JPH03258656A - Rolling stock four wheel truck - Google Patents

Rolling stock four wheel truck

Info

Publication number
JPH03258656A
JPH03258656A JP5275390A JP5275390A JPH03258656A JP H03258656 A JPH03258656 A JP H03258656A JP 5275390 A JP5275390 A JP 5275390A JP 5275390 A JP5275390 A JP 5275390A JP H03258656 A JPH03258656 A JP H03258656A
Authority
JP
Japan
Prior art keywords
axle
bogie
wheel set
wheel
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5275390A
Other languages
Japanese (ja)
Other versions
JP2738114B2 (en
Inventor
Yoshihiro Suda
義大 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5275390A priority Critical patent/JP2738114B2/en
Publication of JPH03258656A publication Critical patent/JPH03258656A/en
Application granted granted Critical
Publication of JP2738114B2 publication Critical patent/JP2738114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the self-steering performance at the time of curve turning by making the elastic force acting on the relative yawing displacement between a front wheel set and a truck frame smaller than that of the rear wheel set, and providing a damping force working element acting on the relative yawing speed between the front wheel set and the truck frame. CONSTITUTION:In a rolling stock four wheel truck in which a front wheel set 2 and a rear wheel set 3 are rotatably supported by a truck frame 1 through respective shaft boxes, the longitudinal shaft box supporting rigidity 6 of the front wheel set 2 is set smaller than the longitudinal shaft boxy supporting rigidity 7 of the rear wheel to the advancing direction. Namely, the elastic force acting on the relative yawing displacement between the front wheel set 2 and the truck frame 1 is made smaller than that of the rear wheel set 3. A damping force working element 8 acting on the relative yawing speed between the front wheel set 2 and the truck frame 1 is provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄道車両用の走行装置である台車に関するもの
である。台車に求められる機能は、車両の支持、駆動、
誘導の3つであるが、そのうち誘導機能の性能を飛躍的
に向上させる台車の考案である。すなわち、曲線旋回時
の自己操舵性能と高速走行安定性を両立させる台車であ
る。本発明による台車は、高速での蛇行動安定性を保ち
ながら、曲線旋回時に輪軸を曲線半径方向への自己操舵
性能を飛躍的に向上させることができる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bogie that is a running device for a railway vehicle. The functions required of a bogie include vehicle support, drive,
One of the three is guidance, and one of them is the invention of a trolley that dramatically improves the performance of the guidance function. In other words, it is a bogie that achieves both self-steering performance when turning around curves and high-speed running stability. The bogie according to the present invention can dramatically improve the self-steering performance of the wheel set in the radial direction of the curve when turning a curve while maintaining the stability of meandering behavior at high speeds.

(従来の技術) 従来の鉄道車両用二軸台車では、左右の車輪が剛に結合
され、左右の車輪の回転速度が等しくなる輪軸を用いて
おり、これら2つの輪軸の支持装置は前後対称となって
いる。すなわち、軸箱支持剛性、減衰力作用要素、輪軸
どうしを結合するリンク機構、台車枠と輪軸を結合する
リンク機構などは前後対称である。
(Prior Art) In conventional two-axle bogies for railway vehicles, the left and right wheels are rigidly connected, and a wheel axle is used in which the left and right wheels rotate at the same speed. It has become. That is, the axle box support rigidity, the damping force acting element, the link mechanism that connects the wheel axles, the link mechanism that connects the bogie frame and the wheel axle, etc. are symmetrical in the front and rear.

(発明が解決しようとする問題点) この従来の方式の台車では、台車の誘導機能に関して以
下の欠点がある。すなわち、曲線旋回時の自己操舵性能
は十分でなく、曲線半径が小さいと輪軸の操舵は十分行
なわれず大きな横圧の発生を引起こす。さらに、フラン
ジ接触を起こしゃすく、フランジ摩耗や騒音の原因とも
なる。一方、この曲線旋回時の自己操舵性能を向上させ
ようとすると、自励振動の一種である蛇行動が発生ずる
臨界速度が低下し、高速時の安定性が低下してしまう。
(Problems to be Solved by the Invention) This conventional type of bogie has the following drawbacks regarding the guiding function of the bogie. That is, the self-steering performance when turning a curve is not sufficient, and if the radius of the curve is small, the wheel axle cannot be sufficiently steered, causing a large lateral pressure. Furthermore, flange contact is less likely to occur, causing flange wear and noise. On the other hand, if an attempt is made to improve the self-steering performance when turning around a curve, the critical speed at which snaking behavior, which is a type of self-excited vibration, occurs will decrease, resulting in a decrease in stability at high speeds.

本発明の目的は上記の欠点を解決し、実用」二十分な高
速時の蛇行動安定性を保ちながら、曲線旋回時の自己操
舵機能を飛躍的に向上させることである。
The object of the present invention is to solve the above-mentioned drawbacks and to dramatically improve the self-steering function when turning curves while maintaining the meandering stability at high speeds that is sufficient for practical use.

そこで先ず、従来の台車で曲線旋回時の自己操舵機能が
どのように行われるが、蛇行動がどのように発生し、従
来はいかに防止しているのかを説明する。そして、従来
の蛇行動防止方法は、曲線旋回時の自己操舵性能を低下
させることを説明する。
First, we will explain how conventional bogies perform self-steering when turning around curves, how snaking behavior occurs, and how it is conventionally prevented. Then, it will be explained that the conventional method for preventing snake movement reduces self-steering performance when turning around a curve.

(従来台車の自己操舵機能) 左右の車輪は剛に結合されており、車輪のレールとの接
触面、すなわち車輪踏面には勾配が付けられている。よ
って、輪軸単体が曲線に沿って旋回するときには、曲線
外側に輪軸が変位することにより、左右の車輪の回転速
度は等しくても、車輪の回転半径が外軌側車輪の方が大
きくなり、車輪はすべることなく転がることができる。
(Self-steering function of conventional bogie) The left and right wheels are rigidly connected, and the contact surfaces of the wheels with the rails, that is, the wheel treads, are sloped. Therefore, when the wheel set turns along a curve, the wheel set is displaced to the outside of the curve, and even though the rotational speeds of the left and right wheels are the same, the turning radius of the wheel becomes larger for the wheel on the outer track, and the wheel can roll without slipping.

これが輪軸の自己操舵機能の原理である。さらにこの機
能は、直線走行時においても、軌道不整等による外乱が
作用したときに、輪軸の運動を元の運動に戻すための復
元作用をも生じさせる。
This is the principle behind the wheel set's self-steering function. Furthermore, this function also produces a restoring action to return the motion of the wheel set to its original motion when disturbances such as track irregularities occur even when traveling in a straight line.

しかし、このような輪軸重体での自己操舵機能および復
元作用は、蛇行動を発生させ、台車の運動を不安定にす
る原因ともなる。そのため、台車枠と輪軸の間に相対ヨ
ーイング運動を弾性的に拘束する軸箱支持剛性で結合す
る。
However, such a self-steering function and restoring function of the wheel axle heavy body may cause snaking behavior, making the movement of the bogie unstable. Therefore, the bogie frame and wheel axle are connected by an axle box support rigidity that elastically restrains relative yawing motion.

(蛇行動発生機構) 蛇行動を引起こすレールから輪軸に作用する力は、車輪
の進行方向に対するヨーイング角によって決る横クリー
プ力、車輪とレール間の進行方向のすべりに依存する縦
クリープ力である。前者は輪軸がヨーイングすなわち操
舵すると進行左右方向に発生する力である。後者は左右
の車輪の回転速度が等しいために、輪軸が左右方向に変
位すると、左右車輪の回転半径の差によりすべりが生じ
るために発生する左右の車輪で逆向きの進行方向力であ
り、この力は輪軸をヨーイングさせるモーメントを発生
する。
(Snaking behavior generation mechanism) The forces acting on the wheel set from the rail that cause snaking behavior are a lateral creep force determined by the yaw angle with respect to the wheel's traveling direction, and a vertical creep force that depends on the slip between the wheel and the rail in the traveling direction. . The former is a force that is generated in the left and right directions when the wheel set yaws or steers. The latter is a force in the opposite direction of travel between the left and right wheels that is generated when the wheel axle is displaced in the left-right direction because the rotational speeds of the left and right wheels are equal, causing slippage due to the difference in the rotation radius of the left and right wheels. The force creates a moment that causes the wheelset to yaw.

(従来台車の蛇行動防止方法) 従来の台車では蛇行動を防止するために、これらのクリ
ープ力と釣りあうように、軸箱に作用する軸箱支持剛性
による弾性力、および減衰力作用要素による減衰力を作
用させる。しかし、縦クリープ力と横クリープ力のうち
、輪軸の左右速度、ヨーイング速度に依存する力は走行
速度にほぼ反比例するため、速度が高くなると、速度に
依存する輪軸の蛇行動を減衰させる作用は小さくなって
しまう。減衰力の減少は自動振動を引起こし、台車の運
動が不安定となる蛇行動が発生ずる。この蛇行動が発生
して輪軸の運動が不安定になる限界の速度を臨界速度と
呼び、実用上、この臨界速度は運転速度よりも大きくす
る必要がある。このために従来用いられてる方法は、輪
軸のヨーイング運動を拘束する前後方向軸箱支持剛性を
大きくすることである。
(Method for preventing snake motion in conventional bogies) In order to prevent snake motion in conventional bogies, in order to balance these creep forces, the elastic force from the axle box support rigidity acting on the axle box and the damping force acting element are applied to the axle box. Apply damping force. However, among the longitudinal creep force and the lateral creep force, the force that depends on the lateral speed and yawing speed of the wheel set is almost inversely proportional to the traveling speed, so as the speed increases, the effect of damping the speed-dependent meandering motion of the wheel set is reduced. It becomes smaller. The decrease in damping force causes automatic vibration, which causes a snake motion that makes the movement of the truck unstable. The critical speed at which this meandering behavior occurs and the motion of the wheel set becomes unstable is called the critical speed, and in practice, this critical speed must be greater than the operating speed. A method conventionally used for this purpose is to increase the longitudinal axle box support rigidity that restrains the yawing movement of the wheelset.

(従来台車の蛇行動防止法が自己操舵機能を低下させる
理由) 前後方向軸箱支持剛性が大きくなると、曲線での自己操
舵性能は以下の説明のように低下する(図4(b)参照
)。
(Reason why the conventional bogie snaking prevention method reduces the self-steering function) When the longitudinal axle box support rigidity increases, the self-steering performance on curves decreases as explained below (see Figure 4 (b)) .

(イ)先ず始めに、仮に前後の輪軸が凹線半径方向に完
全に操舵した状態を考える。
(a) First, let's consider a situation where the front and rear wheelsets are completely steered in the radial direction of the concave line.

(17)前輪軸と台車枠間に相対ヨーイング変位が生じ
るため、前輪軸には前後方向軸箱支持剛性より、操舵を
妨げる方向のモーメントが発生する。
(17) Since a relative yawing displacement occurs between the front wheel axle and the bogie frame, a moment is generated at the front wheel axle in a direction that hinders steering due to the longitudinal axle box support rigidity.

後輪軸にも同様、逆回りのモーメントが作用する。Similarly, a moment in the opposite direction acts on the rear wheel axle.

これらは台車枠を通じた内力であるため、向きが反対で
大きさは等しいくなければならない。
Since these are internal forces through the bogie frame, they must be in opposite directions and equal in magnitude.

(ハ)これらのモーメントと釣りあうために、縦クリー
プ力が両輪軸に作用しなければならない。
(c) To balance these moments, a longitudinal creep force must act on both wheel axles.

そのためには、前輪軸は外側に変位し、後輪軸は内側に
変位する。よって、前後の輪軸は相対左右変位を生じる
For this purpose, the front wheel axle is displaced outward and the rear wheel axle is displaced inward. Therefore, the front and rear wheel axles undergo relative left-right displacement.

(ニ)一方、(I7)のように、ヨーイングによる軸箱
支持剛性によるヨーイングモーメントは前後軸で等しく
なければならないため、台車枠はヨーイングしない。
(d) On the other hand, as shown in (I7), the yawing moment due to the axle box support rigidity due to yawing must be equal between the front and rear axles, so the bogie frame does not yaw.

(ホ)よって、(ハ)(ニ)より、輪軸と台車枠間の相
対左右変位が生じ、左右方向軸箱支持剛性より前輪軸は
曲線内向きに、後輪軸は曲線外向きに左右方向の力を受
ける。
(e) Therefore, from (c) and (d), a relative left-right displacement occurs between the wheel axle and the bogie frame, and due to the support rigidity of the axle box in the left-right direction, the front wheel axle will move inward in the curve, and the rear wheel axle will move outward in the left-right direction. Receive power.

(へ)この左右方向力は、車輪とレール間の左右方向力
と釣りあわなければならない。この力は横クリープ力で
あり、輪軸の曲線半径方向の操舵状態から、操舵と逆向
きの輪軸のヨーイング変位がなければ発生しない。
(f) This lateral force must be balanced with the lateral force between the wheels and the rail. This force is a lateral creep force, and does not occur unless there is a yawing displacement of the wheel axle in the opposite direction to the steering from the steering state of the wheel axle in the curve radial direction.

(ト)すなわち、前後方向軸箱支持剛性の存在により、
輪軸を完全に操舵することはできない。図4(b)に、
従来台車が曲線を旋回している状態の輪、台車枠の変位
を示す。
(g) In other words, due to the existence of longitudinal axle box support rigidity,
It is not possible to completely steer the wheelset. In Figure 4(b),
This figure shows the displacement of the wheels and truck frame when a conventional truck is turning around a curve.

曲線半径が小さく、前後方向軸箱支持剛性が太きいと、
輪軸に作用するヨーモーメントは大きくなる。よって、
前輪軸の外側への変位はさらに大きくなり、フランジ遊
間が狭ければ、フランジが外軌に接触することになる。
If the curve radius is small and the longitudinal axle box support rigidity is large,
The yaw moment acting on the wheel set increases. Therefore,
The outward displacement of the front wheel axle becomes even larger, and if the flange clearance is narrow, the flange will come into contact with the outer raceway.

フランジ接触はフランジやレールの摩耗を導くだけでな
く、騒音の原因ともなる。
Flange contact not only leads to wear of flanges and rails, but also causes noise.

(問題点を解決するための手段) 以上の欠点を解決したのが、本発明である。従来の台車
において、蛇行動防止方法と曲線旋回時の自己操舵機能
を低下させる原因の一つは、台車構成の前後対称性であ
る。よって本発明の基本的な解決法は、台車の構成を前
後非対称にすることである。
(Means for Solving the Problems) The present invention solves the above drawbacks. In conventional bogies, one of the causes of deterioration in the method of preventing snaking behavior and the self-steering function when turning around curves is the longitudinal symmetry of the bogie configuration. Therefore, the basic solution of the present invention is to make the structure of the truck asymmetrical in the front and rear.

本発明では、請求項(1)および(3)の2通りの手段
により問題を解決した。すなわち、請求項(1)では、
図1に示すように、前軸の前後方向軸箱支持剛性を後軸
のそれよりも小さくし、さらに前軸の速いヨーイング運
動に抵抗力を発生する減衰力作用要素を取り付けた台車
である。請求項(2)は、進行方向が前後に入替わる場
合に、請求項(1)を満たす台車を具体的に実現する方
法であり、図2のように減衰力を切換えられる減衰力作
用要素を台車枠・軸箱間に前後方向に取り付けた台車で
ある。請求項(3)は、図3のように、後軸のみに左右
車輪が一体となつて回転できる車輪を用い、さらに前後
軸の相対左右変位および速度に対する拘束を作用させる
構成要素を、前後軸の中心点から前後にずらして非対称
とした台車である。
In the present invention, the problem is solved by the two means of claims (1) and (3). That is, in claim (1),
As shown in FIG. 1, this is a bogie in which the front axle has a front-rear axle box support rigidity smaller than that of the rear axle, and is further equipped with a damping force effecting element that generates a resistance force against the fast yawing motion of the front axle. Claim (2) is a method for specifically realizing a trolley that satisfies claim (1) when the traveling direction changes back and forth, and includes a damping force applying element that can switch the damping force as shown in FIG. This is a bogie that is installed longitudinally between the bogie frame and axle box. Claim (3), as shown in FIG. 3, uses wheels that allow the left and right wheels to rotate together only on the rear axle, and further includes a component that exerts restraint on the relative lateral displacement and speed of the front and rear axles on the front and rear axles. It is an asymmetrical cart that is shifted back and forth from the center point.

(作用) 以下に、本発明による手法により、従来台車の問題点が
解決できることを説明する。
(Function) Hereinafter, it will be explained that the problems of conventional trolleys can be solved by the method according to the present invention.

(請求項(1)の台車の作用) 図4(a)に、請求項(1)の台車が曲線旋回している
状態の輪軸、台車枠の変位を示す。上記の(従来台車の
蛇行動防止法が自己操舵機能を低下させる理由)で示し
たように、従来台車において、前後方向軸箱支持剛性の
存在が輪軸の自己操舵機能を妨げる要因は、(ホ)の軸
箱に作用する左右方向力の存在である。よって、この左
右方向軸箱支持0 剛性による左右方向力が作用しないような台車構造とす
れば良い。そのためには、台車枠が(ホ)の軸箱左右方
向力がなるべく作用しないようにヨーイングすれば良い
。すなわち、台車枠の左右方向軸箱支持剛性取り付は位
置での左右変位が、前項軸の左右変位とほぼ等しいよう
に台車枠がヨーイングすればよい。前軸は曲線外側に、
後軸は曲線内側に変位するから、台車枠は左旋回ならば
右向きにヨーイングすることになる。よって、前軸と台
車枠との相対ヨーイング変位は、後軸と台車枠との相対
ヨーイング変位よりも大きくなる。(ニ)のように、こ
れらの相対ヨーイング変位によって生じる前後方向軸箱
支持剛性によるヨーイングモーメントは等しくなければ
ならない。そのためには、前後方向軸箱支持剛性の大き
さが前後の輪軸で異なればこの条件が成立する。すなわ
ち、前軸と台車枠間の前後方向軸箱支持剛性の大きさが
後軸と台車枠間の前後方向軸箱支持剛性よりも小さけれ
ばよい。以上が、請求項(1)の条件(イ)による作用
の説明である。前輪軸の前後方向軸箱支持剛性を後輪軸
のそれよりも適切に小さくすることにより、理想的には
前後の輪軸は曲線半径方向に完全に自己操舵することが
できる。
(Operation of the bogie according to claim (1)) Fig. 4(a) shows the displacement of the wheel set and the bogie frame when the bogie according to claim (1) is turning around a curve. As shown in the above (Reason why the method for preventing snake motion of conventional bogies reduces the self-steering function), in conventional bogies, the presence of longitudinal axle box support rigidity hinders the self-steering function of the wheelset. ) is the existence of a lateral force acting on the axle box. Therefore, the truck structure may be such that no lateral force is applied due to the rigidity of the axle box support in the lateral direction. To do this, the bogie frame should be yawed so that the axle box left-right direction force (e) is not applied as much as possible. That is, in order to attach the support rigidity of the axle box in the left-right direction to the bogie frame, the bogie frame may yaw so that the left-right displacement at the position is approximately equal to the left-right displacement of the axle mentioned above. The front axis is on the outside of the curve,
Since the rear axle is displaced to the inside of the curve, the bogie frame will yaw to the right if it is turning left. Therefore, the relative yawing displacement between the front axle and the bogie frame is larger than the relative yawing displacement between the rear axle and the bogie frame. As shown in (d), the yawing moment caused by the longitudinal axle box support rigidity caused by these relative yawing displacements must be equal. For this purpose, this condition is met if the front and rear axle box support rigidities in the longitudinal direction are different in magnitude between the front and rear wheel axles. That is, it is sufficient that the axle box support rigidity in the longitudinal direction between the front axle and the bogie frame is smaller than the axle box support rigidity in the longitudinal direction between the rear axle and the bogie frame. The above is the explanation of the effect according to condition (a) of claim (1). By appropriately making the longitudinal axle box support rigidity of the front wheel axle smaller than that of the rear axle, ideally the front and rear wheel axles can be completely self-steering in the radial direction of the curve.

しかし、この条件のみでは、前軸の前後方向軸箱支持剛
性が小さくなり、前輪軸の蛇行動に対する安定性が低下
してしまう。これを防止する手段が請求項(1)の条件
([+)である。上記(蛇行動発生機構)で説明したよ
うに、蛇行動は輪軸の運動について、輪軸のヨーイング
速度によって定まるクリープ力が、速度が高くなるにつ
れ小さくなることによって生じる。よって、この減衰力
を補うように輪軸と台車枠間に作用する減衰力作用要素
を設けて蛇行動を防止する。なお、従来台車では、減衰
力作用要素は、台車枠と車体の間に左右動ダンパ、ヨー
ダンパとして用いられているが、この位置には減衰力作
用要素は用いられていない。
However, if only this condition is met, the axle box support rigidity of the front axle in the longitudinal direction becomes small, and the stability against the snaking motion of the front axle decreases. A means for preventing this is the condition ([+) of claim (1). As explained above (mechanism for generating snaking behavior), snaking occurs when the creep force determined by the yawing speed of the wheel set decreases as the speed increases. Therefore, a damping force acting element that acts between the wheel set and the bogie frame is provided to compensate for this damping force, thereby preventing snaking. Note that in conventional bogies, damping force acting elements are used as lateral movement dampers and yaw dampers between the bogie frame and the vehicle body, but no damping force acting elements are used at this position.

この減衰力作用要素は速度が大きくなるほど大きな抵抗
力を発生するため、蛇行動のような周波数の高い振動、
すなわちヨーイング速度の大きい運動には大きな力が作
用して効果を発揮するが、曲線旋回における操舵による
ヨーイングについては、ゆっくりした動きとなるため、
大きな抵抗力とはならない。そして、ヨーイング速度が
ゼロの場合には抵抗力は発生しないため、定常的に曲線
を旋回している状態では、自己操舵性能にはなんら影響
を与えない。よって、従来台車では不可能であった、曲
線旋回時の自己操舵をほぼ完全に行ないながら、かつ蛇
行動安定性を十分確保することが可能となる。
This damping force effecting element generates a larger resistance force as the speed increases, so high frequency vibrations such as snake action,
In other words, a large force acts on a movement with a high yawing speed and is effective, but yawing due to steering during curved turns is a slow movement.
It doesn't provide much resistance. Since no resistance is generated when the yawing speed is zero, self-steering performance is not affected at all when the vehicle is constantly turning around a curve. Therefore, it is possible to perform almost perfect self-steering when turning a curve, which has been impossible with conventional bogies, and to ensure sufficient stability in meandering behavior.

(請求項(2)の台車の作用) 請求項(1)を満たす台車は、前後非対称となるため、
双方向に走行する場合は、進行方向によって、前後方向
軸箱支持剛性を切換え、さらに前後方向に作用する減衰
力作用要素を付は替える必要が生じる。請求項(2)は
、この操作を簡単に行なうことができる台車である。す
なわち、図2のように減衰力が切換えられる減衰力作用
要素を取り付けるだけで実現する。進行方向に対して後
軸となる側の減衰力作用要素の減衰力が非常に大きくな
るように切換える。減衰力が非常に大きい場合、輪軸と
台車枠の相対変位は拘束され、両者は剛体のような運動
をする。すなわち、後軸の前後方向軸箱支持剛性が等価
的に大きくなったことになる。
(Operation of the truck according to claim (2)) Since the truck satisfying claim (1) is asymmetrical in the front and rear,
When traveling in both directions, it is necessary to switch the front-rear axle box support rigidity depending on the direction of travel, and to change the attachment of the damping force acting element that acts in the front-rear direction. Claim (2) is a cart that allows this operation to be performed easily. That is, this can be achieved by simply attaching a damping force effecting element whose damping force can be switched as shown in FIG. The damping force of the damping force acting element on the side that becomes the rear shaft with respect to the traveling direction is switched so that it becomes extremely large. When the damping force is very large, the relative displacement between the wheel set and the bogie frame is restrained, and both move like rigid bodies. In other words, the axle box support rigidity of the rear axle in the longitudinal direction is equivalently increased.

前軸については、減衰作用を伴い後軸の前後方向軸箱支
持剛性よりも小さな値を持つことになり、請求項(1)
の条件を満たす台車となる。
The front axle has a damping effect and has a smaller value than the front-rear axle box support rigidity of the rear axle, which is claimed in claim (1).
The trolley satisfies the following conditions.

(請求項(3)の台車の作用) 従来台車の蛇行動防止法が、輪軸の自己操舵機能を妨げ
るという問題点を解決する第二の手段が本発明である。
(Function of the bogie according to claim (3)) The present invention is a second means for solving the problem that the conventional method for preventing the snake motion of a bogie impedes the self-steering function of the wheelset.

すなわち、台車内の輪軸の支持構造の非対称化だけでな
く、さらに蛇行動の安定化のために、後軸のみに左右車
輪が一体となつて回転できる車輪を用いる前後非対称性
を導入する。
That is, in addition to making the support structure of the wheel axle inside the bogie asymmetrical, in order to further stabilize the meandering motion, a front-rear asymmetry is introduced using wheels that allow left and right wheels to rotate together only on the rear axle.

この独立回転車輪を用いると、左右の車輪の回転速度が
一体となつて取り得るため、車輪とレールのすべりが大
幅に減少する。よって、蛇行動の原因のとなる車輪・レ
ール間に作用する縦クリープ力が非常に小さくなり、臨
界速度は向上し、走行安定性は向上する。しかし、同時
に輪軸の自己操舵機能も失われる。
When these independently rotating wheels are used, the left and right wheels can rotate at the same speed, which greatly reduces slippage between the wheels and the rails. Therefore, the longitudinal creep force that acts between the wheels and the rails, which causes snaking motion, becomes extremely small, the critical speed increases, and the running stability improves. However, at the same time, the self-steering function of the wheelset is also lost.

3 4 そこで請求項(3)は、独立回転車輪の持つ走行安定性
向上の長所を生かし、台車の自己操舵機能を保つために
、進行方向後軸のみに独立回転車輪を用い、前軸には自
己操舵機能を持つ通常の輪軸を用いる考案である。
3 4 Therefore, claim (3) uses independent rotating wheels only on the rear axle in the direction of travel, and uses independent rotating wheels on the front axle in order to take advantage of the improved running stability of independently rotating wheels and maintain the self-steering function of the bogie. The idea is to use an ordinary wheel set that has a self-steering function.

(請求項(3)の非対称輪軸支持機構)前軸の自己操舵
機能を向上させるために、請求項(1)と同様、前軸の
支持機構と後軸の支持機構を異なるものとし、非対称と
する。ここでは、輪軸の前後および左右方向の運動を拘
束する機構として、図5に示すように、台車枠と軸箱間
に作用する前後方向軸箱支持剛性だけでなく、輪軸と台
車枠間に作用するリンク機構、前後の輪軸を直接結合す
るリンク機構などについても考慮し、等価支持剛性で考
える。
(Asymmetric wheel axle support mechanism according to claim (3)) In order to improve the self-steering function of the front axle, the support mechanism for the front axle and the support mechanism for the rear axle are different from each other as in claim (1). do. Here, as shown in Fig. 5, the mechanism for restraining the longitudinal and lateral movement of the wheel axle is not only the longitudinal axle box support rigidity that acts between the bogie frame and the axle box, but also the mechanism that acts between the wheel axle and the bogie frame. Also consider link mechanisms that directly connect the front and rear wheel axles, and consider equivalent support rigidity.

これらの図5のような各種の台車構造は、進行方向に対
して、後軸は変位のみに着目すれば、図6のような等価
曲げ剛性kbと等価せん断剛性kseに、等価曲に置き
換えて考えることができる。一般的な輪軸の運動を拘束
するこの等価支持剛性で考えた場合の前後非対称性は、
等価せん断剛性の作用点の前後軸の中心点からのずれで
表すことができる。
For various bogie structures such as those shown in Fig. 5, if we focus only on the displacement of the rear shaft with respect to the traveling direction, we can replace the equivalent bending stiffness kb and the equivalent shear stiffness kse with the equivalent curve as shown in Fig. 6. I can think about it. The longitudinal asymmetry when considered in terms of this equivalent support stiffness, which restrains the motion of a general wheel set, is
It can be expressed as the deviation of the point of action of equivalent shear stiffness from the center point of the longitudinal axis.

これを前後非対称指数と呼びasで表す。この値は進行
方向前側に移動した場合正の値を取るとする。
This is called an anteroposterior asymmetry index and is expressed as as. This value assumes a positive value when moving forward in the direction of travel.

図5のそれぞれの台車の場合、前後非対称指数、等価曲
げ剛性および等価せん断剛性は次式で表される。
In the case of each bogie shown in FIG. 5, the front-rear asymmetry index, equivalent bending stiffness, and equivalent shear stiffness are expressed by the following equations.

(イ)図5(a)の台車:従来の台車と同じ構成である
が、1)j」後方向の軸箱支持剛性が前後でytなる台
車であり、前軸の前後方向軸箱支持剛性をkxl、後軸
の前後方向軸箱支持剛性をbx2、前後軸の左右方向軸
箱支持剛性をkyとする。
(b) Bogie shown in Figure 5(a): It has the same configuration as the conventional bogie, but 1) It is a bogie where the axle box support rigidity in the rear direction is yt in the front and rear directions, and the axle box support rigidity in the front and rear direction of the front axle is is kxl, the front-rear axle box support rigidity of the rear axle is bx2, and the left-right axle box support rigidity of the front-rear axle is ky.

as  = −a(kxl −bx2)/(kxl +
 bx2)kb  = 2 kxl bx2 bx2/
(kxl + bx2)kse = ky (kxl 
+ bx2) bx2/(2a2ky + (kxl 
+ bx2)bx2)(ロ)図5(b)の台車:輪軸と
台車枠をリンクで結合した台車で、リンクによる輪軸の
ヨーイング回転中心と輪軸までの距離が前後軸で異なる
方式である。前軸のこの距離を81、後軸のこの距離を
a2(進行後側に回転中心がある場合は符号を負とする
)、リンクの剛性をkO1前後軸の前後方向軸箱支持剛
性をkxとする。
as = −a(kxl −bx2)/(kxl +
bx2) kb = 2 kxl bx2 bx2/
(kxl + bx2) kse = ky (kxl
+ bx2) bx2/(2a2ky + (kxl
+ bx2) bx2) (b) Bogie shown in Figure 5(b): This is a bogie in which the wheel axle and the bogie frame are connected by a link, and the distance between the center of yawing rotation of the wheel axle and the wheel axle by the link is different for the front and rear axles. This distance for the front axle is 81, this distance for the rear axle is a2 (if the center of rotation is on the rear side, the sign is negative), the rigidity of the link is kO1, and the longitudinal axle box support rigidity of the front and rear axle is kx. do.

as=(al+a2)/2 kb=kxbxλ kse  =  kOkx  bx2/[(a +  
(al  −a2)/2)  kO+  kx  bx
”l(ハ)図5(C)の台車:前後輪軸をリンクで結合
した台車で、リンクの交点が中心からのずれている方式
である。この前方へのずれをaSC((&方へのずれは
負とする)、リンクの剛性をks、前後軸の前後方向軸
箱支持剛性をkxとする。
as=(al+a2)/2 kb=kxbxλ kse=kOkx bx2/[(a +
(al −a2)/2) kO+ kx bx
``l (C) Bogie in Figure 5 (C): This is a bogie in which the front and rear wheel axles are connected by links, and the intersection of the links is offset from the center.This forward shift is calculated by aSC ((& (the deviation is negative), the rigidity of the link is ks, and the axle box support rigidity in the longitudinal direction of the longitudinal axis is kx.

as=asc kb  =  kx  bx” kse = ks なお、軸箱支持剛性およびリンク剛性はそれぞれ1輪軸
当りの剛性である。また、減衰力作用要素についても全
く同様である。
as=asc kb=kx bx''kse=ks Note that the axle box support rigidity and link rigidity are each the rigidity per one wheel axle.The same is true for the damping force acting element.

(実施例) 本発明の台車について、蛇行動に対する臨界速度、曲線
旋回時の自己操舵性能を計算した結果を図7.8に示す
。図7は、請求項(1)および(2)の台車の性能であ
り、図8は請求項(3)の台車の性能を示す。
(Example) Figure 7.8 shows the results of calculating the critical speed for snaking behavior and self-steering performance during curved turns for the bogie of the present invention. FIG. 7 shows the performance of the cart according to claims (1) and (2), and FIG. 8 shows the performance of the cart according to claim (3).

図7(a)は請求項(1)および(2)の台車と、従来
の台車の自己操舵性能の比較である。直線区間から84
mの緩和曲線を経て曲率半径400m、カント量210
mmの定常曲率の曲線区間を速度100 k m / 
hで走行した場合の輪軸の左右変位、ヨーイング変位を
示す。左右変位は軌道中心がらの内側変位を正とし、ヨ
ーイング変位は、完全に輪軸が操舵して輪軸が曲線半径
方向に操舵した状態からのヨーイング変位、すなわちア
タックアングルで表し、曲線旋回と逆向きを正変位とし
た。
FIG. 7(a) is a comparison of the self-steering performance of the carts according to claims (1) and (2) and a conventional cart. 84 from straight section
The radius of curvature is 400m and the amount of cant is 210m after passing through a transition curve of m.
A curve section with a steady curvature of mm at a speed of 100 km/
This shows the left and right displacement and yawing displacement of the wheel axle when traveling at h. The lateral displacement is defined as the inward displacement from the center of the track, and the yawing displacement is the yawing displacement from the state where the wheel set is completely steered and the wheel set is steered in the radial direction of the curve.In other words, it is expressed as the attack angle. It was assumed to be a positive displacement.

すなわち、アタックアングルが零のとき、完全な操舵が
行われている。従来台車(破線で示す)では、操舵が十
分行われていないばかりが、フランジ接触を起こす。一
方、本発明による台@(実線で示す)では、はぼ理想的
に自己操舵が行われて7 ■8 おり、フランジ接触も避けられる。
That is, when the angle of attack is zero, complete steering is occurring. In the conventional truck (indicated by the broken line), flange contact occurs even though the steering is not performed sufficiently. On the other hand, in the stand according to the present invention (indicated by a solid line), self-steering is performed in an ideal manner, and flange contact can also be avoided.

図7(b)は、請求項(1)および(2)の台車につい
て、蛇行動が発生する臨界速度の計算結果である。
FIG. 7(b) is a calculation result of the critical speed at which snaking behavior occurs for the carts according to claims (1) and (2).

横軸に1輪軸当りの後軸の前後方向軸箱支持剛性の大き
さ、縦軸に1輪軸当りの前後軸の左右方向軸箱支持剛性
の大きさを取り、臨界速度の等高線を実線で示す。破線
は前後軸の前後方向軸箱支持剛性の比を示す。この計算
例では、後軸の前後方向軸箱支持剛性を約106N/m
以上、それに応じて前軸の前後方向軸箱支持剛性は後軸
の0.2がら0,4倍程度、左右方向軸箱支持剛性を1
06N/m程度に選択すれば、速度288 k m /
 hまで蛇行動は発生せず、通常の鉄道において実用上
問題はないことがわかる。
The horizontal axis represents the longitudinal axle box support rigidity of the rear axle per one wheel axle, and the vertical axis represents the horizontal axle box support rigidity of the longitudinal axle per one wheel axle, and the contour lines of the critical speed are shown as solid lines. . The broken line indicates the ratio of the front-rear axle box support rigidity of the front-rear axle. In this calculation example, the axle box support rigidity of the rear axle in the longitudinal direction is approximately 106 N/m.
Accordingly, the axle box support rigidity of the front axle in the longitudinal direction is approximately 0.2 to 0.4 times that of the rear axle, and the axle box support rigidity in the left and right direction is increased to 1.
If you select around 06N/m, the speed will be 288km/m.
It can be seen that no snaking behavior occurred up to h, and there is no practical problem in normal railways.

なお、ここでの計算は線形運動方程式で表し、台車の諸
定数は通常用いられている値とし、以下の値を用いた。
Note that the calculations here were expressed using linear equations of motion, and the constants of the truck were set to commonly used values, and the following values were used.

輪軸の質量: 1525kg、輪軸のヨーイング慣性モ
ーメント: 461.3kgm2、軌間: 1067m
m、軸箱取り付は距離: bx=0.82m、軸距の半
分: a=1.05m、車輪回転半径: r=0.43
m、車輪踏面勾配:λ=0.1、縦クリープ係数:に]
、=5.6−x’lo N、横クリープ係数:に2=5
.0X10”N、台車枠質量: 3400kg、台車枠
のヨーイング慣性モーメント: 2877.8kgm2
、枕ばね左右剛性: 6.86X10ゝN/m、左右動
ダンパの減衰係数:10 Ns/m、ヨーダンパの減衰
係数: 2ylO’Nm50図7(a)についてはさら
に、従来台車の1輪軸当りの前後および左右方向軸箱支
持剛性;kx・107N/m ky=5glo N7m
、請求項(1)および(2)の台車について、1輪軸当
りの左右方向軸箱支持剛性:ky5x10ゝN/m、1
輪軸当りの前軸の前後方向軸箱支持剛性: kxl・1
.43x106N/m、同後軸の剛性: kx2=10
7N/m、減衰力作用要素の1輪軸当りの減衰係数=5
xlO’Ns/m、同取り付は距離:O,’82mを用
いた。また、図7(b)で、前軸の前後方向軸箱支持剛
性の値は、自己操舵性能が計算上最適となるように次式
で定めた。この最適となる条件は、曲線の曲率半径には
依存しない。
Wheel axle mass: 1525 kg, wheel axle yawing moment of inertia: 461.3 kgm2, gauge: 1067 m
m, axle box installation distance: bx = 0.82m, half of wheelbase: a = 1.05m, wheel rotation radius: r = 0.43
m, wheel tread slope: λ = 0.1, vertical creep coefficient: to]
, = 5.6-x'lo N, lateral creep coefficient: 2 = 5
.. 0X10”N, bogie frame mass: 3400kg, bogie frame yawing moment of inertia: 2877.8kgm2
, pillow spring lateral stiffness: 6.86X10ゝN/m, lateral damper damping coefficient: 10 Ns/m, yaw damper damping coefficient: 2ylO'Nm50 Regarding Fig. 7(a), furthermore, the per wheel axle of the conventional bogie Axle box support rigidity in longitudinal and lateral directions; kx・107N/m ky=5glo N7m
, for the bogies of claims (1) and (2), the left-right direction axle box support rigidity per one wheel axle: ky5x10ゝN/m, 1
Front axle longitudinal axle box support rigidity per wheel axle: kxl・1
.. 43x106N/m, rigidity of the same rear shaft: kx2=10
7N/m, damping coefficient per wheel axle of damping force acting element = 5
xlO'Ns/m, distance: O, '82m was used for the same installation. Further, in FIG. 7(b), the value of the axle box support rigidity of the front axle in the longitudinal direction is determined by the following formula so that the self-steering performance is calculated to be optimal. This optimum condition does not depend on the radius of curvature of the curve.

as=abλ kx2 / (2a にI^ +kx2
 b r)kxl = kx2 (a −as’) /
 (a + as)図8は、請求項(3)の台車につい
て、任意の曲率を持つ曲線軌道を旋回するとき、定常状
態での自己操舵角が完全な操舵状態の80%満足される
条件で、等価支持剛性を変えて蛇行動臨界速度を求めた
ものである。図8(a)は請求項(3)の条件(イ)お
よび(D)のように、後軸を独立回転車輪とした場合で
、縦軸に等価せん断剛性、横軸に等何曲げ剛性をとって
臨界速度の等高線を実線で示したものである。破線は前
後非対称性指数asの値である。
as=abλ kx2 / (2a to I^ +kx2
b r) kxl = kx2 (a - as') /
(a + as) FIG. 8 shows the condition that the self-steering angle in the steady state is satisfied by 80% of the perfect steering state when the bogie according to claim (3) turns on a curved trajectory having an arbitrary curvature. , the critical speed of snake movement was determined by changing the equivalent support stiffness. Figure 8(a) shows the case where the rear axle is an independently rotating wheel as in conditions (A) and (D) of claim (3), with the equivalent shear stiffness on the vertical axis and the equivalent bending stiffness on the horizontal axis. The contour lines of the critical velocity are shown as solid lines. The broken line is the value of the anteroposterior asymmetry index as.

asが零の時は対称となり、−点鎖線で示す。この計算
例では、aSをおよそ1から2mとする非対称性を導入
すると、臨界速度が向上することがわかる。図8(b)
は、前後軸とも通常の輪軸を用いた場合の計算結果であ
る。図8の計算条件では、船釣に台車の蛇行動安定性を
向上させる枕ばねや左右動ダンパ、ヨーダンパ装置など
が装備されていない条件で、台車単体が走行する場合の
計算結果である。このため、図8(b)で対称となるa
s=0の一点鎖線上で表される従来の台車では、蛇行動
の臨界速度が非常に低い。しかし、請求項(3)の台車
は、このように従来台車では実用が不可能な条件であり
、かつ曲線旋回時の自己操舵性能が全く同じであるにも
かかわらず、蛇行動の臨界速度を向上させ、実用上問題
ない安定性を確保することができる。なお、図8(b)
でaSが零でない状態は、請求項(1)の条件(イ)の
みを満たす台車であり、条件(ロ)を満たさないと、こ
の計算例では安定性が確保できないことがわかる。請求
項(3)の台車では、後軸のみ独立回転車輪を用いるこ
とにより、減衰力作用要素がなくても蛇行動の臨界速度
の向上が図れることになる。また、本計算では、簡単化
のため、台車枠の質量を無視し、その他の定数は図7の
条件と同一である。
When as is zero, it is symmetrical, which is indicated by a dashed-dotted line. In this calculation example, it can be seen that the critical velocity is improved by introducing an asymmetry in which aS is approximately 1 to 2 m. Figure 8(b)
is the calculation result when normal wheel axles are used for both the front and rear axles. The calculation conditions in FIG. 8 are the calculation results when the trolley runs alone under conditions where the fishing boat is not equipped with pillow springs, lateral movement dampers, yaw damper devices, etc. that improve the stability of the trolley's snaking motion. Therefore, a becomes symmetrical in FIG. 8(b).
In the conventional truck represented by the dot-dash line where s=0, the critical speed of the snake motion is very low. However, the bogie according to claim (3) has a critical speed for meandering motion, even though the conventional bogies cannot be put to practical use and the self-steering performance during curved turns is exactly the same. It is possible to improve stability and ensure stability without any problems in practical use. Note that FIG. 8(b)
It can be seen that the state where aS is not zero is a truck that satisfies only condition (a) of claim (1), and unless condition (b) is satisfied, stability cannot be ensured in this calculation example. In the truck of claim (3), by using independently rotating wheels only on the rear axle, it is possible to improve the critical speed of the meandering action even without a damping force acting element. In addition, in this calculation, for the sake of simplicity, the mass of the bogie frame is ignored, and the other constants are the same as the conditions in FIG. 7.

(発明の効果) 以上のように、本発明により、台車の蛇行動安定性を実
用上十分保ちながら、曲線旋回時の自己操舵性能を飛躍
的に向上させることができる。よって、車輪とレール間
に作用するすべりを大幅に減少させることができるため
、車輪踏面やレール1 22 の摩耗を防止することができる。また、同時に車輪とレ
ールの間に作用するクリープ力も減少するため、レール
に作用する横圧を大幅に低下することが可能となり、軌
道破壊の防止にも役立つ。さらに、フランジ接触も避け
やすくなり、フランジやレールの摩耗の防止、フランジ
接触による騒音の防止が可能となる。すなわち、実用上
極めて有用な台車となる。
(Effects of the Invention) As described above, according to the present invention, it is possible to dramatically improve the self-steering performance during curved turns while maintaining the meandering stability of the bogie sufficiently for practical use. Therefore, since the slip acting between the wheels and the rails can be significantly reduced, wear of the wheel treads and the rails 1 22 can be prevented. At the same time, the creep force acting between the wheels and the rails is also reduced, making it possible to significantly reduce the lateral pressure acting on the rails, which helps prevent track destruction. Furthermore, it becomes easier to avoid flange contact, making it possible to prevent wear of flanges and rails and noise caused by flange contact. In other words, it becomes a practically extremely useful trolley.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明請求項(1)の実施例を示す台車の平面
図。 第2図は請求項(2)を示す台車の改良部分の側面図。 第3図は請求項(3)を示す台車の平面図。 第4図は、曲線旋回時の輪軸の挙動について、従来台車
と本発明請求項(1)および(3)の台車の比較を示す
。 第5図は請求項(3)の実施例を示す台車の平面図。 第6図は請求項(3)における台車内の輪軸支持装置の
等価せん断剛性、等価曲げ剛性を示す図である。 第7図は請求項(1)および(2)の効果を示す計算結
果である。 第8図は請求項(3)の効果を示す計算結果である。 l:台車枠、2:前輪軸、3:後輪軸、4:軸箱、5:
左右方向軸箱支持剛性、6:前輪軸前後方向軸箱支持剛
性、7:後輪軸前後方向軸箱支持剛性、8:減衰力作用
要素、9:車輪、10:軸ばね、11:減衰力が切換え
られる減衰力作用要素、12:独立回転車輪、13:等
価せん断剛性、14:前後方向軸箱支持剛性、15:等
価曲げ剛性、16:輪軸・台車枠間結合リンク、17:
輪軸間結合リンク
FIG. 1 is a plan view of a truck showing an embodiment of claim (1) of the present invention. FIG. 2 is a side view of an improved part of the truck showing claim (2). FIG. 3 is a plan view of a truck showing claim (3). FIG. 4 shows a comparison between the conventional bogie and the bogies according to claims (1) and (3) of the present invention with respect to the behavior of the wheel set when turning around a curve. FIG. 5 is a plan view of a truck showing an embodiment of claim (3). FIG. 6 is a diagram showing the equivalent shear rigidity and equivalent bending rigidity of the wheel shaft support device in the bogie according to claim (3). FIG. 7 shows calculation results showing the effects of claims (1) and (2). FIG. 8 shows calculation results showing the effect of claim (3). l: Bogie frame, 2: Front wheel axle, 3: Rear wheel axle, 4: Axle box, 5:
Left and right direction axle box support rigidity, 6: Front wheel axle longitudinal direction axle box support rigidity, 7: Rear wheel axle longitudinal direction axle box support rigidity, 8: Damping force acting element, 9: Wheel, 10: Axle spring, 11: Damping force Switchable damping force acting element, 12: Independently rotating wheel, 13: Equivalent shear rigidity, 14: Front-rear axle box support rigidity, 15: Equivalent bending rigidity, 16: Link between wheel axle and bogie frame, 17:
Link between wheelsets

Claims (3)

【特許請求の範囲】[Claims] (1)走行状態で、次の二条件を満たす二軸台車。 (イ)進行方向に対して、前軸の前後方向軸箱支持剛性
が、後軸の前後方向軸箱支持剛性よりも小さい。すなわ
ち、前輪軸と台車枠の相対ヨーイング変位に対して作用
する弾性力が後輪軸のそれよりも小さい。 (ロ)前輪軸と台車枠の相対ヨーイング速度に対して作
用する減衰力作用要素をもつ。
(1) A two-axle bogie that satisfies the following two conditions when running. (a) With respect to the traveling direction, the axle box support rigidity of the front axle in the longitudinal direction is smaller than the longitudinal axle box support rigidity of the rear axle. That is, the elastic force acting on the relative yawing displacement between the front wheel axle and the bogie frame is smaller than that of the rear wheel axle. (b) It has a damping force effecting element that acts on the relative yawing speed between the front wheel axle and the bogie frame.
(2)請求項(1)を満たす台車で、次の二条件を満た
す減衰力作用要素を軸箱と台車枠間に取り付けた二軸台
車。 (イ)軸箱と台車枠の前後方向の相対速度に対して減衰
力を発生する。 (ロ)発生する減衰力の大きさは切換えられる。
(2) A two-axle bogie that satisfies claim (1) and has a damping force acting element that satisfies the following two conditions attached between the axle box and the bogie frame. (b) Generates a damping force against the relative speed of the axle box and bogie frame in the longitudinal direction. (b) The magnitude of the damping force generated can be switched.
(3)走行状態において、次の三条件を満たす二軸台車
。 (イ)進行方向に対して、前軸は従来の台車と同様左右
の車輪が一体となって回転する。(ロ)進行方向に対し
て、後軸は左右の車輪が独立に回転する。 (ハ)前後の輪軸の相対左右変位および相対左右速度に
対して作用する等価せん断剛性および等価せん断減衰要
素が、前後の輪軸の中心からずれた位置に存在し、前後
輪軸の相対左右変位および相対左右速度により前後の輪
軸に対してヨーイングモーメントを発生する。
(3) A two-axle bogie that satisfies the following three conditions in the running state. (a) With respect to the direction of travel, the left and right wheels of the front axle rotate as one, similar to conventional carts. (b) The left and right wheels of the rear axle rotate independently with respect to the direction of travel. (c) Equivalent shear stiffness and equivalent shear damping elements that act on relative lateral displacement and relative lateral speed of the front and rear wheel axles exist at positions offset from the center of the front and rear wheel axles, and A yawing moment is generated between the front and rear wheel axles depending on the left and right speed.
JP5275390A 1990-03-06 1990-03-06 Two-axle bogies for railway vehicles Expired - Fee Related JP2738114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275390A JP2738114B2 (en) 1990-03-06 1990-03-06 Two-axle bogies for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5275390A JP2738114B2 (en) 1990-03-06 1990-03-06 Two-axle bogies for railway vehicles

Publications (2)

Publication Number Publication Date
JPH03258656A true JPH03258656A (en) 1991-11-18
JP2738114B2 JP2738114B2 (en) 1998-04-08

Family

ID=12923657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275390A Expired - Fee Related JP2738114B2 (en) 1990-03-06 1990-03-06 Two-axle bogies for railway vehicles

Country Status (1)

Country Link
JP (1) JP2738114B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488910A (en) * 1992-06-26 1996-02-06 Krupp Verkehrstechnik Gmbh Undercarriage for railway car
WO1998017520A1 (en) * 1996-10-24 1998-04-30 Urban Culture Institute Co., Inc. Axle box support device for bogie truck
US7448329B2 (en) * 2002-12-13 2008-11-11 Bombardier Transportation Gmbh Wheel set guidance assembly
EP2196377A1 (en) * 2007-09-21 2010-06-16 Sumitomo Metal Industries, Ltd. Steering bogie for rolling stock, rolling stock and articulated vehicle
WO2010095285A1 (en) * 2009-02-20 2010-08-26 三菱重工業株式会社 Low-floor vehicle
JP2012171413A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Rolling stock
JP2012171414A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Rolling stock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842247B (en) 2007-08-28 2012-07-25 住友金属工业株式会社 Two-axle bogie for railway vehicle and railway vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488910A (en) * 1992-06-26 1996-02-06 Krupp Verkehrstechnik Gmbh Undercarriage for railway car
WO1998017520A1 (en) * 1996-10-24 1998-04-30 Urban Culture Institute Co., Inc. Axle box support device for bogie truck
US7448329B2 (en) * 2002-12-13 2008-11-11 Bombardier Transportation Gmbh Wheel set guidance assembly
AU2010246362B2 (en) * 2002-12-13 2011-07-07 Bombardier Transportation Gmbh Wheel set guidance assembly
JP5187311B2 (en) * 2007-09-21 2013-04-24 新日鐵住金株式会社 Railway vehicle steering carriage, railway vehicle and articulated vehicle
EP2196377A1 (en) * 2007-09-21 2010-06-16 Sumitomo Metal Industries, Ltd. Steering bogie for rolling stock, rolling stock and articulated vehicle
EP3081451A1 (en) * 2007-09-21 2016-10-19 Nippon Steel & Sumitomo Metal Corporation Steerable truck for a railway car, a railway car, and an articulated car
EP2196377A4 (en) * 2007-09-21 2014-07-23 Nippon Steel & Sumitomo Metal Corp Steering bogie for rolling stock, rolling stock and articulated vehicle
CN102405168A (en) * 2009-02-20 2012-04-04 三菱重工业株式会社 Low-floor vehicle
US8418628B2 (en) 2009-02-20 2013-04-16 Mitsubishi Heavy Industries, Ltd Low floor vehicle
WO2010095285A1 (en) * 2009-02-20 2010-08-26 三菱重工業株式会社 Low-floor vehicle
JP2012171414A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Rolling stock
JP2012171413A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Rolling stock

Also Published As

Publication number Publication date
JP2738114B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP3284550B2 (en) Self-steering railway bogie
US5235918A (en) Railway bogie with improved stability and behavior in curves having a slidably mounted axle box arm
JP5051771B2 (en) Wheel unit, bogie, railway vehicle and railway system
JPH03258656A (en) Rolling stock four wheel truck
US5540157A (en) Single-axle bogie for trackbound vehicle
EP2184214B1 (en) Self-steering platform car
KR100659708B1 (en) The bogie traveling stability device for using mr fluid and the method thereof
JP5259999B2 (en) Axle box support device for bogie for high-speed railway vehicles
JPS5950546B2 (en) Railway undercarriage support device
JP2004161115A (en) Rolling stock having truck frame turning device
Illingworth et al. The use of steering axle suspensions to reduce wheel and rail wear in curves
Powell et al. Active guidance of railway vehicles using traction motor torque control
KR101040376B1 (en) Steering Bogie for Railway Vehicles using Yaw Motion of the Center Pivot
JPS6230953B2 (en)
KR101040375B1 (en) Steering Bogie for Railway Vehicles using Three Bar Link Type
JPH08142862A (en) Bogie for rolling stock
US4417525A (en) Fluid self-steering railway vehicle truck
JPS604460A (en) Truck for railway rolling stock
JPH06199236A (en) Meandering control device for bogie of rolling stock
JPS61241259A (en) Steering truck
JPH0417814B2 (en)
JPS588604Y2 (en) Railway vehicle bogie
JP2556871Y2 (en) Railcar bogie
KR101950469B1 (en) Active steering control apparatus for railway vehicles and the method of the same
JPH03204302A (en) Independent wheel of rolling stock

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees