JPH0845115A - Production of master disk for optical disk - Google Patents

Production of master disk for optical disk

Info

Publication number
JPH0845115A
JPH0845115A JP19793194A JP19793194A JPH0845115A JP H0845115 A JPH0845115 A JP H0845115A JP 19793194 A JP19793194 A JP 19793194A JP 19793194 A JP19793194 A JP 19793194A JP H0845115 A JPH0845115 A JP H0845115A
Authority
JP
Japan
Prior art keywords
phase change
film
change film
master
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19793194A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sato
和洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP19793194A priority Critical patent/JPH0845115A/en
Publication of JPH0845115A publication Critical patent/JPH0845115A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain such a production method of an optical master disk that a phase transition film itself in which a pit pattern is formed by thermal recording has a large difference in the etching rate between the part where the phase transition is caused and the part where no phase transition is caused, that a large selection rate can be obtd. also for etching of a masking film, and that as a result, a uniform pit pattern with good reproducibility can be obtd. CONSTITUTION:The production method of an optical master disk includes the following processes. A phase transition film 3 is formed on a masking film 2 formed on a substrate 1 to be used as the master disk of an optical disk and is irradiated with light for thermal recording according to the signal to be recorded. Then, etching is performed to form a rugged signal pattern in the phase transition film. The phase transition film essentially consists of germanium and tin with Ge(1-x)Snx (where 0.1<=x<=0.5) compsn. ratio of atoms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金型となる原盤の凹凸
パターンを高分子材料に転写して光ディスクを複製する
ための光ディスク用原盤の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical disk master for copying an optical disk by transferring a concave-convex pattern of a master as a mold onto a polymer material.

【0002】[0002]

【従来の技術】一般に、音楽用CD(コンパクトディス
ク)や、映像、情報ファイルとして用いられている再生
専用の光ディスクのデジタル化された信号や、録再可能
な光ディスクのトラッキング用信号は、対応する凹凸パ
ターン(ピット)が形成された原盤或いはその原盤から
複製されたスタンパを用いて、射出成形法により、熱可
塑性樹脂にその凹凸パターンを反転して転写される。そ
して、その反転転写された高分子基板に鏡面処理とその
保護膜のコーティング、印刷を行って光ディスクが製造
される。
2. Description of the Related Art Generally, a digitized signal of a music CD (compact disc), a read-only optical disc used as a video and information file, and a tracking signal of a recordable / reproducible optical disc correspond to each other. Using a master having a concavo-convex pattern (pits) or a stamper duplicated from the master, the concavo-convex pattern is inverted and transferred to the thermoplastic resin by an injection molding method. Then, a mirror surface treatment, coating of a protective film thereof, and printing are performed on the reversely transferred polymer substrate to manufacture an optical disk.

【0003】この複製のために母体となる原盤の従来の
製造方法を説明すると、まず研磨されたガラス基板上に
高分子材料のフォトレジストを塗布し、ついで集光され
たレーザ光を記録すべき信号に応じてこのフォトレジス
ト上に照射することにより露光し、ついで現像してガラ
スマスタを作成し、その後導電化処理と電鋳を行って剥
離する。
To explain the conventional method of manufacturing a master as a base material for this duplication, a photoresist of a polymer material should first be applied on a polished glass substrate, and then the focused laser beam should be recorded. The photoresist is exposed by irradiating the photoresist according to a signal, and then developed to form a glass master, and thereafter, a glass master is subjected to a conductive treatment and electroforming to be peeled off.

【0004】すなわち、従来の製造方法では高分子材料
へ転写して複写するためには、ガラスマスタ面の凹凸パ
ターンを反転転写した原盤をそのまま、或いは導電化処
理と電鋳と剥離を繰り返して、射出成形に耐える強度と
なるような厚さのスタンパが必要となる。また、このよ
うな従来の光ディスク用原盤の製造工程は複雑であり、
また、湿式処理工程が多いので廃水処理、広いクリーン
ルーム、大きな使用電力、湿式メッキ槽、純水、フォト
レジスト等の品質管理に伴うコストが大きく、また、製
造工程の時間が長いので即応性に欠ける等の問題があ
る。
That is, according to the conventional manufacturing method, in order to transfer and copy to a polymer material, the original master on which the concavo-convex pattern of the glass master surface is reversely transferred is used as it is, or the conductive treatment, electroforming and peeling are repeated. A stamper having a thickness that can withstand injection molding is required. Moreover, the manufacturing process of such a conventional optical disk master is complicated,
In addition, since there are many wet treatment processes, wastewater treatment, a large clean room, large power consumption, high costs associated with quality control of wet plating tanks, pure water, photoresist, etc., and lack of responsiveness due to the long manufacturing process. There is a problem such as.

【0005】ところで、近年、このような問題に対応す
るために、相変化薄膜に光を照射することにより局部的
に相変化を発生させ、相変化領域と未相変化領域のエッ
チングレート差を利用してデジタル信号に対応する凹凸
パターンを形成し、これをマスクとして下地基板をエッ
チングすることにより原盤を製造する方法が開発されて
いる。
In recent years, in order to cope with such a problem, a phase change thin film is irradiated with light to locally generate a phase change, and an etching rate difference between a phase change region and a non-phase change region is used. Then, a method of manufacturing a master by forming a concavo-convex pattern corresponding to a digital signal and etching the base substrate using this as a mask has been developed.

【0006】図1は、このような原盤の新しい製造方法
を説明する図で、図1の(a)に示すように、原盤とな
る鏡面研磨されたリング状の基板1にマスキング膜2及
び相変化膜3をスパッタリング法或いは真空蒸着法によ
り順次推積する。次に図1の(b)に示すように、デジ
タル信号に応じて相変化膜面にレーザ光を照射し、局部
的に相変化を生じせしめる。4は相変化した部分であ
る。次に図1の(c)に示すように、相変化膜3の光照
射部と未照射部とのエッチングレート差を用いて光照射
部4を残すようにエッチングし、ピットパターンを形成
する。5、6及び7は、基板1を保持するための手段で
5は外周保持具、6は内周保持具であり、これらはまた
基板の内外周エッチングマスクとしても作用する。次い
でこの相変化膜3によるピットパターンをマスクとして
マスキング膜2を選択的にエッチングし、次に図1の
(d)に示すように相変化膜3及びマスキング膜2によ
るピットパターンをマスクして基板1を選択的にエッチ
ングし、最後に残留するマスキング膜2や相変化膜3を
エッチング除去して図1の(e)に示すような原盤8を
得る。
FIG. 1 is a diagram for explaining a new method for manufacturing such a master. As shown in FIG. 1 (a), a masking film 2 and a phase are formed on a mirror-polished ring-shaped substrate 1 serving as a master. The change film 3 is sequentially deposited by the sputtering method or the vacuum evaporation method. Next, as shown in FIG. 1B, the phase change film surface is irradiated with laser light in accordance with a digital signal to locally cause a phase change. Reference numeral 4 is a phase changed portion. Next, as shown in FIG. 1C, etching is performed so as to leave the light irradiation portion 4 by using the difference in etching rate between the light irradiation portion and the non-irradiation portion of the phase change film 3 to form a pit pattern. Reference numerals 5, 6 and 7 are means for holding the substrate 1, 5 is an outer circumference holder, and 6 is an inner circumference holder, which also serve as an inner and outer circumference etching mask of the substrate. Then, the masking film 2 is selectively etched by using the pit pattern formed by the phase change film 3 as a mask, and then the pit pattern formed by the phase change film 3 and the masking film 2 is masked as shown in FIG. 1 is selectively etched, and the masking film 2 and the phase change film 3 remaining at the end are removed by etching to obtain a master 8 as shown in FIG.

【0007】マスキング膜2を挿入する理由は、相変化
膜3のエッチングレートが最終的にスタンパ(原盤)と
なる基板のエッチングレートに比して大きいため、相変
化膜3のみでは基板1とのエッチング選択比が大きく取
れないので、このエッチング選択比を大きくするため
に、相変化膜3のピットパターンを一度マスキング膜2
に転写し、それをマスクとして基板1のエッチングがで
きるようにするためである。マスキング膜2としては放
熱性があって、基板1として通常用いるニッケルに対し
不活性イオン照射によるエッチングレートの小さいシリ
コンが用いられる。この最近開発された原盤の製造方法
は、例えば特開平6−60440号公報及び特開平6−
60441号公報に記載されている。かかる原盤製造で
は、スタンパのごく表面でのみ加工が行われるので、製
造工程時間が短く、従来法に比して極めて生産性が高
い。
The reason why the masking film 2 is inserted is that the etching rate of the phase change film 3 is higher than the etching rate of the substrate that finally becomes the stamper (master), so that the phase change film 3 alone is different from the substrate 1. Since the etching selectivity cannot be made large, the pit pattern of the phase change film 3 is once removed by the masking film 2 in order to increase the etching selectivity.
This is because the substrate 1 can be etched by using the mask as a mask. The masking film 2 is made of silicon, which has a heat dissipation property and has a small etching rate by the irradiation of inert ions with respect to nickel which is usually used as the substrate 1. This recently developed method of manufacturing a master disc is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 6-60440 and 6-
It is described in Japanese Patent No. 60441. In such a master disc manufacturing, since processing is performed only on the very surface of the stamper, the manufacturing process time is short and the productivity is extremely high as compared with the conventional method.

【0008】従来、相変化膜の材料として例えば特開平
1−13323号公報に示されるようにGeTeが用い
られたり、また、特開平3−127342号公報に示さ
れるようにInSbが用いられている。これらの材料
は、元々高感度記録媒体として開発されてきた経過もあ
るので、記録感度が高く、相変化による光学的特性の変
化も大きい。
Conventionally, GeTe has been used as the material for the phase change film, as shown in JP-A-1-13323, or InSb as shown in JP-A-3-127342. . Since these materials have been originally developed as a high-sensitivity recording medium, the recording sensitivity is high and the change in optical characteristics due to the phase change is large.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の製造方法では、相変化膜としてGeTeやInSb
を用いるので、例えばアルゴンガスを用いたプラズマエ
ッチングを行うとエッチングレートが大きく、また、相
変化によるエッチングレート差が小さいので、ピットパ
ターンを形成することが困難になるという問題点があ
る。例えば熱記録によるこれらの材料の未記録部(領
域)に対するエッチングレート比はいずれも0.7〜
0.9であり、エッチングパターン形成後の相変化膜の
厚さが小さくなるので、これらの材料をマスクとして下
地基板をエッチングすることができなくなる。
However, in the above-mentioned conventional manufacturing method, GeTe or InSb is used as the phase change film.
Therefore, there is a problem in that it is difficult to form a pit pattern because the etching rate is large when plasma etching using argon gas is performed, and the etching rate difference due to the phase change is small. For example, the etching rate ratio of these materials to the unrecorded part (region) by thermal recording is 0.7 to
Since it is 0.9, the thickness of the phase change film after forming the etching pattern becomes small, so that the underlying substrate cannot be etched using these materials as a mask.

【0010】なお、これを防止する方法として、厚い相
変化膜に大きな記録パワーで相変化を発生させることが
考えられるが、この場合にはピットパターン幅が大きく
なり、記録密度が低下する。さらにこれらの材料は、強
い毒性の元素Te、Sbを含むので、労働条件や公害問
題における制約を受ける。
As a method of preventing this, a phase change may be generated in a thick phase change film with a large recording power, but in this case, the pit pattern width becomes large and the recording density decreases. Furthermore, since these materials contain the highly toxic elements Te and Sb, they are restricted in working conditions and pollution problems.

【0011】本発明者等は、今回の発明に先立って、ゲ
ルマニウム(Ge)を用いて相変化膜を構成し、熱記録
によるピットパターンを形成する手法を発明し、既に特
許出願している(特願平4−359451号)。しかし
ゲルマニウムにより相変化膜を構成した場合には、熱記
録部と未記録部とのエッチングレート差が小さいことか
ら、均一で再現性の良いピットパターンを得ることが困
難であった。
Prior to the present invention, the inventors of the present invention invented a method of forming a pit pattern by thermal recording by forming a phase change film using germanium (Ge), and have already applied for a patent ( Japanese Patent Application No. 4-359451). However, when the phase change film is made of germanium, it is difficult to obtain a uniform and reproducible pit pattern because the difference in etching rate between the thermal recording portion and the non-recording portion is small.

【0012】したがって本発明は熱記録によってピット
パターンを形成する相変化膜はその膜自体が、相変化部
と未変化部でのエッチングレート差が大きく、かつマス
キング膜のエッチングに対しても大きな選択比を得るこ
とができ、結果として、均一で再現性の良いピットパタ
ーンを得ることができる光ディスク用原盤の製造方法を
提供することを目的とする。
Therefore, according to the present invention, the phase change film forming a pit pattern by thermal recording has a large etching rate difference between the phase change portion and the non-change portion, and is also a large selection for etching the masking film. It is an object of the present invention to provide a method of manufacturing an optical disk master that can obtain a ratio and as a result can obtain a uniform and highly reproducible pit pattern.

【0013】[0013]

【課題を解決するための手段及び作用】上記目的を達成
するために本発明では、相変化膜の材料として、ゲルマ
ニウム−スズ系の相変化組成物を用い、かつスズ(S
n)の原子組成率を10%乃至50%とすることによ
り、従来にない光ディスク用原盤の優れた製造方法を提
供するものである。なお、かかる相変化組成物の発見に
至るまでに、本発明者は多種の相変化組成物を調べ、ゲ
ルマニウム−スズ系の相変化組成物で、かつスズの原子
組成率が10%乃至50%のものが、熱記録感度が高
く、また熱記録部と未記録部とのエッチングレート差が
大きく、更にマスキング膜であるシリコン等に対して大
きな選択比を有していることを見出したものである。
In order to achieve the above object, in the present invention, a germanium-tin phase change composition is used as a material for a phase change film, and tin (S
By setting the atomic composition ratio of n) to 10% to 50%, it is possible to provide an unprecedented excellent method for producing an optical disk master. In addition, until the discovery of such a phase change composition, the present inventor investigated various phase change compositions and found that the germanium-tin based phase change composition had an atomic composition ratio of tin of 10% to 50%. It has been found that those having a high thermal recording sensitivity, a large etching rate difference between the thermal recording portion and the unrecorded portion, and a large selection ratio with respect to silicon or the like as a masking film. is there.

【0014】すなわち本発明によれば、光ディスク用原
盤となる基板の上にマスキング膜を介して設けられた相
変化膜に対して、記録すべき信号に応じた光を照射して
熱記録を行った後、エッチングを行うことにより、前記
相変化膜に凹凸信号パターンを形成する工程を有する光
ディスク用原盤の製造方法において、前記相変化膜をゲ
ルマニウムとスズを主成分として構成するとともに、そ
の原子組成比がGe(1-X)SnX、但し0.1≦x≦0.
5、で表わされるものであることを特徴とする光ディス
ク用原盤の製造方法が提供される。
That is, according to the present invention, thermal recording is performed by irradiating the phase change film provided on the substrate, which is the master for the optical disc, with the masking film with light according to the signal to be recorded. In the method for manufacturing an optical disc master having a step of forming a concave-convex signal pattern on the phase-change film by etching after that, the phase-change film is composed mainly of germanium and tin, and its atomic composition is The ratio is Ge (1-X) Sn X , where 0.1 ≦ x ≦ 0.
5, there is provided a method of manufacturing an optical disk master.

【0015】なお、相変化膜内のスズの原子組成率が、
相変化膜の表面側程大きくなるように膜厚方向に組成勾
配を有するよう、相変化膜の組成物の原子組成比を制御
しつつ相変化膜を形成することにより、膜厚方向でのエ
ッチングレートを制御し、ピットの断面形状を台形状に
することが可能で、ディスクの信号トレーサビリティを
大幅に向上させることができる。
The atomic composition ratio of tin in the phase change film is
Etching in the film thickness direction is performed by forming the phase change film while controlling the atomic composition ratio of the composition of the phase change film so that the composition gradient in the film thickness direction becomes larger toward the surface side of the phase change film. The rate can be controlled and the cross-sectional shape of the pit can be made trapezoidal, which can significantly improve the signal traceability of the disc.

【0016】また、相変化膜のエッチングにより相変化
膜の光未照射部分を除去した後に、形成された相変化膜
ピット部分に対して光を照射してアニールを施すことに
より、再現性に優れた原盤製造工程とすることができ
る。
Further, after removing the non-irradiated portion of the phase change film by etching the phase change film, the formed pit portion of the phase change film is irradiated with light to be annealed, whereby excellent reproducibility is obtained. It can be a master manufacturing process.

【0017】図2は真空蒸着法によって成膜したゲルマ
ニウム−スズ系組成物膜に対し熱記録を行った後エッチ
ングして熱記録部のピット高さPOを測定し、POと初
期膜厚PIとの比PO/PIを原子組成率に対してプロ
ットしたものでスズの原子組成率が0.1〜0.5の範
囲でPO/PIは0.8以上の値を示し、特にスズの原
子組成率が0.5付近では未記録相(アモルファス相)
のエッチングが終了した時点での記録相(結晶相)にお
ける膜減りは殆ど無く、残膜率90%以上の極めて大き
な選択比を示した。このときの記録条件はレーザ出力9
mW、線速度5m/secでまたエッチャントはHNO
3の50%水溶液(室温)である。なお、スズの原子組
成率が0.5を超えると相変化は生じなかった。さらに
ゲルマニウム−スズ系組成物薄膜の優れた点は、従来用
いられた例えばゲルマニウムに比し、マスキング膜であ
るシリコン薄膜に対してのエッチング選択比を極めて大
きくすることができることである。図3はゲルマニウム
−スズ系組成物薄膜のCF 4ガスによるエッチングレー
トを原子組成比に対してプロットしたものでスズの原子
組成率が10%以上で図3に示したシリコンのエッチン
グレート(Siで示す)の1/10以下とすることがで
きる。
FIG. 2 shows a germanium film formed by a vacuum evaporation method.
Etching after thermal recording on the film
Measured the pit height PO in the thermal recording area and
The ratio PO / PI with the film thickness PI is calculated with respect to the atomic composition ratio.
The atomic composition ratio of tin is in the range of 0.1 to 0.5.
The PO / PI shows a value of 0.8 or more, especially tin
Unrecorded phase (amorphous phase) when the child composition ratio is around 0.5
The recording phase (crystal phase) at the time when the etching of
There is almost no film loss, and the remaining film rate is 90% or more, which is extremely large.
It showed a high selectivity. The recording condition at this time is laser output 9
mW, linear velocity 5m / sec, etchant is HNO again
3Is a 50% aqueous solution (room temperature). The atomic group of tin
When the growth rate exceeded 0.5, no phase change occurred. further
The advantage of the germanium-tin composition thin film is that
The masking film is more
Very high etching selectivity to silicon thin film
It is something you can do. Figure 3 shows germanium
-CF of tin-based composition thin film Etching with 4 gases
Atom is plotted against atomic composition ratio
Etching of silicon shown in FIG. 3 with a composition ratio of 10% or more
Greater than 1/10 of Great (indicated by Si)
Wear.

【0018】[0018]

【実施例】以下本発明の好ましい3つの実施例について
説明する。これらの各実施例は、図1に示した従来の工
程と基本的工程は同一であるが、細部において異なる。
いずれの実施例の場合も原盤となる基板1の上にマスキ
ング膜2及び相変化膜3を順次形成した後に、図示しな
いレーザから発せられるレーザ光を相変化膜に照射し、
記録すべき信号に応じた相変化を生ぜしめ、その後複数
のエッチング工程が行われて、最終的に原盤が製作され
るものである。相変化膜の組成はゲルマニウム(Ge)
とスズ(Sn)であり、スズの原子組成率は10〜50
%である。
EXAMPLES Three preferred examples of the present invention will be described below. Each of these embodiments has the same basic steps as the conventional steps shown in FIG. 1, but differs in details.
In any of the examples, after the masking film 2 and the phase change film 3 are sequentially formed on the substrate 1 which is the master, the phase change film is irradiated with laser light emitted from a laser (not shown),
A phase change corresponding to a signal to be recorded is generated, and then a plurality of etching steps are performed to finally manufacture a master. The composition of the phase change film is germanium (Ge)
And tin (Sn), and the atomic composition ratio of tin is 10 to 50.
%.

【0019】[実施例1]鏡面に研磨した、外径128
mm、内径35.6mm、厚さ0.3mmの基板1を構
成するリング状ニッケル円盤に、イオンボンバード後マ
スキング膜2となる二酸化珪素(SiO2)を100n
m、次いで相変化膜3となるゲルマニウム−スズを20
0nm、EB蒸着装置を用いて二元蒸着法にて堆積し
た。蒸着速度はゲルマニウム0.5nm/sec、スズ
0.25nm/secとした。次にこの円盤を回転させ
ながら、直径1μmに集光したレーザ光をゲルマニウム
−スズ面に照射し、ピットパターンの信号を記録した。
レーザ光照射点での記録線速度は2.5m/sec、記
録レーザ光の記録面における出力は8mWである。次に
この円盤を50%硝酸水溶液に20秒浸漬してエッチン
グしゲルマニウム−スズ薄膜によるピットパターンを形
成した。次に真空槽内にてCF4ガスによる平行平板型
の反応性プラズマエッチングを行い、SiO2膜による
ピットパターンを形成した。ピットパターン以外の部分
で基板1のニッケル面が露出した時点では、ゲルマニウ
ム−スズ層は薄くなっていた。次にこの円盤を他の真空
エッチング槽にてアルゴン・イオンを照射してニッケル
基板面のエッチングを行い、最後にこの円盤を再び他の
真空槽内にてCF4ガスによる反応性プラズマエッチン
グを行ってSiO2やゲルマニウム−スズ残査を除去
し、ニッケルの一体型原盤を得た。この原盤をスタンパ
として、射出成形機に取り付けて光ディスクを複製した
が、ディスクの性能は従来のスタンパと同等であった。
[Example 1] An outer diameter of 128, which was polished to a mirror surface.
mm, an inner diameter of 35.6 mm, and a thickness of 0.3 mm. A ring-shaped nickel disk that constitutes the substrate 1 is provided with 100 n of silicon dioxide (SiO 2 ) to be the masking film 2 after ion bombardment.
germanium-tin which becomes the phase change film 3 next,
It was deposited by a binary vapor deposition method using a 0 nm EB vapor deposition apparatus. The vapor deposition rates were germanium 0.5 nm / sec and tin 0.25 nm / sec. Next, while rotating this disk, the germanium-tin surface was irradiated with a laser beam focused to a diameter of 1 μm, and a pit pattern signal was recorded.
The recording linear velocity at the laser light irradiation point is 2.5 m / sec, and the output of the recording laser light on the recording surface is 8 mW. Next, this disk was immersed in a 50% nitric acid aqueous solution for 20 seconds and etched to form a pit pattern of a germanium-tin thin film. Next, parallel plate type reactive plasma etching with CF 4 gas was performed in a vacuum chamber to form a pit pattern of a SiO 2 film. The germanium-tin layer was thin at the time when the nickel surface of the substrate 1 was exposed in a portion other than the pit pattern. Next, this disk is irradiated with argon ions in another vacuum etching tank to etch the nickel substrate surface, and finally this disk is again subjected to reactive plasma etching with CF 4 gas in another vacuum tank. SiO 2 and germanium-tin residues were removed to obtain a nickel integrated master. This master was used as a stamper and mounted on an injection molding machine to duplicate an optical disk, but the performance of the disk was equivalent to that of a conventional stamper.

【0020】[実施例2]実施例1の場合と同様の基板
1にシリコンを150nm蒸着し、次いでゲルマニウム
を蒸着した。ゲルマニウムを蒸着中に、ゲルマニウム厚
さが50nmになった時点で、他の蒸発源にてスズをゲ
ルマニウムと同じ蒸着レートで蒸発させ、表面に50n
mのゲルマニウム−スズ組成物を形成した。このように
してできた円盤の表面の膜面にレーザ光を照射して信号
を記録し、実施例1の場合と同様にエッチングして記録
ピットパターンを形成した。ピットパターン形成のため
のエッチング時間は極めて短く実施例1の場合の約1/
5であり、またピット高さの均一性や再現性が極めて良
好であった。その後、マスキング膜2が一部露出した状
態の円盤の表面に直径0.2mm出力15mWのレーザ
光を照射してアニールを施し、次に図示しない真空槽内
にてCF4ガスによる平行平板型の反応性プラズマエッ
チングを行い、未記録部のGe及びSiO2膜を除去し
た。その後、実施例1の場合と同様にニッケル基板のエ
ッチングを行って原盤を得た。
Example 2 Silicon was vapor-deposited on the same substrate 1 as in Example 1 to a thickness of 150 nm, and then germanium was vapor-deposited. When the thickness of germanium reaches 50 nm during the vapor deposition of germanium, tin is vaporized at the same vapor deposition rate as that of germanium by another vaporization source, and 50 n is deposited on the surface.
m germanium-tin composition was formed. The film surface on the disk thus formed was irradiated with laser light to record a signal, and the recording pit pattern was formed by etching as in the case of Example 1. The etching time for forming the pit pattern is extremely short, and is about 1 / th that of the first embodiment.
It was 5, and the pit height uniformity and reproducibility were extremely good. After that, the surface of the disk with the masking film 2 partially exposed is irradiated with laser light having a diameter of 0.2 mm and an output of 15 mW to anneal, and then a parallel plate type CF 4 gas is used in a vacuum chamber (not shown). Reactive plasma etching was performed to remove the Ge and SiO 2 films in the unrecorded area. Then, the nickel substrate was etched in the same manner as in Example 1 to obtain a master.

【0021】[実施例3]実施例1の場合と同様の基板
にシリコンを150nmスパッターし、次いで同一の真
空槽で二元スパッター法にてゲルマニウム−スズを成膜
した。成膜速度はスズが0.1nm/sec一定とし、
ゲルマニウムを初期には1nm/secとし、次第に成
膜速度を低下させ最終的に0.2nm/secとした。
ゲルマニウム−スズの厚さは150nmとした。次に信
号を記録後、実施例1の場合と同様の液を用いてエッチ
ングした。形成されたピットの断面形状は台形をなして
いた。次に実施例2の場合と同様にアニールを施し、そ
の後、実施例1と同様にシリコンのマスキング膜2及び
ニッケルの基板3のエッチングを行い、ニッケルの一体
型原盤を得た。この原盤をスタンパとして、又は、それ
から複製される別のスタンパを射出成形機に取り付けて
光ディスクを複製したが、ピットの断面形状が台形状で
あるため、再生信号のマグニチュードは大きく信号再生
時には良好なトレーサビリティを示した。
[Example 3] Silicon was sputtered on the same substrate as in Example 1 to a thickness of 150 nm, and then germanium-tin was deposited by the dual sputtering method in the same vacuum chamber. The film formation rate was fixed at 0.1 nm / sec for tin,
Germanium was initially set to 1 nm / sec, and the film formation rate was gradually decreased to finally 0.2 nm / sec.
The thickness of germanium-tin was 150 nm. Next, after recording a signal, etching was performed using the same liquid as in Example 1. The formed pit had a trapezoidal sectional shape. Next, annealing was performed in the same manner as in Example 2, and thereafter, the masking film 2 of silicon and the substrate 3 of nickel were etched in the same manner as in Example 1 to obtain a nickel integrated master. This master disc was used as a stamper, or another stamper that was duplicated from it was attached to an injection molding machine to duplicate an optical disc. However, since the pit has a trapezoidal cross-section, the magnitude of the reproduced signal is large and good for signal reproduction. Traceability was demonstrated.

【0022】[0022]

【発明の効果】本発明の光ディスク用原盤の製造方法は
以上説明した通りであるので、次の効果を有する。 1)請求項1記載の光ディスク用原盤の製造方法によれ
ば、従来の相変化膜に比し、熱記録による記録相と未記
録相とのエッチング選択比が極めて大きいので安定な相
変化膜ピット構成ができ、またマスキング膜に対する選
択比をも大きくできるので再現性のよい原盤作製工程と
することができた。 2)請求項2記載の光ディスク用原盤の製造方法によれ
ば、膜厚方向に組成率変化をもたせることにより膜厚方
向でのエッチングレートを制御できるのでピット断面形
状を従来不可能であった台形状にすることができ、ディ
スクの信号トレーサビリティを大幅に向上させることが
できた。 3)請求項3記載の光ディスク用原盤の製造方法によれ
ば、アニールと組み合わせることにより、相変化膜のそ
のまたごく表面のみのエッチング加工ですむのでエッチ
ング時間が極めて短縮され、また再現性に優れた原盤製
造工程とすることができた。
The method of manufacturing an optical disk master according to the present invention is as described above, and has the following effects. 1) According to the method of manufacturing an optical disk master according to claim 1, a stable phase change film pit is obtained because the etching selection ratio between the recorded phase and the unrecorded phase by thermal recording is extremely large as compared with the conventional phase change film. Since the structure can be formed and the selection ratio with respect to the masking film can be increased, the master disk manufacturing process with good reproducibility can be achieved. 2) According to the method of manufacturing an optical disk master according to claim 2, since the etching rate in the film thickness direction can be controlled by changing the composition ratio in the film thickness direction, the pit cross-sectional shape which has been conventionally impossible. It could be shaped and the signal traceability of the disc could be greatly improved. 3) According to the method for producing an optical disk master according to claim 3, when combined with annealing, only the very surface of the phase change film needs to be etched, so that the etching time is extremely shortened and the reproducibility is excellent. It was possible to make a master manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び最近開発された光ディスク用原盤の
製造方法の主要工程を示す断面図である。
FIG. 1 is a cross-sectional view showing main steps of a method of manufacturing an optical disk master according to the present invention and recently developed.

【図2】本発明の光ディスク用原盤の製造方法における
相変化膜のスズの原子組成率とピット高さとの関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the atomic composition ratio of tin and the pit height of the phase change film in the method for manufacturing an optical disk master according to the present invention.

【図3】本発明の光ディスク用原盤の製造方法における
ゲルマニウム−スズ系組成物薄膜のスズ原子組成率に対
するエッチングレートを示すグラフである。
FIG. 3 is a graph showing an etching rate with respect to a tin atom composition ratio of a germanium-tin composition thin film in the method for producing an optical disk master according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 マスキング膜 3 相変化膜 4 相変化部(光照射領域) 5 基板外周保持具 6 基板内周保持具 7 基板保持具 8 原盤 1 substrate 2 masking film 3 phase change film 4 phase change part (light irradiation area) 5 substrate outer circumference holder 6 substrate inner circumference holder 7 substrate holder 8 master

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ディスク用原盤となる基板の上にマス
キング膜を介して設けられた相変化膜に対して、記録す
べき信号に応じた光を照射して熱記録を行った後、エッ
チングを行うことにより、前記相変化膜に凹凸信号パタ
ーンを形成する工程を有する光ディスク用原盤の製造方
法において、 前記相変化膜をゲルマニウムとスズを主成分として構成
するとともに、その原子組成比がGe(1-X)SnX、但し
0.1≦x≦0.5、で表わされるものであることを特
徴とする光ディスク用原盤の製造方法。
1. A phase change film provided on a substrate, which is a master for optical discs, through a masking film is irradiated with light according to a signal to be recorded to perform thermal recording, and then etching is performed. By performing the method, in a method for manufacturing an optical disc master having a step of forming a concavo-convex signal pattern on the phase change film, the phase change film is composed mainly of germanium and tin, and the atomic composition ratio of Ge (1 -X) Sn X , wherein 0.1 ≦ x ≦ 0.5, and a method for manufacturing an optical disk master.
【請求項2】 前記相変化膜内の前記スズの原子組成率
が、前記相変化膜の表面側程大きくなるように膜厚方向
に組成勾配を有するよう、前記相変化膜の組成物の原子
組成比を制御しつつ前記相変化膜を形成することを特徴
とする請求項1記載の光ディスク用原盤の製造方法。
2. The atomic composition of the phase change film so that the atomic composition ratio of tin in the phase change film has a composition gradient in the film thickness direction such that the tin composition ratio increases toward the surface side of the phase change film. The method of manufacturing an optical disk master according to claim 1, wherein the phase change film is formed while controlling a composition ratio.
【請求項3】 前記相変化膜のエッチングにより前記相
変化膜の光未照射部分を除去した後に、形成された相変
化膜ピット部分に対して光を照射してアニールを施す工
程を有する請求項1又は2記載の光ディスク用原盤の製
造方法。
3. A step of irradiating the formed pit portion of the phase change film with light to anneal after removing the non-irradiated portion of the phase change film by etching the phase change film. 1. A method for manufacturing an optical disk master according to 1 or 2.
JP19793194A 1994-07-29 1994-07-29 Production of master disk for optical disk Withdrawn JPH0845115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19793194A JPH0845115A (en) 1994-07-29 1994-07-29 Production of master disk for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19793194A JPH0845115A (en) 1994-07-29 1994-07-29 Production of master disk for optical disk

Publications (1)

Publication Number Publication Date
JPH0845115A true JPH0845115A (en) 1996-02-16

Family

ID=16382672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19793194A Withdrawn JPH0845115A (en) 1994-07-29 1994-07-29 Production of master disk for optical disk

Country Status (1)

Country Link
JP (1) JPH0845115A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482494A2 (en) * 2003-05-28 2004-12-01 Matsushita Electric Industrial Co., Ltd. Method for producing master for optical information recording media
WO2005101398A1 (en) 2004-04-15 2005-10-27 Koninklijke Philips Electronics N.V. Optical master substrate with mask layer and method to manufacture high-density relief structure
JP2009059470A (en) * 2008-12-15 2009-03-19 Sony Corp Manufacturing method of recording medium, and manufacturing method of master disk for manufacturing recording medium
JP2009110652A (en) * 2008-12-15 2009-05-21 Sony Corp Recording medium manufacturing apparatus, and recording medium master disk manufacturing device
JP2013033291A (en) * 2008-10-14 2013-02-14 Asahi Kasei Corp Heat-reactive resist material, laminate for thermal lithography using the same, and method for manufacturing mold using the material and the laminate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482494A2 (en) * 2003-05-28 2004-12-01 Matsushita Electric Industrial Co., Ltd. Method for producing master for optical information recording media
EP1482494A3 (en) * 2003-05-28 2007-08-29 Matsushita Electric Industrial Co., Ltd. Method for producing master for optical information recording media
WO2005101398A1 (en) 2004-04-15 2005-10-27 Koninklijke Philips Electronics N.V. Optical master substrate with mask layer and method to manufacture high-density relief structure
JP2007533064A (en) * 2004-04-15 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical master substrate having mask layer and method for manufacturing high-density relief structure
JP2013033291A (en) * 2008-10-14 2013-02-14 Asahi Kasei Corp Heat-reactive resist material, laminate for thermal lithography using the same, and method for manufacturing mold using the material and the laminate
US9257142B2 (en) 2008-10-14 2016-02-09 Asahi Kasei E-Materials Corporation Heat-reactive resist material, layered product for thermal lithography using the material, and method of manufacturing a mold using the material and layered product
JP2009059470A (en) * 2008-12-15 2009-03-19 Sony Corp Manufacturing method of recording medium, and manufacturing method of master disk for manufacturing recording medium
JP2009110652A (en) * 2008-12-15 2009-05-21 Sony Corp Recording medium manufacturing apparatus, and recording medium master disk manufacturing device
JP4687782B2 (en) * 2008-12-15 2011-05-25 ソニー株式会社 Recording medium manufacturing method and recording medium manufacturing master manufacturing method
JP4687783B2 (en) * 2008-12-15 2011-05-25 ソニー株式会社 Recording medium manufacturing apparatus and recording medium manufacturing master manufacturing apparatus

Similar Documents

Publication Publication Date Title
US8097189B2 (en) Method for manufacturing optical disc master and method for manufacturing optical disc
US7560220B2 (en) Resist material and nanofabrication method
JPS6126952A (en) Production of information carrier
JP2005196953A (en) Method and device for manufacturing stamper for making pattern on cd and dvd
EP1749298B1 (en) Process for producing stamper of multi-valued rom disc, apparatus for producing the same, and resulting disc
JP2000507734A (en) Method of manufacturing optical data storage disk stamper
CA2057017A1 (en) Master for optical element replication
JPH1097738A (en) Production of optical information recording medium and apparatus for production
EP1429323B1 (en) Optical recording medium with phase transition layer and method of manufacturing the optical recording medium
JP2008512808A (en) High density uneven structure replication
JPH0845115A (en) Production of master disk for optical disk
JP2004152465A (en) Method of manufacturing original disk for optical disks, and method of manufacturing optical disk
US20060290018A1 (en) Process for produicng stamper for direct mastering, and stamper produced by such process and optical disc
JP4101736B2 (en) Master, stamper, optical recording medium, and ROM disk manufacturing method
JP2008135090A (en) Resist, manufacturing method of stamper for optical disk using the same and stamper for optical disk
JPH09115190A (en) Production of stamper for optical disk
JPH0660441A (en) Production of stamper for optical disk
JP2735569B2 (en) Manufacturing method of optical disc master
JPS593731A (en) Manufacture of information disk
JPH06195759A (en) Manufacture of original plate of optical disc
JP2005100602A (en) Master disk manufacturing method of recording medium, stamper manufacturing method, recording medium manufacturing method, master disk of recording medium, stamper of recording medium and recording medium
JP2004110936A (en) Method of manufacturing optical disk stamper
JPH05144093A (en) Production of stamper for optical recording medium
FR2826494A1 (en) METHOD FOR MANUFACTURING A MATRIX OF OPTICAL DISCS
JPH0660440A (en) Production of stamper for optical disk

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002