JP2008208431A - Electroforming mold, method of manufacturing electroforming mold and method of manufacturing electroformed component - Google Patents

Electroforming mold, method of manufacturing electroforming mold and method of manufacturing electroformed component Download PDF

Info

Publication number
JP2008208431A
JP2008208431A JP2007047137A JP2007047137A JP2008208431A JP 2008208431 A JP2008208431 A JP 2008208431A JP 2007047137 A JP2007047137 A JP 2007047137A JP 2007047137 A JP2007047137 A JP 2007047137A JP 2008208431 A JP2008208431 A JP 2008208431A
Authority
JP
Japan
Prior art keywords
photoresist
cavity
conductive film
electroforming
electroforming mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007047137A
Other languages
Japanese (ja)
Other versions
JP5030618B2 (en
Inventor
Takashi Niwa
隆 新輪
Matsuo Kishi
松雄 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007047137A priority Critical patent/JP5030618B2/en
Publication of JP2008208431A publication Critical patent/JP2008208431A/en
Application granted granted Critical
Publication of JP5030618B2 publication Critical patent/JP5030618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroforming mold by which a plurality of electroformed components different in thickness are manufactured without dividing the electroforming mold and each of components has an electrode on the bottom surface, and to provide a method of manufacturing the electroforming mold. <P>SOLUTION: The electroforming mold 101 includes a conductive layer 2, many resin layers which is formed on the conductive layer, an intermediate conductive film 5a interposed among the many resin layers, and a plurality of cavities having side walls each surrounded by the resin, wherein the plurality of the cavities comprises a first cavity C1 having a depth penetrating through the whole many resin layers, a second cavity C2 having a depth penetrating through a partial layers in the many resin layers and a switching cavity S having a stepwise structure in every many resin layers, the conductive layer 2 is exposed on the bottom surface of the first cavity C1, the intermediate conductive film 5a is exposed on the bottom surface of the second cavity C2, the conductive layer 2 is exposed on the bottom surface of the switching cavity S, and the intermediate conductive film 5a is exposed on each resin layer having the stepwise structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電鋳法で使用される電鋳型とその製造方法、および、その電鋳型を用いた電鋳部品の製造方法に関するものである。   The present invention relates to an electroforming mold used in an electroforming method, a manufacturing method thereof, and a manufacturing method of an electroformed part using the electroforming mold.

電鋳法は、大量生産に適しており、様々な部品製造に用いられている。たとえば、原型の形状を転写された樹脂表面に導電性膜を堆積し、時計用の針が作製されている(例えば、特許文献1参照。)。原型の樹脂への転写方法としては、加熱プレス成型法が知られている(例えば、特許文献1参照。)。加熱プレス成型法は、樹脂をガラス転位点以上の温度に加熱して軟化させておき、原型を押しつけることによって、樹脂に原型の形状を転写する方法である。加熱プレス成型法では、原型の形状を樹脂にナノメートルオーダーの寸法精度で転写することができる。   The electroforming method is suitable for mass production and is used for manufacturing various parts. For example, a watch is manufactured by depositing a conductive film on a resin surface to which the original shape is transferred (see, for example, Patent Document 1). A heat press molding method is known as a transfer method to the original resin (see, for example, Patent Document 1). The hot press molding method is a method in which the resin is heated to a temperature equal to or higher than the glass transition point and softened, and the original shape is transferred to the resin by pressing the original. In the hot press molding method, the original shape can be transferred to a resin with dimensional accuracy on the order of nanometers.

また、近年、微小な形状を有する部品や金型を製造するための型としてシリコンプロセスを用いた型が利用されている。シリコンプロセスを用いた電鋳法の型の作製方法として、半導体露光装置で用いられている紫外光でレジストパターンを電鋳型として用いる方法(UV−LIGA法)が知られている(例えば、特許文献2参照。)。UV−LIGA法で作製される電鋳法の型は、型の側壁に電極が無く、型の底面から電鋳物が析出するため、高アスペクト比の構造を電鋳法で作製しても、電鋳物の内部に気泡や欠陥がない良好な部品を形成することができる。また、特許文献2で述べられているように、一枚のマスクに複数の部品形状を形成することで、さまざまな種類の部品を一度に作製することができ、多品種少量生産に適した製造方法である。
特開昭52−60241号公報 特開2006−64575号公報
In recent years, a mold using a silicon process has been used as a mold for manufacturing a component or mold having a minute shape. As a method for producing an electroforming mold using a silicon process, there is known a method (UV-LIGA method) in which a resist pattern is used as an electroforming mold with ultraviolet light used in a semiconductor exposure apparatus (for example, patent document). 2). The electroforming mold produced by the UV-LIGA method has no electrode on the side wall of the mold, and the electroformed product is deposited from the bottom surface of the mold. Therefore, even if a high aspect ratio structure is produced by the electroforming method, A good part free from bubbles and defects can be formed inside the casting. In addition, as described in Patent Document 2, by forming a plurality of component shapes on a single mask, various types of components can be manufactured at once, making it suitable for high-mix low-volume production. Is the method.
JP-A-52-60241 JP 2006-64575 A

しかしながら、特許文献1では、形状が転写された樹脂(以下、転写樹脂型)の電鋳を行う面(以下、電鋳面)のすべてに電極を形成して電鋳型を得ている。したがって、電鋳を行うと電鋳型の電極が形成されている全面に電鋳物が析出するため、時計用の針を取り出すには、不要な部分を取り除く必要があった。また、アスペクト比の高い電鋳部品を作製する際に、型側面および型底面から同時に電鋳が行われると、型側面のうち、型底面と逆側、すなわち型の上面部分に電界が集中しやすく、型側面のうち型上面側の電鋳速度が大きくなる。したがって、型上面部分では型側面から析出した電鋳物がつながってしまい、電鋳物の内部に隙間ができてしまう。したがって、電鋳部品の強度や型転写性が低下する問題があった。   However, in Patent Document 1, an electrode is obtained by forming electrodes on all surfaces (hereinafter referred to as electroformed surfaces) on which electroforming of a resin whose shape has been transferred (hereinafter referred to as a transfer resin mold). Therefore, when electroforming is performed, the electroformed product is deposited on the entire surface on which the electrode of the electroforming mold is formed. Therefore, in order to take out the timepiece hand, it is necessary to remove unnecessary portions. In addition, when producing electroformed parts with a high aspect ratio, if electroforming is performed simultaneously from the mold side and the mold bottom, the electric field concentrates on the opposite side of the mold side to the mold bottom, that is, the mold top surface. It is easy to increase the electroforming speed on the mold upper surface side of the mold side surface. Therefore, the electroformed product deposited from the side surface of the die is connected to the upper surface portion of the die, and a gap is formed inside the electroformed product. Therefore, there is a problem that the strength and mold transferability of the electroformed part are lowered.

特許文献2では、電鋳型の底面にだけ電極を形成できるため、電鋳物の内部に隙間の無い電鋳部品を製造できる。しかし、特許文献2では、さまざまな種類の部品を一度に電鋳できるが、厚さが同じフォトレジストを型としているため、異なる厚さの部品を得るためには、同じ厚さの部品同士を一区画に集約し、区画毎に研磨量を異ならせることによって、それぞれ所定の厚さを得る必要があり、研磨前に区画毎に電鋳型を分割する工程が必要となる問題があった。   In Patent Document 2, since the electrode can be formed only on the bottom surface of the electroforming mold, it is possible to manufacture an electroformed part having no gap inside the electroformed product. However, in Patent Document 2, various types of parts can be electroformed at the same time. However, since photoresists having the same thickness are used as molds, in order to obtain parts having different thicknesses, parts having the same thickness can be combined with each other. There is a problem that it is necessary to obtain a predetermined thickness by consolidating into one section and making the amount of polishing different for each section, and a step of dividing the electroforming mold for each section before polishing.

本発明は、上記の問題点を鑑みてなされたものであり、電鋳型を分割することなく複数の厚さの異なる部品を製造でき、各部品の底面に電極を有する電鋳型とその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and it is possible to manufacture a plurality of parts having different thicknesses without dividing the electroforming mold, and to provide an electroforming mold having an electrode on the bottom surface of each part and a manufacturing method thereof. The purpose is to provide.

上記目的を達成するために、本発明は、導電体と、前記導電体上に形成されている多層の樹脂と、前記多層の樹脂間に挟まれている中間導電膜と、前記樹脂によりそれぞれ側壁を囲まれた複数のキャビティーを有し、前記複数のキャビティーは、前記多層の樹脂の全層に渡る深さの第1のキャビティーと、前記多層の樹脂の一部の層に渡る深さの第2のキャビティーと、前記多層の樹脂毎に階段状の構造を持つ第3のキャビティーとからなり、前記第1のキャビティーの底面には前記導電体が露出し、前記第2のキャビティーの底面には前記中間導電膜が露出し、前記第3のキャビティーの底面には前記導電体が露出するとともに、前記階段状構造の前記樹脂の各層の上に前記中間導電膜が露出している電鋳型とした。   In order to achieve the above object, the present invention provides a conductor, a multilayer resin formed on the conductor, an intermediate conductive film sandwiched between the multilayer resins, and a sidewall by the resin. A plurality of cavities surrounded by a plurality of cavities, wherein the plurality of cavities include a first cavity having a depth over the whole layer of the multilayer resin and a depth over a part of the layers of the multilayer resin. The second cavity and a third cavity having a step-like structure for each of the multilayer resins, and the conductor is exposed on the bottom surface of the first cavity, and the second cavity The intermediate conductive film is exposed at the bottom surface of the cavity, the conductor is exposed at the bottom surface of the third cavity, and the intermediate conductive film is formed on each layer of the resin having the stepped structure. The exposed electroforming mold was used.

また、本発明は、前記第2のキャビティーを複数備え、前記第3のキャビティーに露出している前記中間導電膜が、複数の前記第2のキャビティー底面に接続されている電鋳型とした。   The present invention also provides an electroforming mold comprising a plurality of the second cavities, wherein the intermediate conductive film exposed to the third cavities is connected to a plurality of bottom surfaces of the second cavities. did.

また、本発明は、前記第1のキャビティー及び前記第2のキャビティーが、それぞれ複数配置されている電鋳型とした。   Moreover, the present invention is an electroforming mold in which a plurality of the first cavities and the second cavities are arranged.

また、本発明は、前記樹脂は少なくとも3層以上であり、前記第2のキャビティーの深さが少なくとも2種類以上である電鋳型とした。   In the present invention, the resin has at least three layers or more and the depth of the second cavity is at least two types.

さらに、本発明は、上記の電鋳型を製造する方法であって、導電体上に第1フォトレジストを形成する第1フォトレジスト形成工程と、前記第1フォトレジストに可溶部と不溶部を形成する第1露光工程と、前記第1露光工程で形成された前記不溶部上に中間導電膜を形成する中間導電膜形成工程と、前記第1フォトレジストおよび前記中間導電膜上に第2フォトレジストを形成する第2フォトレジスト形成工程と、前記第2フォトレジスト、および/または、前記第1フォトレジストに可溶部と不溶部を形成する第2露光工程と、前記第1露光工程および前記第2露光工程によって形成された前記可溶部を除去する現像工程からなる電鋳型の製造方法とした。   Furthermore, the present invention is a method of manufacturing the above electroforming mold, wherein a first photoresist forming step of forming a first photoresist on a conductor, a soluble portion and an insoluble portion in the first photoresist are provided. A first exposure step to be formed; an intermediate conductive film forming step for forming an intermediate conductive film on the insoluble portion formed in the first exposure step; and a second photo on the first photoresist and the intermediate conductive film. A second photoresist forming step for forming a resist; a second exposure step for forming a soluble portion and an insoluble portion in the second photoresist and / or the first photoresist; the first exposure step; The electroforming mold manufacturing method includes a developing process for removing the soluble portion formed in the second exposure process.

また、本発明は、前記第1フォトレジストの厚さが、形成する部品の最大の厚さと最小の厚さの差である電鋳型の製造方法とした。   Also, the present invention provides an electroforming method in which the thickness of the first photoresist is a difference between the maximum thickness and the minimum thickness of components to be formed.

また、本発明は、前記現像工程を実施する前に、前記中間導電膜形成工程と、前記第2フォトレジスト形成工程と、前記第2露光工程を複数回繰り返して実施する電鋳型の製造方法とした。   In addition, the present invention provides an electroforming manufacturing method in which the intermediate conductive film forming step, the second photoresist forming step, and the second exposure step are repeated a plurality of times before the developing step is performed. did.

さらに、本発明は、上記の電鋳型を用いて電鋳部品を作製する電鋳部品の製造方法であって、前記電鋳型に電鋳を行う電鋳工程と、前記電鋳工程で形成した不要な電鋳物を除去する研磨工程からなり、前記研磨工程は、さらに電鋳を行った前記電鋳型を分離・分割することなく前記電鋳型に形成された部品の厚さを制御し、厚さの異なる部品を得る電鋳部品の製造方法とした。   Furthermore, the present invention is a method of manufacturing an electroformed part that produces an electroformed part using the above electroforming mold, the electroforming process for performing electroforming on the electroforming mold, and the unnecessary formation formed in the electroforming process A polishing step for removing the electroformed product, and the polishing step further controls the thickness of the parts formed on the electroforming mold without separating and dividing the electroforming mold that has been electroformed. It was set as the manufacturing method of the electroformed part which obtains different parts.

また、本発明は、前記電鋳工程において、前記中間導電膜に前記電鋳物が接触した際に電流密度を一定にする電流密度調整工程が含まれている電鋳部品の製造方法とした。   Further, the present invention provides an electroformed component manufacturing method including a current density adjusting step of making the current density constant when the electroformed product contacts the intermediate conductive film in the electroforming step.

本発明では、平滑な第1フォトレジストおよび中間導電膜上に第2フォトレジストを塗布するため、第2フォトレジストの厚さ制御が容易であり、厚さの異なる部品のそれぞれの厚さを第1フォトレジストおよび第2フォトレジストの厚さで規定することが容易となり、一つの電鋳型内に厚さの異なる部品のキャビティーを形成することができる。また、導電層が深いキャビティーおよび階段状キャビティー内で露出し、第1フォトレジスト上に中間導電膜を設け、その上に浅いキャビティーを形成し、階段状キャビティーの段差上にも中間導電膜を配置することで、浅いキャビティー内の底部からだけ電鋳物を成長させることができる。したがって、厚さが異なり、かつ、内部に隙間がない部品を、電鋳型を分割することなく一度の研磨工程で形成することができる。   In the present invention, since the second photoresist is applied onto the smooth first photoresist and the intermediate conductive film, the thickness of the second photoresist can be easily controlled. It becomes easy to define by the thickness of the first photoresist and the second photoresist, and cavities of parts having different thicknesses can be formed in one electroforming mold. In addition, the conductive layer is exposed in the deep cavity and the stepped cavity, the intermediate conductive film is provided on the first photoresist, the shallow cavity is formed thereon, and the intermediate layer is also formed on the step of the stepped cavity. By disposing the conductive film, the electroformed product can be grown only from the bottom in the shallow cavity. Therefore, parts having different thicknesses and no gaps inside can be formed in a single polishing step without dividing the electroforming mold.

以下に、本発明を実施するにあたっての最良の形態について、図面を参照して詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明に係る電鋳型とその製造方法の例を説明する図であり、厚さが異なる二種類の部品を電鋳法にて製造するための電鋳型の例を示す。   FIG. 1 is a diagram for explaining an example of an electroforming mold and a manufacturing method thereof according to the present invention, and shows an example of an electroforming mold for manufacturing two types of parts having different thicknesses by an electroforming method.

図1(a)は、導電体である導電層2が形成された基板1上に第1フォトレジスト3を堆積する第1フォトレジスト堆積工程を説明する図である。図1(a)に示すように、基板1上に導電層2を形成した後、第1フォトレジスト3を堆積する。基板1の厚さは、数10μmから数mmであり、後述する電鋳工程において電鋳型101の強度が保てる厚さであれば良い。導電層2の厚さは、数10nmから数μmであり、後述する電鋳工程において導通がとれる厚さであれば良い。第1フォトレジスト3の厚さは、数μmから数mmであり、作製する各部品の厚い部品と薄い部品のそれぞれの厚さの差とほぼ同じである。   FIG. 1A is a diagram illustrating a first photoresist deposition process in which a first photoresist 3 is deposited on a substrate 1 on which a conductive layer 2 as a conductor is formed. As shown in FIG. 1A, after forming a conductive layer 2 on a substrate 1, a first photoresist 3 is deposited. The thickness of the substrate 1 is several tens of μm to several mm, and may be any thickness that can maintain the strength of the electroforming mold 101 in the electroforming process described later. The thickness of the conductive layer 2 is from several tens of nm to several μm, and may be any thickness as long as conduction can be obtained in an electroforming process described later. The thickness of the first photoresist 3 is several μm to several mm, and is almost the same as the difference in thickness between the thick part and the thin part of each part to be manufactured.

基板1の材料は、ガラスやシリコンなどのシリコンプロセスで一般的に用いられる材料や、ステンレススチールやアルミニウム(Al)などの金属材料を用いる。また、導電層2の材料は、金(Au)、銀(Ag)、ニッケル(Ni)などである。導電層2と基板1との間には、導電層2の密着力を強くするためのアンカーメタル(図示しない)としてクロム(Cr)やチタン(Ti)などを形成しても良い。なお、基板1の材料が金属の場合には、基板1自体が導電体となるため、導電層2は必ずしも必要ではない。第1フォトレジスト3は、ネガ型のフォトレジストを用いる。第1フォトレジスト3は、化学増幅型のフォトレジストでも良い。高アスペクト比な構造を作製する場合、第1フォトレジスト3は、エポキシ系の樹脂をベースとする化学増幅型のフォトレジストを用いるのが望ましい。   As the material of the substrate 1, a material generally used in a silicon process such as glass or silicon, or a metal material such as stainless steel or aluminum (Al) is used. The material of the conductive layer 2 is gold (Au), silver (Ag), nickel (Ni), or the like. Chromium (Cr), titanium (Ti), or the like may be formed between the conductive layer 2 and the substrate 1 as an anchor metal (not shown) for enhancing the adhesion of the conductive layer 2. When the material of the substrate 1 is a metal, the substrate 1 itself becomes a conductor, and thus the conductive layer 2 is not always necessary. The first photoresist 3 is a negative photoresist. The first photoresist 3 may be a chemically amplified photoresist. When a high aspect ratio structure is manufactured, it is desirable to use a chemically amplified photoresist based on an epoxy resin as the first photoresist 3.

導電層2の形成方法は、スパッタ法や真空蒸着法などである。第1フォトレジスト3の堆積方法は、スピンコート、ディップコート、スプレーコートや、シート状のフォトレジストフィルムを基板1に貼り付けても良い。また、シート状のフォトレジストフィルムを複数枚重ね合わせて所望の厚さの第1フォトレジスト3としても良い。   The formation method of the conductive layer 2 is a sputtering method, a vacuum evaporation method, or the like. As a method for depositing the first photoresist 3, spin coating, dip coating, spray coating, or a sheet-like photoresist film may be attached to the substrate 1. Alternatively, a plurality of sheet-like photoresist films may be stacked to form the first photoresist 3 having a desired thickness.

図1(b)は、不溶部3aと可溶部3bとを形成する第1露光工程を説明する図である。第1フォトレジスト3を堆積した後、図1(b)に示すように、マスク10を通して露光光999を第1フォトレジスト3に照射し、不溶部3aと可溶部3bを形成する。不溶部3aと可溶部3bとを形成するために、紫外光をフォトマスクを通して露光する。また、第1フォトレジスト3が化学増幅型の場合、露光した後にPEB(Post Exposure Bake)を行う。   FIG. 1B is a view for explaining a first exposure step for forming the insoluble part 3a and the soluble part 3b. After depositing the first photoresist 3, as shown in FIG. 1B, the first photoresist 3 is irradiated with exposure light 999 through a mask 10 to form insoluble portions 3a and soluble portions 3b. In order to form the insoluble portion 3a and the soluble portion 3b, ultraviolet light is exposed through a photomask. When the first photoresist 3 is a chemical amplification type, PEB (Post Exposure Bake) is performed after exposure.

次に、図1(c)は、第1フォトレジスト3の上に中間導電膜5aを形成する中間導電膜形成工程を説明する図である。図1(b)で説明した第1フォトレジスト3の露光工程後、第1フォトレジスト3の現像を行わずに中間導電膜5aを形成する。中間導電膜5aの厚さは、数nm〜数μmであり、後述する電鋳工程において導通がとれる厚さであれば良い。中間導電膜5aの材料は、金(Au)、銀(Ag)、ニッケル(Ni)、銅(Cu)などであり、中間導電膜5aと不溶部3aとの間に中間導電膜5aの密着力を強くするためのアンカーメタル(図示しない)としてクロム(Cr)やチタン(Ti)などを形成しても良い。また、中間導電膜5aの堆積方法は、スパッタ法や真空蒸着法などの気相堆積法や、無電解メッキなどのウエット法を用い、リフトオフ法やエッチングなどの方法によってパターニングする。   Next, FIG. 1C is a diagram for explaining an intermediate conductive film forming step for forming the intermediate conductive film 5 a on the first photoresist 3. After the exposure process of the first photoresist 3 described with reference to FIG. 1B, the intermediate conductive film 5a is formed without developing the first photoresist 3. The thickness of the intermediate conductive film 5a is several nm to several μm, and may be any thickness as long as conduction can be obtained in an electroforming process described later. The material of the intermediate conductive film 5a is gold (Au), silver (Ag), nickel (Ni), copper (Cu), etc., and the adhesion of the intermediate conductive film 5a between the intermediate conductive film 5a and the insoluble portion 3a. Chromium (Cr), titanium (Ti), or the like may be formed as an anchor metal (not shown) for strengthening. The intermediate conductive film 5a is deposited using a vapor deposition method such as a sputtering method or a vacuum evaporation method, or a wet method such as electroless plating, and is patterned by a lift-off method or an etching method.

次に、図1(d)は、中間導電膜5aの上に第2フォトレジスト6を堆積する第2フォトレジスト堆積工程を説明する図である。第2フォトレジスト6の厚さは、数μmから数mmであり、作製する部品のうち薄い部品の厚さとほぼ同じである。あるいは、第2フォトレジスト6の厚さは、作製する部品のうち薄い部品の厚さに加えて、後述する研磨工程で、第2フォトレジスト6が除去される分を加えた厚さとしてもよい。第2フォトレジスト6は、ネガ型でもポジ型でもよい。また、第2フォトレジスト6は、化学増幅型のフォトレジストでも良い。高アスペクト比な構造を作製する場合、第2フォトレジスト6は、エポキシ系の樹脂をベースとする化学増幅型のフォトレジストを用いるのが望ましい。なお、第2フォトレジスト6の材料は、後述する現像工程で同一の現像液で現像できるため、第1フォトレジスト3と同じである方が望ましいが、第1フォトレジスト3と別の材料であっても良い。   Next, FIG. 1D is a diagram for explaining a second photoresist deposition process for depositing the second photoresist 6 on the intermediate conductive film 5a. The thickness of the second photoresist 6 is several μm to several mm, and is almost the same as the thickness of the thin part among the parts to be manufactured. Alternatively, the thickness of the second photoresist 6 may be a thickness obtained by adding the amount of removal of the second photoresist 6 in the polishing step described later in addition to the thickness of the thin component among the components to be manufactured. . The second photoresist 6 may be a negative type or a positive type. The second photoresist 6 may be a chemically amplified photoresist. In the case of producing a high aspect ratio structure, it is desirable to use a chemically amplified photoresist based on an epoxy resin as the second photoresist 6. The material of the second photoresist 6 is preferably the same as the first photoresist 3 because it can be developed with the same developer in the development process described later, but is different from the first photoresist 3. May be.

第2フォトレジスト6の堆積方法は、スピンコート、ディップコート、スプレーコートや、シート状のフォトレジストフィルムを貼り付けても良い。また、シート状のフォトレジストフィルムを複数枚重ね合わせて所望の厚さの第2フォトレジスト6としても良い。   The second photoresist 6 may be deposited by spin coating, dip coating, spray coating, or a sheet-like photoresist film. Alternatively, a plurality of sheet-like photoresist films may be stacked to form the second photoresist 6 having a desired thickness.

次に、図1(e)は、不溶部6aと可溶部6bおよび不溶部3cとを形成する第2露光工程を説明する図である。不溶部6aと可溶部6b、および、不溶部3cとを形成するために、紫外光をフォトマスクを通して露光する。また、第2フォトレジスト6が化学増幅型の場合、露光した後にPEB(Post Exposure Bake)を行う。フォトマスクP1は、第2フォトレジスト6の一部と図1(b)で説明した第1露光工程で露光されなかった可溶部3bを覆うように位置あわせする。フォトマスクP2は、第2フォトレジスト6の一部と中間導電膜5aを覆うように位置あわせする。また、フォトマスクP3は、フォトレジスト6の一部と中間導電膜5aの一部および不溶部3bとを覆うように位置あわせする。   Next, FIG.1 (e) is a figure explaining the 2nd exposure process which forms the insoluble part 6a, the soluble part 6b, and the insoluble part 3c. In order to form the insoluble part 6a, the soluble part 6b, and the insoluble part 3c, ultraviolet light is exposed through a photomask. When the second photoresist 6 is a chemically amplified type, PEB (Post Exposure Bake) is performed after exposure. The photomask P1 is positioned so as to cover a part of the second photoresist 6 and the soluble portion 3b that has not been exposed in the first exposure process described with reference to FIG. The photomask P2 is aligned so as to cover a part of the second photoresist 6 and the intermediate conductive film 5a. The photomask P3 is aligned so as to cover a part of the photoresist 6, a part of the intermediate conductive film 5a, and the insoluble part 3b.

次に、図1(f)は、可溶部3bおよび6bを除去する現像工程を説明する図である。現像は、第1フォトレジスト3および第2フォトレジスト6を現像液中に基板を漬けて実施する。現像工程によって、第1のキャビティーC1、第2のキャビティーC2、および第3のキャビティーであるスイッチングキャビティーSが形成された電鋳型101が得られる。   Next, FIG. 1 (f) is a diagram for explaining a developing process for removing the soluble portions 3b and 6b. The development is performed by immersing the first photoresist 3 and the second photoresist 6 in a developing solution. The electroforming mold 101 in which the first cavity C1, the second cavity C2, and the switching cavity S as the third cavity are formed is obtained by the development process.

次に、上記製造方法で作製された電鋳型101を用いて電鋳部品を製造する手順について、図2および図3を参照して説明する。   Next, a procedure for manufacturing an electroformed part using the electroforming mold 101 manufactured by the above manufacturing method will be described with reference to FIGS.

図2は、電鋳型101を用いた電鋳工程を説明する図である。電鋳槽21内に電鋳液22が満たされており、その電鋳液22に、電鋳型101と電極23が浸されている。電鋳液22は、析出させる金属によって異なるが、たとえば、ニッケルを析出させる場合、スルファミン酸ニッケル水和塩を含む水溶液を使用する。また、電極23の材料は、析出させたい金属とほぼ同一の材料であり、ニッケルを析出させる場合は、ニッケルとし、ニッケル板や、チタンバスケットにニッケルボールを入れたものを電極23として用いる。なお、本発明の製造方法で析出する材料はニッケルに限定されるわけではない。銅(Cu)、コバルト(Co)、スズ(Sn)等、電鋳可能な材料すべてに適用可能である。電鋳型101の導電層2は、電源Vに接続されている。電源Vの電圧によって、導電層2を通して電子が供給されることによって、導電層2から徐々に金属が析出する。析出した金属は、基板1の厚さ方向に成長する。   FIG. 2 is a diagram for explaining an electroforming process using the electroforming mold 101. The electroforming liquid 22 is filled in the electroforming tank 21, and the electroforming mold 101 and the electrode 23 are immersed in the electroforming liquid 22. The electroforming liquid 22 varies depending on the metal to be deposited. For example, when nickel is deposited, an aqueous solution containing nickel sulfamate hydrate is used. The material of the electrode 23 is substantially the same material as the metal to be deposited. When nickel is deposited, nickel is used, and a nickel plate or a nickel basket with a nickel ball is used as the electrode 23. The material deposited by the production method of the present invention is not limited to nickel. The present invention is applicable to all materials that can be electroformed, such as copper (Cu), cobalt (Co), and tin (Sn). The conductive layer 2 of the electroforming mold 101 is connected to the power source V. When electrons are supplied through the conductive layer 2 by the voltage of the power source V, metal is gradually deposited from the conductive layer 2. The deposited metal grows in the thickness direction of the substrate 1.

図3は、電鋳型101を用いて電鋳部品100を作製する工程を説明する図である。図2で説明した電鋳工程によって、図3(a)に示すように導電層2から電鋳物100aが析出する。すなわち、表面に導電層2が露出している第1のキャビティーC1とスイッチングキャビティーS内に、電鋳物100aが析出する。このとき、中間導電膜5aには電流が流れないため、中間導電膜5a上の第2のキャビティーC2には電鋳物100aは析出しない。   FIG. 3 is a diagram for explaining a process for producing the electroformed component 100 using the electroforming mold 101. By the electroforming process described with reference to FIG. 2, the electroformed product 100 a is deposited from the conductive layer 2 as shown in FIG. That is, the electroformed product 100a is deposited in the first cavity C1 and the switching cavity S where the conductive layer 2 is exposed on the surface. At this time, since no current flows through the intermediate conductive film 5a, the electroformed product 100a does not precipitate in the second cavity C2 on the intermediate conductive film 5a.

次に、図3(b)は、第1フォトレジスト3の不溶部3aおよび3cの厚さだけ電鋳物100aが成長した状態を示す図である。このときまでは、中間導電膜5aには、電流が流れないため、中間導電膜5a上の第2のキャビティーC2には電鋳物100aは析出しない。   Next, FIG. 3B is a diagram showing a state in which the electroformed product 100a has grown by the thickness of the insoluble portions 3a and 3c of the first photoresist 3. Until this time, since no current flows through the intermediate conductive film 5a, the electroformed product 100a does not precipitate in the second cavity C2 on the intermediate conductive film 5a.

図3(c)は、第2フォトレジスト6の不溶部6aまでの厚さの途中まで電鋳物100aが成長した状態を示す図である。図3(b)で説明した状態から、電鋳物100aが第1フォトレジスト3の厚さ以上に成長すると、スイッチングキャビティーS内では電鋳物100aが厚さ方向に加えて横方向にも成長し、電鋳物100aが中間導電膜5aに接触する。中間導電膜5aに電鋳物100aが接触することで、中間導電膜5aにも電流が流れるため、中間導電膜5a上にも電鋳物100aが析出し始め、第2のキャビティーC2内にも電鋳物100aが第2のキャビティーC2の底面から成長し始める。   FIG. 3C is a diagram showing a state in which the electroformed product 100a has grown up to the middle of the thickness up to the insoluble portion 6a of the second photoresist 6. When the electroformed product 100a grows beyond the thickness of the first photoresist 3 from the state described in FIG. 3B, the electroformed product 100a grows in the lateral direction in addition to the thickness direction in the switching cavity S. The electroformed product 100a contacts the intermediate conductive film 5a. When the electroformed product 100a comes into contact with the intermediate conductive film 5a, a current also flows through the intermediate conductive film 5a. Therefore, the electroformed product 100a starts to deposit on the intermediate conductive film 5a, and the electroformed product 100a also enters the second cavity C2. The casting 100a begins to grow from the bottom surface of the second cavity C2.

電鋳物100aが中間導電膜5aに接触したとき、電鋳する面積が増え、定電圧電源の場合には、電流値が大きくなり、定電流電源の場合には、電圧値が上昇する。電鋳物100aのヤング率や応力や硬さなどの物性値は、電流密度の影響を大きく受けるため、電鋳物100aのこれらの物性値が不安定となる可能性がある。そこで、電鋳物100aの物性値を安定させるために、電鋳物100aが中間導電膜5aに接触した瞬間に、電流密度が一定となるように電源の電圧や電流を変化させる電流密度調整工程を施しても良い。   When the electroformed product 100a comes into contact with the intermediate conductive film 5a, the area to be electroformed increases. In the case of a constant voltage power supply, the current value increases, and in the case of a constant current power supply, the voltage value increases. Since the physical property values such as Young's modulus, stress, and hardness of the electroformed product 100a are greatly affected by the current density, these physical property values of the electroformed product 100a may become unstable. Therefore, in order to stabilize the physical properties of the electroformed product 100a, a current density adjusting step is performed in which the voltage and current of the power source are changed so that the current density becomes constant at the moment when the electroformed product 100a contacts the intermediate conductive film 5a. May be.

次に、図3(d)は、電鋳物100aを所望の厚さまで析出させた状態を示す図である。このとき、図3(d)に示すように、第1のキャビティーC1、第2のキャビティーC2、および、スイッチングキャビティーSにおける電鋳物100aそれぞれの表面の相対的な高さは、ほぼ同じである。なぜならば、第1のキャビティーC1およびスイッチングキャビティーS内の電鋳物が、第2のキャビティーC2の底面近傍まで成長したときから、第2のキャビティーC2内の電鋳物100aが成長し始めるためである。したがって、電鋳型101表面からの電鋳物100aの飛び出し量d1を小さくすることができる。   Next, FIG.3 (d) is a figure which shows the state which deposited the electrocast 100a to desired thickness. At this time, as shown in FIG. 3D, the relative heights of the respective surfaces of the electroformed product 100a in the first cavity C1, the second cavity C2, and the switching cavity S are substantially the same. It is. This is because when the electroformed product in the first cavity C1 and the switching cavity S grows to the vicinity of the bottom surface of the second cavity C2, the electroformed product 100a in the second cavity C2 starts to grow. Because. Therefore, the amount of projection d1 of the electroformed product 100a from the surface of the electroforming mold 101 can be reduced.

次に、図3(e)は、各キャビティーそれぞれの電鋳物100aの相対的な高さを揃える研磨工程を説明する図である。電鋳物100aを所望の高さまで析出させた後、研磨工程によって各キャビティーそれぞれの電鋳物100aの相対的な高さを揃える。研磨工程の前に、研削工程を行ってもよい。なお、電鋳工程において、電鋳物100aの厚さ制御が可能である場合、研磨工程を行わなくても良い。   Next, FIG.3 (e) is a figure explaining the grinding | polishing process which arrange | equalizes the relative height of the electroformed product 100a of each cavity. After depositing the electroformed product 100a to a desired height, the relative heights of the electroformed products 100a of the respective cavities are aligned by a polishing process. A grinding step may be performed before the polishing step. In the electroforming process, when the thickness of the electroformed product 100a can be controlled, the polishing process may not be performed.

次に、図3(f)に示すように、電鋳型101から電鋳物100aを取り出して、互いに厚さの異なる電鋳部品PA1、PA2を得る。また、スイッチングキャビティーS内から取り出された電鋳物100aも、多段構造を有する電鋳部品PA3として利用することができる。電鋳物100aの取り出しは、不溶部3aおよび不溶部6aを有機溶剤で溶かしたり、電鋳物100aに基板1から分離するような力を加えて物理的に引き剥がしたりしてもよい。また、導電層2および中間導電膜5aが電鋳物100aに付着している場合には、ウエットエッチングや研磨などの方法を用いて除去する。なお、部品の機能上、導電層2や中間導電膜5aが付着していても問題がない場合には、導電層2や中間導電膜5aは除去しなくても良い。また、導電層2や中間導電膜5aが部品の機能上必要である場合は、導電層2や中間導電膜5aは除去しない。   Next, as shown in FIG. 3 (f), the electroformed product 100a is taken out from the electroforming mold 101, and electroformed parts PA1 and PA2 having different thicknesses are obtained. The electroformed product 100a taken out from the switching cavity S can also be used as the electroformed component PA3 having a multi-stage structure. The electroformed product 100a may be taken out by dissolving the insoluble portion 3a and the insoluble portion 6a with an organic solvent, or physically peeling the electroformed product 100a by applying a force that separates the electroformed product 100a from the substrate 1. When the conductive layer 2 and the intermediate conductive film 5a are attached to the electroformed product 100a, the conductive layer 2 and the intermediate conductive film 5a are removed using a method such as wet etching or polishing. If there is no problem even if the conductive layer 2 and the intermediate conductive film 5a are attached due to the function of the component, the conductive layer 2 and the intermediate conductive film 5a may not be removed. When the conductive layer 2 and the intermediate conductive film 5a are necessary for the function of the component, the conductive layer 2 and the intermediate conductive film 5a are not removed.

以上説明したように、本発明の電鋳型の製造方法によれば、平滑な1段目の第1フォトレジスト3、および中間導電膜5a上に2段目の第2フォトレジスト6を塗布するため、2段目の第2フォトレジスト6の厚さ制御が容易であり、厚さの異なる部品のそれぞれの厚さを第1フォトレジスト3および第2フォトレジスト6の厚さで規定することが容易となり、一つの電鋳型内に厚さの異なる部品のキャビティーを形成することができる。   As described above, according to the method for manufacturing an electroforming mold of the present invention, the first photoresist 3 in the first stage which is smooth and the second photoresist 6 in the second stage are applied on the intermediate conductive film 5a. It is easy to control the thickness of the second-stage second photoresist 6, and it is easy to define the thicknesses of parts having different thicknesses by the thickness of the first photoresist 3 and the second photoresist 6. Thus, cavities of parts having different thicknesses can be formed in one electroforming mold.

また、導電層2が厚い部品用の第1のキャビティーC1およびスイッチングキャビティーS内で露出し、1段目の第1フォトレジスト3上に中間導電膜5aを設け、その上に薄い部品用の第2のキャビティーC2を形成し、スイッチングキャビティーSの段差上にも中間導電膜5aを配置することで、第2のキャビティーC2内の底部からだけ電鋳物100aを成長させることができる。したがって、厚さが異なり、かつ、内部に隙間がない部品を、電鋳型を分割することなく一度の研磨工程で形成することができる。   Further, the conductive layer 2 is exposed in the first cavity C1 and the switching cavity S for thick parts, and an intermediate conductive film 5a is provided on the first photoresist 3 in the first stage, and for the thin parts thereon. By forming the second cavity C2 and disposing the intermediate conductive film 5a also on the step of the switching cavity S, the electroformed product 100a can be grown only from the bottom in the second cavity C2. . Therefore, parts having different thicknesses and no gaps inside can be formed in a single polishing step without dividing the electroforming mold.

なお、これまでは、厚さが異なる二種類の部品を作製する電鋳型101とその製造方法、および、電鋳形101を用いた部品の作製方法について説明してきたが、図1(f)で説明した現像工程前に、図1(c)で説明した中間導電膜形成工程から図1(d)で説明した第2フォトレジスト形成工程を複数回繰り返し行うことで、3種類以上の厚さの異なる部品を製造することができる。   Heretofore, the electroforming mold 101 for producing two types of parts having different thicknesses, the manufacturing method thereof, and the manufacturing method of the parts using the electroformed mold 101 have been described, but FIG. 1 (f). Before the developing process described above, the intermediate photoresist film forming process described with reference to FIG. 1C to the second photoresist forming process described with reference to FIG. Different parts can be manufactured.

図4は、本発明の変形例として、3種類の厚さの異なる部品を製造できる電鋳型の例を示す図である。図4に示すように、この電鋳型102には、電鋳型101に対して第2フォトレジスト6の表面上にさらに中間導電膜5bが形成され、この中間導電膜5bの上に第3のキャビティーC3が形成されている。これにより、第1のキャビティーC1に析出する電鋳物100aと、第2のキャビティーC2に析出する電鋳物100aと、第3のキャビティーC3に析出する電鋳物100aは、それぞれ互いに厚さの異なる3種類の厚さの電鋳部品として利用することができる。また、この電鋳型102のスイッチングキャビティーS内から取り出された電鋳物100aは、3段構造を有する電鋳部品として利用することができる。   FIG. 4 is a diagram showing an example of an electroforming mold capable of manufacturing three types of parts having different thicknesses as a modified example of the present invention. As shown in FIG. 4, in the electroforming mold 102, an intermediate conductive film 5b is further formed on the surface of the second photoresist 6 with respect to the electroforming mold 101, and a third cavity is formed on the intermediate conductive film 5b. A tee C3 is formed. As a result, the electroformed product 100a deposited in the first cavity C1, the electroformed product 100a deposited in the second cavity C2, and the electroformed product 100a deposited in the third cavity C3 have a thickness of each other. It can be used as an electroformed part having three different thicknesses. Further, the electroformed product 100a taken out from the switching cavity S of the electroforming mold 102 can be used as an electroformed component having a three-stage structure.

また、図5は、本発明の他の変形例として、第1のキャビティーC1、第2のキャビティーC2およびスイッチングキャビティーSを、それぞれ複数有する電鋳型の例を示す断面図である。図5に示す電鋳型103は、図1で説明した製造工程において、マスク10およびフォトマスクPの形状を変えるだけで形成することができる。   FIG. 5 is a cross-sectional view showing an example of an electroforming mold having a plurality of first cavities C1, second cavities C2, and switching cavities S as another modification of the present invention. The electroforming mold 103 shown in FIG. 5 can be formed simply by changing the shapes of the mask 10 and the photomask P in the manufacturing process described with reference to FIG.

また、図6は、本発明の他の変形例として、一対の第2のキャビティーC2に対して一つの共通のスイッチングキャビティーSを有する電鋳型の例を示す断面図である。図6に示すように、この電鋳型104は、スイッチングキャビティーSの中間導電膜5aが一対の第2のキャビティーC2のそれぞれの底面の中間導電膜5aと接続されている。このため、一つのスイッチングキャビティーSで複数の第2のキャビティーC2へ通電することができ、スイッチングキャビティーSの型内での個数を少なくすることができ、その分、第1のキャビティーC1や第2のキャビティーC2を多く配置することができる。図6では、一つのスイッチングキャビティーSに対して二つのキャビティーC2を接続した例を示しているが、二次元的に配線することで、一つのスイッチングキャビティーSで3個以上の第2のキャビティーC2へ通電することができる。   Moreover, FIG. 6 is sectional drawing which shows the example of the electroforming mold which has one common switching cavity S with respect to a pair of 2nd cavity C2, as another modification of this invention. As shown in FIG. 6, in this electroforming mold 104, the intermediate conductive film 5a of the switching cavity S is connected to the intermediate conductive film 5a on the bottom surface of each of the pair of second cavities C2. Therefore, a plurality of second cavities C2 can be energized by one switching cavity S, and the number of switching cavities S in the mold can be reduced. Many C1 and 2nd cavity C2 can be arrange | positioned. FIG. 6 shows an example in which two cavities C2 are connected to one switching cavity S. However, two or more second cavities C2 are connected by two-dimensional wiring. It is possible to energize the cavity C2.

本発明に係る電鋳型とその製造方法の例を説明する断面図である。It is sectional drawing explaining the example of the electroforming mold which concerns on this invention, and its manufacturing method. 本発明に係る電鋳型を用いた電鋳工程を説明する図である。It is a figure explaining the electroforming process using the electroforming mold which concerns on this invention. 本発明に係る電鋳型を用いて電鋳部品を作製する工程を説明する断面図である。It is sectional drawing explaining the process of producing an electroformed component using the electroforming mold which concerns on this invention. 本発明に係る電鋳型の変形例を示す断面図である。It is sectional drawing which shows the modification of the electroforming mold which concerns on this invention. 本発明に係る電鋳型の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the electroforming mold which concerns on this invention. 本発明に係る電鋳型の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the electroforming mold which concerns on this invention.

符号の説明Explanation of symbols

1 基板
2 導電層
3 第1フォトレジスト
3a、3c 不溶部
3b 可溶部
5a 中間導電膜
6 第2フォトレジスト
6a 不溶部
6b 可溶部
101、102、103、104 電鋳型
C1 第1のキャビティー
C2 第2のキャビティー
S スイッチングキャビティー
PA1,PA2,PA3 電鋳部品
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive layer 3 First photoresist 3a, 3c Insoluble part 3b Soluble part 5a Intermediate conductive film 6 Second photoresist 6a Insoluble part 6b Soluble part 101, 102, 103, 104 Electroforming mold C1 First cavity C2 Second cavity S Switching cavity PA1, PA2, PA3 Electroformed parts

Claims (9)

導電体と
前記導電体上に形成されている多層の樹脂と、
前記多層の樹脂間に挟まれている中間導電膜と、
前記樹脂によりそれぞれ側壁を囲まれた複数のキャビティーを有し、
前記複数のキャビティーは、前記多層の樹脂の全層に渡る深さの第1のキャビティーと、前記多層の樹脂の一部の層に渡る深さの第2のキャビティーと、前記多層の樹脂毎に階段状の構造を持つ第3のキャビティーとからなり、
前記第1のキャビティーの底面には前記導電体が露出し、前記第2のキャビティーの底面には前記中間導電膜が露出し、前記第3のキャビティーの底面には前記導電体が露出するとともに、前記階段状構造の前記樹脂の各層の上に前記中間導電膜が露出していることを特徴とする電鋳型。
A conductor and a multilayer resin formed on the conductor;
An intermediate conductive film sandwiched between the multilayer resins;
A plurality of cavities each surrounded by a side wall by the resin;
The plurality of cavities include a first cavity having a depth over the entire layer of the multilayer resin, a second cavity having a depth over a part of the multilayer resin, and the multilayer cavity. It consists of a third cavity with a stepped structure for each resin,
The conductor is exposed on the bottom surface of the first cavity, the intermediate conductive film is exposed on the bottom surface of the second cavity, and the conductor is exposed on the bottom surface of the third cavity. And the intermediate conductive film is exposed on each layer of the resin having the stepped structure.
前記第2のキャビティーを複数備え、前記第3のキャビティーに露出している前記中間導電膜が、複数の前記第2のキャビティー底面に接続されていることを特徴とする請求項1に記載の電鋳型。   The plurality of second cavities are provided, and the intermediate conductive film exposed to the third cavity is connected to the bottom surfaces of the plurality of second cavities. The electromold described. 前記第1のキャビティー及び前記第2のキャビティーが、それぞれ複数配置されていることを特徴とする請求項1または請求項2に記載の電鋳型。   The electroforming mold according to claim 1 or 2, wherein a plurality of the first cavities and the second cavities are arranged. 前記樹脂は少なくとも3層以上であり、前記第2のキャビティーの深さが少なくとも2種類以上であることを特徴とする請求項2または請求項3に記載の電鋳型。   The electroforming mold according to claim 2 or 3, wherein the resin has at least three layers and the depth of the second cavity is at least two kinds. 請求項1から4のいずれか1項に記載の電鋳型を製造する方法であって、
導電体上に第1フォトレジストを形成する第1フォトレジスト形成工程と、
前記第1フォトレジストに可溶部と不溶部を形成する第1露光工程と、
前記第1露光工程で形成された前記不溶部上に中間導電膜を形成する中間導電膜形成工程と、
前記第1フォトレジストおよび前記中間導電膜上に第2フォトレジストを形成する第2フォトレジスト形成工程と、
前記第2フォトレジスト、および/または、前記第1フォトレジストに可溶部と不溶部を形成する第2露光工程と、
前記第1露光工程および前記第2露光工程によって形成された前記可溶部を除去する現像工程からなることを特徴とする電鋳型の製造方法。
A method for producing the electroforming mold according to any one of claims 1 to 4,
A first photoresist forming step of forming a first photoresist on the conductor;
A first exposure step of forming a soluble portion and an insoluble portion in the first photoresist;
An intermediate conductive film forming step of forming an intermediate conductive film on the insoluble portion formed in the first exposure step;
A second photoresist forming step of forming a second photoresist on the first photoresist and the intermediate conductive film;
A second exposure step of forming a soluble part and an insoluble part in the second photoresist and / or the first photoresist;
A method for producing an electroforming mold, comprising: a developing step for removing the soluble portion formed by the first exposure step and the second exposure step.
前記第1フォトレジストの厚さが、形成する部品の最大の厚さと最小の厚さの差であることを特徴とする請求項5に記載の電鋳型の製造方法。   6. The method of manufacturing an electroforming mold according to claim 5, wherein the thickness of the first photoresist is a difference between the maximum thickness and the minimum thickness of components to be formed. 前記現像工程を実施する前に、前記中間導電膜形成工程と、前記第2フォトレジスト形成工程と、前記第2露光工程を複数回繰り返して実施することを特徴とする請求項5または請求項6に記載の電鋳型の製造方法。   7. The intermediate conductive film forming step, the second photoresist forming step, and the second exposure step are repeated a plurality of times before performing the developing step. The manufacturing method of the electroforming mold as described in 2. 請求項1から4のいずれか1項に記載の電鋳型を用いて電鋳部品を作製する電鋳部品の製造方法であって、
前記電鋳型に電鋳を行う電鋳工程と、
前記電鋳工程で形成した不要な電鋳物を除去する研磨工程からなり、
前記研磨工程は、さらに電鋳を行った前記電鋳型を分離・分割することなく前記電鋳型に形成された部品の厚さを制御し、厚さの異なる部品を得ることを特徴とする電鋳部品の製造方法。
An electroformed component manufacturing method for producing an electroformed component using the electroforming mold according to any one of claims 1 to 4,
An electroforming process for electroforming the electroforming mold;
It consists of a polishing process to remove unnecessary electroformed products formed in the electroforming process,
The polishing step further controls the thickness of the parts formed on the electroforming mold without separating and dividing the electroforming mold that has been electroformed to obtain parts having different thicknesses. A manufacturing method for parts.
前記電鋳工程において、前記中間導電膜に前記電鋳物が接触した際に電流密度を一定にする電流密度調整工程が含まれていることを特徴とする請求項8に記載の電鋳部品の製造方法。   9. The process for producing an electroformed part according to claim 8, wherein the electroforming step includes a current density adjusting step for making the current density constant when the electroformed product comes into contact with the intermediate conductive film. Method.
JP2007047137A 2007-02-27 2007-02-27 Electroforming mold and manufacturing method thereof Expired - Fee Related JP5030618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047137A JP5030618B2 (en) 2007-02-27 2007-02-27 Electroforming mold and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047137A JP5030618B2 (en) 2007-02-27 2007-02-27 Electroforming mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008208431A true JP2008208431A (en) 2008-09-11
JP5030618B2 JP5030618B2 (en) 2012-09-19

Family

ID=39784984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047137A Expired - Fee Related JP5030618B2 (en) 2007-02-27 2007-02-27 Electroforming mold and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5030618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122120A (en) * 2010-12-10 2012-06-28 Seiko Instruments Inc Electroforming mold and method of producing the same
CN112045907A (en) * 2019-06-07 2020-12-08 劳力士有限公司 Manufacture of timepiece components
JP2021523303A (en) * 2018-08-22 2021-09-02 ニヴァロックス−ファー ソシエテ アノニム How to make a timekeeper component and the components obtained by this method
JP7112472B2 (en) 2019-12-18 2022-08-03 ニヴァロックス-ファー ソシエテ アノニム Method for making timepiece components and components resulting from this method
JP7527184B2 (en) 2020-02-28 2024-08-02 シチズン時計株式会社 Manufacturing method of electroformed products and electroformed products

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207293A (en) * 1991-12-19 1994-07-26 Microparts G Fuer Mikrostrukturtechnik Mbh Stepped die insert and stepped micro structure
JP2006064575A (en) * 2004-08-27 2006-03-09 Seiko Epson Corp Components of watch, sub-assembly of watch, and watch
JP2006169620A (en) * 2004-12-20 2006-06-29 Seiko Instruments Inc Electroforming die and its production method
JP2007046147A (en) * 2005-01-14 2007-02-22 Seiko Instruments Inc Electroforming mold and method for manufacturing the same, and method for manufacturing electroformed component
JP2007070678A (en) * 2005-09-06 2007-03-22 Seiko Instruments Inc Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP2007070709A (en) * 2005-09-09 2007-03-22 Seiko Instruments Inc Electroforming die, method for producing electroforming die, and method for producing electroformed component
WO2008018261A1 (en) * 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207293A (en) * 1991-12-19 1994-07-26 Microparts G Fuer Mikrostrukturtechnik Mbh Stepped die insert and stepped micro structure
JP2006064575A (en) * 2004-08-27 2006-03-09 Seiko Epson Corp Components of watch, sub-assembly of watch, and watch
JP2006169620A (en) * 2004-12-20 2006-06-29 Seiko Instruments Inc Electroforming die and its production method
JP2007046147A (en) * 2005-01-14 2007-02-22 Seiko Instruments Inc Electroforming mold and method for manufacturing the same, and method for manufacturing electroformed component
JP2007070678A (en) * 2005-09-06 2007-03-22 Seiko Instruments Inc Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP2007070709A (en) * 2005-09-09 2007-03-22 Seiko Instruments Inc Electroforming die, method for producing electroforming die, and method for producing electroformed component
WO2008018261A1 (en) * 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122120A (en) * 2010-12-10 2012-06-28 Seiko Instruments Inc Electroforming mold and method of producing the same
JP2021523303A (en) * 2018-08-22 2021-09-02 ニヴァロックス−ファー ソシエテ アノニム How to make a timekeeper component and the components obtained by this method
US11181868B2 (en) 2018-08-22 2021-11-23 Nivarox-Far S.A. Method for manufacturing a timepiece component and component obtained by this method
JP6992210B2 (en) 2018-08-22 2022-01-13 ニヴァロックス-ファー ソシエテ アノニム How to make a timekeeper component and the components obtained by this method
CN112045907A (en) * 2019-06-07 2020-12-08 劳力士有限公司 Manufacture of timepiece components
JP7112472B2 (en) 2019-12-18 2022-08-03 ニヴァロックス-ファー ソシエテ アノニム Method for making timepiece components and components resulting from this method
JP7527184B2 (en) 2020-02-28 2024-08-02 シチズン時計株式会社 Manufacturing method of electroformed products and electroformed products

Also Published As

Publication number Publication date
JP5030618B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5239056B2 (en) Electroforming mold manufacturing method, electroforming mold and electroformed part manufacturing method
EP2004881B1 (en) Process for the fabrication of liga-uv multilayer metallic structures, the layers being adjacent and not completely superimposed, and structure therefrom.
JP5030618B2 (en) Electroforming mold and manufacturing method thereof
CN112987491B (en) Method for manufacturing a timepiece assembly and assembly obtained according to such a method
JP4550569B2 (en) Electroforming mold and manufacturing method thereof
CN112987492B (en) Method for manufacturing a timepiece component and component manufactured according to said method
CN113009780B (en) Method for manufacturing a timepiece component and component obtained by this method
JP4515207B2 (en) Mold manufacturing method and parts manufactured using the mold
JP2008230083A (en) Stamper manufacturing method
JP2006341500A (en) Laminated structure, donor substrate and manufacturing method of laminated structure
JP4546232B2 (en) Electroforming mold and manufacturing method thereof
JP5073880B1 (en) Method of manufacturing transfer mold and transfer mold
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same
Lee et al. Fabrication of a large-scale Ni stamp using a multi-level SU-8 photoresist mold for advanced printed circuit board manufacturing
JP4785481B2 (en) Electroforming mold, manufacturing method thereof, and manufacturing method of electroformed part
US11181868B2 (en) Method for manufacturing a timepiece component and component obtained by this method
US20090277795A1 (en) Process for fabricating molding stamp
JP2004226639A (en) Manufacturing method of microlens array
TW200949462A (en) Method for manufacturing mold core
KR100834511B1 (en) Manufacturing method of stamper for imprinting
JPS61221391A (en) Original plate for formation of molding tool and formation of molding tool using said plate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees