stamper

Info

Publication number
JPH05205321A
JPH05205321A JP1376892A JP1376892A JPH05205321A JP H05205321 A JPH05205321 A JP H05205321A JP 1376892 A JP1376892 A JP 1376892A JP 1376892 A JP1376892 A JP 1376892A JP H05205321 A JPH05205321 A JP H05205321A
Authority
JP
Japan
Prior art keywords
film
stamper
master
photoresist
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1376892A
Other languages
Japanese (ja)
Inventor
Hitoshi Isono
仁志 磯野
Hirotoshi Takemori
浩俊 竹森
Tetsuya Inui
哲也 乾
Kenji Ota
賢司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1376892A priority Critical patent/JPH05205321A/en
Publication of JPH05205321A publication Critical patent/JPH05205321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent peeling defects by performing an electroforming working, after a Ni thin film having tensile internal stress is formed on a master disk. CONSTITUTION:After a photoresist mask 2a is applied on a flat glass substrate 1, for example a sputtering etching is carried out. The resist mask is burnt to ash by O2 plasma and the master disk 1a is made. By using Ar in a vacuumed room at 8X10<-3>Torr vacuum, a 200-350Angstrom Ni thin film 3 is sputtered by 1KW electric power and the >=7X10<-9> dyne/cm<2> Ni thin film in tensile internal stress is formed. Thereafter, using a specific electrolytic solution, a nearly 300mum electroformed Ni film in thickness is deposited and the Ni film 3 is stripped from the master disk 1a to prepare the stamper 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は 光ディスクのトラッ
キング用案内溝、セクター番地を示すプリピットやホロ
グラムの回折格子パターン等のようなサブミクロンオー
ダーのパターンを有するプラスチック基板を射出成型法
等により作成する時に用いられるスタンパの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for producing a plastic substrate having a sub-micron order pattern such as a tracking guide groove of an optical disk, a prepit indicating a sector address, a hologram diffraction grating pattern, etc. by an injection molding method or the like. The present invention relates to a method of manufacturing a stamper used.

【0002】[0002]

【従来の技術】光磁気ディスクや追記型光ディスクで
は、あらかじめディスク基板にトラッキング用の案内溝
やセクター番地等の情報を示す微細凹凸で構成されるプ
リピットを形成しておく必要がある。このような光ディ
スクの基板を射出成型法等により作成する時に用いられ
るスタンパの製造方法を簡単に説明する。
2. Description of the Related Art In a magneto-optical disk or a write-once optical disk, it is necessary to previously form on a disk substrate a prepit formed of fine irregularities indicating information such as a guide groove for tracking or a sector address. A method of manufacturing a stamper used when a substrate of such an optical disc is manufactured by injection molding will be briefly described.

【0003】まず図5(a)のようにガラス基板1にフ
ォトレジスト2を塗布し、レーザー光6によってカッテ
ィングを行った後、これを現像して所望の形状の凹凸パ
ターン2aを形成する(図5(b)及び図5(c))。
次に図5(d)のように、凹凸パターン2aが形成され
たガラス基板1上にスパッタリング、蒸着等の方法でニ
ッケルあるいは銀等の導電膜3を形成しその後電鋳加工
を行って金属、例えばニッケルの電鋳膜4を所望の厚さ
で形成する図5(e))。その後ガラス基板1から電鋳
膜4を剥離して図5(f)に示すようなスタンパ5とす
るものである。ところで上記説明したスタンパ作製法に
おいて、マスター原盤はフォトレジストパターン2aを
そのまま有するものであった。かかる方法でのスタンパ
作製においては、微細なパターンの形状を高精度に作製
するにはフォトレジストを均一にかつ再現性良く塗布す
る必要があり、そのためには、塗布条件(フォトレジス
ト液温、粘度、スピンナー回転数等)、塗布環境(環境
温度、湿度等)、現像条件(現像液温度、液滴下量等)
の作製条件、工程管理を徹底して行わなければならな
い。
First, as shown in FIG. 5 (a), a photoresist 2 is applied to a glass substrate 1, cut by a laser beam 6, and then developed to form an uneven pattern 2a having a desired shape (see FIG. 5 (b) and FIG. 5 (c)).
Next, as shown in FIG. 5D, a conductive film 3 of nickel, silver or the like is formed on the glass substrate 1 having the concavo-convex pattern 2a by a method such as sputtering or vapor deposition, and then electroforming is performed to form a metal, For example, an electroformed film 4 of nickel is formed to have a desired thickness (FIG. 5E). After that, the electroformed film 4 is peeled from the glass substrate 1 to form a stamper 5 as shown in FIG. In the stamper manufacturing method described above, the master master has the photoresist pattern 2a as it is. In the stamper production by such a method, in order to produce a fine pattern shape with high accuracy, it is necessary to apply the photoresist uniformly and with good reproducibility. Therefore, the application conditions (photoresist solution temperature, viscosity , Spinner speed, etc.), coating environment (environmental temperature, humidity, etc.), development conditions (developer temperature, drop volume, etc.)
Manufacturing conditions and process control must be thoroughly performed.

【0004】また、マスター原盤等電鋳膜との剥離の
際、フォトレジストが電鋳膜側に残留するためこの残留
フォトレジストを除去する工程が必要となるが、例えば
酸素プラズマをフォトレジストに吹き付けて灰化して除
くドライアッシュ法や、フォトレジスト剥離液を用いる
除去方法では残留フォトレジストの除去が不十分な場合
があり、スタンパ品質の劣化をきたす恐れが有った。
In addition, since the photoresist remains on the electroformed film side when it is peeled off from the electroformed film such as the master master, a step of removing the residual photoresist is required. For example, oxygen plasma is sprayed on the photoresist. In some cases, the residual ash resist may not be removed sufficiently by the dry ash method of removing by ashing and the removal method using the photoresist stripping solution, which may cause deterioration of the stamper quality.

【0005】そこで上述した問題点を解決するために、
マスター原盤としてガラス材に凹凸パターンをスパッタ
エッチングやイオンエッチング、プラズマエッチングに
て直接形成したものが用いられる方法が実施されてい
る。図6はこの種のスタンパの一般的な製造方法を示し
たものである。
Therefore, in order to solve the above-mentioned problems,
As a master disk, a method is used in which an uneven pattern is directly formed on a glass material by sputter etching, ion etching, or plasma etching. FIG. 6 shows a general manufacturing method of this type of stamper.

【0006】まず図6(a)に示すようにガラス基板1
にフォトレジスト2を塗布し、レーザー光6によってカ
ッティングを行った後、これを現像して所望の形状の凹
凸パターン2aを形成する(図6(b)及び図6
(c))。
First, as shown in FIG. 6A, the glass substrate 1
Photoresist 2 is applied to the substrate, cut with laser light 6, and then developed to form a concavo-convex pattern 2a having a desired shape (FIGS. 6B and 6).
(C)).

【0007】次に図6(c)をスパッタエッチングやイ
オンエッチング、プラズマエッチング等の方法でエッチ
ングし(図6(d))、フォトレジストを除去した後マ
スター原盤1aを得る(図6(e))。さらにマスター
原盤1a上にスパッタリング、蒸着等の方法でニッケル
あるいは銀の導電膜3を形成し、電鋳加工を行って金
属、例えばニッケルの電鋳膜4を所望の厚さで形成する
(図6(f)及び(g))。尚、導電膜3としてはニッ
ケルあるいは銀の1層膜以外にも、特開平2−7759
4号公報記載の銀ーニッケルの2層膜、ニッケルー銀ー
ニッケルの3層膜が従来用いられている。
Next, FIG. 6 (c) is etched by a method such as sputter etching, ion etching or plasma etching (FIG. 6 (d)), and after removing the photoresist, a master master 1a is obtained (FIG. 6 (e)). ). Further, a conductive film 3 of nickel or silver is formed on the master master 1a by a method such as sputtering or vapor deposition, and electroforming is performed to form an electroformed film 4 of metal, such as nickel, with a desired thickness (FIG. 6). (F) and (g)). Incidentally, as the conductive film 3, in addition to a single layer film of nickel or silver, it is also possible to use the method described in JP-A-2-7759.
The silver-nickel two-layer film and the nickel-silver-nickel three-layer film described in Japanese Patent No. 4 are conventionally used.

【0008】その後マスター原盤1aと電鋳膜4とを剥
離してスタンパ5とするものである。
After that, the master master 1a and the electroformed film 4 are separated to form a stamper 5.

【0009】[0009]

【発明が解決しようとする課題】上述したように、マス
ター原盤のためのガラス基板に凹凸パターンをスパッタ
エッチングやイオンエッチング、プラズマエッチングに
て直接形成したものを用いる場合、電鋳加工用の導電膜
としてニッケルあるいは銀の1層膜や、銀ーニッケルの
2層膜、ニッケルー銀ーニッケルの3層膜がスパッタリ
ング、蒸着等の手段で形成される。しかし、ガラス基板
としてよく使われる石英ガラスやソーダガラスは、ニッ
ケルや銀等、電鋳加工用の導電膜として従来用いられて
いる金属薄膜との密着力があまり強くなく、図7に示す
ように導電膜3がガラス基板1より剥離してしまう欠陥
が生じていた。
As described above, when a glass substrate for a master master having a concave-convex pattern directly formed by sputter etching, ion etching, or plasma etching is used, a conductive film for electroforming is used. As a single layer film of nickel or silver, a two-layer film of silver-nickel, or a three-layer film of nickel-silver-nickel is formed by means of sputtering, vapor deposition or the like. However, quartz glass and soda glass, which are often used as glass substrates, do not have very strong adhesion to metal thin films, such as nickel and silver, which are conventionally used as conductive films for electroforming, and as shown in FIG. There was a defect that the conductive film 3 was separated from the glass substrate 1.

【0010】ガラス基板として石英ガラスを用いた場
合、面性状がソーダガラスよりも優れ、またスパッタエ
ッチングやイオンエッチング、プラズマエッチング等の
方法でエッチングをした場合にもエッチングレートがソ
ーダガラスに比べて大きく有利である。しかもエッチン
グ後のエッチング面の面性状もソーダガラスの場合より
も優れている。しかしながら、石英ガラスは、その線膨
張係数が5〜6×10−7/℃でありソーダガラスの8
5〜92×10−7/℃に比べて一桁小さく、又、ニッ
ケルの線膨張係数が197×10-7/℃であることか
ら、電鋳加工時にガラス基板と導電膜が電解液中で加熱
された際の、ガラス基板に対する導電膜の膨張の度合
が、ソーダガラスをガラス基板とした場合よりも石英ガ
ラスをガラス基板とした方が大きく、そのために図7に
示すような、電鋳加工初期の電鋳膜の圧縮の内部応力が
原因で生じる導電膜のガラス基板からの剥離も、ソーダ
ガラスを使用した場合よりも石英ガラスを使用した方が
起こり易くなり、良好な電鋳加工を行うことが困難であ
った。
When quartz glass is used as the glass substrate, the surface properties are superior to those of soda glass, and when etching is performed by methods such as sputter etching, ion etching, and plasma etching, the etching rate is larger than that of soda glass. It is advantageous. Moreover, the surface quality of the etched surface after etching is also superior to that of soda glass. However, quartz glass has a linear expansion coefficient of 5 to 6 × 10 −7 / ° C., which is 8% that of soda glass.
It is an order of magnitude smaller than 5 to 92 × 10 -7 / ° C, and the linear expansion coefficient of nickel is 197 × 10 -7 / ° C. The degree of expansion of the conductive film with respect to the glass substrate when heated is larger when quartz glass is used as the glass substrate than when soda glass is used as the glass substrate. Therefore, as shown in FIG. Peeling of the conductive film from the glass substrate caused by the internal stress of the compression of the initial electroformed film is more likely to occur with quartz glass than with soda glass, and good electroforming is performed. Was difficult.

【0011】この発明は上記の事情を考慮してなされた
もので、電鋳加工初期の電鋳膜の持つ圧縮の内部応力
を、導電膜の持つ引っ張りの内部応力で打ち消し、ガラ
ス基板からの導電膜の剥離を防止して高品質なスタンパ
を歩留り良く作成できるスタンパ製造方法を提供するこ
とを目的とする。
The present invention has been made in consideration of the above circumstances. The internal stress of compression of the electroformed film at the initial stage of electroforming is canceled by the internal stress of tension of the conductive film, and the conductivity from the glass substrate is reduced. An object of the present invention is to provide a stamper manufacturing method capable of preventing peeling of a film and producing a high-quality stamper with high yield.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、基板表面にフォトレジストを塗布し、該
フォトレジストの所定部分を露光し現像することによっ
てフォトレジストパターンを形成し、該フォトレジスト
パターンをマスクとして前記基板をエッチングした後前
記フォトレジストパターンを除去して前記基板からマス
ター原盤を作成し、該マスター原盤上に引っ張りの内部
応力をもったニッケル薄膜からなる導電膜を形成した
後、前記マスター原盤に電鋳加工を行うことによってス
タンパを製造することを特徴とするスタンパの製造方法
である。また、前記ニッケル薄膜からなる導電膜のもつ
引っ張りの内部応力が7×10-9dyn/cm2 以上で
あることを特徴とする。
In order to achieve the above object, the present invention provides a photoresist pattern on a surface of a substrate, exposing a predetermined portion of the photoresist and developing it to form a photoresist pattern, After etching the substrate using the photoresist pattern as a mask, the photoresist pattern is removed to create a master master from the substrate, and a conductive film made of a nickel thin film having an internal tensile stress is formed on the master master. After that, the stamper is manufactured by performing electroforming on the master master. Further, the conductive film made of the nickel thin film is characterized in that the tensile internal stress is 7 × 10 −9 dyn / cm 2 or more.

【0013】[0013]

【作用】導電膜3がガラス基板1より剥離してしまう直
接の原因を調査したところ、電鋳加工初期に低電流密度
の電流を通電している時に析出する電鋳膜が圧縮の内部
応力を持つので、その結果導電膜がガラス基板より剥離
するということが分かった。
When the direct cause of peeling of the conductive film 3 from the glass substrate 1 is investigated, the electroformed film deposited when a current having a low current density is applied at the beginning of electroforming causes internal stress of compression. As a result, it was found that the conductive film was peeled off from the glass substrate as a result.

【0014】図2は、電鋳加工時の通電電流密度と通電
時間との関係及び導電膜の剥離が発生した時期を表した
もの、図3は電流密度との電鋳膜の内部応力との関係を
示したものである。図2及び図3を見ると、導電膜の剥
離は電流密度が6〜7A/dm2 である、電鋳膜に圧縮
の内部応力が生じている時に発生していることが分か
る。
FIG. 2 shows the relationship between the energization current density and the energization time during electroforming and the time when the conductive film peels off. FIG. 3 shows the relationship between the current density and the internal stress of the electroformed film. It shows the relationship. It can be seen from FIGS. 2 and 3 that the peeling of the conductive film occurs when the internal density of compression is generated in the electroformed film having a current density of 6 to 7 A / dm 2 .

【0015】図4は真空チャンバー内にアルゴンガスを
導入して、真空度が8×10-3torr、入射電力が1
KWでスパッタリングを行ってニッケル薄膜を成膜した
時の、膜厚と内部応力との関係、及び電鋳加工時の剥離
欠陥の有無を示したものである。この図より、引っ張り
の内部応力が7×109dyn/cm2以上であるニッケ
ル薄膜を導電膜として電鋳加工を実施すれば、電鋳加工
時の導電膜の剥離は発生しないことが分かる。引っ張り
の内部応力は、製膜時のガス圧、入射電力、膜厚を調整
することによって、所望の値とすることができる。
In FIG. 4, an argon gas was introduced into the vacuum chamber, the degree of vacuum was 8 × 10 -3 torr and the incident power was 1.
It shows the relationship between the film thickness and internal stress when a nickel thin film is formed by sputtering with KW, and the presence or absence of peeling defects during electroforming. From this figure, it is understood that when electroforming is performed using a nickel thin film having an internal tensile stress of 7 × 10 9 dyn / cm 2 or more as a conductive film, peeling of the conductive film during electroforming does not occur. The internal tensile stress can be set to a desired value by adjusting the gas pressure during film formation, the incident power, and the film thickness.

【0016】[0016]

【実施例】以下にこの発明の実施例を図面にて評述する
が、この発明は以下の実施例に限定されるものではな
い。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to the following embodiments.

【0017】図1はこの発明の実施例を示す製造工程図
である。
FIG. 1 is a manufacturing process diagram showing an embodiment of the present invention.

【0018】まず図1(a)に示すように、平坦な石英
ガラス基板1に感光体であるフォトレジスト2を塗布
し、そのフォトレジスト2の所定の位置にレーザー光6
を照射して露光する(図1(b))。この後フォトレジ
スト2を現像して微細パターン2aを形成し(図1
(c))、フォトレジストパターン2aをマスクとして
所定の深さ、例えば800Åまで石英ガラス基板をエッ
チングする(図1(d))。エッチング方法は、スパッ
タエッチング、プラズマエッチングなどの方法が挙げら
れる。
First, as shown in FIG. 1A, a photoresist 2, which is a photoconductor, is applied to a flat quartz glass substrate 1, and a laser beam 6 is applied to a predetermined position of the photoresist 2.
To irradiate and expose (FIG. 1 (b)). Then, the photoresist 2 is developed to form a fine pattern 2a (see FIG.
(C)) Using the photoresist pattern 2a as a mask, the quartz glass substrate is etched to a predetermined depth, for example, 800 Å (FIG. 1 (d)). Examples of the etching method include sputter etching and plasma etching.

【0019】エッチングが完了すると、マスクとしたフ
ォトレジストパターンを酸素プラズマを吹き付けて灰化
することで除去し、マスター原盤1aを作製する(図1
(e))。
When the etching is completed, the photoresist pattern used as the mask is removed by ashing by spraying oxygen plasma to produce a master master 1a (FIG. 1).
(E)).

【0020】次に、マスター原盤1aの表面にスパッタ
リング法によって導電膜3を形成する(図1(f))。
スパッタリングは真空度8×10-3torrに調整され
た真空室内でアルゴンガスを用いて入射電力1KWで行
い、導電膜の厚さは200〜350Åとする。
Next, the conductive film 3 is formed on the surface of the master disk 1a by the sputtering method (FIG. 1 (f)).
Sputtering is performed in a vacuum chamber adjusted to a vacuum degree of 8 × 10 −3 torr using argon gas with an incident power of 1 KW, and the thickness of the conductive film is 200 to 350 Å.

【0021】この後、この導電膜3の上に図2に示す通
電方法で電鋳加工により電鋳膜4を形成する(図1
(g))。電鋳加工では、例えば表1に示すような組成
の電解液を用いて、ニッケルを厚さ300μmに形成す
ればよい。そしてマスター原盤1aから導電膜を剥離し
て(図1(h))、スタンパ5とする。
Thereafter, the electroformed film 4 is formed on the conductive film 3 by electroforming by the energizing method shown in FIG. 2 (FIG. 1).
(G)). In the electroforming process, nickel may be formed to a thickness of 300 μm using an electrolytic solution having the composition shown in Table 1, for example. Then, the conductive film is peeled off from the master master 1a (FIG. 1 (h)) to form a stamper 5.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】この発明によれば、凹凸パターンをスパ
ッタエッチングやイオンエッチング、プラズマエッチン
グによって形成したガラス基板上に、引っ張りの内部応
力が7×109dyn/cm2以上であるニッケル薄膜を
導電膜として形成して、その後電鋳加工により電鋳膜を
形成してスタンパを作製するので、その結果、電鋳加工
初期のガラス基板からの導電膜の剥離がなくなり、高品
質なスタンパを歩留り良く作製することができる。
According to the present invention, a nickel thin film having an internal tensile stress of 7 × 10 9 dyn / cm 2 or more is electrically conductive on a glass substrate having a concavo-convex pattern formed by sputter etching, ion etching or plasma etching. Since it is formed as a film, and then an electroformed film is formed by electroforming to produce a stamper, as a result, peeling of the conductive film from the glass substrate at the initial stage of electroforming is eliminated, and a high-quality stamper with good yield It can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスタンパの製造方法を説明する図であ
る。
FIG. 1 is a diagram illustrating a stamper manufacturing method of the present invention.

【図2】電鋳加工時の通電電流密度と通電時間との関係
を示す図である。
FIG. 2 is a diagram showing a relationship between an energization current density and an energization time during electroforming.

【図3】通電電流密度と電鋳膜内部応力との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between an energization current density and an electroformed film internal stress.

【図4】ニッケル薄膜の膜厚と内部応力との関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a film thickness of a nickel thin film and internal stress.

【図5】従来のスタンパの製造方法を説明する図であ
る。
FIG. 5 is a diagram illustrating a conventional stamper manufacturing method.

【図6】従来のスタンパの製造方法を説明する図であ
る。
FIG. 6 is a diagram illustrating a conventional stamper manufacturing method.

【図7】導電膜のガラス基盤からの剥離状態を示す図で
ある。
FIG. 7 is a diagram showing a peeled state of a conductive film from a glass substrate.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 フォトレジスト 2a 凹凸パターン 3 導電膜 4 電鋳膜 5 スタンパ 6 レーザー光 1 Glass substrate 2 Photoresist 2a Concavo-convex pattern 3 Conductive film 4 Electroformed film 5 Stamper 6 Laser light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 賢司 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Ota 22-22 Nagaike-cho, Abeno-ku, Osaka, Osaka Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板表面にフォトレジストを塗布し、 該フォトレジストの所定部分を露光し現像することによ
ってフォトレジストパターンを形成し、 該フォトレジストパターンをマスクとして前記基板をエ
ッチングした後前記フォトレジストパターンを除去して
前記基板からマスター原盤を作成し、 該マスター原盤上に引っ張りの内部応力をもったニッケ
ル薄膜からなる導電膜を形成した後、 前記マスター原盤に電鋳加工を行うことによってスタン
パを製造することを特徴とするスタンパの製造方法。
1. A photoresist is applied on the surface of a substrate, a photoresist pattern is formed by exposing and developing a predetermined portion of the photoresist, and the photoresist is etched after the substrate is etched using the photoresist pattern as a mask. A pattern is removed to form a master master from the substrate, a conductive film made of a nickel thin film having a tensile internal stress is formed on the master master, and the master master is electroformed to form a stamper. A method for manufacturing a stamper, which comprises manufacturing the stamper.
【請求項2】 前記ニッケル薄膜からなる導電膜のもつ
引っ張りの内部応力が7×109dyn/cm2 以上で
あることを特徴とする請求項1記載のスタンパの製造方
法。
2. The stamper manufacturing method according to claim 1, wherein the conductive film made of the nickel thin film has a tensile internal stress of 7 × 10 9 dyn / cm 2 or more.
JP1376892A 1992-01-29 1992-01-29 Manufacture of stamper Pending JPH05205321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1376892A JPH05205321A (en) 1992-01-29 1992-01-29 Manufacture of stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1376892A JPH05205321A (en) 1992-01-29 1992-01-29 Manufacture of stamper

Publications (1)

Publication Number Publication Date
JPH05205321A true JPH05205321A (en) 1993-08-13

Family

ID=11842435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1376892A Pending JPH05205321A (en) 1992-01-29 1992-01-29 Manufacture of stamper

Country Status (1)

Country Link
JP (1) JPH05205321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207247B1 (en) 1998-03-27 2001-03-27 Nikon Corporation Method for manufacturing a molding tool used for sustrate molding
US6814897B2 (en) 1998-03-27 2004-11-09 Discovision Associates Method for manufacturing a molding tool used for substrate molding
US6971116B2 (en) * 2001-06-28 2005-11-29 Sony Corporation Stamper for producing optical recording medium, optical recording medium, and methods of producing the same
US7105280B1 (en) * 2002-06-28 2006-09-12 Seagate Technology Llc Utilizing permanent master for making stampers/imprinters for patterning of recording media
JP2006278879A (en) * 2005-03-30 2006-10-12 Tdk Corp Method of manufacturing stamper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207247B1 (en) 1998-03-27 2001-03-27 Nikon Corporation Method for manufacturing a molding tool used for sustrate molding
US6814897B2 (en) 1998-03-27 2004-11-09 Discovision Associates Method for manufacturing a molding tool used for substrate molding
US6971116B2 (en) * 2001-06-28 2005-11-29 Sony Corporation Stamper for producing optical recording medium, optical recording medium, and methods of producing the same
US7171676B2 (en) 2001-06-28 2007-01-30 Sony Corporation Stamper for producing optical recording medium, optical recording medium, and methods of producing the same
US7105280B1 (en) * 2002-06-28 2006-09-12 Seagate Technology Llc Utilizing permanent master for making stampers/imprinters for patterning of recording media
JP2006278879A (en) * 2005-03-30 2006-10-12 Tdk Corp Method of manufacturing stamper

Similar Documents

Publication Publication Date Title
US5458985A (en) Stamper
EP0168763B1 (en) Method for fabricating a master recording disc
US4259433A (en) Method for producing disk-recording plates
JP2000507734A (en) Method of manufacturing optical data storage disk stamper
JPS61240452A (en) Making of glass forming mold
JPH05205321A (en) Manufacture of stamper
US4045318A (en) Method of transferring a surface relief pattern from a poly(olefin sulfone) layer to a metal layer
JPH0678590B2 (en) Stamper manufacturing method
JP2520196B2 (en) Stamper manufacturing method
JPH0243380A (en) Metallic mold for forming optical disk substrate and production thereof
JP2633088B2 (en) Manufacturing method of stamper
JP2801456B2 (en) Stamper manufacturing method and stamper
JPH0845115A (en) Production of master disk for optical disk
JP2753388B2 (en) Manufacturing method of stamper
JPH0660441A (en) Production of stamper for optical disk
JPS61284843A (en) Manufacture of stamper for rorming optical disk
JPS6148146A (en) Stamper for optical disc
JP3221627B2 (en) Manufacturing method of stamper for optical disk
JPH02204023A (en) Stamper for optical disc and manufacture thereof
JPS6190344A (en) Stamper for molding optical disk
JPH01235044A (en) Optical disk substrate and its production
JPH04351731A (en) Production of stamper
JPH06349115A (en) Production of stamper
JPS60195748A (en) Manufacture of master disk for reproducing information record carrier
JPH108248A (en) Stamper for optical disk and its production