JP2776219B2 - Method of controlling snake behavior of bogies of railway vehicles - Google Patents

Method of controlling snake behavior of bogies of railway vehicles

Info

Publication number
JP2776219B2
JP2776219B2 JP25518293A JP25518293A JP2776219B2 JP 2776219 B2 JP2776219 B2 JP 2776219B2 JP 25518293 A JP25518293 A JP 25518293A JP 25518293 A JP25518293 A JP 25518293A JP 2776219 B2 JP2776219 B2 JP 2776219B2
Authority
JP
Japan
Prior art keywords
speed
control
bogie
snake
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25518293A
Other languages
Japanese (ja)
Other versions
JPH0781564A (en
Inventor
尚志 根来
都史彰 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25518293A priority Critical patent/JP2776219B2/en
Publication of JPH0781564A publication Critical patent/JPH0781564A/en
Application granted granted Critical
Publication of JP2776219B2 publication Critical patent/JP2776219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鉄道車両台車に特有
の不安定現象である蛇行動を効率良く抑制し、鉄道車両
の安定限界速度を飛躍的に向上させることのできる鉄道
車両台車の蛇行動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snake for a rail car bogie capable of efficiently suppressing a snake behavior, which is an unstable phenomenon peculiar to a rail car bogie, and dramatically improving the stability limit speed of the rail car. It relates to a behavior control method.

【0002】[0002]

【従来の技術】現用されている鉄道車両台車の基本構造
は図5A、Bに示すように、台車枠1、車軸2、車輪
3、軸箱4、一次ばね5および二次ばね6より構成され
る。そして、車輪3には曲線路の通過を容易にするため
に、踏面勾配θが付けられた円錐輪が用いられている。
2. Description of the Related Art As shown in FIGS. 5A and 5B, the basic structure of a railcar bogie currently in use is composed of a bogie frame 1, an axle 2, wheels 3, an axle box 4, a primary spring 5, and a secondary spring 6. You. A conical wheel having a tread slope θ is used as the wheel 3 in order to facilitate passage on a curved road.

【0003】その踏面勾配のため、レールに接する踏面
位置によって踏面半径が異なり、更に車輪は使用摩耗に
より不整斉となる。これらが原因となり、車輪の左右中
心は線路中心に対し偏位した位置で転走する。そのた
め、逆に直線路では図6に示すように、車軸2、車輪3
および軸箱4からなる輪軸7が蛇行を起こしやすくな
る。前記蛇行の波長Lは、前記踏面勾配から決まる一定
値であるため、走行速度の上昇とともに前記蛇行の周波
数は高くなり、ある速度で一次ばね5との共振が発生す
る。その結果、台車全体が大きく蛇行するようになり、
鉄道車両の安定走行が維持できなくなる。これを蛇行動
と呼び、また蛇行動の発生する走行速度を安定限界速度
と呼ぶ。
Due to the gradient of the tread surface, the radius of the tread surface varies depending on the position of the tread surface in contact with the rail, and the wheels become uneven due to wear during use. For these reasons, the left and right centers of the wheels roll at positions deviated from the center of the track. Therefore, on a straight road, as shown in FIG.
And the wheel set 7 composed of the axle box 4 tends to meander. Since the meandering wavelength L is a constant value determined by the gradient of the tread, the meandering frequency increases as the traveling speed increases, and resonance with the primary spring 5 occurs at a certain speed. As a result, the whole bogie will meander greatly,
Railway vehicles cannot maintain stable running. This is called a snake action, and the running speed at which the snake action occurs is called a stable limit speed.

【0004】前記のごとく、蛇行動は本質的には避けら
れない現象であるが、安定限界速度を向上させることは
可能である。その、安定限界速度を向上させるための従
来方法としては、一次ばね5のばね定数を大きくして共
振周波数を高くする方法や、図7に示すように、車体8
と台車枠1との間にヨーダンパ9を設置し、蛇行動を減
衰させる方法がある。
[0004] As described above, the snake behavior is an essentially unavoidable phenomenon, but it is possible to improve the stability limit speed. Conventional methods for improving the stability limit speed include a method of increasing the resonance frequency by increasing the spring constant of the primary spring 5 and a method of increasing the resonance frequency as shown in FIG.
There is a method in which a yaw damper 9 is provided between the bogie frame 1 and the bogie frame 1 to attenuate the snake action.

【0005】また、鉄道車両の乗り心地の向上を目的に
なされた発明に輪軸ヨー角制御装置付鉄道用車両(特開
平3−258655号公報)がある。これは図8に示す
ように、台車枠1と輪軸との間に流体アクチュエータ1
0を設置し、記憶装置11に予め蓄積しておいた軌道不
整等に関する情報を外部からの信号(速度信号、ATS
信号、異常信号、非常停止信号等)に従い随時読み出
し、制御器12で制御入力を計算し、前記流体アクチュ
エータ10に入力する構成となっている。
Another invention aimed at improving the riding comfort of railway vehicles is a railway vehicle equipped with a wheel axle angle control device (Japanese Patent Laid-Open No. 3-258655). As shown in FIG. 8, the fluid actuator 1 is located between the bogie frame 1 and the wheel set.
0 is installed, and information on orbital irregularities and the like previously stored in the storage device 11 is transmitted from an external signal (speed signal, ATS).
(A signal, an abnormal signal, an emergency stop signal, etc.) as needed, a control input is calculated by the controller 12, and the calculated input is input to the fluid actuator 10.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術の内、一
次ばねのばね定数を大きくして共振周波数を高くする方
法やヨーダンパを用いる方法は、容易に実現でき蛇行動
の抑制効果もあるが、軌道不整を台車枠や車体に振動と
して伝えやすくなり、通常走行時の乗り心地が悪化す
る。一方、特開平3−258655号公報の「輪軸ヨー
角制御装置付鉄道用車両」は、通常走行時の乗り心地の
向上には効果が有るが、不安定現象である蛇行動の抑制
に効果的であるとはいえない。また、蛇行動波長Lによ
る共振点は、速度に依存するため、一定のばね定数もし
くは制御方法では速度向上ができない。更にその速度に
合わせ随時ばね系の設定を行うことは経済的に効率が悪
くなる。したがって、通常走行時の乗り心地を悪化せず
に、高速走行時に発生する蛇行動を速度に合わせて抑制
し安定限界速度を向上させることのできる方法が必要と
なる。
Of the above prior arts, the method of increasing the resonance frequency by increasing the spring constant of the primary spring and the method of using the yaw damper can be easily realized and have the effect of suppressing snake behavior. The track irregularity is easily transmitted to the bogie frame and the vehicle body as vibration, and the riding comfort during normal running is deteriorated. On the other hand, the "railroad vehicle with a wheel axle yaw angle control device" disclosed in Japanese Patent Application Laid-Open No. 3-258655 is effective in improving the riding comfort during normal running, but is effective in suppressing the snake behavior which is an unstable phenomenon. It cannot be said that. Further, since the resonance point due to the snake action wavelength L depends on the speed, the speed cannot be improved by a constant spring constant or a control method. Further, it is economically inefficient to set the spring system as needed in accordance with the speed. Therefore, there is a need for a method capable of suppressing the snake behavior occurring during high-speed running according to the speed and improving the stability limit speed without deteriorating the riding comfort during normal running.

【0007】この発明は、上記のごとく従来技術には乗
り心地を維持したまま蛇行動を抑制し得る制御装置は出
現していない現状に鑑みて、通常走行時の乗り心地を悪
化せずに、高速走行時に発生する蛇行動を抑制し、安定
限界速度を向上させることのできる鉄道車両台車の蛇行
動制御方法を提供するものである。
In view of the present situation, as described above, in the prior art, there is no control device capable of suppressing the snake behavior while maintaining the riding comfort, and in view of the present situation, the riding comfort during normal running is not deteriorated. An object of the present invention is to provide a method of controlling a snake behavior of a bogie of a railway vehicle, which can suppress a snake behavior occurring at a high speed running and improve a stable limit speed.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、この発明の鉄道車両台車の蛇行動制御方法は、鉄道
車両台車の台車枠と輪軸との間に設置した流体アクチュ
エータ、該輪軸の振動を検知するセンサ、該車両の速度
を検知するセンサ、該センサからの検知信号に基づいて
前記流体アクチュエータを制御する制御器から構成され
る制御装置を有する鉄道車両において、予め各速度での
共振点を低下させるのに最適な周波数の関数群を求めて
おき、走行中に検出される速度信号により上記関数群中
から該当する関数を抽出して車体の振動制御を行ない、
蛇行動に対する安定限界速度を向上させる。
SUMMARY OF THE INVENTION In order to achieve the above object, a method for controlling snake behavior of a railway vehicle bogie according to the present invention comprises a fluid actuator installed between a bogie frame of a railway vehicle bogie and a wheel set, and a vibration of the wheel set. , A railway vehicle having a control device including a controller for controlling the fluid actuator based on a detection signal from the sensor, a resonance point at each speed in advance. A function group having an optimal frequency to reduce the frequency is obtained, and a corresponding function is extracted from the function group by a speed signal detected during traveling to perform vibration control of the vehicle body,
Improve the stability limit speed for snake behavior.

【0009】[0009]

【作用】鉄道車両台車の蛇行動を抑制し、制御するため
には、輪軸もしくは台車と輪軸の振動加速度あるいは台
車と輪軸間の相対変位等の値を各センサで検出すること
が必要である。これらの値から輪軸もしくは台車と輪軸
の運動状態を特定し、制御器内で制御則に応じて台車と
輪軸間に設置した流体アクチュエータを作動するための
出力を行うことにより、蛇行動を抑制することができ
る。
In order to suppress and control the snake behavior of the bogie of the railway vehicle, it is necessary to detect the values of the vibration acceleration of the wheel axle, the bogie and the wheel axle, or the relative displacement between the bogie and the wheel axle by each sensor. Based on these values, the motion state of the wheel set or the bogie and the wheel set is specified, and the snake behavior is suppressed by performing an output for operating the fluid actuator installed between the bogie and the wheel set according to a control law in the controller. be able to.

【0010】したがって、制御器内の制御理論は多変数
入力、多変数出力を扱うものとなり、制御設計としては
制御すべき対象(輪軸、台車)を定量的にモデル化し、
制御パラメータを適切に、対象に応じて決定し、以下の
A、B、Cマトリックスのデータを求めることになる。
Therefore, the control theory in the controller deals with multivariable inputs and multivariable outputs, and the control design quantitatively models the objects to be controlled (wheel set, bogie),
The control parameters are appropriately determined according to the target, and the data of the following A, B, and C matrices are obtained.

【0011】したがって、対象の運動力学的特性(共振
点)が速度により変動すると、上記の制御パラメータ、
A、B、Cマトリックスのデータが最適なものからずれ
てしまう。そこで、予め速度に応じた最適な制御パラメ
ータにより、それぞれに応じたA、B、Cマトリックス
を算出し、制御器内で記憶しておけば、その速度に応じ
た最適な制御が実現できる。
Therefore, when the kinetic characteristics (resonance point) of the object fluctuate with the speed, the above control parameters,
The data of the A, B, and C matrices deviate from the optimal data. Therefore, if the A, B, and C matrices corresponding to the respective speeds are calculated in advance using the optimum control parameters corresponding to the speed and stored in the controller, the optimum control according to the speed can be realized.

【0012】上記共振点は、次の1式、2式により算出
できる。ここで、Lは蛇行動波長、θは踏面勾配、rは
車輪半径、aは前後軸間距離/2、fは共振振動数、v
は速度である。
The resonance point can be calculated by the following equations (1) and (2). Here, L is the snake action wavelength, θ is the tread slope, r is the wheel radius, a is the distance between the front and rear axes / 2, f is the resonance frequency, v
Is the speed.

【0013】[0013]

【数1】 (Equation 1)

【0014】上記1式、2式を使用することで、予めあ
る速度に最適な制御マトリックスを作ることが可能とな
る。ここで使用する制御方法は、制御対象モデルの記述
を、制御対象の内部状態を表現するいくつかの状態変数
に関する次の3式、4式の状態方程式で行う。
By using the above equations (1) and (2), it is possible to prepare a control matrix optimal for a certain speed in advance. In the control method used here, the description of the controlled object model is performed by the following three equations and four equations relating to several state variables expressing the internal state of the controlled object.

【0015】[0015]

【数2】 (Equation 2)

【0016】ここで、uは制御入力、xは状態変数、y
は検知出力であり、それぞれ多変数ベクトルである。状
態方程式を用いることで多入出力の制御対象モデルを容
易に記述できるので、各入出力間の干渉を考慮した制御
設計を行える。また、設計された制御器もまた上記の状
態方程式で表せるので、デジタル化ソフトウェア化して
マイクロコンピュータ等に容易に組み込める。すなわ
ち、3式、4式で示した状態方程式の形で設計されたも
のを、次の5式、6式で示すように、デジタル化ソフト
ウェア化したものを制御器として使用している。式中の
kはデジタル化された時間である。
Here, u is a control input, x is a state variable, y
Are detection outputs, each of which is a multivariable vector. By using the state equation, a multi-input / output controlled object model can be easily described, and thus control design can be performed in consideration of interference between each input / output. Further, since the designed controller can also be expressed by the above-mentioned equation of state, it can be easily converted to digital software and incorporated in a microcomputer or the like. That is, a controller designed in the form of the state equation shown in Equations 3 and 4 and converted into digital software as shown in Equations 5 and 6 below is used as a controller. Where k is the digitized time.

【0017】 5式 x(k+1)=ADx(k)+BDu(k) 6式 y(k)=CDx(k)Equation 5 x (k + 1) = A D x (k) + B D u (k) Equation 6 y (k) = C D x (k)

【0018】そこで、重み関数W(S)として次の7式
のようなものを考える。
Then, the following equation (7) is considered as the weight function W (S).

【0019】[0019]

【数3】 (Equation 3)

【0020】7式中のω、ξ1、ξ2、αは制御パラメー
タであり、制御対象により最適な値が存在する。すなわ
ち、ある速度での伝達関数G(S)のゲイン線図は、図
3に示すように、g2となり、共振点を重点的に重みを
かけたg1により、g3のような制御効果が現れ蛇行動を
抑制でき、また速度が高くなるとg2が右に平行移動す
る形となるが、これに合わせg1(W(S))を平行移
動させることで、その速度での最適な制御が行える。
In the equations (7), ω, 、 1 , 7 2 , α are control parameters, and there are optimum values depending on the control target. That is, gain diagram of a transfer function G at a certain speed (S), as shown in FIG. 3, g 2, and the by g 1 multiplied intensively weighted resonance point, control effect such as g 3 Appears, the snake action can be suppressed, and when the speed increases, g 2 moves parallel to the right. According to this, g 1 (W (S)) is translated in parallel, so that the optimal speed at that speed is obtained. Control can be performed.

【0021】上記共振点であるピークは、前記の蛇行動
波長からの計算等から特定でき、各速度での最適な重み
W(S)を事前に特定しておくことにより、どんな速度
にも対応した最適な制御が行え、速度が飛躍的に向上で
きる。例えば、図4に示すように、各速度ごとの最適な
Dn、BDn、CDnをデータベース化しておき、速度
信号により各速度に最適なADn、BDn、CDnを抽出
し制御を行う。
The peak, which is the above resonance point, can be specified by calculation from the snake action wavelength, etc., and the optimum weight W (S) at each speed is specified in advance, so that it can be used for any speed. Optimized control and speed can be dramatically improved. For example, as shown in FIG. 4, the optimal A D n for each rate, B D n, C D n keep a database of optimal A D n in each speed by the speed signal, B D n, C D Extract n and perform control.

【0022】[0022]

【実施例】この発明の実施例を図1、図2に基づいて説
明する。基本構成は図5A、Bに示すものと同じ形式
で、台車枠と輪軸との間に流体アクチュエータを設置し
た台車において、各軸箱4に輪軸7の振動を検知するセ
ンサとして加速度計13、16を設置し、軸箱4の前後
方向と左右方向の振動加速度aF1、、F2、aF3、aF4
R1、aR2、aR3、aR4を検知するように構成する。な
お、図中の14は制御器、15は制御弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The basic configuration is the same as that shown in FIGS. 5A and 5B. In a bogie in which a fluid actuator is installed between a bogie frame and a wheel set, accelerometers 13 and 16 are provided on each axle box 4 as sensors for detecting vibration of the wheel set 7. Is installed, and vibration accelerations a F1, a F2 , a F3 , a F4 ,
a R1, is configured to detect a R2, a R3, a R4 . In the figure, 14 is a controller, and 15 is a control valve.

【0023】上記加速度計13、16からのセンサ出力
は、図2に示すように、A/D変換装置17でディジタ
ル値に変換され、制御用コンピュータ18に入力され
る。該制御用コンピュータ18内では、まずセンサ出力
変換部19で演算を行い、輪軸左右振動加速度aFL、a
RLおよび輪軸ヨー角加速度aFY、aRYを計算する。そし
て、上記結果を用いて、制御計算部20で輪軸7に発生
させるヨー方向の制御力に相当する制御信号uF、uR
計算する。
As shown in FIG. 2, the sensor outputs from the accelerometers 13 and 16 are converted into digital values by an A / D converter 17 and input to a control computer 18. In the control computer 18, first, a calculation is performed by the sensor output conversion unit 19, and the axle lateral vibration acceleration a FL , a
RL and axle yaw angular accelerations a FY and a RY are calculated. Then, using the above results, the control signal calculating section 20 calculates control signals u F and u R corresponding to the yaw direction control force generated on the wheel set 7.

【0024】制御器の設計には各種の最適制御理論を適
用することができるが、ここではH制御理論の適用に
ついて説明する。軌道外乱から輪軸のヨー加速度までの
伝達関数をG(S)とし、下記8式を満足する制御器を
制御設計で求める。 8式 ‖W(S)・G(S)‖<1 ここで、‖A‖はAのHノルムと呼ばれる量で、|
A|の最大値に相当する。また、W(S)は重み関数で
ある。このとき、8式は下記の9式と等価であり、G
(S)をW(S)で規定することができる。 9式 |G(S)|<|W(S)|-1
Various optimum control theories can be applied to the design of the controller. Here, the application of the H∞ control theory will be described. The transfer function from the orbit disturbance to the yaw acceleration of the wheel set is G (S), and a controller satisfying the following equation (8) is obtained by the H∞ control design. 8 formula ‖W (S) · G (S ) ‖ <1, where, ‖A‖ in an amount called H norm of A, |
A | corresponds to the maximum value. W (S) is a weight function. At this time, Equation 8 is equivalent to Equation 9 below, and G
(S) can be defined by W (S). 9 | G (S) | <| W (S) | -1

【0025】[0025]

【発明の効果】この発明は、通常走行時の乗り心地を悪
化させずに、高速走行時に発生する蛇行動を速度に応じ
て最適に抑制し、安定限界速度を向上させることができ
る。
According to the present invention, it is possible to optimally suppress the snake behavior that occurs during high-speed running according to the speed without deteriorating the riding comfort during normal running, and improve the stability limit speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の制御方法を実施するための蛇行動制
御装置を有する台車の制御系を示す説明図である。
FIG. 1 is an explanatory diagram showing a control system of a bogie having a snake action control device for implementing a control method of the present invention.

【図2】この発明の実施例における制御計算のブロック
図である。
FIG. 2 is a block diagram of control calculation according to the embodiment of the present invention.

【図3】ある速度での伝達関数G(s)のゲイン線図で
ある。
FIG. 3 is a gain diagram of a transfer function G (s) at a certain speed.

【図4】速度信号により蛇行動制御する場合のフローチ
ャートである。
FIG. 4 is a flowchart in a case where snake action control is performed by a speed signal.

【図5】鉄道車両台車の基本構成を示す説明図で、Aは
平面図、Bは正面図ある。
FIG. 5 is an explanatory view showing a basic configuration of a bogie for a railway vehicle, where A is a plan view and B is a front view.

【図6】鉄道車両における輪軸の蛇行動を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing a snake behavior of a wheel set in a railway vehicle.

【図7】鉄道車両におけるヨーダンパの配置を示す説明
図である
FIG. 7 is an explanatory diagram showing an arrangement of a yaw damper in a railway vehicle.

【図8】従来の輪軸ヨー角度制御装置を有する鉄道車両
台車の説明図である。
FIG. 8 is an explanatory diagram of a railway vehicle bogie having a conventional wheel axle yaw angle control device.

【符号の説明】[Explanation of symbols]

1 台車枠 2 車軸 3 車輪 4 軸箱 5 一次ばね 6 二次ばね 7 輪軸 8 車体 9 ヨーダンパ 10 流体アクチュエータ 11 記憶装置 12 制御器 13 加速度計 14 制御器 15 制御弁 16 加速度計 17 A/D変換装置 18 制御用コンピュータ 19 センサ出力変換部 20 安定化制御計算部 21 D/A変換装置 Reference Signs List 1 bogie frame 2 axle 3 wheel 4 axle box 5 primary spring 6 secondary spring 7 wheel axle 8 body 9 yaw damper 10 fluid actuator 11 storage device 12 controller 13 accelerometer 14 controller 15 control valve 16 accelerometer 17 A / D converter 18 Control Computer 19 Sensor Output Converter 20 Stabilization Control Calculator 21 D / A Converter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−213194(JP,A) 特開 平3−258655(JP,A) 特開 平5−213195(JP,A) 特開 平5−213196(JP,A) 特開 平6−107174(JP,A) 特公 平7−5076(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B61F 5/24──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-213194 (JP, A) JP-A-3-258655 (JP, A) JP-A-5-213195 (JP, A) JP-A-5-213195 213196 (JP, A) JP-A-6-107174 (JP, A) JP-B-7-5076 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B61F 5/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉄道車両台車の台車枠と輪軸との間に設
置した流体アクチュエータ、該輪軸の振動を検知するセ
ンサ、該車両の速度を検知するセンサ、該センサからの
検知信号に基づいて前記流体アクチュエータを制御する
制御器から構成される制御装置を有する鉄道車両におい
て、予め各速度での共振点を低下させる周波数の関数群
を求めておき、走行中に検出される速度信号により上記
関数群中から該当する関数を抽出して車体の振動制御を
行ない、蛇行動に対する安定限界速度を向上させること
を特徴とする鉄道車両台車の蛇行動制御方法。
1. A fluid actuator installed between a bogie frame of a bogie of a railway vehicle and a wheel set, a sensor for detecting vibration of the wheel set, a sensor for detecting a speed of the vehicle, and a sensor for detecting a speed of the vehicle based on a detection signal from the sensor. In a railway vehicle having a control device including a controller that controls a fluid actuator, a function group of frequencies for lowering a resonance point at each speed is obtained in advance, and the function group is determined based on a speed signal detected during traveling. A snake action control method for a bogie of a railway vehicle, wherein a corresponding function is extracted from the inside, vibration control of the vehicle body is performed, and a stability limit speed for the snake action is improved.
JP25518293A 1993-09-17 1993-09-17 Method of controlling snake behavior of bogies of railway vehicles Expired - Lifetime JP2776219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25518293A JP2776219B2 (en) 1993-09-17 1993-09-17 Method of controlling snake behavior of bogies of railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25518293A JP2776219B2 (en) 1993-09-17 1993-09-17 Method of controlling snake behavior of bogies of railway vehicles

Publications (2)

Publication Number Publication Date
JPH0781564A JPH0781564A (en) 1995-03-28
JP2776219B2 true JP2776219B2 (en) 1998-07-16

Family

ID=17275181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25518293A Expired - Lifetime JP2776219B2 (en) 1993-09-17 1993-09-17 Method of controlling snake behavior of bogies of railway vehicles

Country Status (1)

Country Link
JP (1) JP2776219B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137443A1 (en) * 2001-07-27 2003-03-06 Bombardier Transp Gmbh Method and device for active radial control of wheel pairs or wheel sets of vehicles
JP2015214201A (en) * 2014-05-08 2015-12-03 日本車輌製造株式会社 Abnormality detection device for rolling stock and abnormality detecting method for rolling stock
CN106541959B (en) * 2016-12-08 2019-06-11 中车株洲电力机车有限公司 A kind of net rail detection vehicle bogie

Also Published As

Publication number Publication date
JPH0781564A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
Lin et al. Optimal roll control of a single-unit lorry
Yoshimura et al. Steering and suspension system of a full car model using fuzzy reasoning based on single input rule modules
JP5255780B2 (en) Railway vehicle vibration control device
Boocock Steady-state motion of railway vehicles on curved track
Alleyne A comparison of alternative intervention strategies for unintended roadway departure (URD) control
Solmaz et al. A methodology for the design of robust rollover prevention controllers for automotive vehicles: Part 1-Differential Braking
JP6141669B2 (en) Suspension control device
CN110155103B (en) High-speed train semi-active suspension control system and method based on LQG control
AU4125300A (en) Method and device for controlling a railway vehicle steered elements
CN107662468A (en) The safe H of vehicle roll motion for Active suspension2/H∞Controller design method
Liang et al. Integration of active tilting control and full-wheel steering control system on vehicle lateral performance
Ahangarnejad et al. Active longitudinal load transfer control for improving vehicle's stability
Bell et al. Forced steering of rail vehicles: stability and curving mechanics
JP2776219B2 (en) Method of controlling snake behavior of bogies of railway vehicles
Celniker et al. Rail vehicle active suspensions for lateral ride and stability improvement
Shannan et al. A vehicle handling model with active suspensions
Mei et al. Kalman filter for the state estimation of a 2-axle railway vehicle
Riaz et al. Neurofuzzy adaptive control for full-car nonlinear active suspension with onboard antilock braking system
JP2988220B2 (en) Method of controlling snake behavior of bogies of railway vehicles
JP3778950B2 (en) Snake behavior control device for railcar bogie
Elmadany et al. Design evaluation of advanced suspension systems for truck ride comfort
ELMADANY Stochastic optimal control of highway tractors with active suspensions
JPH04257775A (en) Device for improving dynamical rolling characteristic of vehicle
JP2023068276A (en) Railway vehicle vibration control device and railway vehicle vibration control method
US6108596A (en) Process and device for the control and/or regulation of wagon body tilt systems