JPH06199236A - Meandering control device for bogie of rolling stock - Google Patents
Meandering control device for bogie of rolling stockInfo
- Publication number
- JPH06199236A JPH06199236A JP1793493A JP1793493A JPH06199236A JP H06199236 A JPH06199236 A JP H06199236A JP 1793493 A JP1793493 A JP 1793493A JP 1793493 A JP1793493 A JP 1793493A JP H06199236 A JPH06199236 A JP H06199236A
- Authority
- JP
- Japan
- Prior art keywords
- bogie
- control device
- sensor
- wheel
- bogie frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、鉄道車両台車に特有
の不安定現象である蛇行動を抑制し、鉄道車両の安定限
界速度を飛躍的に向上させることのできる鉄道車両台車
の蛇行動制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses a snake movement which is an unstable phenomenon peculiar to a rail car bogie, and can drastically improve the stable limit speed of the rail car. Regarding the device.
【0002】[0002]
【従来の技術】現用されている鉄道車両台車は、ほとん
どが2軸ボギーを採用しており、それぞれの形式や各部
の構造には数多くの種類があるが、台車としての基本構
造や構成はほぼ同じであり、一般に台車枠、揺れ枕装
置、ばね装置、軸受軸箱、軸箱支持装置、輪軸、基礎ブ
レーキ装置等によって構成される。その台車としての基
本構造は図10A、Bに示すように、台車枠1、車軸
2、車輪3、軸箱4、一次ばね5および二次ばね6より
構成される。そして、車輪3には曲線路の通過を容易に
するために、踏面勾配θが付けられた円錐輪が用いられ
ている。2. Description of the Related Art Most of the currently used bogies for railway vehicles employ a biaxial bogie, and although there are many types of each type and structure of each part, the basic structure and constitution of the bogie are almost the same. It is the same and is generally composed of a bogie frame, a swing pillow device, a spring device, a bearing axle box, an axle box support device, a wheel axle, a basic brake device, and the like. As shown in FIGS. 10A and 10B, the basic structure of the bogie includes a bogie frame 1, an axle 2, wheels 3, an axle box 4, a primary spring 5 and a secondary spring 6. Further, a conical ring having a tread slope θ is used for the wheel 3 in order to facilitate passage through a curved road.
【0003】そのため、レールに接する踏面位置によっ
て踏面半径が異なり、更に車輪は使用摩耗により不正斉
となる。また、2本のレールは施設上からも、保守上か
らも幾何学的に誤差を免れない。これらが原因となり、
車輪の左右中心は線路中心に対し偏位した位置で転走す
る。その上、転走時に受ける抵抗は、左右車輪で異なり
踏面においてすべりを生じ、一方の車輪は他方の車輪よ
り多く進むか、あるいは遅く進むため、車輪には遅れま
たは進みの走行角が生じ最大値に達した後は、逆に進み
または遅れの走行角の最大値に達して1サイクル(図1
1に蛇行の波長Lで示す)を終わる。このサイクルを繰
り返したときの輪軸中心の転送軌跡は、一定の波長並び
に振幅をもった曲線を描き、いわゆる蛇行軌道曲線とな
る。よって、鉄道車両の走行速度が高くなるにつれて、
輪軸の蛇行の振動数は大きくなり、ある速度で一次ばね
の固有振動数と一致する。その結果、台車全体が大きく
蛇行するようになり、鉄道車両の安定走行が維持できな
くなる。この現象は、蛇行動と呼ばれており、また蛇行
動の発生する走行速度を安定限界速度と呼ぶ。For this reason, the tread radius varies depending on the position of the tread contacting the rail, and the wheels are asymmetric due to wear. In addition, the two rails are subject to geometrical errors from the viewpoint of facilities and maintenance. Because of these,
The center of the wheel on the left and right rolls at a position deviated from the center of the track. In addition, the resistance received during rolling is different for the left and right wheels, causing slippage on the tread, and one wheel advances more or slower than the other wheel, so a running angle of delay or advance occurs on the wheel and the maximum value After reaching the maximum value, the maximum value of the traveling angle is advanced or delayed for one cycle (Fig. 1).
1) (shown by the meandering wavelength L). When this cycle is repeated, the transfer locus around the wheel axle draws a curve having a constant wavelength and amplitude, and is a so-called meandering orbit curve. Therefore, as the running speed of the railway vehicle increases,
The meandering frequency of the wheel set increases and at a certain speed matches the natural frequency of the primary spring. As a result, the entire bogie becomes meandering greatly, and the stable running of the railcar cannot be maintained. This phenomenon is called snake action, and the traveling speed at which snake action occurs is called the stable limit speed.
【0004】上記のごとく、蛇行動は本質的には避けら
れない現象であるが、安定限界速度を向上させることは
可能である。その、安定限界速度を向上させるための従
来方法としては、一次ばね(軸ばね)のばね定数を大き
くして固有振動数を大きくする方法や、図12に示すよ
うに、車体8と台車枠1との間にヨーダンパ9を設置
し、蛇行動を減衰させる方法がある。As described above, the snake behavior is essentially an unavoidable phenomenon, but it is possible to improve the stability limit speed. As a conventional method for improving the stability limit speed, a method of increasing the spring constant of the primary spring (axial spring) to increase the natural frequency, or as shown in FIG. 12, the vehicle body 8 and the bogie frame 1 are used. There is a method of installing a yaw damper 9 between and to attenuate the snake action.
【0005】また、鉄道車両の乗り心地の向上を目的に
なされた発明に輪軸ヨー角制御装置付鉄道用車両(特開
平3−258655号公報)がある。これは図13に示
すように、台車枠1と輪軸との間に流体アクチュエータ
10を設置し、記憶装置11に予め蓄積しておいた軌道
不整等に関する情報を外部からの信号(速度信号、AT
S信号、異常信号、非常停止信号等)に従い随時読み出
し、制御器12で制御入力を計算し、前記流体アクチュ
エータ10に入力する構成となっている。Further, as an invention aimed at improving the riding comfort of a railway vehicle, there is a railway vehicle with a wheel-axis yaw angle control device (Japanese Patent Laid-Open No. 3-258655). As shown in FIG. 13, a fluid actuator 10 is installed between the bogie frame 1 and the wheel axle, and information on the track irregularity or the like stored in the storage device 11 in advance is transmitted from an external signal (speed signal, AT).
The signal is read out at any time according to the S signal, the abnormal signal, the emergency stop signal, etc.), the control input is calculated by the controller 12, and the control input is input to the fluid actuator 10.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術の内、一
次ばねのばね定数を大きくして固有振動数を大きくする
方法やヨーダンパを用いる方法は、容易に実現でき蛇行
動の抑制効果もあるが、軌道不整を台車枠や車体に振動
として伝えやすくなり、通常走行時の乗り心地が悪化す
る。一方、特開平3−258655号公報の「輪軸ヨー
角制御装置付鉄道用車両」は、通常走行時の乗り心地の
向上には効果があるが、不安定現象である蛇行動の抑制
に効果的であるとはいえない。Among the above-mentioned conventional techniques, the method of increasing the spring constant of the primary spring to increase the natural frequency and the method of using the yaw damper can be easily realized and have an effect of suppressing the snake action. , It becomes easy to convey the irregularity of the track to the bogie frame or the vehicle body as vibration, and the riding comfort during normal traveling deteriorates. On the other hand, the "railroad vehicle equipped with a wheel-axis yaw angle control device" disclosed in Japanese Patent Laid-Open No. 3-258655 is effective in improving the riding comfort during normal running, but is effective in suppressing the snake action, which is an unstable phenomenon. It cannot be said that.
【0007】この発明は、上記のごとく従来技術には乗
り心地を維持したまま蛇行動を抑制し得る制御装置は出
現していない現状に鑑みて、通常走行時の乗り心地を悪
化させずに、高速走行時に発生する蛇行動を抑制し、安
定限界速度を向上させることのできる鉄道車両台車の蛇
行動制御装置を提供するものである。In view of the present situation in which the control device capable of suppressing the snake action while maintaining the riding comfort has not appeared in the prior art as described above, the present invention does not deteriorate the riding comfort during normal traveling, (EN) Provided is a snake movement control device for a bogie of a railway vehicle, which can suppress a snake movement that occurs during high-speed traveling and improve a stable limit speed.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、この発明の鉄道車両台車の蛇行動制御装置は台車枠
と輪軸との間に設置した流体アクチュエータ、該輪軸の
振動を検知するセンサ、該センサからの検知信号に基づ
いて前記流体アクチュエータを前後軸で個別に制御する
二つの安定化制御器からなり、高速走行時の鉄道車両台
車に特有の不安定現象である蛇行動を抑制し、鉄道車両
の安定限界速度を向上させる機能を有するように構成さ
れる。In order to achieve the above object, a serpentine motion control device for a bogie of a railcar according to the present invention is a fluid actuator installed between a bogie frame and a wheel shaft, a sensor for detecting vibration of the wheel shaft, It consists of two stabilization controllers that individually control the fluid actuators in the front-rear axis based on the detection signal from the sensor, and suppresses the snake action that is an unstable phenomenon peculiar to a railcar bogie during high-speed traveling, It is configured to have a function of improving the stable limit speed of a railway vehicle.
【0009】また、台車枠と輪軸との間に設置した流体
アクチュエータ、該輪軸および台車枠の振動を検知する
センサ、該センサからの検知信号に基づいて前記流体ア
クチュエータを前後軸で同時に制御する一つの安定化制
御器からなり、高速走行時の鉄道車両台車に特有の不安
定現象である蛇行動を抑制し、鉄道車両の安定限界速度
を向上させる機能を有するように構成される。Further, a fluid actuator installed between the bogie frame and the wheel shaft, a sensor for detecting vibrations of the wheel shaft and bogie frame, and one for simultaneously controlling the fluid actuator on the front and rear shafts based on a detection signal from the sensor It is composed of two stabilization controllers, and has a function of suppressing the meandering behavior, which is an unstable phenomenon peculiar to the railcar bogie at high speed, and improving the stable limit speed of the railcar.
【0010】[0010]
【作用】図1は、請求項1の発明により、前後輪軸を個
別に制御する蛇行動制御装置の構成を示したものであ
る。流体アクチュエータ10は、台車枠1と軸箱4との
間に車軸2に対し垂直方向に設置され、輪軸7にヨー方
向の制御力を発生させる。軸箱4にはセンサ13が取付
けられ、輪軸7の左右方向およびヨー方向の振動を検知
する。上記センサからの信号は安定化制御器14に入力
され、輪軸7の運動を安定化させるための制御信号uF
および制御信号uRを計算する。これらの制御信号は、
制御弁15に入力され、上記流体アクチュエータ10を
ヨー方向に駆動する。1 shows the structure of a snake movement control device for individually controlling the front and rear wheel shafts according to the first aspect of the present invention. The fluid actuator 10 is installed between the bogie frame 1 and the axle box 4 in a direction perpendicular to the axle 2, and causes the wheel axle 7 to generate a control force in the yaw direction. A sensor 13 is attached to the axle box 4 and detects vibrations of the wheel axle 7 in the left-right direction and the yaw direction. The signal from the sensor is input to the stabilization controller 14 and a control signal u F for stabilizing the movement of the wheel set 7 is obtained.
And calculate the control signal u R. These control signals are
It is input to the control valve 15 and drives the fluid actuator 10 in the yaw direction.
【0011】図2は、請求項2の発明により、前後輪軸
を一体に制御する蛇行動制御装置の構成を示したもので
ある。この場合には、台車枠1を介して生じる前後輪軸
間の干渉を考慮するために、台車枠1にもセンサ13を
設置し、台車枠1の運動も考慮して設計した一つの安定
化制御器14を用いている。FIG. 2 shows the structure of a snake movement control device for integrally controlling the front and rear wheel shafts according to the second aspect of the invention. In this case, in order to take into consideration the interference between the front and rear wheel shafts generated through the bogie frame 1, a sensor 13 is also installed in the bogie frame 1 and one stabilization control designed in consideration of the movement of the bogie frame 1 is also performed. The container 14 is used.
【0012】図1あるいは図2における安定化制御器1
4の構成図を図3に示す。制御対象(図1の場合には輪
軸7の運動、図2の場合には輪軸7および台車枠1の運
動)の内部状態に注目して1式のようなモデルを作成す
る。Stabilization controller 1 in FIG. 1 or FIG.
FIG. 3 shows a configuration diagram of No. 4. A model like one set is created by paying attention to the internal state of the controlled object (the movement of the wheel axle 7 in the case of FIG. 1, and the movement of the wheel axle 7 and the bogie frame 1 in the case of FIG. 2).
【0013】[0013]
【数1】 [Equation 1]
【0014】ここで、tは時間、x(t)は内部状態の
ベクトル、u(t)は制御信号のベクトル、y(t)は
センサ出力のベクトルである。Here, t is time, x (t) is a vector of internal state, u (t) is a vector of control signal, and y (t) is a vector of sensor output.
【0015】上記モデルを基にして、安定化制御器14
は2式に示すオブザーバ16と3式に示す状態フィード
バック17から構成される。Based on the above model, the stabilizing controller 14
Is composed of an observer 16 shown in Equation 2 and a state feedback 17 shown in Equation 3.
【0016】[0016]
【数2】 [Equation 2]
【0017】3式 u(t)=FxE(t)Equation 3 u (t) = Fx E (t)
【0018】オブザーバ16は、センサ出力y(t)か
ら内部状態の推定値xE(t)を求めるものであり、行
列Kは推定速度を決定するパラメータである。状態フィ
ードバック17は上記オブザーバで得られた内部状態を
用いて、制御対象を安定化させる制御信号u(t)を計
算する。フィードバックゲインFは、公知の制御理論で
ある最適レギュレータ理論により得られる。すなわち、
3式の状態フィードバックを行ったとき、内部状態x
(t)と制御信号u(t)に関する下記4式の評価関数
Jを最小にするフィードバックゲインFを採用する。The observer 16 obtains the estimated value x E (t) of the internal state from the sensor output y (t), and the matrix K is a parameter that determines the estimated speed. The state feedback 17 uses the internal state obtained by the observer to calculate the control signal u (t) that stabilizes the control target. The feedback gain F is obtained by the optimum regulator theory which is a known control theory. That is,
When the state feedback of formula 3 is performed, the internal state x
A feedback gain F that minimizes the evaluation function J of the following four expressions regarding (t) and the control signal u (t) is adopted.
【0019】[0019]
【数3】 [Equation 3]
【0020】[0020]
実施例1 請求項1の発明の実施による図1に示した前後輪軸を個
別に制御する蛇行動制御装置に基づいて説明する。輪軸
7の振動を検知するセンサとして、図4に示すように加
速度計18を設置し、軸箱4の左右および前後方向の振
動加速度aF1、aF2、aF3、aF4、aR1、aR2、aR3、
aR4を検知する。Embodiment 1 An explanation will be given based on the snake movement control device for individually controlling the front and rear wheel axles shown in FIG. 1 according to the implementation of the invention of claim 1. As a sensor for detecting the vibration of the wheel set 7, an accelerometer 18 is installed as shown in FIG. 4, and the vibration acceleration a F1 , a F2 , a F3 , a F4 , a R1 , a in the left and right and front and rear directions of the axle box 4 is set. R2 , a R3 ,
a Detect R4 .
【0021】上記センサ出力は、図5に示すようにA/
D変換装置19でディジタル値に変換され、制御用コン
ピュータ20に入力される。この制御用コンピュータ2
0内では、先ずセンサ出力変換部21で下記5式に示す
演算を行い、輪軸左右振動加速度aFL、aRLおよび輪軸
ヨー角加速度aFY、aRYを計算する。As shown in FIG. 5, the sensor output is A /
The digital value is converted by the D conversion device 19 and input to the control computer 20. This control computer 2
Within 0, first, the sensor output conversion unit 21 performs the calculation shown in the following equation 5 to calculate the wheel shaft lateral vibration accelerations a FL , a RL and the wheel shaft yaw angular accelerations a FY , a RY .
【0022】5式 aFL=(aF1+aF2)/2 aRL=(aR1+aR2)/2 aFY=(aF3−aF4)/2b1 aRY=(aR3−aR4)/2b1 ただし、b1は輪軸7の中心から加速度計18までの距
離である。上記の結果を用いて、安定化制御計算部22
で輪軸7に発生させるヨー方向の制御力に相当する制御
信号uFおよびuRを計算する。上記安定化制御計算部は
2式および3式に示した安定化制御器14を下記6式お
よび7式に示すようにディジタル化し、さらにソフトウ
ェア化したものである。Formula 5 a FL = (a F1 + a F2 ) / 2 a RL = (a R1 + a R2 ) / 2 a FY = (a F3 −a F4 ) / 2b 1 a RY = (a R3 −a R4 ) / 2b 1 However, b1 is the distance from the center of the wheel axle 7 to the accelerometer 18. Using the above result, the stabilization control calculation unit 22
The control signals u F and u R corresponding to the control force in the yaw direction generated on the wheel set 7 are calculated by. The above-mentioned stabilization control calculation unit is the one in which the stabilization controller 14 shown in the equations (2) and (3) is digitized as shown in the following equations (6) and (7), and further softwareized.
【0023】6式 xE(k+1)=DDxE(k)+BDu(k)+KDy
(k) 7式 u(k)=FDxE(k) ただし、k=0、1、2、…はディジタル化された時間
を表す。上記により求められた制御信号は、D/A変換
装置23でアナログ値に変換された後、制御弁15に入
力される。Expression 6 x E (k + 1) = D D x E (k) + B D u (k) + K D y
(K) Equation 7 u (k) = F D x E (k) where k = 0, 1, 2, ... Represents digitized time. The control signal obtained as described above is converted into an analog value by the D / A converter 23 and then input to the control valve 15.
【0024】実施例2 請求項2の発明の実施による図2に示した前後輪軸を同
時に制御する蛇行動制御装置に基づいて説明する。輪軸
7および台車枠1の振動を検知するセンサとして、図6
に示すように加速度計18を設置し、軸箱4の左右およ
び前後方向の振動加速度aF1、aF2、aF3、aF4、
aR1、aR2、aR3、aR4、更に、輪軸中心上における台
車枠1の左右方向の振動加速度aF5、aR5を検知する。Embodiment 2 An explanation will be given on the basis of the snake action control device for simultaneously controlling the front and rear wheel shafts shown in FIG. 2 according to the embodiment of the invention of claim 2. As a sensor for detecting the vibration of the wheel set 7 and the bogie frame 1, FIG.
As shown in FIG. 3, the accelerometer 18 is installed, and the vibration accelerations a F1 , a F2 , a F3 , a F4 in the left and right and front and rear directions of the axle box 4 are set.
a R1 , a R2 , a R3 , a R4, and further vibration accelerations a F5, a R5 in the left-right direction of the bogie frame 1 on the center of the wheel axle are detected.
【0025】実施例1と同様に、上記センサ出力は、図
7に示すようにA/D変換装置19でディジタル値に変
換され、制御用コンピュータ20に入力される。この制
御用コンピュータ20内では、先ずセンサ出力変換部2
1で下記8式に示す演算を行い、輪軸左右振動加速度a
FL、aRLおよび輪軸ヨー角加速度aFY、aRY、更に台車
中心上における台車左右振動加速度aTL、台車ヨー角加
速度aTYを計算する。As in the first embodiment, the sensor output is converted into a digital value by the A / D converter 19 as shown in FIG. 7 and input to the control computer 20. In the control computer 20, first, the sensor output conversion unit 2
The calculation shown in the following equation 8 is performed in step 1, and the wheel axle lateral vibration acceleration a
Calculate FL , a RL, wheel axle yaw angular accelerations a FY , a RY , bogie lateral vibration acceleration a TL on the bogie center, and bogie yaw angular acceleration a TY .
【0026】8式 aFL=(aF1+aF2)/2 aRL=(aR1+aR2)/2 aFY=(aF3−aF4)/2b1 aRY=(aR3−aR4)/2b1 aTL=(aF5+aF6)/2 aTY=(aF5−aF6)/2b2 Eq. 8 a FL = (a F1 + a F2 ) / 2 a RL = (a R1 + a R2 ) / 2 a FY = (a F3 −a F4 ) / 2b 1 a RY = (a R3 −a R4 ) / 2b 1 a TL = (a F5 + a F6) / 2 a TY = (a F5 -a F6) / 2b 2
【0027】ただし、b2は台車中心から加速度計18
までの距離である。上記の結果を用いて、安定化制御計
算部22で輪軸7および台車枠1を安定化させるために
発生させるヨー方向の制御力に相当する制御信号uFお
よびuRを計算する。そして、上記で求めた制御信号
は、D/A変換装置23でアナログ値に変換され、制御
弁15に入力される。However, b 2 is the accelerometer 18 from the center of the carriage.
Is the distance to. Using the above result, the stabilization control calculation unit 22 calculates the control signals u F and u R corresponding to the control force in the yaw direction generated for stabilizing the wheel axle 7 and the bogie frame 1. Then, the control signal obtained above is converted into an analog value by the D / A conversion device 23 and input to the control valve 15.
【0028】実施例3 請求項2の発明の実施による図2に示した前後輪軸を同
時に制御する蛇行動制御装置に基づいた他の実施例につ
いて説明する。輪軸7と台車枠1の振動を検知するセン
サとして、図6に示す加速度計18に図8に示す変位計
24を追加し、軸箱4の左右および前後方向の振動加速
度および輪軸中心上における台車枠1の左右方向の振動
加速度aF1、aF2、aF3、aF4、aF5、aR1、aR2、a
R3、aR4、aR5に加えて、軸箱4と台車枠1との間の左
右および前後方向の相対変位dF1、dF2、dF3、dF4、
dR1、dR2、dR3、dR4を検知する。Embodiment 3 Another embodiment based on the serpentine motion control device for simultaneously controlling the front and rear wheel shafts shown in FIG. 2 according to the implementation of the invention of claim 2 will be described. 8 is added to the accelerometer 18 shown in FIG. 6 as a sensor for detecting the vibrations of the wheel shaft 7 and the bogie frame 1, and the vibration acceleration in the left-right and front-rear directions of the axle box 4 and the bogie on the wheel shaft center are added. Vibration acceleration in the left-right direction of the frame 1 a F1 , a F2 , a F3 , a F4 , a F5 , a R1 , a R2 , a
In addition to R3 , a R4, and a R5 , the relative displacements d F1 , d F2 , d F3 , d F4 between the axle box 4 and the bogie frame 1 in the left-right and front-rear directions,
Detects d R1 , d R2 , d R3 , and d R4 .
【0029】実施例2と同様に、上記センサ出力は、図
9に示すようにA/D変換装置19でディジタル値に変
換され、制御用コンピュータ20に入力される。この制
御用コンピュータ20内では、先ずセンサ出力変換部2
1で上記8式に加え、下記9式を使って左右相対変位d
FL、dRLおよびヨー相対角度dFY、dRYを計算する。As in the second embodiment, the sensor output is converted into a digital value by the A / D converter 19 as shown in FIG. 9 and input to the control computer 20. In the control computer 20, first, the sensor output conversion unit 2
1 in addition to the above 8 equations, using the following 9 equations, the left and right relative displacement d
Calculate FL , d RL and yaw relative angles d FY , d RY .
【0030】9式 dFL=(dF1+dF2)/2 dRL=(dR1+dR2)/2 dFY=(dF3−dF4)/2b3 dRY=(dR3−dR4)/2b3 Formula 9 d FL = (d F1 + d F2 ) / 2 d RL = (d R1 + d R2 ) / 2 d FY = (d F3 −d F4 ) / 2b 3 d RY = (d R3 −d R4 ) / 2b 3
【0031】ただし、b3は台車中心から変位計24ま
での距離である。上記の結果を用いて、安定化制御計算
部22で輪軸7および台車枠1を安定化させるために発
生させるヨー方向の制御力に相当する制御信号uFおよ
びuRを計算する。この実施例では、上記安定化制御計
算部において2式のオブザーバの代わりに下記10式に
示す最小次元オブザーバを用いた。However, b 3 is the distance from the center of the carriage to the displacement gauge 24. Using the above result, the stabilization control calculation unit 22 calculates the control signals u F and u R corresponding to the control force in the yaw direction generated for stabilizing the wheel axle 7 and the bogie frame 1. In this embodiment, the minimum dimension observer represented by the following equation 10 is used in place of the observer of equation 2 in the stabilization control calculation unit.
【0032】[0032]
【数4】 [Equation 4]
【0033】最小次元オブザーバの特徴は、センサ出力
の利用により状態推定の冗長度を減らせることであり、
内部状態の数をn、センサ出力の数をmとすると、2式
のオブザーバは(n−m)次元となる。したがって、制
御計算量を減らすことができる。そして、上記で求めた
制御信号は、D/A変換装置23でアナログ値に変換さ
れ、制御弁15に入力される。The characteristic of the minimum dimension observer is that the redundancy of state estimation can be reduced by utilizing the sensor output.
Assuming that the number of internal states is n and the number of sensor outputs is m, the observer of Equation 2 has (n−m) dimensions. Therefore, the control calculation amount can be reduced. Then, the control signal obtained above is converted into an analog value by the D / A conversion device 23 and input to the control valve 15.
【0034】[0034]
【発明の効果】この発明は、通常走行時の乗り心地を悪
化せずに、高速走行時に発生する蛇行動を抑制し、安定
限界速度を向上させることができる。According to the present invention, it is possible to suppress the serpentine action that occurs during high-speed traveling and improve the stable limit speed without deteriorating the riding comfort during normal traveling.
【図1】請求項1の発明により、前後輪軸を個別に制御
する蛇行動制御装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of a snake movement control device for individually controlling front and rear wheel shafts according to the invention of claim 1.
【図2】請求項2の発明により、前後輪軸を同時に制御
する蛇行動制御装置の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a snake movement control device that simultaneously controls front and rear wheel shafts according to the invention of claim 2.
【図3】この発明の実施例で使用する安定化制御器の構
成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a stabilization controller used in an embodiment of the present invention.
【図4】この発明の実施例1における加速度計の配置を
示す説明図である。FIG. 4 is an explanatory diagram showing an arrangement of accelerometers according to the first embodiment of the present invention.
【図5】この発明の実施例1における制御計算のブロッ
ク図である。FIG. 5 is a block diagram of control calculation according to the first embodiment of the present invention.
【図6】この発明の実施例2における加速度計の配置を
示す説明図である。FIG. 6 is an explanatory diagram showing an arrangement of accelerometers according to a second embodiment of the present invention.
【図7】この発明の実施例2における制御計算のブロッ
ク図である。FIG. 7 is a block diagram of control calculation according to the second embodiment of the present invention.
【図8】この発明の実施例3における変位計の配置を示
す説明図である。FIG. 8 is an explanatory diagram showing an arrangement of displacement gauges according to a third embodiment of the present invention.
【図9】この発明の実施例3における制御計算のブロッ
ク図である。FIG. 9 is a block diagram of control calculation in Embodiment 3 of the present invention.
【図10】鉄道車両台車の基本構成を示す説明図で、A
は平面図、Bは正面図ある。FIG. 10 is an explanatory diagram showing a basic configuration of a rail car bogie,
Is a plan view and B is a front view.
【図11】鉄道車両における輪軸の蛇行動を示す説明図
である。FIG. 11 is an explanatory diagram showing a serpentine action of a wheel set in a railway vehicle.
【図12】鉄道車両におけるヨーダンパの配置を示す説
明図である。FIG. 12 is an explanatory diagram showing the arrangement of the yaw dampers in the railway vehicle.
【図13】従来の輪軸ヨー角度制御装置を有する鉄道車
両台車の説明図である。FIG. 13 is an explanatory diagram of a railcar bogie having a conventional wheel axle yaw angle control device.
1 台車枠 2 車軸 3 車輪 4 軸箱 5 一次ばね 6 二次ばね 7 輪軸 8 車体 9 ヨーダンパ 10 流体アクチュエータ 11 記憶装置 12 制御器 13 センサ 14 安定化制御器 15 制御弁 16 オブザーバ 17 状態フィードバック 18 加速度計 19 A/D変換装置 20 制御用コンピュータ 21 センサ出力変換部 22 安定化制御計算部 23 D/A変換装置 24 変位計 F 状態フィードバックゲイン K オブザーバの推定速度を決定するパラメータ行列 k ディジタル化した時間 aF1、aF2、aR1、aR2 軸箱の左右方向の振動加速度 aF3、aF4、aR3、aR4 軸箱の前後方向の振動加速度 aF5、aR5 輪軸中心上における台車枠の左右方向の振
動加速度 aFL、aRL 輪軸左右振動加速度 aFY、aRY 輪軸ヨー角加速度 aTL 台車左右振動加速度 aTY 台車ヨー角加速度 dF1、dF2、dR1、dR2 軸箱と台車枠との間の左右方
向の相対変位 dF3、dF4、dR3、dR4 軸箱と台車枠との間の前後方
向の相対変位 uF、uR 制御信号 dFL、dRL 左右相対変位 dFY、dRY ヨー相対角度1 bogie frame 2 axle 3 wheel 4 axle box 5 primary spring 6 secondary spring 7 wheel axle 8 vehicle body 9 yaw damper 10 fluid actuator 11 memory device 12 controller 13 sensor 14 stabilization controller 15 control valve 16 observer 17 state feedback 18 accelerometer 19 A / D converter 20 Control computer 21 Sensor output converter 22 Stabilization control calculator 23 D / A converter 24 Displacement meter F State feedback gain K Parameter matrix for determining estimated speed of observer k Digitized time a F1 , a F2 , a R1 , a R2 Axial vibration acceleration in the left-right direction of the box a F3 , a F4 , a R3 , a R4 Vibration acceleration in the front-rear direction of the box a F5 , a R5 Left and right of the bogie frame on the wheel center direction of the vibration acceleration a FL, a RL wheel axis lateral vibration acceleration a FY, a RY wheelset yaw angular acceleration a TL bogie lateral vibration Acceleration a TY bogie yaw angular acceleration d F1, and d F2, d R1, d R2 lateral direction of relative displacement between the axle box and the bogie frame d F3, d F4, d R3 , d R4 axle box and the bogie frame Relative displacement in the front-back direction between u F and u R Control signal d FL , d RL Left and right relative displacement d FY , d RY Yaw relative angle
Claims (2)
置した流体アクチュエータ、該輪軸の振動を検知するセ
ンサ、該センサからの検知信号に基づいて前記流体アク
チュエータを前後軸で個別に制御する二つの安定化制御
器から構成され、高速走行時の鉄道車両台車に特有の不
安定現象である蛇行動を抑制し、鉄道車両の安定限界速
度を向上させる機能を有する鉄道車両台車の蛇行動制御
装置。1. A fluid actuator installed between a bogie frame of a bogie of a railway vehicle and a wheel axle, a sensor for detecting vibration of the wheel axle, and the fluid actuators individually controlled by front and rear axes based on a detection signal from the sensor. It consists of two stabilizing controllers, and has the function of suppressing the unstable behavior that is a peculiar instability of a railcar during high-speed traveling, and improving the stable limit speed of the railcar. Control device.
置した流体アクチュエータ、該輪軸および台車枠の振動
を検知するセンサ、該センサからの検知信号に基づいて
前記流体アクチュエータを前後軸で同時に制御する一つ
の安定化制御器から構成され、高速走行時の鉄道車両台
車に特有の不安定現象である蛇行動を抑制し、鉄道車両
の安定限界速度を向上させる機能を有する鉄道車両台車
の蛇行動制御装置。2. A fluid actuator installed between a bogie frame and a wheel shaft of a bogie of a railway vehicle, a sensor for detecting vibration of the wheel shaft and bogie frame, and the fluid actuator in front and rear shafts based on a detection signal from the sensor. It consists of one stabilizing controller that controls at the same time, and has the function of suppressing the meandering behavior that is an unstable phenomenon peculiar to a railcar bogie at high speed running and improving the stable limit speed of the railcar. Snake behavior control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01793493A JP3778950B2 (en) | 1993-01-07 | 1993-01-07 | Snake behavior control device for railcar bogie |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01793493A JP3778950B2 (en) | 1993-01-07 | 1993-01-07 | Snake behavior control device for railcar bogie |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06199236A true JPH06199236A (en) | 1994-07-19 |
JP3778950B2 JP3778950B2 (en) | 2006-05-24 |
Family
ID=11957609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01793493A Expired - Lifetime JP3778950B2 (en) | 1993-01-07 | 1993-01-07 | Snake behavior control device for railcar bogie |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3778950B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08253144A (en) * | 1995-03-20 | 1996-10-01 | Hitachi Ltd | High speed truck for railway rolling stock |
DE10137443A1 (en) * | 2001-07-27 | 2003-03-06 | Bombardier Transp Gmbh | Method and device for active radial control of wheel pairs or wheel sets of vehicles |
JP2018179890A (en) * | 2017-04-20 | 2018-11-15 | 公益財団法人鉄道総合技術研究所 | Method of converging hunting oscillation and bench test device |
CN110329297A (en) * | 2019-06-19 | 2019-10-15 | 中车青岛四方机车车辆股份有限公司 | One kind resisting snakelike vibration insulating system, vibration-reducing control method and vehicle |
CN110341738A (en) * | 2019-07-01 | 2019-10-18 | 中车青岛四方机车车辆股份有限公司 | Control method and controller in a kind of anti-snake vibration insulating system of half active |
-
1993
- 1993-01-07 JP JP01793493A patent/JP3778950B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08253144A (en) * | 1995-03-20 | 1996-10-01 | Hitachi Ltd | High speed truck for railway rolling stock |
DE10137443A1 (en) * | 2001-07-27 | 2003-03-06 | Bombardier Transp Gmbh | Method and device for active radial control of wheel pairs or wheel sets of vehicles |
AU2002339430B2 (en) * | 2001-07-27 | 2008-07-03 | Bombardier Transportation Gmbh | Method and device for active radial control of wheel pairs or wheel sets on vehicles |
US7458324B2 (en) | 2001-07-27 | 2008-12-02 | Bombardier Transportation | Method and device for active radial control of wheel pairs or wheel sets on vehicles |
JP2018179890A (en) * | 2017-04-20 | 2018-11-15 | 公益財団法人鉄道総合技術研究所 | Method of converging hunting oscillation and bench test device |
CN110329297A (en) * | 2019-06-19 | 2019-10-15 | 中车青岛四方机车车辆股份有限公司 | One kind resisting snakelike vibration insulating system, vibration-reducing control method and vehicle |
WO2020253440A1 (en) * | 2019-06-19 | 2020-12-24 | 中车青岛四方机车车辆股份有限公司 | Anti-yaw vibration attenuation system, vibration attenuation control method, and vehicle |
CN110329297B (en) * | 2019-06-19 | 2021-11-12 | 中车青岛四方机车车辆股份有限公司 | Anti-snake-shaped vibration reduction system, vibration reduction control method and vehicle |
CN110341738A (en) * | 2019-07-01 | 2019-10-18 | 中车青岛四方机车车辆股份有限公司 | Control method and controller in a kind of anti-snake vibration insulating system of half active |
CN110341738B (en) * | 2019-07-01 | 2020-10-27 | 中车青岛四方机车车辆股份有限公司 | Control method and controller in semi-active anti-snaking vibration reduction system |
Also Published As
Publication number | Publication date |
---|---|
JP3778950B2 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2103471B1 (en) | Attitude control device | |
JP5255780B2 (en) | Railway vehicle vibration control device | |
WO2017164133A1 (en) | Inspection system, inspection method and program | |
CN110155103B (en) | High-speed train semi-active suspension control system and method based on LQG control | |
JP4979360B2 (en) | Railway vehicle | |
JP5643124B2 (en) | Inter-vehicle damper device | |
JPH06199236A (en) | Meandering control device for bogie of rolling stock | |
WO2016121905A1 (en) | Vehicle damping apparatus | |
TWI558593B (en) | Method for reducing lateral pressure of railway vehicles | |
Suda et al. | Active controlled rail vehicles for improved curving performance and response to track irregularity | |
JP6864490B2 (en) | Vibration control device for railway vehicles | |
JPH03258656A (en) | Rolling stock four wheel truck | |
JP2020029155A (en) | Travel section discrimination method and railway vehicle travel control method | |
JP4186105B2 (en) | Railway vehicle vibration control apparatus and control method | |
JP2019031145A (en) | Vibration suppressing system for railway vehicle and method for the same | |
JP2023068276A (en) | Railway vehicle vibration control device and railway vehicle vibration control method | |
JP2776219B2 (en) | Method of controlling snake behavior of bogies of railway vehicles | |
Tsunashima | Dynamics of automated guideway transit vehicle with single-axle bogies | |
JP2988220B2 (en) | Method of controlling snake behavior of bogies of railway vehicles | |
JP2014141257A (en) | Inter-vehicle damper device | |
JP2785837B2 (en) | Railway vehicle with wheelset yaw angle controller | |
JPS61241259A (en) | Steering truck | |
Dukkipati et al. | Improved compatibility between the lateral stability and curving behaviour of modified truck designs | |
JPH1178881A (en) | Inter-car body damper for railway rolling stock | |
Cheng | Hunting stability analysis of a full high-speed railway vehicle on curved tracks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051114 |
|
A521 | Written amendment |
Effective date: 20060117 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20060301 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20100310 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20110310 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120310 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20130310 |
|
EXPY | Cancellation because of completion of term |