JP3778950B2 - Snake behavior control device for railcar bogie - Google Patents

Snake behavior control device for railcar bogie Download PDF

Info

Publication number
JP3778950B2
JP3778950B2 JP01793493A JP1793493A JP3778950B2 JP 3778950 B2 JP3778950 B2 JP 3778950B2 JP 01793493 A JP01793493 A JP 01793493A JP 1793493 A JP1793493 A JP 1793493A JP 3778950 B2 JP3778950 B2 JP 3778950B2
Authority
JP
Japan
Prior art keywords
wheel shaft
control
yaw
railway vehicle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01793493A
Other languages
Japanese (ja)
Other versions
JPH06199236A (en
Inventor
都史彰 平田
尚志 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP01793493A priority Critical patent/JP3778950B2/en
Publication of JPH06199236A publication Critical patent/JPH06199236A/en
Application granted granted Critical
Publication of JP3778950B2 publication Critical patent/JP3778950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、鉄道車両台車に特有の不安定現象である蛇行動を抑制し、鉄道車両の安定限界速度を飛躍的に向上させることのできる鉄道車両台車の蛇行動制御装置に関する。
【0002】
【従来の技術】
現用されている鉄道車両台車は、ほとんどが2軸ボギーを採用しており、それぞれの形式や各部の構造には数多くの種類があるが、台車としての基本構造や構成はほぼ同じであり、一般に台車枠、揺れ枕装置、ばね装置、軸受軸箱、軸箱支持装置、輪軸、基礎ブレーキ装置等によって構成される。その台車としての基本構造は図10A、Bに示すように、台車枠1、車軸2、車輪3、軸箱4、一次ばね5および二次ばね6より構成される。そして、車輪3には曲線路の通過を容易にするために、踏面勾配θが付けられた円錐輪が用いられている。
【0003】
そのため、レールに接する踏面位置によって踏面半径が異なり、更に車輪は使用摩耗により不整斉となる。また、2本のレールは施設上からも、保守上からも幾何学的に誤差を免れない。これらが原因となり、車輪の左右中心は線路中心に対し偏位した位置で転走する。その上、転走時に受ける抵抗は、左右車輪で異なり踏面においてすべりを生じ、一方の車輪は他方の車輪より多く進むか、あるいは遅く進むため、車輪には遅れまたは進みの走行角が生じ最大値に達した後は、逆に進みまたは遅れの走行角の最大値に達して1サイクル(図11に蛇行の波長Lで示す)を終わる。このサイクルを繰り返したときの輪軸中心の転送軌跡は、一定の波長並びに振幅をもった曲線を描き、いわゆる蛇行軌道曲線となる。よって、鉄道車両の走行速度が高くなるにつれて、輪軸の蛇行の振動数は大きくなり、ある速度で一次ばねの固有振動数と一致する。その結果、台車全体が大きく蛇行するようになり、鉄道車両の安定走行が維持できなくなる。この現象は、蛇行動と呼ばれており、また蛇行動の発生する走行速度を安定限界速度と呼ぶ。
【0004】
上記のごとく、蛇行動は本質的には避けられない現象であるが、安定限界速度を向上させることは可能である。その、安定限界速度を向上させるための従来方法としては、一次ばね(軸ばね)のばね定数を大きくして固有振動数を大きくする方法や、図12に示すように、車体8と台車枠1との間にヨーダンパ9を設置し、蛇行動を減衰させる方法がある。
【0005】
また、鉄道車両の乗り心地の向上を目的になされた発明に輪軸ヨー角制御装置付鉄道用車両(特開平3−258655号公報)がある。これは図13に示すように、台車枠1と輪軸との間に流体アクチュエータ10を設置し、記憶装置11に予め蓄積しておいた軌道不整等に関する情報を外部からの信号(速度信号、ATS信号、異常信号、非常停止信号等)に従い随時読み出し、制御器12で制御入力を計算し、前記流体アクチュエータ10に入力する構成となっている。
【0006】
【発明が解決しようとする課題】
上記従来技術の内、一次ばねのばね定数を大きくして固有振動数を大きくする方法やヨーダンパを用いる方法は、容易に実現でき蛇行動の抑制効果もあるが、軌道不整を台車枠や車体に振動として伝えやすくなり、通常走行時の乗り心地が悪化する。
一方、特開平3−258655号公報の「輪軸ヨー角制御装置付鉄道用車両」は、通常走行時の乗り心地の向上には効果があるが、不安定現象である蛇行動の抑制に効果的であるとはいえない。
【0007】
この発明は、上記のごとく従来技術には乗り心地を維持したまま蛇行動を抑制し得る制御装置は出現していない現状に鑑みて、通常走行時の乗り心地を悪化させずに、高速走行時に発生する蛇行動を抑制し、安定限界速度を向上させることのできる鉄道車両台車の蛇行動制御装置を提供するものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、この発明の鉄道車両台車の蛇行動制御装置は、鉄道車両台車の台車枠と輪軸との間に設置して輪軸にヨー方向の制御力を発生させるための流体アクチュエータと、該輪軸の振動加速度を検知するセンサと、該センサからの検知信号に基づいてヨー角加速度を算出して前記輪軸に発生させるヨー方向の制御力信号を作成し、かつ前記流体アクチュエータを前後軸で同時に又は個別に制御する一つ又は二つの安定化制御器とを備えることを特徴とする。
【0009】
また、この発明の蛇行動制御装置において、該安定化制御器は、最適レギュレータ理論によって得られるフィードバックゲインを用いて制御信号を求めることができる
0012
【作用】
図1は、請求項1の発明により、前後輪軸を個別に制御する蛇行動制御装置の構成を示したものである。流体アクチュエータ10は、台車枠1と軸箱4との間に車軸2に対し垂直方向に設置され、輪軸7にヨー方向の制御力を発生させる。軸箱4にはセンサ13が取付けられ、輪軸7の左右方向およびヨー方向の振動を検知する。上記センサからの信号は安定化制御器14に入力され、輪軸7の運動を安定化させるための制御信号uFおよび制御信号uRを計算する。これらの制御信号は、制御弁15に入力され、上記流体アクチュエータ10をヨー方向に駆動する。
0013
図2は、請求項2の発明により、前後輪軸を一体に制御する蛇行動制御装置の構成を示したものである。この場合には、台車枠1を介して生じる前後輪軸間の干渉を考慮するために、台車枠1にもセンサ13を設置し、台車枠1の運動も考慮して設計した一つの安定化制御器14を用いている。
0014
図1あるいは図2における安定化制御器14の構成図を図3に示す。制御対象(図1の場合には輪軸7の運動、図2の場合には輪軸7および台車枠1の運動)の内部状態に注目して1式のようなモデルを作成する。
0015
【数1】
1式

Figure 0003778950
0016
ここで、tは時間、x(t)は内部状態のベクトル、u(t)は制御信号のベクトル、y(t)はセンサ出力のベクトルである。
0017
上記モデルを基にして、安定化制御器14は2式に示すオブザーバ16と3式に示す状態フィードバック17から構成される。
0018
【数2】
2式
Figure 0003778950
0019
3式
u(t)=FxE(t)
0020
オブザーバ16は、センサ出力y(t)から内部状態の推定値xE(t)を求めるものであり、行列Kは推定速度を決定するパラメータである。状態フィードバック17は上記オブザーバで得られた内部状態を用いて、制御対象を安定化させる制御信号u(t)を計算する。
フィードバックゲインFは、公知の制御理論である最適レギュレータ理論により得られる。すなわち、3式の状態フィードバックを行ったとき、内部状態x(t)と制御信号u(t)に関する下記4式の評価関数Jを最小にするフィードバックゲインFを採用する。
0021
【数3】
4式
Figure 0003778950
ここで、行列Qおよび行列Rは適当な重みである。
0022
【実施例】
実施例1
請求項1の発明の実施による図1に示した前後輪軸を個別に制御する蛇行動制御装置に基づいて説明する。輪軸7の振動を検知するセンサとして、図4に示すように加速度計18を設置し、軸箱4の左右および前後方向の振動加速度aF1、aF2、aF3、aF4、aR1、aR2、aR3、aR4を検知する。
0023
上記センサ出力は、図5に示すようにA/D変換装置19でディジタル値に変換され、制御用コンピュータ20に入力される。この制御用コンピュータ20内では、先ずセンサ出力変換部21で下記5式に示す演算を行い、輪軸左右振動加速度aFL、aRLおよび輪軸ヨー角加速度aFY、aRYを計算する。
0024
5式
aFL=(aF1+aF2)/2
aRL=(aR1+aR2)/2
aFY=(aF3−aF4)/2b1
aRY=(aR3−aR4)/2b1
ただし、b1は輪軸7の中心から加速度計18までの距離である。上記の結果を用いて、安定化制御計算部22で輪軸7に発生させるヨー方向の制御力に相当する制御信号uFおよびuRを計算する。上記安定化制御計算部は2式および3式に示した安定化制御器14を下記6式および7式に示すようにディジタル化し、さらにソフトウェア化したものである。
0025
6式
E(k+1)=DDE(k)+BDu(k)+KDy(k)
7式
u(k)=FDE(k)
ただし、k=0、1、2、…はディジタル化された時間を表す。
上記により求められた制御信号は、D/A変換装置23でアナログ値に変換された後、制御弁15に入力される。
0026
実施例2
請求項2の発明の実施による図2に示した前後輪軸を同時に制御する蛇行動制御装置に基づいて説明する。輪軸7および台車枠1の振動を検知するセンサとして、図6に示すように加速度計18を設置し、軸箱4の左右および前後方向の振動加速度aF1、aF2、aF3、aF4、aR1、aR2、aR3、aR4、更に、輪軸中心上における台車枠1の左右方向の振動加速度aF5、aR5を検知する。
0027
実施例1と同様に、上記センサ出力は、図7に示すようにA/D変換装置19でディジタル値に変換され、制御用コンピュータ20に入力される。この制御用コンピュータ20内では、先ずセンサ出力変換部21で下記8式に示す演算を行い、輪軸左右振動加速度aFL、aRLおよび輪軸ヨー角加速度aFY、aRY、更に台車中心上における台車左右振動加速度aTL、台車ヨー角加速度aTYを計算する。
0028
8式
FL=(aF1+aF2)/2
RL=(aR1+aR2)/2
FY=(aF3−aF4)/2b1
RY=(aR3−aR4)/2b1
TL=(aF5+aF6)/2
TY=(aF5−aF6)/2b2
0029
ただし、b2は台車中心から加速度計18までの距離である。上記の結果を用いて、安定化制御計算部22で輪軸7および台車枠1を安定化させるために発生させるヨー方向の制御力に相当する制御信号uFおよびuRを計算する。そして、上記で求めた制御信号は、D/A変換装置23でアナログ値に変換され、制御弁15に入力される。
0030
実施例3
請求項2の発明の実施による図2に示した前後輪軸を同時に制御する蛇行動制御装置に基づいた他の実施例について説明する。輪軸7と台車枠1の振動を検知するセンサとして、図6に示す加速度計18に図8に示す変位計24を追加し、軸箱4の左右および前後方向の振動加速度および輪軸中心上における台車枠1の左右方向の振動加速度aF1、aF2、aF3、aF4、aF5、aR1、aR2、aR3、aR4、aR5に加えて、軸箱4と台車枠1との間の左右および前後方向の相対変位dF1、dF2、dF3、dF4、dR1、dR2、dR3、dR4を検知する。
0031
実施例2と同様に、上記センサ出力は、図9に示すようにA/D変換装置19でディジタル値に変換され、制御用コンピュータ20に入力される。この制御用コンピュータ20内では、先ずセンサ出力変換部21で上記8式に加え、下記9式を使って左右相対変位dFL、dRLおよびヨー相対角度dFY、dRYを計算する。
0032
9式
FL=(dF1+dF2)/2
RL=(dR1+dR2)/2
FY=(dF3−dF4)/2b3
RY=(dR3−dR4)/2b3
0033
ただし、b3は台車中心から変位計24までの距離である。上記の結果を用いて、安定化制御計算部22で輪軸7および台車枠1を安定化させるために発生させるヨー方向の制御力に相当する制御信号uFおよびuRを計算する。この実施例では、上記安定化制御計算部において2式のオブザーバの代わりに下記10式に示す最小次元オブザーバを用いた。
0034
【数4】
10式
Figure 0003778950
0035
最小次元オブザーバの特徴は、センサ出力の利用により状態推定の冗長度を減らせることであり、内部状態の数をn、センサ出力の数をmとすると、2式のオブザーバは(n−m)次元となる。したがって、制御計算量を減らすことができる。そして、上記で求めた制御信号は、D/A変換装置23でアナログ値に変換され、制御弁15に入力される。
0036
【発明の効果】
この発明は、通常走行時の乗り心地を悪化せずに、高速走行時に発生する蛇行動を抑制し、安定限界速度を向上させることができる。
【図面の簡単な説明】
【図1】請求項1の発明により、前後輪軸を個別に制御する蛇行動制御装置の構成を示す説明図である。
【図2】請求項2の発明により、前後輪軸を同時に制御する蛇行動制御装置の構成を示す説明図である。
【図3】この発明の実施例で使用する安定化制御器の構成を示すブロック図である。
【図4】この発明の実施例1における加速度計の配置を示す説明図である。
【図5】この発明の実施例1における制御計算のブロック図である。
【図6】この発明の実施例2における加速度計の配置を示す説明図である。
【図7】この発明の実施例2における制御計算のブロック図である。
【図8】この発明の実施例3における変位計の配置を示す説明図である。
【図9】この発明の実施例3における制御計算のブロック図である。
【図10】鉄道車両台車の基本構成を示す説明図で、Aは平面図、Bは正面図ある。
【図11】鉄道車両における輪軸の蛇行動を示す説明図である。
【図12】鉄道車両におけるヨーダンパの配置を示す説明図である。
【図13】従来の輪軸ヨー角度制御装置を有する鉄道車両台車の説明図である。
【符号の説明】
1 台車枠
2 車軸
3 車輪
4 軸箱
5 一次ばね
6 二次ばね
7 輪軸
8 車体
9 ヨーダンパ
10 流体アクチュエータ
11 記憶装置
12 制御器
13 センサ
14 安定化制御器
15 制御弁
16 オブザーバ
17 状態フィードバック
18 加速度計
19 A/D変換装置
20 制御用コンピュータ
21 センサ出力変換部
22 安定化制御計算部
23 D/A変換装置
24 変位計
F 状態フィードバックゲイン
K オブザーバの推定速度を決定するパラメータ行列
k ディジタル化した時間
F1、aF2、aR1、aR2 軸箱の左右方向の振動加速度
F3、aF4、aR3、aR4 軸箱の前後方向の振動加速度
F5、aR5 輪軸中心上における台車枠の左右方向の振動加速度
FL、aRL 輪軸左右振動加速度
FY、aRY 輪軸ヨー角加速度
TL 台車左右振動加速度
TY 台車ヨー角加速度
F1、dF2、dR1、dR2 軸箱と台車枠との間の左右方向の相対変位
F3、dF4、dR3、dR4 軸箱と台車枠との間の前後方向の相対変位
F、uR 制御信号
FL、dRL 左右相対変位
FY、dRY ヨー相対角度[0001]
[Industrial application fields]
The present invention relates to a snake behavior control device for a railway vehicle trolley that can suppress the snake behavior that is an unstable phenomenon peculiar to the railway vehicle trolley and can dramatically improve the stability limit speed of the railway vehicle.
[0002]
[Prior art]
Most railcar trolleys currently in use employ two-axis bogies, and there are many types of structures and parts, but the basic structure and configuration of the trolley are almost the same. It consists of a bogie frame, a swing pillow device, a spring device, a bearing shaft box, a shaft box support device, a wheel shaft, a basic brake device, and the like. As shown in FIGS. 10A and 10B, the basic structure of the carriage is constituted by a carriage frame 1, an axle 2, a wheel 3, an axle box 4, a primary spring 5 and a secondary spring 6. In order to facilitate the passage of the curved road, the wheel 3 is a conical ring with a tread gradient θ.
[0003]
Therefore, the radius of the tread differs depending on the position of the tread contacting the rail, and the wheels become irregular due to wear. In addition, the two rails are subject to geometric errors from both the facilities and maintenance. Due to these reasons, the left and right centers of the wheels roll at a position deviated from the center of the track. In addition, the resistance received during rolling differs between the left and right wheels, causing slip on the tread, and one wheel travels more than the other or travels slower, so that the wheel has a delayed or advanced travel angle and the maximum value. On the contrary, the maximum value of the traveling angle of the advance or delay is reached and one cycle (indicated by the meandering wavelength L in FIG. 11) is completed. The transfer locus at the center of the wheel axis when this cycle is repeated draws a curve having a constant wavelength and amplitude, and becomes a so-called meandering orbit curve. Therefore, as the traveling speed of the railway vehicle increases, the frequency of the meandering of the wheel shaft increases and coincides with the natural frequency of the primary spring at a certain speed. As a result, the entire bogie will meander significantly, making it impossible to maintain stable travel of the railway vehicle. This phenomenon is called snake behavior, and the traveling speed at which snake behavior occurs is called the stability limit speed.
[0004]
As described above, snake behavior is essentially an unavoidable phenomenon, but it is possible to improve the stability limit speed. As a conventional method for improving the stability limit speed, a method of increasing the natural frequency by increasing the spring constant of the primary spring (shaft spring), or a vehicle body 8 and a bogie frame 1 as shown in FIG. There is a method of damping the snake behavior by installing a yo-yo damper 9 between them.
[0005]
Moreover, there is a railway vehicle (Japanese Patent Laid-Open No. 3-258655) with an wheel yaw angle control device as an invention made for the purpose of improving the riding comfort of the railway vehicle. As shown in FIG. 13, a fluid actuator 10 is installed between the carriage frame 1 and the wheel shaft, and information on track irregularities or the like previously stored in the storage device 11 is transmitted from an external signal (speed signal, ATS). Signal, an abnormal signal, an emergency stop signal, etc.) are read as needed, a control input is calculated by the controller 12 and input to the fluid actuator 10.
[0006]
[Problems to be solved by the invention]
Among the above-mentioned prior arts, the method of increasing the natural frequency by increasing the spring constant of the primary spring and the method of using a yaw damper can be easily realized and have the effect of suppressing the serpentine behavior. It becomes easier to convey as vibration, and the ride comfort during normal driving deteriorates.
On the other hand, “Railway Vehicle with Wheel Yaw Angle Control Device” disclosed in Japanese Patent Laid-Open No. 3-258655 is effective in improving riding comfort during normal driving, but effective in suppressing snake behavior that is an unstable phenomenon. It cannot be said.
[0007]
As described above, in view of the present situation that the control device capable of suppressing the snake behavior while maintaining the riding comfort has not appeared in the prior art, the present invention does not deteriorate the riding comfort during normal driving, and at the time of high speed driving. The present invention provides a snake behavior control device for a railway vehicle carriage that can suppress the generated snake behavior and improve the stability limit speed.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a snake behavior control device for a railway vehicle bogie according to the present invention is provided between a bogie frame of a railway vehicle bogie and a wheel shaft, and a fluid actuator for generating a control force in the yaw direction on the wheel shaft; A sensor for detecting the vibration acceleration of the wheel shaft, a yaw angular acceleration is calculated based on a detection signal from the sensor, and a control force signal in the yaw direction to be generated on the wheel shaft is generated. And one or two stabilization controllers that are controlled simultaneously or individually.
[0009]
Further, in the hunting oscillation control apparatus of the invention, the stabilization controller may determine the control signal using the feedback gain obtained by optimal regulator theory.
[ 0012 ]
[Action]
FIG. 1 shows the configuration of a snake behavior control device for individually controlling front and rear wheel axles according to the invention of claim 1. The fluid actuator 10 is installed between the carriage frame 1 and the axle box 4 in a direction perpendicular to the axle 2 and generates a control force in the yaw direction on the wheel shaft 7. A sensor 13 is attached to the axle box 4 and detects vibrations of the wheel shaft 7 in the left-right direction and the yaw direction. A signal from the sensor is input to the stabilization controller 14 to calculate a control signal u F and a control signal u R for stabilizing the movement of the wheel shaft 7. These control signals are input to the control valve 15 to drive the fluid actuator 10 in the yaw direction.
[ 0013 ]
FIG. 2 shows a configuration of a snake behavior control device for integrally controlling front and rear wheel shafts according to the invention of claim 2. In this case, in order to consider the interference between the front and rear wheel shafts that occurs through the carriage frame 1, a sensor 13 is also installed in the carriage frame 1, and one stabilization control designed in consideration of the movement of the carriage frame 1. A container 14 is used.
[ 0014 ]
A configuration diagram of the stabilization controller 14 in FIG. 1 or FIG. 2 is shown in FIG. A model like the one set is created by paying attention to the internal state of the object to be controlled (the movement of the wheel shaft 7 in the case of FIG. 1, the movement of the wheel shaft 7 and the carriage frame 1 in the case of FIG. 2).
[ 0015 ]
[Expression 1]
1 set
Figure 0003778950
[ 0016 ]
Here, t is time, x (t) is an internal state vector, u (t) is a control signal vector, and y (t) is a sensor output vector.
[ 0017 ]
Based on the above model, the stabilization controller 14 is composed of an observer 16 shown in Formula 2 and a state feedback 17 shown in Formula 3.
[ 0018 ]
[Expression 2]
2 sets
Figure 0003778950
[ 0019 ]
Formula 3 u (t) = Fx E (t)
[ 0020 ]
The observer 16 obtains an estimated value x E (t) of the internal state from the sensor output y (t), and the matrix K is a parameter that determines the estimated speed. The state feedback 17 calculates a control signal u (t) for stabilizing the controlled object, using the internal state obtained by the observer.
The feedback gain F is obtained by an optimal regulator theory that is a known control theory. That is, when the state feedback of the three formulas is performed, the feedback gain F that minimizes the evaluation function J of the following four formulas regarding the internal state x (t) and the control signal u (t) is employed.
[ 0021 ]
[Equation 3]
4 sets
Figure 0003778950
Here, the matrix Q and the matrix R are appropriate weights.
[ 0022 ]
【Example】
Example 1
A description will be given based on the snake behavior control device for individually controlling the front and rear wheel shafts shown in FIG. 1 according to the embodiment of the present invention. As shown in FIG. 4, an accelerometer 18 is installed as a sensor for detecting the vibration of the wheel shaft 7, and vibration accelerations a F1 , a F2 , a F3 , a F4 , a R1 , a R2 , aR3 , and aR4 are detected.
[ 0023 ]
The sensor output is converted into a digital value by the A / D converter 19 as shown in FIG. In the control computer 20, first, the sensor output conversion unit 21 performs the calculation shown in the following equation (5) to calculate the wheel shaft lateral vibration accelerations a FL and a RL and the wheel shaft yaw angular accelerations a FY and a RY .
[ 0024 ]
Formula 5 aFL = (a F1 + a F2 ) / 2
aRL = (a R1 + a R2 ) / 2
a FY = (a F3 -a F4 ) / 2b 1
aRY = (a R3 −a R4 ) / 2b 1
Here, b 1 is the distance from the center of the wheel shaft 7 to the accelerometer 18. Using the above results, the control signals uF and uR corresponding to the control force in the yaw direction generated on the wheel shaft 7 by the stabilization control calculation unit 22 are calculated. The stabilization control calculation unit is obtained by digitizing the stabilization controller 14 shown in Equations 2 and 3 as shown in Equations 6 and 7 below, and further converting it into software.
[ 0025 ]
Formula 6 x E (k + 1) = D D x E (k) + B D u (k) + K D y (k)
Formula 7 u (k) = F D x E (k)
Here, k = 0, 1, 2,... Represents the digitized time.
The control signal obtained as described above is converted into an analog value by the D / A converter 23 and then input to the control valve 15.
[ 0026 ]
Example 2
A description will be given based on the snake behavior control apparatus for simultaneously controlling the front and rear wheel shafts shown in FIG. As a sensor for detecting vibration of the wheel shaft 7 and the truck frame 1, established the accelerometer 18 as shown in FIG. 6, the vibration acceleration a F1 of the lateral and longitudinal directions axle box 4, a F2, a F3, a F4, a R1 , a R2 , a R3 , a R4 , and vibration accelerations a F5 , a R5 in the left-right direction of the carriage frame 1 on the center of the wheel axis are detected.
[ 0027 ]
As in the first embodiment, the sensor output is converted into a digital value by the A / D converter 19 as shown in FIG. In this control computer 20, first, the sensor output conversion unit 21 performs the calculation shown in the following eight formulas, and the wheel shaft lateral vibration accelerations a FL and a RL and the wheel shaft yaw angular acceleration a FY and a RY , and further, the cart on the center of the cart. The lateral vibration acceleration a TL and the carriage yaw angular acceleration a TY are calculated.
[ 0028 ]
Formula 8 a FL = (a F1 + a F2 ) / 2
a RL = (a R1 + a R2 ) / 2
a FY = (a F3 -a F4 ) / 2b 1
a RY = (a R3 −a R4 ) / 2b 1
a TL = (a F5 + a F6 ) / 2
a TY = (a F5 -a F6 ) / 2b 2
[ 0029 ]
Where b 2 is the distance from the center of the carriage to the accelerometer 18. Using the above results, the control signals u F and u R corresponding to the control force in the yaw direction generated in order to stabilize the wheel shaft 7 and the carriage frame 1 are calculated by the stabilization control calculation unit 22. The control signal obtained above is converted into an analog value by the D / A converter 23 and input to the control valve 15.
[ 0030 ]
Example 3
Another embodiment based on the snake behavior control apparatus for simultaneously controlling the front and rear wheel shafts shown in FIG. 2 according to the invention of claim 2 will be described. A displacement meter 24 shown in FIG. 8 is added to the accelerometer 18 shown in FIG. 6 as a sensor for detecting the vibrations of the wheel shaft 7 and the carriage frame 1, and the left and right and longitudinal vibration accelerations of the axle box 4 and the cart on the center of the wheel axis. The vibration acceleration in the horizontal direction of the frame 1 a F1 , a F2 , a F3 , a F4 , a F5 , a R1 , a R2 , a R3 , a R4 , a R5 , the shaft box 4 and the bogie frame 1 Relative displacements d F1 , d F2 , d F3 , d F4 , d R1 , d R2 , d R3 , and d R4 between the left and right and front and rear directions are detected.
[ 0031 ]
As in the second embodiment, the sensor output is converted into a digital value by the A / D conversion device 19 and input to the control computer 20 as shown in FIG. In the control computer 20, first, the sensor output conversion unit 21 calculates the left and right relative displacements d FL and d RL and the yaw relative angles d FY and d RY using the following nine expressions in addition to the above eight expressions.
[ 0032 ]
Formula 9 d FL = (d F1 + d F2 ) / 2
d RL = (d R1 + d R2 ) / 2
d FY = (d F3 -d F4 ) / 2b 3
d RY = (d R3 −d R4 ) / 2b 3
[ 0033 ]
Here, b 3 is the distance from the center of the carriage to the displacement meter 24. Using the above results, the control signals u F and u R corresponding to the control force in the yaw direction generated in order to stabilize the wheel shaft 7 and the carriage frame 1 are calculated by the stabilization control calculation unit 22. In this embodiment, the minimum dimension observer shown in the following equation 10 is used in place of the two observers in the stabilization control calculation unit.
[ 0034 ]
[Expression 4]
10 formulas
Figure 0003778950
[ 0035 ]
The feature of the minimum dimension observer is that the redundancy of state estimation can be reduced by using the sensor output. When the number of internal states is n and the number of sensor outputs is m, the two observers are (nm). It becomes a dimension. Therefore, the amount of control calculation can be reduced. The control signal obtained above is converted into an analog value by the D / A converter 23 and input to the control valve 15.
[ 0036 ]
【The invention's effect】
The present invention can suppress the snake behavior that occurs during high-speed driving and improve the stability limit speed without deteriorating the riding comfort during normal driving.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a configuration of a snake behavior control device for individually controlling front and rear wheel axles according to the invention of claim 1;
FIG. 2 is an explanatory diagram showing a configuration of a snake behavior control device for simultaneously controlling front and rear wheel axles according to the invention of claim 2;
FIG. 3 is a block diagram showing a configuration of a stabilization controller used in the embodiment of the present invention.
FIG. 4 is an explanatory view showing the arrangement of accelerometers in Embodiment 1 of the present invention.
FIG. 5 is a block diagram of control calculation in Embodiment 1 of the present invention.
FIG. 6 is an explanatory diagram showing the arrangement of accelerometers in Embodiment 2 of the present invention.
FIG. 7 is a block diagram of control calculation in Embodiment 2 of the present invention.
FIG. 8 is an explanatory view showing the arrangement of displacement meters in Embodiment 3 of the present invention.
FIG. 9 is a block diagram of control calculation in Embodiment 3 of the present invention.
FIGS. 10A and 10B are explanatory views showing a basic configuration of a railway vehicle bogie, in which A is a plan view and B is a front view.
FIG. 11 is an explanatory diagram showing a snake behavior of a wheel shaft in a railway vehicle.
FIG. 12 is an explanatory diagram showing the arrangement of a yaw damper in a railway vehicle.
FIG. 13 is an explanatory diagram of a railway vehicle bogie having a conventional wheel axis yaw angle control device.
[Explanation of symbols]
1 Bogie frame 2 Axle 3 Wheel 4 Shaft box 5 Primary spring 6 Secondary spring 7 Wheel shaft 8 Car body 9 Yaw damper 10 Fluid actuator 11 Storage device 12 Controller 13 Sensor 14 Stabilization controller 15 Control valve 16 Observer 17 State feedback 18 Accelerometer 19 A / D converter 20 Control computer 21 Sensor output converter 22 Stabilization control calculator 23 D / A converter 24 Displacement meter F State feedback gain K Parameter matrix for determining the estimated speed of the observer k Digitized time a F1, the left and right a F2, a R1, a R2 lateral direction of the vibration acceleration a of the axle box F3, a F4, a R3, a R4 axle box in the front-rear direction of the vibration acceleration a F5, a R5 bogie frame in Wajiku centered on direction of the vibration acceleration a FL, a RL wheel axis lateral vibration acceleration a FY, a RY wheelset yaw angular acceleration a TL bogie lateral vibration acceleration a TY bogie yaw angle Speed d F1, longitudinal relative between the d F2, d R1, d R2 lateral direction of relative displacement between the axle box and the bogie frame d F3, d F4, d R3 , d R4 axle box and the bogie frame Displacement u F , u R Control signals d FL , d RL Left and right relative displacement d FY , d RY Yaw relative angle

Claims (2)

鉄道車両台車の台車枠と輪軸との間に設置して輪軸にヨー方向の制御力を発生させるための流体アクチュエータと、該輪軸の左右および前後方向振動加速度を検知するセンサと、該センサからの検知信号に基づいてヨー角加速度を算出して前記輪軸に発生させるヨー方向の制御力信号を作成し、かつ前記流体アクチュエータを前後軸で個別に前記制御力信号にて制御する二つの安定化制御器とを備えることを特徴とする鉄道車両台車の蛇行動制御装置。A fluid actuator that is installed between a bogie frame and a wheel shaft of a railway vehicle bogie to generate a control force in the yaw direction on the wheel shaft; a sensor that detects vibration acceleration in the left and right and front and rear directions of the wheel shaft; and Two stabilizations that calculate the yaw angular acceleration based on the detected signal and generate a control force signal in the yaw direction to be generated on the wheel axis, and control the fluid actuator individually on the front and rear axes with the control force signal A snake behavior control apparatus for a railway vehicle carriage, comprising: a controller. 鉄道車両台車の台車枠と輪軸との間に設置して輪軸にヨー方向の制御力を発生させるための流体アクチュエータと、該輪軸の左右および前後方向振動加速度を検知するセンサと、台車枠の左右方向の振動加速度を検知するセンサと、該センサからの検知信号に基づいてヨー角加速度を算出して前記輪軸に発生させるヨー方向の制御力信号を作成し、かつ前記流体アクチュエータを前後軸で同時に前記制御力信号にて制御する一つの安定化制御器とを備えることを特徴とする鉄道車両台車の蛇行動制御装置。A fluid actuator installed between a bogie frame and a wheel shaft of a railway vehicle bogie to generate a yaw control force on the wheel shaft, a sensor for detecting vibration acceleration in the left and right and front and rear directions of the wheel shaft, A sensor that detects vibration acceleration in the left-right direction, a yaw angular acceleration is calculated based on a detection signal from the sensor, and a control force signal in the yaw direction that is generated on the wheel shaft is generated, and the fluid actuator is A snake-behavior control device for a railway vehicle bogie characterized by comprising one stabilization controller that is controlled by the control force signal at the same time.
JP01793493A 1993-01-07 1993-01-07 Snake behavior control device for railcar bogie Expired - Lifetime JP3778950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01793493A JP3778950B2 (en) 1993-01-07 1993-01-07 Snake behavior control device for railcar bogie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01793493A JP3778950B2 (en) 1993-01-07 1993-01-07 Snake behavior control device for railcar bogie

Publications (2)

Publication Number Publication Date
JPH06199236A JPH06199236A (en) 1994-07-19
JP3778950B2 true JP3778950B2 (en) 2006-05-24

Family

ID=11957609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01793493A Expired - Lifetime JP3778950B2 (en) 1993-01-07 1993-01-07 Snake behavior control device for railcar bogie

Country Status (1)

Country Link
JP (1) JP3778950B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715968B2 (en) * 1995-03-20 1998-02-18 株式会社日立製作所 Railcar bogie
DE10137443A1 (en) 2001-07-27 2003-03-06 Bombardier Transp Gmbh Method and device for active radial control of wheel pairs or wheel sets of vehicles
JP6789875B2 (en) * 2017-04-20 2020-11-25 公益財団法人鉄道総合技術研究所 Hunting Oscillation Convergence Method and Bench Test Equipment
CN110329297B (en) * 2019-06-19 2021-11-12 中车青岛四方机车车辆股份有限公司 Anti-snake-shaped vibration reduction system, vibration reduction control method and vehicle
CN110341738B (en) * 2019-07-01 2020-10-27 中车青岛四方机车车辆股份有限公司 Control method and controller in semi-active anti-snaking vibration reduction system

Also Published As

Publication number Publication date
JPH06199236A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
Wickens Fundamentals of rail vehicle dynamics
Mei et al. Robust control for independently rotating wheelsets on a railway vehicle using practical sensors
JP6547902B2 (en) Inspection system, inspection method, and program
Hedrick Railway vehicle active suspensions
Boocock Steady-state motion of railway vehicles on curved track
Mei et al. Practical strategies for controlling railway wheelsets independently rotating wheels
CN110155103B (en) High-speed train semi-active suspension control system and method based on LQG control
Suda High speed stability and curving performance of longitudinally unsymmetric trucks with semi-active control
JP3778950B2 (en) Snake behavior control device for railcar bogie
Celniker et al. Rail vehicle active suspensions for lateral ride and stability improvement
Stribersky et al. The development of an integrated suspension control technology for passenger trains
JP5643124B2 (en) Inter-vehicle damper device
Mei et al. Kalman filter for the state estimation of a 2-axle railway vehicle
Suda et al. Active controlled rail vehicles for improved curving performance and response to track irregularity
Wickens Dynamics of actively guided vehicles
TW201522139A (en) Method of decreasing lateral pressure in railroad vehicle
JP3661877B2 (en) Vibration control device for vehicle
Hobbs et al. The lateral dynamics of the linear induction motor test vehicle
JPH03258656A (en) Rolling stock four wheel truck
JP2776219B2 (en) Method of controlling snake behavior of bogies of railway vehicles
Goodall et al. Mechatronic strategies for controlling railway wheelsets with independently rotating wheels
KR102097701B1 (en) Train curve simulation method for stability evaluation of a magnetic levitation train
Cox et al. Optimization of rail vehicle operating speed with practical constraints
Tsunashima Dynamics of automated guideway transit vehicle with single-axle bogies
JP2988220B2 (en) Method of controlling snake behavior of bogies of railway vehicles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

EXPY Cancellation because of completion of term