WO2017164133A1 - Inspection system, inspection method and program - Google Patents

Inspection system, inspection method and program Download PDF

Info

Publication number
WO2017164133A1
WO2017164133A1 PCT/JP2017/011010 JP2017011010W WO2017164133A1 WO 2017164133 A1 WO2017164133 A1 WO 2017164133A1 JP 2017011010 W JP2017011010 W JP 2017011010W WO 2017164133 A1 WO2017164133 A1 WO 2017164133A1
Authority
WO
WIPO (PCT)
Prior art keywords
equation
wheel shaft
variable
state
carriage
Prior art date
Application number
PCT/JP2017/011010
Other languages
French (fr)
Japanese (ja)
Inventor
中川 淳一
嘉之 下川
大輔 品川
後藤 修
秀樹 南
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2018507314A priority Critical patent/JP6547902B2/en
Priority to EP17770175.2A priority patent/EP3434552B1/en
Priority to CN201780016557.6A priority patent/CN108778888B/en
Publication of WO2017164133A1 publication Critical patent/WO2017164133A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D37/00Other furniture or furnishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes

Definitions

  • the present invention relates to an inspection system, an inspection method, and a program, and is particularly suitable for use in inspecting a track of a railway vehicle.
  • Patent Document 1 describes that the amount of trajectory deviation is measured by a three-point measurement method.
  • Patent Document 2 describes detecting abnormal behavior of a railway vehicle by applying the vibration data of the railway vehicle as observation data to a model reference type estimation method such as a Kalman filter.
  • Patent Document 1 is a method for directly measuring orbital irregularities. For this reason, an expensive measuring device is required. In the method described in Patent Document 2, no state variable is selected. For this reason, it is not easy to predict trajectory irregularity with high accuracy.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to be able to accurately detect an irregular track of a railway vehicle without incurring a large cost.
  • the inspection system of the present invention includes a data acquisition unit that acquires measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and a wheel shaft on a track, the measurement data, and the state Filter arithmetic means for determining a state variable, which is a variable to be determined by the state equation, by performing an operation using a filter that performs data assimilation using an equation and an observation equation, and a state of the orbit Trajectory state deriving means for deriving information to be reflected, and the measurement data includes a measurement value of a lateral acceleration of the carriage and the wheel shaft and a measurement value of a longitudinal force, and the horizontal direction Is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track, and the front-rear direction force is the wheel axis
  • the member is a member for supporting the axle box, the yawing direction is a rotation direction with the vertical direction as a rotation axis, and the state equation is , An equation described using the state variable, the longitudinal force, and a conversion variable, wherein the state variable includes a lateral displacement and speed of the carriage and an angular displacement in the yawing direction of the carriage.
  • the rolling direction is a rotation direction with the front-rear direction as a rotation axis
  • the conversion variable is the angular displacement of the wheel shaft in the yawing direction.
  • the angular displacement in the yawing direction of the carriage is a variable that mutually converts
  • the observation equation is an equation that is described using the observation variable and the conversion variable
  • the observation variable is the carriage and Including the acceleration in the horizontal direction of the wheel axis
  • the filter calculation means the state equation into which the measured value of the observation variable, the measured value of the longitudinal force and the actual value of the conversion variable are substituted, and the conversion variable And determining the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized using the observation equation substituted with the actual value, and the trajectory
  • the state deriving means uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculating means, and the actual value of the conversion variable, and the angle of the wheel axis in the yawing direction.
  • Deriving an estimated value of the displacement deriving information reflecting the state of the trajectory using the derived estimated value of the angular displacement in the yaw direction of the wheel axle, and the actual value of the conversion variable is a measurement of the longitudinal force It is derived using a value.
  • the inspection method of the present invention includes a data acquisition step of acquiring measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and an axle on a track, the measurement data, and the state A filter operation step for determining a state variable that is a variable to be determined by the state equation by performing an operation using a filter that performs data assimilation using an equation and an observation equation, and a state of the trajectory A trajectory state deriving step for deriving information to be reflected, and the measurement data includes a measurement value of acceleration in the left-right direction of the carriage and the wheel axis, and a measurement value of force in the front-rear direction, and the left-right direction Is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track, and the front-rear direction force is the wheel axis,
  • the member is a member for supporting the axle box
  • the yawing direction is a rotational direction with the vertical direction as a rotational axis
  • the state equation is An equation described using the state variable, the longitudinal force, and a conversion variable, wherein the state variable includes a lateral displacement and speed of the carriage, an angular displacement in the yawing direction of the carriage, and An angular velocity, an angular displacement and an angular velocity in the rolling direction of the carriage, a lateral displacement and a velocity of the wheel axle, and an angular displacement in the rolling direction of an air spring attached to the railway vehicle.
  • the rolling direction does not include the angular displacement and the angular velocity of the wheel shaft in the yawing direction
  • the rolling direction is a rotation direction with the front-rear direction as the rotation axis
  • the conversion variable includes the angular displacement of the wheel shaft in the yawing direction and the angular displacement.
  • the angular displacement in the yawing direction of the carriage is a variable that mutually converts
  • the observation equation is an equation that is described using the observation variable and the conversion variable
  • the observation variable is the carriage and the Including the acceleration in the horizontal direction of the wheel axis
  • the filter calculation step includes the measured value of the observation variable, the measured value of the longitudinal force and the actual value of the conversion variable, and the actual result of the conversion variable.
  • the derivation step uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined in the filter calculation step, and the actual displacement value of the conversion variable, and the angular displacement in the yawing direction of the wheel shaft. Deriving information that reflects the state of the orbit using the estimated angular displacement in the yaw direction of the wheel axis derived, and the actual value of the conversion variable is a measured value of the longitudinal force It is derived by using.
  • the program of the present invention includes a data acquisition step of acquiring measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and an axle on a track, the measurement data, and the state equation And the observation equation, and a filter operation step for determining a state variable which is a variable to be determined by the state equation by performing an operation using a filter for performing data assimilation, and reflecting the state of the trajectory Including a track state deriving step for deriving information to be performed, and the measurement data includes a measured value of acceleration in the lateral direction of the carriage and the wheel shaft and a measured value of longitudinal force.
  • the left-right direction is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track
  • the front-rear direction force is the front-rear direction force generated in a member arranged between the wheel shaft and the carriage on which the wheel shaft is provided, and the angular displacement in the yawing direction of the wheel shaft and the wheel shaft is provided.
  • the force is determined according to a difference from the angular displacement in the yawing direction of the carriage, and the member is a member for supporting the axle box, and the yawing direction is a rotation with the vertical direction as the rotation axis.
  • the state equation is an equation described using the state variable, the longitudinal force, and a conversion variable
  • the state variable includes a lateral displacement and speed of the carriage.
  • Angular displacement and angular velocity in the yawing direction of the carriage Angular displacement and angular velocity in the rolling direction of the carriage, lateral displacement and velocity of the wheel axle, and air springs attached to the railway vehicle Angular displacement in the rolling direction, and does not include angular displacement and angular velocity in the yawing direction of the wheel shaft
  • the rolling direction is a rotational direction with the front-rear direction as a rotational axis
  • the conversion variable is An angular displacement in the yaw direction of the wheel shaft and an angular displacement in the yawing direction of the carriage are mutually converted
  • the observation equation is an equation described using the observation variable and the conversion variable
  • the observed variable includes lateral acceleration of the cart and the wheel axis
  • the filter calculation step substitutes the measured value of the observed variable, the measured value of the longitudinal force
  • the track state derivation step uses an angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculation step, and an actual value of the conversion variable.
  • FIG. 1 is a diagram illustrating an example of an outline of a railway vehicle.
  • FIG. 2 is a diagram conceptually showing main movement directions of components of the railway vehicle.
  • FIG. 3 is a diagram illustrating an example of a passing amount.
  • FIG. 4 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle.
  • FIG. 5 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle using the longitudinal force.
  • FIG. 6 is a diagram showing an example of an action relationship necessary for determining the motion of the component that directly acts on the yaw of the wheel shaft.
  • FIG. 7 is a diagram illustrating an example of an action relationship necessary to determine the amount of deviation.
  • FIG. 1 is a diagram illustrating an example of an outline of a railway vehicle.
  • FIG. 2 is a diagram conceptually showing main movement directions of components of the railway vehicle.
  • FIG. 3 is a diagram illustrating
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the inspection apparatus.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the inspection apparatus.
  • FIG. 10 is a diagram illustrating an example of pre-processing in the inspection apparatus.
  • FIG. 11 is a diagram illustrating an example of this processing in the inspection apparatus.
  • FIG. 12 is a diagram illustrating an example of observation data.
  • FIG. 13 is a diagram illustrating an example of an actually measured value and a calculated value of a passing amount.
  • FIG. 14 is a diagram illustrating an example of the configuration of the inspection system.
  • FIG. 1 is a diagram illustrating an example of an outline of a railway vehicle.
  • the railway vehicle is assumed to travel in the positive direction of the x axis (the x axis is an axis along the traveling direction of the railway vehicle).
  • the z axis is assumed to be perpendicular to the track 16 (ground) (the height direction of the railway vehicle).
  • the y-axis is assumed to be a horizontal direction perpendicular to the traveling direction of the railway vehicle (a direction perpendicular to both the traveling direction and the height direction of the railway vehicle).
  • the railway vehicle is assumed to be a business vehicle.
  • the circles in the circles indicate the direction from the back side to the near side.
  • this direction is the positive direction of the y-axis.
  • this direction is the positive direction of the z-axis.
  • the railway vehicle includes a vehicle body 11, carriages 12a and 12b, and wheel shafts 13a to 13d.
  • a railway vehicle in which one vehicle body 11 is provided with two carriages 12a and 12b and four sets of wheel shafts 13a to 13d will be described as an example.
  • the wheel shafts 13a to 13d have axles 15a to 15d and wheels 14a to 14d provided at both ends thereof.
  • the carriages 12a and 12b are bolsterless carriages will be described as an example.
  • the railcar has components other than the components shown in FIG. 1 (components described by an equation of motion to be described later), the components are not shown in FIG. 1 for convenience of description.
  • the carts 12a and 12b have a cart frame and a pillow spring.
  • axle boxes are arranged on both sides in the left-right direction of the respective wheel shafts 13a to 13d. Further, the carriage frame and the axle box are coupled to each other by the axle box support device.
  • the axle box support device is an apparatus (suspension) disposed between the axle box and the carriage frame.
  • the axle box support device absorbs vibration transmitted from the track 16 to the railway vehicle. Further, the axle box support device positions the axle box with respect to the carriage frame so as to prevent the axle box from moving in the front-rear direction and the left-right direction with respect to the carriage frame (preferably, such movement does not occur). Support the axle box in a regulated state.
  • the axle box support devices are arranged on both sides in the left-right direction of the respective wheel shafts 13a to 13d. Since the railway vehicle itself can be realized by a known technique, detailed description thereof is omitted here.
  • FIG. 2 is a diagram conceptually showing main movement directions of the components of the railway vehicle (the wheel shafts 13a to 13d, the carriages 12a and 12b, and the vehicle body 11).
  • the x-axis, y-axis, and z-axis shown in FIG. 2 correspond to the x-axis, y-axis, and z-axis shown in FIG. 1, respectively.
  • the wheel shafts 13a to 13d, the carriages 12a and 12b, and the vehicle body 11 rotate about the x axis as a rotation axis and move around the z axis as a rotation axis.
  • a case where the movement in the direction along the y-axis is performed will be described as an example.
  • a movement that rotates about the x axis as a rotation axis is referred to as rolling as necessary
  • a rotation direction that uses the x axis as a rotation axis is referred to as a rolling direction as necessary, along the x axis.
  • the direction is referred to as the front-rear direction as necessary.
  • the front-rear direction is the traveling direction of the railway vehicle.
  • the direction along the x axis is the traveling direction of the railway vehicle.
  • a movement that rotates about the z axis as a rotation axis is referred to as yawing as necessary
  • a rotation direction that uses the z axis as a rotation axis is referred to as a yawing direction
  • a direction along the z axis is required. It will be referred to as the up and down direction.
  • the vertical direction is a direction perpendicular to the track 16.
  • the movement in the direction along the y-axis is referred to as lateral vibration as necessary, and the direction along the y-axis is referred to as left-right direction as necessary.
  • the left-right direction is a direction perpendicular to both the front-rear direction (traveling direction of the railway vehicle) and the up-down direction (direction perpendicular to the track 16).
  • the railcar also performs other motions, but in the present embodiment, these motions are not considered in order to simplify the explanation. However, these movements may be considered.
  • air springs tilt springs
  • the degree of freedom is not limited to 21 degrees of freedom. Increasing the degree of freedom increases the calculation accuracy, but increases the calculation load. In addition, the operation of the Kalman filter described later may not be stable. The degree of freedom can be appropriately determined in consideration of these points. Further, the following equation of motion indicates the operation in each direction (left-right direction, yawing direction, rolling direction) of each component (the vehicle body 11, the carriages 12a and 12b, the wheel shafts 13a to 13d). This can be realized by expressing based on the description of 2. Therefore, the outline of each equation of motion will be described here, and detailed description will be omitted.
  • the subscript w represents the wheel shafts 13a to 13d.
  • a variable to which the subscript w (only) is attached indicates that it is common to the wheel shafts 13a to 13d.
  • Subscripts w1, w2, w3, and w4 represent the wheel shafts 13a, 13b, 13c, and 13d, respectively.
  • the subscripts t and T represent the carriages 12a and 12b. Variables with subscripts t and T (only) are common to the carriages 12a and 12b.
  • Subscripts t1 and t2 represent carriages 12a and 12b, respectively.
  • the subscripts b and B represent the vehicle body 11.
  • the subscript x represents the front-rear direction or the rolling direction
  • the subscript y represents the left-right direction
  • the subscript z represents the vertical direction or the yawing direction.
  • “ ⁇ ” and “ ⁇ ” attached to the variable represent second-order time differentiation and first-order time differentiation, respectively. In the description of the following equation of motion, the description of the variables already described will be omitted as necessary.
  • mw is the mass of the wheel shafts 13a to 13d.
  • y w1 ... (in the formula,... is added on y w1 (hereinafter, the same applies to other variables)) is the acceleration in the left-right direction of the wheel shaft 13a.
  • f 2 is a lateral creep coefficient.
  • v is the traveling speed of the railway vehicle.
  • y w1 ⁇ (in the equation, ⁇ is added on y w1 (hereinafter, the same applies to other variables)) is the speed of the wheel shaft 13a in the left-right direction.
  • C wy is a damping constant in the left-right direction of the axle box support device that connects the axle box and the wheel axle.
  • y t1 ⁇ is the speed in the left-right direction of the carriage 12a.
  • a represents 1/2 of the distance in the front-rear direction between the wheel shafts 13a, 13b, 13c, 13d provided on the carts 12a, 12b (the wheel shafts 13a, 13b, 13c, 13d provided on the carts 12a, 12b). The distance between them is 2a).
  • ⁇ t1 ⁇ is an angular velocity in the yawing direction of the carriage 12a.
  • h 1 is the distance in the vertical direction between the center of gravity and the center of the truck 12a of the axle.
  • ⁇ t1 ⁇ is an angular velocity in the rolling direction of the carriage 12a.
  • ⁇ w1 is a rotation amount (angular displacement) of the wheel shaft 13a in the yawing direction.
  • K wy is a spring constant in the left-right direction of the axle box support device.
  • y w1 is the displacement of the wheel shaft 13a in the left-right direction.
  • y t1 is the displacement in the left-right direction of the carriage 12a.
  • ⁇ t1 is a rotation amount (angular displacement) of the carriage 12a in the yawing direction.
  • ⁇ t1 is the rotation amount (angular displacement) of the carriage 12a in the rolling direction.
  • Each variable in the expressions (2) to (4) is expressed by replacing the variable in the expression (1) according to the meaning of the subscript described above.
  • I wz is a moment of inertia in the yawing direction of the wheel shafts 13a to 13d.
  • ⁇ w1 ... is an angular acceleration in the yawing direction of the wheel shaft 13a.
  • f 1 is a longitudinal creep coefficient.
  • b is the distance in the left-right direction between the contact points of the two wheels attached to the wheel shafts 13a to 13d and the track 16 (rail).
  • ⁇ w1 ⁇ is an angular velocity in the yawing direction of the wheel shaft 13a.
  • C wx is a damping constant in the front-rear direction of the axle box support device.
  • b 1 is the left-right direction represents the 1/2 of the interval in the axle box support device (spacing in the lateral direction of the two axle box support device which is provided to the left and right with respect to a single wheel set will 2b 1).
  • is a tread gradient.
  • r is the radius of the wheels 14a to 14d.
  • yR1 is a deviation amount at the position of the wheel shaft 13a.
  • s a is an offset amount in the front-rear direction from the center of the axles 15a to 15d to the axle box support spring.
  • y t1 is the displacement in the left-right direction of the carriage 12a.
  • K wx is a spring constant in the front-rear direction of the axle box support device.
  • Each variable in the expressions (6) to (8) is expressed by replacing the variable in the expression (5) according to the meaning of the subscript described above.
  • y R2 , y R3 , and y R4 are deviation amounts at the positions of the wheel shafts 13b, 13c, and 13d, respectively.
  • the passing error is a lateral displacement in the longitudinal direction of the rail as described in Japanese Industrial Standard (JIS E 1001: 2001).
  • the amount of traversal is the amount of displacement.
  • FIG. 3 shows an example of the deviation amount y R1 at the position of the wheel shaft 13a.
  • 16a shows a rail
  • 16b shows a sleeper.
  • the deviation amount y R1 at the position of the wheel shaft 13a is the distance in the left-right direction between the contact position between the wheel 14a of the wheel shaft 13a and the rail 16a and the position of the rail 16a when it is assumed to be in a normal state.
  • the deviation amounts y R2 , y R3 , and y R4 at the positions of the wheel shafts 13b, 13c, and 13d are defined in the same manner as the deviation amounts y R1 at the position of the wheel shaft 13a.
  • m T is the mass of the carriages 12a and 12b.
  • y t1 ... is an acceleration in the left-right direction of the carriage 12a.
  • c ′ 2 is a damping constant of the left and right dynamic damper.
  • h 4 is the distance in the vertical direction between the center of gravity of the carriage 12a and lateral movement damper.
  • y b ⁇ is the speed of the vehicle body 11 in the left-right direction.
  • L represents 1/2 of the distance in the front-rear direction between the centers of the carriages 12a, 12b (the distance in the front-rear direction between the centers of the carriages 12a, 12b is 2L).
  • ⁇ b ⁇ is an angular velocity of the vehicle body 11 in the yawing direction.
  • h 5 is the distance in the up-down direction between the left-right motion damper and the center of gravity of the vehicle body 11.
  • ⁇ b ⁇ is an angular velocity in the rolling direction of the vehicle body 11.
  • y w2 ⁇ is the speed of the wheel shaft 13b in the left-right direction.
  • k ′ 2 is a spring constant in the left-right direction of the air spring (pillow spring).
  • h 2 is the distance in the vertical direction between the center of the bogie 12a, 12b of the center of gravity and the air spring (pillow spring).
  • y b is the displacement of the vehicle body 11 in the left-right direction.
  • ⁇ b is a rotation amount (angular displacement) of the vehicle body 11 in the yawing direction.
  • h 3 is the distance in the vertical direction between the center of the air spring (pillow spring) and the center of gravity of the vehicle body 11.
  • ⁇ b is a rotation amount (angular displacement) of the vehicle body 11 in the rolling direction.
  • each variable of (10) Formula is represented by replacing the variable of (9) Formula according to the meaning of the subscript mentioned above.
  • ITz is a moment of inertia in the yawing direction of the carriages 12a and 12b.
  • ⁇ t1 ... is an angular acceleration in the yawing direction of the carriage 12a.
  • ⁇ w2 ⁇ is an angular velocity in the yawing direction of the wheel shaft 13b.
  • ⁇ w2 is a rotation amount (angular displacement) of the wheel shaft 13b in the yawing direction.
  • y w2 is the displacement of the wheel shaft 13b in the left-right direction.
  • k ′ 0 is the rigidity of the rubber bushing of the yaw damper.
  • b ′ 0 represents 1/2 of the distance in the left-right direction between the two yaw dampers arranged on the left and right with respect to the carriages 12a, 12b (the distance in the left-right direction between the two yaw dampers arranged on the left and right with respect to the carriages 12a, 12b).
  • ⁇ y1 is a rotation amount (angular displacement) in the yawing direction of the yaw damper disposed on the carriage 12a.
  • k ′′ 2 is a spring constant in the left-right direction of the air spring (pillow spring).
  • each variable of (12) Formula is represented by replacing the variable of (11) Formula according to the meaning of the subscript mentioned above.
  • ITx is the moment of inertia in the rolling direction of the carriages 12a and 12b.
  • ⁇ t1 ... is an angular acceleration in the rolling direction of the carriage 12a.
  • c 1 is a vertical damping constant of the shaft damper.
  • b ′ 1 represents 1/2 of the distance in the left-right direction between the two shaft dampers arranged on the left and right with respect to the carriages 12a, 12b (the left-right direction of the two axis dampers arranged on the left and right with respect to the carriages 12a, 12b) interval becomes 2b' 1 in).
  • c 2 is a vertical damping constant of the air spring (pillow spring).
  • ⁇ a1 ⁇ is an angular velocity in the rolling direction of an air spring (pillow spring) disposed on the carriage 12a.
  • k 1 is a vertical spring constant of the shaft spring.
  • is a value obtained by dividing the volume of the body of the air spring (pillow spring) by the volume of the auxiliary air chamber.
  • k 2 is a vertical spring constant of the air spring (pillow spring).
  • ⁇ a1 is a rotation amount (angular displacement) in the rolling direction of an air spring (pillow spring) arranged on the carriage 12a.
  • k 3 is an equivalent stiffness due to the change of the effective pressure receiving area of the air spring (pillow spring).
  • each variable of (14) Formula is represented by replacing the variable of (13) Formula according to the meaning of the subscript mentioned above.
  • (phi) a2 is the rotation amount (angular displacement) in the rolling direction of the air spring (pillow spring) arrange
  • m B is the mass of the carriages 12a and 12b.
  • y b ... is the acceleration of the vehicle body 11 in the left-right direction.
  • y t2 ⁇ is the speed in the left-right direction of the carriage 12b.
  • ⁇ t2 ⁇ is an angular velocity in the rolling direction of the carriage 12b.
  • yt2 is the displacement in the left-right direction of the carriage 12b.
  • ⁇ t2 is a rotation amount (angular displacement) of the carriage 12b in the rolling direction.
  • I Bz is the moment of inertia of the vehicle body 11 in the yawing direction.
  • ⁇ b ... is an angular acceleration in the yawing direction of the vehicle body 11.
  • c 0 is a damping constant in the front-rear direction of the yaw damper.
  • ⁇ y1 ⁇ is an angular velocity in the yawing direction of the yaw damper disposed on the carriage 12a.
  • ⁇ y2 ⁇ is an angular velocity in the yawing direction of the yaw damper disposed on the carriage 12b.
  • ⁇ t2 is a rotation amount (angular displacement) of the carriage 12b in the yawing direction.
  • I Bx is the moment of inertia in the rolling direction of the vehicle body 11.
  • ⁇ b ... is an angular acceleration in the rolling direction of the vehicle body 11.
  • ⁇ y2 is a rotation amount (angular displacement) in the yawing direction of the yaw damper disposed on the carriage 12b.
  • Rolling air spring (pillow spring) Equations of motion describing the rolling of the air spring (pillow spring) arranged on the carriage 12a and the air spring (pillow spring) arranged on the carriage 12b are expressed by the following equations (20) and (21), respectively. .
  • ⁇ a2 ⁇ is an angular velocity in the rolling direction of an air spring (pillow spring) disposed on the carriage 12b.
  • FIG. 4 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle. Arrows drawn with solid lines indicate the action relationship between different movements within the same component. Arrows drawn with line types other than solid lines indicate the action relationship between the movements of different components.
  • Each motion is accompanied by a motion equation number describing the motion described in the present embodiment. For example, yawing of the wheel shafts 13a to 13d is described by equations (5) to (8).
  • the yawing of the wheel shafts 13a to 13d is directly affected by the traversing amounts y R1 to y R4 , the lateral vibration of the wheel shafts 13a to 13d, the lateral vibration of the carriages 12a and 12b, and the yawing of the carriages 12a and 12b.
  • the lateral vibrations of the carriages 12a and 12b are described by equations (9) to (10).
  • the lateral vibrations of the carriages 12a and 12b are directly affected by the lateral vibration of the wheel shafts 13a to 13d, the rolling of the carriages 12a and 12b, the lateral vibration of the vehicle body 11, the yawing of the vehicle body 11, the yawing of the carriages 12a and 12b, and the rolling of the vehicle body 11.
  • the bearing is not directly affected by yawing of the wheel shafts 13a to 13d.
  • the run-off amounts y R1 to y R4 directly affect the yawing of the wheel shafts 13a to 13d. This action propagates to the movement of other components.
  • a state equation is created from the equation of motion related to the motion of the component that is directly or indirectly affected by the amount of deviation y R1 to y R4 .
  • an observation equation is set by measuring measurable state variables from the movements related to the traversing amounts y R1 to y R4 . Then, by performing an operation using a filter that performs data assimilation such as a Kalman filter, it is possible to calculate the passing amounts y R1 to y R4 .
  • the degree of freedom of movement is large, so that the operation of the filter may not be stable.
  • the inventors yawed the wheel shafts 13a to 13d on which the traversing amounts y R1 to y R4 act directly and the yawing of the wheel shafts 13a to 13d. Calculating the factors (including the motions of the constituent elements) that directly affect the movement, and calculating the passing amounts y R1 to y R4 using the equation of motion describing the yawing of the wheel shafts 13a to 13d. I thought I should do it. Further, the creep force is decomposed into a longitudinal creep force that is a component in the front-rear direction and a lateral creep force that is a component in the left-right direction.
  • the inventors have found that the longitudinal creep force has a high correlation with the amount of deviation y R1 to y R4 .
  • the longitudinal creep force is measured by a force in the front-rear direction generated in a member disposed between the wheel shafts 13a to 13b (13c to 13d) and the carriage 12a (12b) provided with the wheel shafts 13a to 13b (13c to 13d). Is done.
  • the force in the front-rear direction generated in this member will be referred to as the front-rear direction force. From the above, the inventors have come up with a method for calculating the amount of deviation y R1 to y R4 using the measured value of the longitudinal force.
  • the in-phase component of the longitudinal creep force on one wheel and the longitudinal creep force on the other wheel of the left and right wheels on one wheel axle is a component corresponding to the braking force and driving force. Accordingly, in order to calculate the deviation amounts y R1 to y R4 even when the railway vehicle is accelerating / decelerating, it is preferable to determine the longitudinal force so as to correspond to the reverse phase component of the longitudinal creep force.
  • the anti-phase component of the longitudinal creep force is a component in which the longitudinal creep force on one wheel and the longitudinal creep force on the other wheel out of the left and right wheels on one wheel shaft are in opposite phases. That is, the reverse phase component of the longitudinal creep force is a component of the longitudinal creep force in the direction of twisting the axle.
  • the front / rear direction force is a component having phases opposite to each other among the front / rear direction components of the force generated in the two members attached to the left and right sides of one wheel shaft.
  • the axle box support device is a monolink type axle box support device
  • the axle box support device includes a link
  • the axle box and the carriage frame are connected by a link.
  • Rubber bushes are attached to both ends of the link.
  • the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two links, which are respectively attached to the left and right ends of one wheel shaft.
  • the link mainly receives a load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the front-rear direction. Therefore, for example, one strain gauge may be attached to each link. By using the measured value of the strain gauge to derive the longitudinal component of the load received by the link, the measured value of the longitudinal force is obtained. In place of this, the displacement in the front-rear direction of the rubber bush attached to the link may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force.
  • the axle box support device is a monolink type axle box support device
  • the above-described member for supporting the axle box is a link or a rubber bush.
  • the load measured by the strain gauge attached to the link may include not only the front-rear direction component but also at least one of the left-right direction component and the up-down direction component.
  • the load of the left-right component and the load of the vertical component received by the link are sufficiently smaller than the load of the front-rear component. Therefore, by simply attaching one strain gauge to each link, it is possible to obtain a measurement value of the longitudinal force having the accuracy required in practice.
  • the measured longitudinal force may include components other than the longitudinal component, and three or more strain gauges are attached to each link so that the vertical and lateral strains are canceled. It may be attached. In this way, the accuracy of the measurement value of the longitudinal force can be improved.
  • the axle box support device is an axle beam type axle box support device
  • the axle box support device includes an axle beam
  • the axle box and the carriage frame are connected by the axle beam.
  • the shaft beam may be configured integrally with the shaft box.
  • a rubber bush is attached to the end of the shaft beam on the cart frame side.
  • the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two axial beams, which are respectively attached to the left and right ends of one wheel shaft.
  • the shaft beam is easily subjected to the load in the left-right direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the vertical direction. Therefore, for example, two or more strain gauges are attached to each shaft beam so that the strain in the left-right direction is canceled.
  • the longitudinal force component is obtained by deriving the longitudinal component of the load applied to the axial beam.
  • the displacement in the front-rear direction of the rubber bush attached to the shaft beam may be measured with a displacement meter.
  • the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force.
  • the axle box support device is an axle beam type axle box support device
  • the aforementioned member for supporting the axle box is an axle beam or a rubber bush.
  • the load measured by the strain gauge attached to the shaft beam may include not only the longitudinal and lateral components but also the vertical component.
  • the load of the vertical component received by the shaft beam is sufficiently smaller than the load of the front-rear component and the load of the left-right component. . Therefore, it is possible to obtain a measurement value of the longitudinal force having the accuracy required for practical use without attaching a strain gauge so as to cancel the load of the vertical component received by the shaft beam.
  • the measured longitudinal force may include components other than the longitudinal component, and three or more strain gauges so that the vertical strain is canceled in addition to the lateral strain. May be attached to each shaft beam. In this way, the accuracy of the measurement value of the longitudinal force can be improved.
  • the axle box support device When the axle box support device is a leaf spring type axle box support device, the axle box support device includes a leaf spring, and the axle box and the carriage frame are connected by a leaf spring. A rubber bush is attached to the end of the leaf spring.
  • the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two leaf springs, which are respectively attached to the ends of one wheel shaft in the left / right direction.
  • the leaf springs are liable to receive a load in the left-right direction and a load in the up-down direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the vertical direction. Therefore, for example, three or more strain gauges are attached to each leaf spring so that the lateral and vertical strains are canceled.
  • the longitudinal force component is derived by deriving the longitudinal component of the load applied to the leaf spring.
  • the displacement in the front-rear direction of the rubber bush attached to the leaf spring may be measured with a displacement meter.
  • the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force.
  • the axle box support device is a leaf spring type axle box support device
  • the above-described member for supporting the axle box is a leaf spring or a rubber bush.
  • the longitudinal force has been described by taking as an example the case where the method of the axle box support device is a monolink type, a shaft beam type, and a leaf spring type.
  • the type of the axle box support device is not limited to the monolink type, the axial beam type, and the leaf spring type.
  • the longitudinal force can be determined in the same manner as the monolink type, the axial beam type, and the leaf spring type according to the type of the axle box support device.
  • a case where one longitudinal force measurement value is obtained for one wheel shaft will be described as an example. That is, the railway vehicle shown in FIG. 1 has four wheel shafts 13a to 13d. Accordingly, four measured values of the longitudinal force T 1 to T 4 are obtained.
  • FIG. 5 is a diagram showing an example of a mutual action relationship between the traversing amounts y R1 to y R4 and the motions of the components of the railway vehicle using the longitudinal forces T 1 to T 4 .
  • Formulas for calculating longitudinal forces T 1 to T 4 formulas for conversion variables e 1 to e 4 , equations of motion describing the lateral vibrations of the wheel shafts 13a to 13d when using the conversion variables e 1 to e 4 , the longitudinal direction Specific examples of equations of motion describing the yawing of the wheel shafts 13a to 13d when the forces T 1 to T 4 are used will be described later (Equations (40) to (43) and (26) to (29), respectively). , (34) to (37), (51) to (54)).
  • FIG. 6 is a diagram showing the operational relationship necessary for determining the motion of the components that directly affect the yawing of the wheel shafts 13a to 13d from the operational relationship of FIG.
  • the degree of freedom of movement is reduced by the amount by which yawing of the wheel shafts 13a to 13d is eliminated.
  • the measurement value used in a filter for performing data assimilation increases by the amount of the longitudinal force T 1 to T 4 . Therefore, the accuracy of the motion information calculated by performing an operation using a filter that performs data assimilation such as a Kalman filter is improved.
  • FIG. 7 is a diagram showing the operational relationship necessary for determining the deviation amounts y R1 to y R4 from the operational relationship of FIG.
  • the conversion variables e 1 to e 4 and the yawing information of the carriages 12a and 12b are known. Accordingly, yaw information of the wheel shafts 13a to 13d is calculated by using the calculation formulas of the conversion variables e 1 to e 4 (formulas (26) to (29) in the example described later). The conversion variables e 1 to e 4 at this time are directly derived from the measured values of the longitudinal forces T 1 to T 4 . Further, yawing information of the carriages 12a and 12b is calculated using the operational relationship of FIG.
  • the accuracy of the yawing information of the wheel shafts 13a to 13d calculated from the conversion variables e 1 to e 4 and the yawing information of the carriages 12a and 12b is improved as compared with the case of calculating using the operational relationship of FIG. To do. Further, the yawing information of the wheel shafts 13a to 13d, the longitudinal forces T 1 to T 4, and the movements of the components that directly act on the yawing of the wheel shafts 13a to 13d (the lateral vibration of the wheel shafts 13a to 13d and the trolleys 12a and 12b Information on lateral vibration) is known.
  • the passing amounts y R1 to y R4 are calculated.
  • the accuracy of the yawing information of the wheel shafts 13a to 13d is improved as compared with the case of calculation using the operational relationship of FIG. 4 as described above.
  • the longitudinal forces T 1 to T 4 are measured values.
  • the accuracy is improved. Therefore, the accuracy of the deviation amounts y R1 to y R4 is improved as calculated above.
  • the inspection apparatus 800 described below is an apparatus that embodies an example of a technique for improving the accuracy of the deviation amounts y R1 to y R4 as described above.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the inspection apparatus 800.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the inspection apparatus 800.
  • FIG. 10 is a diagram illustrating an example of pre-processing in the inspection apparatus 800.
  • FIG. 11 is a diagram illustrating an example of this processing in the inspection apparatus 800.
  • FIG. 1 an example in which an inspection apparatus 800 is mounted on a railway vehicle will be described.
  • the inspection apparatus 800 includes a state equation storage unit 801, an observation equation storage unit 802, a data acquisition unit 803, a filter calculation unit 804, an orbital state calculation unit 805, and an output unit 806 as its functions.
  • an inspection apparatus 800 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, a communication circuit 904, a signal processing circuit 905, an image processing circuit 906, an I / F circuit 907, a user interface 908, a display 909, and a bus. 910.
  • the CPU 901 performs overall control of the entire inspection apparatus 800.
  • the CPU 901 executes a program stored in the auxiliary storage device 903 using the main storage device 902 as a work area.
  • the main storage device 902 temporarily stores data.
  • the auxiliary storage device 903 stores various data in addition to the program executed by the CPU 901.
  • the auxiliary storage device 903 stores a state equation and an observation equation described later.
  • the state equation storage unit 801 and the observation equation storage unit 802 are realized by using the CPU 901 and the auxiliary storage device 903, for example.
  • the communication circuit 904 is a circuit for performing communication with the outside of the inspection apparatus 800.
  • the communication circuit 904 receives, for example, information on measured values of longitudinal force and measured values of acceleration in the left-right direction of the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d.
  • the communication circuit 904 may perform wireless communication or wired communication with the outside of the inspection apparatus 800.
  • the communication circuit 904 is connected to an antenna provided in the railway vehicle when performing wireless communication.
  • the signal processing circuit 905 performs various types of signal processing on the signal received by the communication circuit 904 and the signal input according to the control by the CPU 901.
  • the data acquisition unit 803 is realized by using, for example, the CPU 901, the communication circuit 904, and the signal processing circuit 905.
  • the filter calculation unit 804 and the trajectory state calculation unit 805 are realized by using the CPU 901 and the signal processing circuit 905, for example.
  • An image processing circuit 906 performs various types of image processing on signals input in accordance with control by the CPU 901.
  • the signal subjected to the image processing is output to the display 909.
  • a user interface 908 is a part where an operator gives an instruction to the inspection apparatus 800.
  • the user interface 908 includes, for example, buttons, switches, and dials. Further, the user interface 908 may have a graphical user interface using the display 909.
  • the display 909 displays an image based on the signal output from the image processing circuit 906.
  • the I / F circuit 907 exchanges data with a device connected to the I / F circuit 907.
  • a user interface 908 and a display 909 are shown as devices connected to the I / F circuit 907.
  • the device connected to the I / F circuit 907 is not limited to these.
  • a portable storage medium may be connected to the I / F circuit 907.
  • at least a part of the user interface 908 and the display 909 may be outside the inspection apparatus 800.
  • the output unit 806 is realized by using at least one of the communication circuit 904 and the signal processing circuit 905, the image processing circuit 906, the I / F circuit 907, and the display 909, for example.
  • the CPU 901, main storage device 902, auxiliary storage device 903, signal processing circuit 905, image processing circuit 906, and I / F circuit 907 are connected to the bus 910. Communication between these components is performed via a bus 910.
  • the hardware of the inspection apparatus 800 is not limited to that shown in FIG. 9 as long as the functions of the inspection apparatus 800 described later can be realized.
  • the state equation storage unit 801 stores the state equation.
  • the equation of motion describing the yawing of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the state equation among the equations of motion described above.
  • the equations (5) to (8) include the passing amounts y R1 to y R4 .
  • a model of the trajectory 16 is required. Passage is not something that can be described in accordance with the laws of physics.
  • the uncertainty of the model of the trajectory 16 may affect the result of filtering by the Kalman filter described later. Further, by reducing the state equation and reducing the state variables, the operation of the Kalman filter described later can be stabilized.
  • the equation of state describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the equation of state, and the equation of state is configured as follows. .
  • the equation of motion describing the lateral vibration (movement in the left-right direction) of the carriages 12a and 12b in the expressions (9) and (10) and the rolling of the carriages 12a and 12b in the expressions (13) and (14) are described.
  • Equation of motion equation of motion describing the lateral vibration (movement in the left-right direction) of the vehicle body 11 of equation (15), equation of motion describing yawing of the vehicle body 11 of equation (16), and vehicle body of equation (17) Equation of motion describing the rolling of 11, equation of motion describing the yawing of the yaw damper disposed in the carriage 12a, the yaw damper disposed in the carriage 12b of the equations (18) and (19), equation (20), ( 21)
  • the equation of motion describing the rolling of the air spring (pillow spring) arranged on the carriage 12a and the air spring (pillow spring) arranged on the carriage 12b is used as it is. Constitute the state equation.
  • the equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d in equations (1) to (4) and the yawing of the carriages 12a and 12b in equations (11) and (12) are described.
  • the motion equation to be included includes rotation amounts (angular displacements) ⁇ w1 to ⁇ w4 and angular velocities ⁇ w1 ⁇ to ⁇ w4 ⁇ in the yawing direction of the wheel shafts 13a to 13d.
  • the equation of motion describing the yawing of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the state equation. Therefore, in the present embodiment, the state equation is constructed by using those obtained by eliminating these variables from the expressions (1) to (4), (11), and (12) as follows.
  • the longitudinal forces T 1 to T 4 on the wheel shafts 13a to 13d are expressed by the following equations (22) to (25).
  • the longitudinal forces T 1 to T 4 depend on the difference between the angular displacements ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shaft and the angular displacements ⁇ t1 to ⁇ t2 in the yawing direction of the carriage on which the wheel shaft is provided. Determined.
  • Conversion variables e 1 to e 4 are defined as in the following formulas (26) to (29).
  • the conversion variables e 1 to e 4 are defined by the difference between the angular displacements ⁇ t1 to ⁇ t2 in the yawing direction of the carriage and the angular displacements ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shaft.
  • the conversion variables e 1 to e 4 are variables for mutually converting the angular displacements ⁇ t1 to ⁇ t2 in the yawing direction of the carriage and the angular displacements ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shaft.
  • the equation of motion describing the yawing of the carriages 12a and 12b in the equations (11) and (12) is expressed using the longitudinal forces T 1 to T 4 and is included in the equation of motion. Further, the angular displacements ⁇ w1 to ⁇ w4 and the angular velocities ⁇ w1 to ⁇ w4 ⁇ in the yawing direction of the wheel shafts 13a to 13d can be eliminated.
  • Equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d is expressed as in equations (34) to (37), and equations (38) and (38)
  • the equation of motion describing the yawing of the carriages 12a and 12b is expressed as in equation (39), and the equation of state is constructed using these equations.
  • Equations (40) to (43) are ordinary differential equations, and the actual values of the conversion variables e 1 to e 4 that are the solutions thereof are the measurements of the longitudinal forces T 1 to T 4 on the wheel shafts 13a to 13d. It can be determined by using the value.
  • the state equation storage unit 801 inputs and stores the state equation configured as described above based on the operation of the user interface 908 by the operator, for example.
  • the observation equation storage unit 802 stores observation equations.
  • acceleration in the left-right direction of the vehicle body 11, acceleration in the left-right direction of the carriages 12a and 12b, and acceleration in the left-right direction of the wheel shafts 13a to 13d are used as observation variables.
  • This observation variable is an observation variable for filtering by a Kalman filter described later.
  • the observation equation is configured using the equation of motion describing the lateral vibration of the equations (34) to (37), (9), (10), and (15).
  • the observation equation storage unit 802 inputs and stores the observation equation configured as described above based on the operation of the user interface 908 by the operator.
  • the data acquisition unit 803, the filter calculation unit 804, the trajectory state calculation unit 805, and the output unit 806 are activated. That is, after the pre-process according to the flowchart of FIG. 3 is completed, the main process according to the flowchart of FIG. 4 is started.
  • the data acquisition unit 803 acquires measurement data.
  • the data acquisition unit 803 uses, as measurement data, measured values of acceleration in the left-right direction of the vehicle body 11, measured values of acceleration in the left-right direction of the carriages 12a and 12b, and accelerations in the left-right direction of the wheel shafts 13a to 13d. Get the measured value.
  • Each acceleration is measured by using, for example, a strain gauge attached to the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d, and an arithmetic unit that calculates the acceleration using the measured values of the strain gauge.
  • a strain gauge attached to the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d
  • an arithmetic unit that calculates the acceleration using the measured values of the strain gauge.
  • the data acquisition unit 803 acquires a measurement value of the longitudinal force as measurement data.
  • the method for measuring the longitudinal force is as described above.
  • the data acquisition unit 803 can acquire measurement data, for example, by performing communication with the arithmetic device described above.
  • the filter calculation unit 804 uses the Kalman filter as the measurement equation acquired by the data acquisition unit 803 using the observation equation as the observation equation stored in the observation equation storage unit 802 and the state equation as the state equation stored in the state equation storage unit 801. Using the data, the state variable shown in the equation (44) is determined.
  • the measurement data includes measured values of acceleration in the left-right direction of the vehicle body 11, measured values of acceleration in the left-right direction of the carriages 12a and 12b, and measured values of acceleration in the left-right direction of the wheel shafts 13a to 13d. , And measured values of the longitudinal forces T 1 to T 4 at the wheel shafts 13a to 13d.
  • the Kalman filter is one method for performing data assimilation. That is, the Kalman filter is an example of a method for determining the value of an unobserved variable (state variable) so that the difference between the measured value and the calculated value of the observable variable (observed variable) is small (minimized).
  • the filter calculation unit 804 obtains a Kalman gain at which the difference between the measured value and the calculated value of the observed variable is small (minimum), and obtains the value of the unobserved variable (state variable) at that time.
  • the following observation equation (45) and the following equation (46) are used.
  • Y HX + V (45)
  • X ⁇ ⁇ X + W (46)
  • Y is a vector that stores the measured value of the observed variable.
  • H is an observation model.
  • X is a vector for storing state variables.
  • V observation noise.
  • X ⁇ represents the time derivative of X.
  • is a linear model.
  • W is system noise. Since the Kalman filter itself can be realized by a known technique, a detailed description thereof is omitted.
  • the track state calculation unit 805 calculates estimated values of the rotation amounts (angular displacements) ⁇ w1 to ⁇ w4 of the wheel shafts 13a to 13d in the yawing direction from the equations (30) to (33).
  • the trajectory state calculation unit 805 estimates the rotation amounts (angular displacements) ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shafts 13a to 13d and the state variables shown in the equation (48) obtained by the filter calculation unit 804.
  • the deviation amounts y R1 to y R4 at the positions of the wheel shafts 13a to 13d are obtained. Is calculated.
  • the state variables used are displaced in the lateral direction of the carriage 12a ⁇ 12b y t1 ⁇ y t2 , the left-right direction of the velocity y t1 ⁇ ⁇ y t2 ⁇ of the truck 12a ⁇ 12b, in the lateral direction of the wheel shaft 13a ⁇ 13d displacement y w1 to y w4 and the speeds y w1 ⁇ to y w4 ⁇ of the wheel shafts 13a to 13d in the left-right direction.
  • the trajectory state calculation unit 805 calculates the final passing amount y R from the passing amounts y R1 to y R4 .
  • the trajectory state calculation unit 805 calculates an arithmetic average value of two values excluding the maximum value and the minimum value among the passing amount y R1 to y R4 as the passing amount y R.
  • the track state calculation unit 805 takes a moving average for each of the deviation amounts y R1 to y R4 at the positions of the wheel shafts 13a to 13d (that is, passes through a low-pass filter), and the wheel shaft 13a that takes the moving average.
  • the final amount of deviation y R may be calculated from the amount of deviation y R1 to y R4 at the position of ⁇ 13d.
  • the output unit 806 outputs information of the street deviation amount y R calculated by the trajectory state calculation section 805. At this time, the output unit 806 may output information indicating that the trajectory 16 is abnormal when the passing amount y R is larger than a preset value.
  • a preset value for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium can be employed.
  • Example> a numerical simulation of a case where a railway vehicle provided with two carriages 12a and 12b and four sets of wheel shafts 13a to 13d is run at 270 km / h as shown in FIG. Carried out.
  • the axle box support device is a monolink type axle box support device.
  • the longitudinal force is referred to as a monolink force.
  • the model used for the numerical simulation has 86 degrees of freedom.
  • FIG. 12 is a diagram showing (part of) observation data obtained by numerical simulation.
  • the first wheel shaft indicates the wheel shaft 13a.
  • the front carriage refers to the carriage 12a.
  • Lateral vibration acceleration refers to acceleration in the left-right direction.
  • FIG. 13 is a diagram illustrating an example of the actual measurement value 1301 and the calculation value 1302 of the amount of deviation.
  • the actual measurement value 1301 is a deviation amount as set when the numerical simulation is performed. As shown in FIG. 13, the actually measured value 1301 and the calculated value 1302 of the amount of deviation match in practically acceptable levels. Therefore, it can be seen that by using the method of the present embodiment, the amount of deviation can be calculated with high accuracy.
  • the equation of motion describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is included in the state equation without using the monolink force, and the time derivative of the passing amounts y R1 to y R4 is white. Treated as noise and filtered with Kalman filter. As a result, the calculation became unstable and the estimation result could not be obtained.
  • the inspection apparatus 800 includes the measurement values of the acceleration in the left-right direction of the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d, and the measurement values of the longitudinal forces T 1 to T 4 .
  • the actual values of the conversion variables e 1 to e 4 are given to the Kalman filter, and the state variables (y w1 ⁇ to y w4 ⁇ , y w1 to y w4 , y t1 ⁇ to y t2 ⁇ , y t1 to y t2 , ⁇ t1 ⁇ ⁇ t2 ⁇ , ⁇ t1 ⁇ t2 , ⁇ t1 ⁇ ⁇ t2 ⁇ , ⁇ t1 ⁇ ⁇ t2 ⁇ , ⁇ t1 ⁇ t2 , y b ⁇ , y b , ⁇ b ⁇ , ⁇ b , ⁇ b ⁇ , ⁇ b , ⁇ y1 , ⁇ y2 , ⁇ a1 , ⁇ a2 ).
  • the inspection apparatus 800 uses the rotation amounts (angular displacements) ⁇ t1 to ⁇ t2 in the yawing direction of the carriages 12a and 12b included in the state variables and the actual values of the conversion variables e 1 to e 4. Then, rotation amounts (angular displacements) ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shafts 13a to 13d are derived. Next, the inspection apparatus 800 adds the amount of rotation (angular displacement) ⁇ w1 to ⁇ w4 in the yawing direction of the wheel shafts 13a to 13d, the state variables, and the longitudinal force to the equation of motion describing the yawing of the wheel shafts 13a to 13d.
  • the inspection apparatus 800 calculates a final passing amount y R from the passing amounts y R1 to y R4 . Therefore, it is not necessary to construct a state equation using an equation of motion that includes the deviation amounts y R1 to y R4 as variables as an equation of motion describing yawing of the wheel shafts 13a to 13d. Thereby, it is not necessary to create a model of the trajectory 16, and the number of state variables can be reduced.
  • the degree of freedom of the model can be reduced from 21 degrees of freedom to 17 degrees of freedom, and the number of state variables can be reduced from 38 to 30. Further, the measurement value used in the Kalman filter increases by the amount of the longitudinal force T 1 to T 4 .
  • the equation of motion describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is included in the state equation without using the longitudinal forces T 1 to T 4 as described in the embodiment, In some cases, the calculation becomes unstable and the estimation result cannot be obtained. That is, unless a state variable is selected as in the technique described in Patent Document 2, calculation may become unstable and an estimation result may not be obtained. Even if an estimation result is obtained, the method of the present embodiment has higher accuracy in detecting the irregularity of the trajectory 16 than the method in which no state variable is selected. This is because in the present embodiment, it is realized that the equation of motion describing the yawing of the wheel shafts 13a to 13d is not included in the state equation and that the measured value of the longitudinal force is used.
  • a strain gauge can be used as a sensor, so that no special sensor is required. Therefore, it is possible to accurately detect an abnormality (trajectory irregularity) in the track 16 without incurring a large cost. Further, since it is not necessary to use a special sensor, it is possible to detect an irregularity of the track 16 in real time while the business vehicle is running by attaching a strain gauge to the business vehicle and mounting the inspection device 800 on the business vehicle. it can. Therefore, it is possible to detect the irregularity of the track 16 without running the inspection vehicle.
  • a strain gauge may be attached to the inspection vehicle, and the inspection device 800 may be mounted on the inspection vehicle.
  • ⁇ Modification> the case where the Kalman filter is used has been described as an example.
  • a filter that derives a state variable that is, a filter that performs data assimilation
  • the Kalman filter is not necessarily used.
  • a particle filter may be used.
  • An example of the error between the measured value and the calculated value of the observed variable is a square error between the measured value and the calculated value of the observed variable.
  • the case where the amount of deviation is derived is described as an example.
  • the information reflecting the irregularity of the trajectory (the appearance defect of the trajectory 16) is derived as the information reflecting the state of the trajectory 16, it is not always necessary to derive the deviation amount.
  • the lateral pressure generated between the railway vehicle and the rail Left-right direction stress may be derived.
  • Q 1 , Q 2 , Q 3 , and Q 4 are lateral pressures at the wheels 14a, 14b, 14c, and 14d, respectively.
  • f 3 represents the spin creep coefficient.
  • the state variable showing the state of the vehicle body 11 was included was described as an example.
  • the vehicle body 11 is the part where the propagation of vibration due to the acting force (creep force) between the wheels 14a to 14d and the track 16 is finally transmitted. Therefore, for example, when it is determined that the influence of the propagation in the vehicle body 11 is small, the state variable indicating the state of the vehicle body 11 may not be included.
  • equations of motion of equations (1) to (21) equations of motion describing the lateral vibration, yawing and rolling of the vehicle body 11 of equations (15) to (17), and (18)
  • the equation of motion and the equation of motion describing the yawing of the yaw damper arranged in the carriage 12a and the yaw damper arranged in the carriage 12b are not required.
  • the state quantity relating to the vehicle body (state quantity including the subscript b) and the state quantity relating to the vehicle body (state quantity including the subscript b) are included in ⁇ .
  • the value (for example, ⁇ a2 ⁇ b ⁇ in the third term on the left side of equation (21)) is set to 0 (zero).
  • the carriages 12a and 12b are bolsterless carriages
  • the carts 12a and 12b are not limited to bolsterless carts.
  • the equation of motion is rewritten so that the centrifugal force is included.
  • the equation of motion is appropriately rewritten according to the components of the railway vehicle, the force received by the railway vehicle, the direction of motion of the railway vehicle, and the like. That is, the equation of motion is not limited to that exemplified in this embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the inspection system.
  • the inspection system includes data collection devices 1410 a and 1410 b and a data processing device 1420.
  • FIG. 14 also illustrates an example of functional configurations of the data collection devices 1410a and 1410b and the data processing device 1420.
  • the hardware of the data collection devices 1410a and 1410b and the data processing device 1420 can be realized by, for example, the one shown in FIG. Therefore, detailed description of the hardware configuration of the data collection devices 1410a and 1410b and the data processing device 1420 is omitted.
  • Each data collection device 1410a and 1410b is mounted on each railway vehicle.
  • Data processor 1420 is located at the command office.
  • the command center centrally manages the operation of a plurality of railway vehicles, for example.
  • the data collection devices 1410a and 1410b can be realized by the same device.
  • the data collection devices 1410a and 1410b include data acquisition units 1411a and 1411b and data transmission units 1412a and 1412b.
  • the data acquisition units 1411a and 1411b have the same function as the data acquisition unit 803. That is, the data acquisition units 1411a and 1411b acquire measurement data. Also in the present embodiment, as in the first embodiment, the data acquisition units 1411a and 1411b use the measured values of acceleration in the left-right direction of the vehicle body 11, the measured values of acceleration in the left-right direction of the carriages 12a and 12b, as measurement data, The measurement value of the acceleration in the left-right direction and the measurement value of the longitudinal force of the wheel shafts 13a to 13d are acquired. The strain gauge and the arithmetic unit for obtaining these measurement values are the same as those described in the first embodiment.
  • the data transmission units 1412a and 1412b transmit the measurement data acquired by the data acquisition units 1411a and 1411b to the data processing device 1420.
  • the data transmission units 1412a and 1412b transmit the measurement data acquired by the data acquisition units 1411a and 1411b to the data processing device 1420 by wireless communication.
  • the data transmission units 1412a and 1412b add the identification numbers of the railway vehicles on which the data collection devices 1410a and 1410b are mounted to the measurement data acquired by the data acquisition units 1411a and 1411b.
  • the data transmission units 1412a and 1412b transmit the measurement data to which the identification number of the railway vehicle is added.
  • the data reception unit 1421 receives the measurement data transmitted by the data transmission units 1412a and 1412b.
  • the identification number of the railway vehicle that is the transmission source of the measurement data is added to the measurement data.
  • the data storage unit 1422 stores the measurement data received by the data reception unit 1421.
  • the data storage unit 1422 stores measurement data for each railcar identification number.
  • the data storage unit 1422 identifies the position of the railway vehicle at the reception time of the measurement data based on the current operation status of the railway vehicle and the reception time of the measurement data, and information on the identified position and the measurement data Are stored in association with each other.
  • the data collection devices 1410a and 1410b may collect information on the current position of the railway vehicle and include the collected information in the measurement data.
  • the data reading unit 1423 reads the measurement data stored in the data storage unit 1422.
  • the data reading unit 1423 can read measurement data designated by the operator among the measurement data stored in the data storage unit 1422.
  • the data reading unit 1423 can also read measurement data that matches a predetermined condition at a predetermined timing.
  • the measurement data read by the data reading unit 1423 is determined based on, for example, at least one of the identification number and the position of the railway vehicle.
  • State equation storage unit 801, observation equation storage unit 802, filter operation unit 804, orbital state calculation unit 805, and output unit 806 are the same as those described in the first embodiment. Therefore, detailed description thereof is omitted here. Note that the filter calculation unit 804 determines the state variable represented by the equation (44) using the measurement data read by the data reading unit 1423 instead of the measurement data acquired by the data acquisition unit 803.
  • the data collection devices 1410a and 1410b mounted on the railway vehicle collect measurement data and transmit it to the data processing device 1420.
  • Data processor 1420 disposed control center, the data collection device 1410a, and stores the measurement data received from 1410b, using the stored measurement data, calculates a street deviation amount y R. Accordingly, in addition to the effects described in the first embodiment, for example, the following effects can be obtained. That is, the data processing device 1420 can calculate the deviation amount y R at any timing by reading the measurement data at any timing. In addition, the data processing device 1420 can output a time-series change in the amount of deviation y R at the same position. In addition, the data processing device 1420 can output the amount of deviation y R on a plurality of routes for each route.
  • the state equation storage unit 801, the observation equation storage unit 802, the filter calculation unit 804, the orbital state calculation unit 805, and the output unit 806 are included in one device.
  • the functions of the state equation storage unit 801, the observation equation storage unit 802, the filter calculation unit 804, the orbital state calculation unit 805, and the output unit 806 may be realized by a plurality of devices. In this case, an inspection system is configured using these plural devices.
  • the embodiment of the present invention described above can be realized by a computer executing a program. Further, a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
  • a recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the present invention can be used for, for example, inspecting a railroad track.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Vehicle Body Suspensions (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

An inspection apparatus (800) calculates an alignment irregularity amount by plugging an angular displacement in a yaw direction of wheel sets (13a-13d), a state variable determined by a filter, and a measurement value of a force in a forward/backward direction into a motion equation describing the yawing of the wheel sets (13a-13d).

Description

検査システム、検査方法、およびプログラムInspection system, inspection method, and program
 本発明は、検査システム、検査方法、およびプログラムに関し、特に、鉄道車両の軌道を検査するために用いて好適なものである。 The present invention relates to an inspection system, an inspection method, and a program, and is particularly suitable for use in inspecting a track of a railway vehicle.
 軌道上を鉄道車両が走行すると鉄道車両からの荷重により軌道の位置が変化する。このような軌道の変化が生じると、鉄道車両が異常な挙動を示す虞がある。そこで、従来から、鉄道車両を軌道上で走行させることにより、軌道の異常を検出することが行われている。
 特許文献1には、3点測定法により、軌道狂い量を測定することが記載されている。また、特許文献2には、鉄道車両の振動のデータを観測データとしてカルマンフィルタ等のモデル規範型推定法に適用することにより鉄道車両の異常な挙動を検出することが記載されている。
When the railway vehicle travels on the track, the position of the track changes due to the load from the railway vehicle. When such a change in the track occurs, there is a possibility that the railway vehicle behaves abnormally. Thus, conventionally, an abnormality in a track has been detected by running a railway vehicle on the track.
Patent Document 1 describes that the amount of trajectory deviation is measured by a three-point measurement method. Patent Document 2 describes detecting abnormal behavior of a railway vehicle by applying the vibration data of the railway vehicle as observation data to a model reference type estimation method such as a Kalman filter.
特開昭56-19404号公報JP-A-56-19404 特開2005-67276号公報Japanese Patent Laid-Open No. 2005-67276
 しかしながら、特許文献1に記載の方法は、軌道不整を直接測定する手法である。このため、高価な測定装置が必要になる。また、特許文献2に記載の方法は、状態変数を選定していない。このため、軌道不整を高精度に予測することが容易ではない。 However, the method described in Patent Document 1 is a method for directly measuring orbital irregularities. For this reason, an expensive measuring device is required. In the method described in Patent Document 2, no state variable is selected. For this reason, it is not easy to predict trajectory irregularity with high accuracy.
 本発明は、以上のような問題点に鑑みてなされたものであり、鉄道車両の軌道不整を大きなコストをかけることなく精度よく検知できるようにすることを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to be able to accurately detect an irregular track of a railway vehicle without incurring a large cost.
 本発明の検査システムは、車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得手段と、前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算手段と、前記軌道の状態を反映する情報を導出する軌道状態導出手段と、を有し、前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、前記部材は、軸箱を支持するための部材であり、前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、前記フィルタ演算手段は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、前記軌道状態導出手段は、前記フィルタ演算手段により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とする。 The inspection system of the present invention includes a data acquisition unit that acquires measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and a wheel shaft on a track, the measurement data, and the state Filter arithmetic means for determining a state variable, which is a variable to be determined by the state equation, by performing an operation using a filter that performs data assimilation using an equation and an observation equation, and a state of the orbit Trajectory state deriving means for deriving information to be reflected, and the measurement data includes a measurement value of a lateral acceleration of the carriage and the wheel shaft and a measurement value of a longitudinal force, and the horizontal direction Is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track, and the front-rear direction force is the wheel axis The force in the front-rear direction generated in a member disposed between the wheel shaft provided with the wheel shaft and the angular displacement in the yawing direction of the wheel shaft and the angle displacement in the yawing direction of the wheel wheel provided with the wheel shaft. The member is a member for supporting the axle box, the yawing direction is a rotation direction with the vertical direction as a rotation axis, and the state equation is , An equation described using the state variable, the longitudinal force, and a conversion variable, wherein the state variable includes a lateral displacement and speed of the carriage and an angular displacement in the yawing direction of the carriage. And angular velocity, angular displacement and angular velocity in the rolling direction of the carriage, lateral displacement and velocity of the wheel axle, and angular displacement in the rolling direction of an air spring attached to the railway vehicle, Including the angular displacement and angular velocity of the wheel shaft in the yawing direction, the rolling direction is a rotation direction with the front-rear direction as a rotation axis, and the conversion variable is the angular displacement of the wheel shaft in the yawing direction. The angular displacement in the yawing direction of the carriage is a variable that mutually converts, the observation equation is an equation that is described using the observation variable and the conversion variable, and the observation variable is the carriage and Including the acceleration in the horizontal direction of the wheel axis, the filter calculation means, the state equation into which the measured value of the observation variable, the measured value of the longitudinal force and the actual value of the conversion variable are substituted, and the conversion variable And determining the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized using the observation equation substituted with the actual value, and the trajectory The state deriving means uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculating means, and the actual value of the conversion variable, and the angle of the wheel axis in the yawing direction. Deriving an estimated value of the displacement, deriving information reflecting the state of the trajectory using the derived estimated value of the angular displacement in the yaw direction of the wheel axle, and the actual value of the conversion variable is a measurement of the longitudinal force It is derived using a value.
 本発明の検査方法は、車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得工程と、前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算工程と、前記軌道の状態を反映する情報を導出する軌道状態導出工程と、を有し、前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、前記部材は、軸箱を支持するための部材であり、前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、前記フィルタ演算工程は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、前記軌道状態導出工程は、前記フィルタ演算工程により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とする。 The inspection method of the present invention includes a data acquisition step of acquiring measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and an axle on a track, the measurement data, and the state A filter operation step for determining a state variable that is a variable to be determined by the state equation by performing an operation using a filter that performs data assimilation using an equation and an observation equation, and a state of the trajectory A trajectory state deriving step for deriving information to be reflected, and the measurement data includes a measurement value of acceleration in the left-right direction of the carriage and the wheel axis, and a measurement value of force in the front-rear direction, and the left-right direction Is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track, and the front-rear direction force is the wheel axis, The force in the front-rear direction generated in a member disposed between the wheel shaft and the carriage, the angular displacement in the yawing direction of the wheel shaft, and the angular displacement in the yawing direction of the wheel shaft provided with the wheel shaft. The member is a member for supporting the axle box, the yawing direction is a rotational direction with the vertical direction as a rotational axis, and the state equation is An equation described using the state variable, the longitudinal force, and a conversion variable, wherein the state variable includes a lateral displacement and speed of the carriage, an angular displacement in the yawing direction of the carriage, and An angular velocity, an angular displacement and an angular velocity in the rolling direction of the carriage, a lateral displacement and a velocity of the wheel axle, and an angular displacement in the rolling direction of an air spring attached to the railway vehicle. The rolling direction does not include the angular displacement and the angular velocity of the wheel shaft in the yawing direction, the rolling direction is a rotation direction with the front-rear direction as the rotation axis, and the conversion variable includes the angular displacement of the wheel shaft in the yawing direction and the angular displacement. The angular displacement in the yawing direction of the carriage is a variable that mutually converts, and the observation equation is an equation that is described using the observation variable and the conversion variable, and the observation variable is the carriage and the Including the acceleration in the horizontal direction of the wheel axis, and the filter calculation step includes the measured value of the observation variable, the measured value of the longitudinal force and the actual value of the conversion variable, and the actual result of the conversion variable. And determining the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized using the observation equation substituted with the value, and the orbital state The derivation step uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined in the filter calculation step, and the actual displacement value of the conversion variable, and the angular displacement in the yawing direction of the wheel shaft. Deriving information that reflects the state of the orbit using the estimated angular displacement in the yaw direction of the wheel axis derived, and the actual value of the conversion variable is a measured value of the longitudinal force It is derived by using.
 本発明のプログラムは、車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得工程と、前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算工程と、前記軌道の状態を反映する情報を導出する軌道状態導出工程と、を含む工程をコンピュータに実行させ、前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、前記部材は、軸箱を支持するための部材であり、前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、前記フィルタ演算工程は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、前記軌道状態導出工程は、前記フィルタ演算工程により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とする。 The program of the present invention includes a data acquisition step of acquiring measurement data that is measurement data measured by running a railway vehicle having a vehicle body, a carriage, and an axle on a track, the measurement data, and the state equation And the observation equation, and a filter operation step for determining a state variable which is a variable to be determined by the state equation by performing an operation using a filter for performing data assimilation, and reflecting the state of the trajectory Including a track state deriving step for deriving information to be performed, and the measurement data includes a measured value of acceleration in the lateral direction of the carriage and the wheel shaft and a measured value of longitudinal force. The left-right direction is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track, The front-rear direction force is the front-rear direction force generated in a member arranged between the wheel shaft and the carriage on which the wheel shaft is provided, and the angular displacement in the yawing direction of the wheel shaft and the wheel shaft is provided. The force is determined according to a difference from the angular displacement in the yawing direction of the carriage, and the member is a member for supporting the axle box, and the yawing direction is a rotation with the vertical direction as the rotation axis. The state equation is an equation described using the state variable, the longitudinal force, and a conversion variable, and the state variable includes a lateral displacement and speed of the carriage. , Angular displacement and angular velocity in the yawing direction of the carriage, angular displacement and angular velocity in the rolling direction of the carriage, lateral displacement and velocity of the wheel axle, and air springs attached to the railway vehicle Angular displacement in the rolling direction, and does not include angular displacement and angular velocity in the yawing direction of the wheel shaft, the rolling direction is a rotational direction with the front-rear direction as a rotational axis, and the conversion variable is An angular displacement in the yaw direction of the wheel shaft and an angular displacement in the yawing direction of the carriage are mutually converted, and the observation equation is an equation described using the observation variable and the conversion variable, The observed variable includes lateral acceleration of the cart and the wheel axis, and the filter calculation step substitutes the measured value of the observed variable, the measured value of the longitudinal force, and the actual value of the conversion variable. Using the state equation and the observation equation substituted with the actual value of the conversion variable, the error between the measured value and the calculated value of the observation variable or the expected value of the error is minimized. A state variable is determined, and the track state derivation step uses an angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculation step, and an actual value of the conversion variable. , Deriving an estimated value of angular displacement in the yaw direction of the wheel shaft, deriving information reflecting the state of the track using the derived estimated value of angular displacement in the yawing direction of the wheel shaft, and the actual value of the conversion variable Is derived using the measured value of the longitudinal force.
図1は、鉄道車両の概略の一例を示す図である。FIG. 1 is a diagram illustrating an example of an outline of a railway vehicle. 図2は、鉄道車両の構成要素の主な運動の方向を概念的に示す図である。FIG. 2 is a diagram conceptually showing main movement directions of components of the railway vehicle. 図3は、通り狂い量の一例を示す図である。FIG. 3 is a diagram illustrating an example of a passing amount. 図4は、通り狂い量と鉄道車両の構成要素の運動との相互の作用関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle. 図5は、前後方向力を用いて、通り狂い量と鉄道車両の構成要素の運動との相互の作用関係の一例を示す図である。FIG. 5 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle using the longitudinal force. 図6は、輪軸のヨーイングに直接作用する構成要素の運動を決定するのに必要な作用関係の一例を示す図である。FIG. 6 is a diagram showing an example of an action relationship necessary for determining the motion of the component that directly acts on the yaw of the wheel shaft. 図7は、通り狂い量を決定するのに必要な作用関係の一例を示す図である。FIG. 7 is a diagram illustrating an example of an action relationship necessary to determine the amount of deviation. 図8は、検査装置の機能的な構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a functional configuration of the inspection apparatus. 図9は、検査装置のハードウェアの構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a hardware configuration of the inspection apparatus. 図10は、検査装置における事前処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of pre-processing in the inspection apparatus. 図11は、検査装置における本処理の一例を示す図である。FIG. 11 is a diagram illustrating an example of this processing in the inspection apparatus. 図12は、観測データの一例を示す図である。FIG. 12 is a diagram illustrating an example of observation data. 図13は、通り狂い量の実測値と計算値の一例を示す図である。FIG. 13 is a diagram illustrating an example of an actually measured value and a calculated value of a passing amount. 図14は、検査システムの構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of the inspection system.
 以下、図面を参照しながら、本発明の実施形態を説明する。
(第1の実施形態)
 まず、第1の実施形態を説明する。
 図1は、鉄道車両の概略の一例を示す図である。尚、図1において、鉄道車両は、x軸の正の方向に進むものとする(x軸は、鉄道車両の走行方向に沿う軸である)。また、z軸は、軌道16(地面)に対し垂直方向(鉄道車両の高さ方向)であるものとする。y軸は、鉄道車両の走行方向に対して垂直な水平方向(鉄道車両の走行方向と高さ方向との双方に垂直な方向)であるものとする。また、鉄道車両は、営業車両であるものとする。尚、図1および図3において、○の中に●が付されているものは、紙面の奥側から手前側に向かう方向を示す。図1では、この方向は、y軸の正の方向である。図3では、この方向は、z軸の正の方向である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
First, the first embodiment will be described.
FIG. 1 is a diagram illustrating an example of an outline of a railway vehicle. In FIG. 1, the railway vehicle is assumed to travel in the positive direction of the x axis (the x axis is an axis along the traveling direction of the railway vehicle). The z axis is assumed to be perpendicular to the track 16 (ground) (the height direction of the railway vehicle). The y-axis is assumed to be a horizontal direction perpendicular to the traveling direction of the railway vehicle (a direction perpendicular to both the traveling direction and the height direction of the railway vehicle). Further, the railway vehicle is assumed to be a business vehicle. In FIG. 1 and FIG. 3, the circles in the circles indicate the direction from the back side to the near side. In FIG. 1, this direction is the positive direction of the y-axis. In FIG. 3, this direction is the positive direction of the z-axis.
 図1に示すように本実施形態では、鉄道車両は、車体11と、台車12a、12bと、輪軸13a~13dとを有する。このように本実施形態では、1つの車体11に、2つの台車12a、12bと4組の輪軸13a~13dとが備わる鉄道車両を例に挙げて説明する。輪軸13a~13dは、車軸15a~15dとその両端に設けられた車輪14a~14dとを有する。本実施形態では、台車12a、12bが、ボルスタレス台車である場合を例に挙げて説明する。尚、図1では、表記の都合上、輪軸13a~13dの一方の車輪14a~14dのみを示すが、輪軸13a~13dの他方にも車輪が設けられている(図1に示す例では、車輪は合計8個ある)。また、鉄道車両は、図1に示す構成要素以外の構成要素(後述する運動方程式で説明する構成要素等)を有するが、表記の都合上、図1では、当該構成要素の図示を省略する。例えば、台車12a、12bは、台車枠および枕バネなどを有する。また、各輪軸13a~13dの左右方向の両側には、軸箱が配置される。また、台車枠と軸箱は、軸箱支持装置により相互に結合される。軸箱支持装置は、軸箱および台車枠との間に配置される装置(サスペンション)である。軸箱支持装置は、軌道16から鉄道車両に伝わる振動を吸収する。また、軸箱支持装置は、軸箱が台車枠に対して前後方向および左右方向に移動することを抑制するように(好ましくは、当該移動が生じないように)軸箱の台車枠に対する位置を規制した状態で軸箱を支持する。軸箱支持装置は、各輪軸13a~13dの左右方向の両側に配置される。尚、鉄道車両自体は公知の技術で実現できるので、ここでは、その詳細な説明を省略する。 As shown in FIG. 1, in this embodiment, the railway vehicle includes a vehicle body 11, carriages 12a and 12b, and wheel shafts 13a to 13d. As described above, in the present embodiment, a railway vehicle in which one vehicle body 11 is provided with two carriages 12a and 12b and four sets of wheel shafts 13a to 13d will be described as an example. The wheel shafts 13a to 13d have axles 15a to 15d and wheels 14a to 14d provided at both ends thereof. In this embodiment, the case where the carriages 12a and 12b are bolsterless carriages will be described as an example. In FIG. 1, only one of the wheels 14a to 14d of the wheel shafts 13a to 13d is shown for convenience of description, but a wheel is also provided on the other of the wheel shafts 13a to 13d (in the example shown in FIG. There are a total of 8). Moreover, although the railcar has components other than the components shown in FIG. 1 (components described by an equation of motion to be described later), the components are not shown in FIG. 1 for convenience of description. For example, the carts 12a and 12b have a cart frame and a pillow spring. In addition, axle boxes are arranged on both sides in the left-right direction of the respective wheel shafts 13a to 13d. Further, the carriage frame and the axle box are coupled to each other by the axle box support device. The axle box support device is an apparatus (suspension) disposed between the axle box and the carriage frame. The axle box support device absorbs vibration transmitted from the track 16 to the railway vehicle. Further, the axle box support device positions the axle box with respect to the carriage frame so as to prevent the axle box from moving in the front-rear direction and the left-right direction with respect to the carriage frame (preferably, such movement does not occur). Support the axle box in a regulated state. The axle box support devices are arranged on both sides in the left-right direction of the respective wheel shafts 13a to 13d. Since the railway vehicle itself can be realized by a known technique, detailed description thereof is omitted here.
 鉄道車両が軌道16上を走行すると、車輪14a~14dと軌道16との間の作用力(クリープ力)が振動源となり、輪軸13a~13d、台車12a、12b、車体11に振動が順次伝搬する。図2は、鉄道車両の構成要素(輪軸13a~13d、台車12a、12b、車体11)の主な運動の方向を概念的に示す図である。図2に示すx軸、y軸、z軸は、それぞれ、図1に示したx軸、y軸、z軸に対応する。 When the railway vehicle travels on the track 16, the acting force (creep force) between the wheels 14a to 14d and the track 16 becomes a vibration source, and the vibration is sequentially propagated to the wheel shafts 13a to 13d, the carriages 12a and 12b, and the vehicle body 11. . FIG. 2 is a diagram conceptually showing main movement directions of the components of the railway vehicle (the wheel shafts 13a to 13d, the carriages 12a and 12b, and the vehicle body 11). The x-axis, y-axis, and z-axis shown in FIG. 2 correspond to the x-axis, y-axis, and z-axis shown in FIG. 1, respectively.
 図2に示すように本実施形態では、輪軸13a~13d、台車12a、12b、および車体11が、x軸を回動軸として回動する運動と、z軸を回動軸として回動する運動と、y軸に沿う方向の運動とを行う場合を例に挙げて説明する。以下の説明では、x軸を回動軸として回動する運動を必要に応じてローリングと称し、x軸を回動軸とする回動方向を必要に応じてローリング方向と称し、x軸に沿う方向を必要に応じて前後方向と称する。尚、前後方向は、鉄道車両の走行方向である。本実施形態では、x軸に沿う方向が鉄道車両の走行方向であるものとする。また、z軸を回動軸として回動する運動を必要に応じてヨーイングと称し、z軸を回動軸とする回動方向を必要に応じてヨーイング方向と称し、z軸に沿う方向を必要に応じて上下方向と称する。尚、上下方向は、軌道16に対し垂直な方向である。また、y軸に沿う方向の運動を必要に応じて横振動と称し、y軸に沿う方向を必要に応じて左右方向と称する。尚、左右方向は、前後方向(鉄道車両の走行方向)と上下方向(軌道16に対し垂直な方向)との双方に垂直な方向である。尚、鉄道車両は、この他の運動も行うが、本実施形態では説明を簡単にするため、これらの運動については考慮しないものとする。しかしながら、これらの運動を考慮してもよい。 As shown in FIG. 2, in the present embodiment, the wheel shafts 13a to 13d, the carriages 12a and 12b, and the vehicle body 11 rotate about the x axis as a rotation axis and move around the z axis as a rotation axis. A case where the movement in the direction along the y-axis is performed will be described as an example. In the following description, a movement that rotates about the x axis as a rotation axis is referred to as rolling as necessary, and a rotation direction that uses the x axis as a rotation axis is referred to as a rolling direction as necessary, along the x axis. The direction is referred to as the front-rear direction as necessary. The front-rear direction is the traveling direction of the railway vehicle. In the present embodiment, it is assumed that the direction along the x axis is the traveling direction of the railway vehicle. In addition, a movement that rotates about the z axis as a rotation axis is referred to as yawing as necessary, a rotation direction that uses the z axis as a rotation axis is referred to as a yawing direction, and a direction along the z axis is required. It will be referred to as the up and down direction. The vertical direction is a direction perpendicular to the track 16. Moreover, the movement in the direction along the y-axis is referred to as lateral vibration as necessary, and the direction along the y-axis is referred to as left-right direction as necessary. The left-right direction is a direction perpendicular to both the front-rear direction (traveling direction of the railway vehicle) and the up-down direction (direction perpendicular to the track 16). The railcar also performs other motions, but in the present embodiment, these motions are not considered in order to simplify the explanation. However, these movements may be considered.
<運動方程式>
 以上のことを前提として、鉄道車両の走行時における運動を記述する運動方程式の一例を説明する。本実施形態では、鉄道車両が21自由度を有する場合を例に挙げて説明する。即ち、輪軸13a~13dが、左右方向における運動(横振動)とヨーイング方向における運動(ヨーイング)とを行うものとする(2×4セット=8自由度)。また、台車12a、12bが、左右方向における運動(横振動)とヨーイング方向における運動(ヨーイング)とローリング方向における運動(ローリング)とを行うものとする(3×2セット=6自由度)。また、車体11が、左右方向における運動(横振動)とヨーイング方向における運動(ヨーイング)とローリング方向における運動(ローリング)とを行うものとする(3×1セット=3自由度)。また、台車12a、12bに対してそれぞれ設けられている空気バネ(枕バネ)が、ローリング方向における運動(ローリング)を行うものとする(1×2セット=2自由度)。また、台車12a、12bに対してそれぞれ設けられているヨーダンパが、ヨーイング方向における運動(ヨーイング)を行うものとする(1×2セット=2自由度)。
<Equation of motion>
Based on the above assumptions, an example of an equation of motion describing the motion of a railway vehicle during travel will be described. In this embodiment, a case where the railway vehicle has 21 degrees of freedom will be described as an example. That is, it is assumed that the wheel shafts 13a to 13d perform movement in the left-right direction (lateral vibration) and movement in the yawing direction (yawing) (2 × 4 sets = 8 degrees of freedom). Further, it is assumed that the carriages 12a and 12b perform movement in the left-right direction (lateral vibration), movement in the yawing direction (yawing), and movement in the rolling direction (rolling) (3 × 2 sets = 6 degrees of freedom). Further, it is assumed that the vehicle body 11 performs a motion in the left-right direction (lateral vibration), a motion in the yawing direction (yawing), and a motion in the rolling direction (rolling) (3 × 1 set = 3 degrees of freedom). In addition, it is assumed that air springs (pillow springs) provided for the carriages 12a and 12b perform movement (rolling) in the rolling direction (1 × 2 sets = 2 degrees of freedom). In addition, it is assumed that the yaw dampers provided for the carriages 12a and 12b perform movement (yawing) in the yawing direction (1 × 2 sets = 2 degrees of freedom).
 尚、自由度は、21自由度に限定されない。自由度を大きくすれば計算精度は向上するが、計算負荷が高くなる。また、後述するカルマンフィルタの動作が安定しなくなる虞がある。これらの点を考慮して自由度を適宜決定することができる。また、以下の運動方程式は、それぞれの構成要素(車体11、台車12a、12b、輪軸13a~13d)のそれぞれの方向(左右方向、ヨーイング方向、ローリング方向)の動作を、例えば、非特許文献1、2の記載に基づいて表すことにより実現することができる。従って、ここでは、それぞれの運動方程式の概要を説明し、詳細な説明を省略する。 The degree of freedom is not limited to 21 degrees of freedom. Increasing the degree of freedom increases the calculation accuracy, but increases the calculation load. In addition, the operation of the Kalman filter described later may not be stable. The degree of freedom can be appropriately determined in consideration of these points. Further, the following equation of motion indicates the operation in each direction (left-right direction, yawing direction, rolling direction) of each component (the vehicle body 11, the carriages 12a and 12b, the wheel shafts 13a to 13d). This can be realized by expressing based on the description of 2. Therefore, the outline of each equation of motion will be described here, and detailed description will be omitted.
 以下の各式において、添え字wは、輪軸13a~13dを表す。添え字w(のみ)が付されている変数は、輪軸13a~13dで共通であることを表す。添え字w1、w2、w3、w4はそれぞれ、輪軸13a、13b、13c、13dを表す。
 添え字t、Tは、台車12a、12bを表す。添え字t、T(のみ)が付されている変数は、台車12a、12bで共通であることを表す。添え字t1、t2はそれぞれ、台車12a、12bを表す。
 添え字b、Bは、車体11であることを表す。
In each of the following formulas, the subscript w represents the wheel shafts 13a to 13d. A variable to which the subscript w (only) is attached indicates that it is common to the wheel shafts 13a to 13d. Subscripts w1, w2, w3, and w4 represent the wheel shafts 13a, 13b, 13c, and 13d, respectively.
The subscripts t and T represent the carriages 12a and 12b. Variables with subscripts t and T (only) are common to the carriages 12a and 12b. Subscripts t1 and t2 represent carriages 12a and 12b, respectively.
The subscripts b and B represent the vehicle body 11.
 添え字xは、前後方向またはローリング方向を表し、添え字yは、左右方向を表し、添え字zは、上下方向またはヨーイング方向を表す。
 また、変数の上に付している「・・」、「・」はそれぞれ、2階時間微分、1階時間微分を表す。
 尚、以下の運動方程式の説明に際し、必要に応じて、既出の変数の説明を省略する。
The subscript x represents the front-rear direction or the rolling direction, the subscript y represents the left-right direction, and the subscript z represents the vertical direction or the yawing direction.
Further, “··” and “·” attached to the variable represent second-order time differentiation and first-order time differentiation, respectively.
In the description of the following equation of motion, the description of the variables already described will be omitted as necessary.
[輪軸の横振動]
 輪軸13a~13dの横振動(左右方向における運動)を記述する運動方程式は、以下の(1)式~(4)式で表される。
[Transverse vibration of wheel shaft]
The equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d is expressed by the following equations (1) to (4).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 mは、輪軸13a~13dの質量である。yw1・・(式において・・はyw1の上に付される(以下、その他の変数についても同様))は、輪軸13aの左右方向における加速度である。fは、横クリープ係数である。vは、鉄道車両の走行速度である。yw1・(式において・はyw1の上に付される(以下、その他の変数についても同様))は、輪軸13aの左右方向における速度である。Cwyは、軸箱と輪軸とをつなぐ軸箱支持装置の左右方向におけるダンピング定数である。yt1・は、台車12aの左右方向における速度である。aは、台車12a、12bに設けられている輪軸13a・13b、13c・13d間の前後方向における距離の1/2を表す(台車12a、12bに設けられている輪軸13a・13b、13c・13d間の距離は2aになる)。ψt1・は、台車12aのヨーイング方向における角速度である。hは、車軸の中心と台車12aの重心との上下方向における距離である。φt1・は、台車12aのローリング方向における角速度である。ψw1は、輪軸13aのヨーイング方向における回動量(角変位)である。Kwyは、軸箱支持装置の左右方向のバネ定数である。yw1は、輪軸13aの左右方向における変位である。yt1は、台車12aの左右方向における変位である。ψt1は、台車12aのヨーイング方向における回動量(角変位)である。φt1は、台車12aのローリング方向における回動量(角変位)である。尚、(2)式~(4)式の各変数は、前述した添え字の意味に従って(1)式の変数を読み替えることにより表される。 mw is the mass of the wheel shafts 13a to 13d. y w1 ... (in the formula,... is added on y w1 (hereinafter, the same applies to other variables)) is the acceleration in the left-right direction of the wheel shaft 13a. f 2 is a lateral creep coefficient. v is the traveling speed of the railway vehicle. y w1 · (in the equation, · is added on y w1 (hereinafter, the same applies to other variables)) is the speed of the wheel shaft 13a in the left-right direction. C wy is a damping constant in the left-right direction of the axle box support device that connects the axle box and the wheel axle. y t1 · is the speed in the left-right direction of the carriage 12a. a represents 1/2 of the distance in the front-rear direction between the wheel shafts 13a, 13b, 13c, 13d provided on the carts 12a, 12b (the wheel shafts 13a, 13b, 13c, 13d provided on the carts 12a, 12b). The distance between them is 2a). ψ t1 · is an angular velocity in the yawing direction of the carriage 12a. h 1 is the distance in the vertical direction between the center of gravity and the center of the truck 12a of the axle. φ t1 · is an angular velocity in the rolling direction of the carriage 12a. ψ w1 is a rotation amount (angular displacement) of the wheel shaft 13a in the yawing direction. K wy is a spring constant in the left-right direction of the axle box support device. y w1 is the displacement of the wheel shaft 13a in the left-right direction. y t1 is the displacement in the left-right direction of the carriage 12a. ψ t1 is a rotation amount (angular displacement) of the carriage 12a in the yawing direction. φ t1 is the rotation amount (angular displacement) of the carriage 12a in the rolling direction. Each variable in the expressions (2) to (4) is expressed by replacing the variable in the expression (1) according to the meaning of the subscript described above.
[輪軸のヨーイング]
 輪軸13a~13dのヨーイングを記述する運動方程式は、以下の(5)式~(8)式で表される。
[Axle yawing]
The equation of motion describing the yawing of the wheel shafts 13a to 13d is expressed by the following equations (5) to (8).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 Iwzは、輪軸13a~13dのヨーイング方向における慣性モーメントである。ψw1・・は、輪軸13aのヨーイング方向における角加速度である。fは、縦クリープ係数である。bは、輪軸13a~13dに取り付けられている2つの車輪と軌道16(レール)との接点の間の左右方向における距離である。ψw1・は、輪軸13aのヨーイング方向における角速度である。Cwxは、軸箱支持装置の前後方向のダンピング定数である。bは、軸箱支持装置の左右方向における間隔の1/2を表す(1つの輪軸に対して左右に設けられている2つの軸箱支持装置の左右方向における間隔は2bになる)。γは、踏面勾配である。rは、車輪14a~14dの半径である。yR1は、輪軸13aの位置での通り狂い量である。sは、車軸15a~15dの中心から軸箱支持バネまでの前後方向におけるオフセット量である。yt1は、台車12aの左右方向における変位である。Kwxは、軸箱支持装置の前後方向のバネ定数である。尚、(6)式~(8)式の各変数は、前述した添え字の意味に従って(5)式の変数を読み替えることにより表される。ただし、yR2、yR3、yR4はそれぞれ、輪軸13b、13c、13dの位置での通り狂い量である。ここで、通り狂いとは、日本工業規格(JIS E 1001:2001)に記載されているように、レールの長手方向の左右の変位である。通り狂い量は、その変位の量である。図3に、輪軸13aの位置での通り狂い量yR1の一例を示す。図3では、軌道16が、直線軌道である場合を例に挙げて説明する。図3において、16aは、レールを示し、16bは、枕木を示す。図3では、輪軸13aの車輪14aが位置301でレール16aと接触しているとする。輪軸13aの位置での通り狂い量yR1における「輪軸13aの位置」とは、輪軸13aの車輪14aとレール16aとの接触位置である。輪軸13aの位置での通り狂い量yR1は、輪軸13aの車輪14aとレール16aとの接触位置と、正規の状態であると仮定した場合のレール16aの位置と、の左右方向の距離である。輪軸13b、13c、13dの位置での通り狂い量yR2、yR3、yR4も、輪軸13aの位置での通り狂い量yR1と同様に定義される。 I wz is a moment of inertia in the yawing direction of the wheel shafts 13a to 13d. ψ w1 ... is an angular acceleration in the yawing direction of the wheel shaft 13a. f 1 is a longitudinal creep coefficient. b is the distance in the left-right direction between the contact points of the two wheels attached to the wheel shafts 13a to 13d and the track 16 (rail). ψ w1 · is an angular velocity in the yawing direction of the wheel shaft 13a. C wx is a damping constant in the front-rear direction of the axle box support device. b 1 is the left-right direction represents the 1/2 of the interval in the axle box support device (spacing in the lateral direction of the two axle box support device which is provided to the left and right with respect to a single wheel set will 2b 1). γ is a tread gradient. r is the radius of the wheels 14a to 14d. yR1 is a deviation amount at the position of the wheel shaft 13a. s a is an offset amount in the front-rear direction from the center of the axles 15a to 15d to the axle box support spring. y t1 is the displacement in the left-right direction of the carriage 12a. K wx is a spring constant in the front-rear direction of the axle box support device. Each variable in the expressions (6) to (8) is expressed by replacing the variable in the expression (5) according to the meaning of the subscript described above. However, y R2 , y R3 , and y R4 are deviation amounts at the positions of the wheel shafts 13b, 13c, and 13d, respectively. Here, the passing error is a lateral displacement in the longitudinal direction of the rail as described in Japanese Industrial Standard (JIS E 1001: 2001). The amount of traversal is the amount of displacement. FIG. 3 shows an example of the deviation amount y R1 at the position of the wheel shaft 13a. In FIG. 3, the case where the track 16 is a straight track will be described as an example. In FIG. 3, 16a shows a rail and 16b shows a sleeper. In FIG. 3, it is assumed that the wheel 14 a of the wheel shaft 13 a is in contact with the rail 16 a at the position 301. The "position of the wheel shaft 13a 'in as deviation amount y R1 at the position of the wheel shaft 13a, a contact position between the wheel 14a and the rail 16a of the wheel shaft 13a. The deviation amount y R1 at the position of the wheel shaft 13a is the distance in the left-right direction between the contact position between the wheel 14a of the wheel shaft 13a and the rail 16a and the position of the rail 16a when it is assumed to be in a normal state. . The deviation amounts y R2 , y R3 , and y R4 at the positions of the wheel shafts 13b, 13c, and 13d are defined in the same manner as the deviation amounts y R1 at the position of the wheel shaft 13a.
[台車の横振動]
 台車12a、12bの横振動(左右方向における運動)を記述する運動方程式は、以下の(9)式、(10)式で表される。
[Transverse vibration of trolley]
The equation of motion describing the lateral vibration (movement in the left-right direction) of the carriages 12a and 12b is expressed by the following equations (9) and (10).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 mは、台車12a、12bの質量である。yt1・・は、台車12aの左右方向における加速度である。c´は、左右動ダンパのダンピング定数である。hは、台車12aの重心と左右動ダンパとの上下方向における距離である。y・は、車体11の左右方向における速度である。Lは、台車12a、12bの中心間の前後方向における間隔の1/2を表す(台車12a、12bの中心間の前後方向における間隔は2Lになる)。ψ・は、車体11のヨーイング方向における角速度である。hは、左右動ダンパと車体11の重心との間の上下方向における距離である。φ・は、車体11のローリング方向における角速度である。yw2・は、輪軸13bの左右方向における速度である。k´は、空気バネ(枕バネ)の左右方向のバネ定数である。hは、台車12a、12bの重心と空気バネ(枕バネ)の中心との間の上下方向における距離である。yは、車体11の左右方向における変位である。ψは、車体11のヨーイング方向における回動量(角変位)である。hは、空気バネ(枕バネ)の中心と車体11の重心との間の上下方向における距離である。φは、車体11のローリング方向における回動量(角変位)である。尚、(10)式の各変数は、前述した添え字の意味に従って(9)式の変数を読み替えることにより表される。 m T is the mass of the carriages 12a and 12b. y t1 ... is an acceleration in the left-right direction of the carriage 12a. c ′ 2 is a damping constant of the left and right dynamic damper. h 4 is the distance in the vertical direction between the center of gravity of the carriage 12a and lateral movement damper. y b · is the speed of the vehicle body 11 in the left-right direction. L represents 1/2 of the distance in the front-rear direction between the centers of the carriages 12a, 12b (the distance in the front-rear direction between the centers of the carriages 12a, 12b is 2L). ψ b · is an angular velocity of the vehicle body 11 in the yawing direction. h 5 is the distance in the up-down direction between the left-right motion damper and the center of gravity of the vehicle body 11. φ b · is an angular velocity in the rolling direction of the vehicle body 11. y w2 · is the speed of the wheel shaft 13b in the left-right direction. k ′ 2 is a spring constant in the left-right direction of the air spring (pillow spring). h 2 is the distance in the vertical direction between the center of the bogie 12a, 12b of the center of gravity and the air spring (pillow spring). y b is the displacement of the vehicle body 11 in the left-right direction. ψ b is a rotation amount (angular displacement) of the vehicle body 11 in the yawing direction. h 3 is the distance in the vertical direction between the center of the air spring (pillow spring) and the center of gravity of the vehicle body 11. φ b is a rotation amount (angular displacement) of the vehicle body 11 in the rolling direction. In addition, each variable of (10) Formula is represented by replacing the variable of (9) Formula according to the meaning of the subscript mentioned above.
[台車のヨーイング]
 台車12a、12bのヨーイングを記述する運動方程式は、以下の(11)式、(12)式で表される。
[Dolly yawing]
The equation of motion describing the yawing of the carriages 12a and 12b is expressed by the following equations (11) and (12).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ITzは、台車12a、12bのヨーイング方向における慣性モーメントである。ψt1・・は、台車12aのヨーイング方向における角加速度である。ψw2・は、輪軸13bのヨーイング方向における角速度である。ψw2は、輪軸13bのヨーイング方向における回動量(角変位)である。yw2は、輪軸13bの左右方向における変位である。k´は、ヨーダンパのゴムブッシュ剛性である。b´は、台車12a、12bに対し左右に配置された2つのヨーダンパの左右方向における間隔の1/2を表す(台車12a、12bに対し左右に配置された2つのヨーダンパの左右方向における間隔は2b´になる)。ψy1は、台車12aに配置されたヨーダンパのヨーイング方向における回動量(角変位)である。k´´は、空気バネ(枕バネ)の左右方向のバネ定数である。bは、台車12a、12bに対し左右に配置された2つの空気バネ(枕バネ)の左右方向における間隔の1/2を表す(台車12a、12bに対し左右に配置された2つの空気バネ(枕バネ)の左右方向における間隔は2bになる)。尚、(12)式の各変数は、前述した添え字の意味に従って(11)式の変数を読み替えることにより表される。 ITz is a moment of inertia in the yawing direction of the carriages 12a and 12b. ψ t1 ... is an angular acceleration in the yawing direction of the carriage 12a. ψ w2 · is an angular velocity in the yawing direction of the wheel shaft 13b. ψ w2 is a rotation amount (angular displacement) of the wheel shaft 13b in the yawing direction. y w2 is the displacement of the wheel shaft 13b in the left-right direction. k ′ 0 is the rigidity of the rubber bushing of the yaw damper. b ′ 0 represents 1/2 of the distance in the left-right direction between the two yaw dampers arranged on the left and right with respect to the carriages 12a, 12b (the distance in the left-right direction between the two yaw dampers arranged on the left and right with respect to the carriages 12a, 12b). become 2b' 0 is). ψ y1 is a rotation amount (angular displacement) in the yawing direction of the yaw damper disposed on the carriage 12a. k ″ 2 is a spring constant in the left-right direction of the air spring (pillow spring). b 2 is carriage 12a, 12b to represent the 1/2 distance in the lateral direction of the two air springs which are disposed on the left and right (pillow spring) (carriage 12a, two air springs which are disposed on the left and right with respect to 12b (The distance between the pillow springs in the left-right direction is 2b 2 ). In addition, each variable of (12) Formula is represented by replacing the variable of (11) Formula according to the meaning of the subscript mentioned above.
[台車のローリング]
 台車12a、12bのローリングを記述する運動方程式は、以下の(13)式、(14)式で表される。
[Rolling cart]
The equation of motion describing the rolling of the carriages 12a and 12b is expressed by the following equations (13) and (14).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ITxは、台車12a、12bのローリング方向における慣性モーメントである。φt1・・は、台車12aのローリング方向における角加速度である。cは、軸ダンパの上下方向のダンピング定数である。b´は、台車12a、12bに対し左右に配置された2つの軸ダンパの左右方向における間隔の1/2を表す(台車12a、12bに対し左右に配置された2つの軸ダンパの左右方向における間隔は2b´になる)。cは、空気バネ(枕バネ)の上下方向のダンピング定数である。φa1・は、台車12aに配置された空気バネ(枕バネ)のローリング方向における角速度である。kは、軸バネの上下方向のバネ定数である。λは、空気バネ(枕バネ)の本体の容積を補助空気室の容積で割った値である。kは、空気バネ(枕バネ)の上下方向のバネ定数である。φa1は、台車12aに配置された空気バネ(枕バネ)のローリング方向における回動量(角変位)である。kは、空気バネ(枕バネ)の有効受圧面積の変化による等価剛性である。尚、(14)式の各変数は、前述した添え字の意味に従って(13)式の変数を読み替えることにより表される。ただし、φa2は、台車12bに配置された空気バネ(枕バネ)のローリング方向における回動量(角変位)である。 ITx is the moment of inertia in the rolling direction of the carriages 12a and 12b. φ t1 ... is an angular acceleration in the rolling direction of the carriage 12a. c 1 is a vertical damping constant of the shaft damper. b ′ 1 represents 1/2 of the distance in the left-right direction between the two shaft dampers arranged on the left and right with respect to the carriages 12a, 12b (the left-right direction of the two axis dampers arranged on the left and right with respect to the carriages 12a, 12b) interval becomes 2b' 1 in). c 2 is a vertical damping constant of the air spring (pillow spring). φ a1 · is an angular velocity in the rolling direction of an air spring (pillow spring) disposed on the carriage 12a. k 1 is a vertical spring constant of the shaft spring. λ is a value obtained by dividing the volume of the body of the air spring (pillow spring) by the volume of the auxiliary air chamber. k 2 is a vertical spring constant of the air spring (pillow spring). φ a1 is a rotation amount (angular displacement) in the rolling direction of an air spring (pillow spring) arranged on the carriage 12a. k 3 is an equivalent stiffness due to the change of the effective pressure receiving area of the air spring (pillow spring). In addition, each variable of (14) Formula is represented by replacing the variable of (13) Formula according to the meaning of the subscript mentioned above. However, (phi) a2 is the rotation amount (angular displacement) in the rolling direction of the air spring (pillow spring) arrange | positioned at the trolley | bogie 12b.
[車体の横振動]
 車体11の横振動(左右方向における運動)を記述する運動方程式は、以下の(15)式で表される。
[Transverse body vibration]
The equation of motion describing the lateral vibration (movement in the left-right direction) of the vehicle body 11 is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 mは、台車12a、12bの質量である。y・・は、車体11の左右方向における加速度である。yt2・は、台車12bの左右方向における速度である。φt2・は、台車12bのローリング方向における角速度である。yt2は、台車12bの左右方向における変位である。φt2は、台車12bのローリング方向における回動量(角変位)である。 m B is the mass of the carriages 12a and 12b. y b ... is the acceleration of the vehicle body 11 in the left-right direction. y t2 · is the speed in the left-right direction of the carriage 12b. φ t2 · is an angular velocity in the rolling direction of the carriage 12b. yt2 is the displacement in the left-right direction of the carriage 12b. φ t2 is a rotation amount (angular displacement) of the carriage 12b in the rolling direction.
[車体のヨーイング]
 車体11のヨーイングを記述する運動方程式は、以下の(16)式で表される。
[Body yawing]
The equation of motion describing yawing of the vehicle body 11 is expressed by the following equation (16).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 IBzは、車体11のヨーイング方向における慣性モーメントである。ψ・・は、車体11のヨーイング方向における角加速度である。cは、ヨーダンパの前後方向のダンピング定数である。ψy1・は、台車12aに配置されたヨーダンパのヨーイング方向における角速度である。ψy2・は、台車12bに配置されたヨーダンパのヨーイング方向における角速度である。ψt2は、台車12bのヨーイング方向における回動量(角変位)である。 I Bz is the moment of inertia of the vehicle body 11 in the yawing direction. ψ b ... is an angular acceleration in the yawing direction of the vehicle body 11. c 0 is a damping constant in the front-rear direction of the yaw damper. ψ y1 · is an angular velocity in the yawing direction of the yaw damper disposed on the carriage 12a. ψ y2 · is an angular velocity in the yawing direction of the yaw damper disposed on the carriage 12b. ψ t2 is a rotation amount (angular displacement) of the carriage 12b in the yawing direction.
[車体のローリング]
 車体11のローリングを記述する運動方程式は、以下の(17)式で表される。
[Rolling the body]
The equation of motion describing the rolling of the vehicle body 11 is expressed by the following equation (17).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 IBxは、車体11のローリング方向における慣性モーメントである。φ・・は、車体11のローリング方向における角加速度である。 I Bx is the moment of inertia in the rolling direction of the vehicle body 11. φ b ... is an angular acceleration in the rolling direction of the vehicle body 11.
[ヨーダンパのヨーイング]
 台車12aに配置されたヨーダンパ、台車12bに配置されたヨーダンパのヨーイングを記述する運動方程式は、それぞれ以下の(18)式、(19)式で表される。
[Yaw damper yawing]
The equations of motion describing the yawing of the yaw damper disposed on the carriage 12a and the yaw damper disposed on the carriage 12b are expressed by the following equations (18) and (19), respectively.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ψy2は、台車12bに配置されたヨーダンパのヨーイング方向における回動量(角変位)である。 ψ y2 is a rotation amount (angular displacement) in the yawing direction of the yaw damper disposed on the carriage 12b.
[空気バネ(枕バネ)のローリング]
 台車12aに配置された空気バネ(枕バネ)、台車12bに配置された空気バネ(枕バネ)のローリングを記述する運動方程式は、それぞれ以下の(20)式、(21)式で表される。
[Rolling air spring (pillow spring)]
Equations of motion describing the rolling of the air spring (pillow spring) arranged on the carriage 12a and the air spring (pillow spring) arranged on the carriage 12b are expressed by the following equations (20) and (21), respectively. .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 φa2・は、台車12bに配置された空気バネ(枕バネ)のローリング方向における角速度である。 φ a2 · is an angular velocity in the rolling direction of an air spring (pillow spring) disposed on the carriage 12b.
<軌道の通り狂い量と鉄道車両の運動との関係>
 図4は、通り狂い量と鉄道車両の構成要素の運動との相互の作用関係の一例を示す図である。実線で描かれている矢線は、同一構成要素内の異なる運動間の作用関係を示す。実線以外の線種で描かれている矢線は異なる構成要素の運動間の作用関係を示す。各運動には、本実施形態で説明するその運動を記述する運動方程式の番号を添えている。例えば、輪軸13a~13dのヨーイングは、(5)式~(8)式で記述される。輪軸13a~13dのヨーイングは、通り狂い量yR1~yR4、輪軸13a~13dの横振動、台車12a、12bの横振動、台車12a、12bのヨーイングから直接作用を受ける。台車12a、12bの横振動は、(9)式~(10)式で記述される。台車12a、12bの横振動は、輪軸13a~13dの横振動、台車12a、12bのローリング、車体11の横振動、車体11のヨーイング、台車12a、12bのヨーイング、車体11のローリングから直接作用を受け、輪軸13a~13dのヨーイングからは直接作用を受けない。
<Relationship between trajectory deviation and railcar movement>
FIG. 4 is a diagram illustrating an example of a mutual action relationship between the amount of deviation and the motion of the components of the railway vehicle. Arrows drawn with solid lines indicate the action relationship between different movements within the same component. Arrows drawn with line types other than solid lines indicate the action relationship between the movements of different components. Each motion is accompanied by a motion equation number describing the motion described in the present embodiment. For example, yawing of the wheel shafts 13a to 13d is described by equations (5) to (8). The yawing of the wheel shafts 13a to 13d is directly affected by the traversing amounts y R1 to y R4 , the lateral vibration of the wheel shafts 13a to 13d, the lateral vibration of the carriages 12a and 12b, and the yawing of the carriages 12a and 12b. The lateral vibrations of the carriages 12a and 12b are described by equations (9) to (10). The lateral vibrations of the carriages 12a and 12b are directly affected by the lateral vibration of the wheel shafts 13a to 13d, the rolling of the carriages 12a and 12b, the lateral vibration of the vehicle body 11, the yawing of the vehicle body 11, the yawing of the carriages 12a and 12b, and the rolling of the vehicle body 11. The bearing is not directly affected by yawing of the wheel shafts 13a to 13d.
 図4から分かるように、通り狂い量yR1~yR4は輪軸13a~13dのヨーイングに直接的に作用する。この作用が、その他の構成要素の運動に作用が伝播する。通り狂い量yR1~yR4から直接的・間接的に作用を受ける構成要素の運動に関する運動方程式から状態方程式を作成する。また、通り狂い量yR1~yR4に関連する運動の中から計測可能な状態変数を計測して観測方程式を設定する。そして、カルマンフィルタ等のデータ同化を行うフィルタを用いた演算を行うことにより、通り狂い量yR1~yR4を算出することが可能である。しかしながら、この方法では運動の自由度が大きいため、フィルタの動作が安定しなくなる虞がある。 As can be seen from FIG. 4, the run-off amounts y R1 to y R4 directly affect the yawing of the wheel shafts 13a to 13d. This action propagates to the movement of other components. A state equation is created from the equation of motion related to the motion of the component that is directly or indirectly affected by the amount of deviation y R1 to y R4 . In addition, an observation equation is set by measuring measurable state variables from the movements related to the traversing amounts y R1 to y R4 . Then, by performing an operation using a filter that performs data assimilation such as a Kalman filter, it is possible to calculate the passing amounts y R1 to y R4 . However, in this method, the degree of freedom of movement is large, so that the operation of the filter may not be stable.
 そこで、発明者らは、通り狂い量yR1~yR4の精度を向上させるためには、通り狂い量yR1~yR4が直接作用する輪軸13a~13dのヨーイングと、輪軸13a~13dのヨーイングに直接作用する因子(構成要素の運動を含む)とを精度良く算出することと、輪軸13a~13dのヨーイングを記述する運動方程式を用いて通り狂い量yR1~yR4を算出することとを行えば良いと考えた。また、クリープ力は、前後方向の成分である縦クリープ力と左右方向の成分である横クリープ力とに分解される。発明者らは、縦クリープ力は、通り狂い量yR1~yR4と高い相関を有するという知見を得た。縦クリープ力は、輪軸13a~13b(13c~13d)と、当該輪軸13a~13b(13c~13d)が設けられる台車12a(12b)との間に配置される部材に生じる前後方向の力により測定される。この部材に生じる前後方向の力を、前後方向力と称することとする。以上のことから、発明者らは、前後方向力の測定値を用いて通り狂い量yR1~yR4を算出する方法を想到するに至った。 Therefore, in order to improve the accuracy of the traversing amounts y R1 to y R4 , the inventors yawed the wheel shafts 13a to 13d on which the traversing amounts y R1 to y R4 act directly and the yawing of the wheel shafts 13a to 13d. Calculating the factors (including the motions of the constituent elements) that directly affect the movement, and calculating the passing amounts y R1 to y R4 using the equation of motion describing the yawing of the wheel shafts 13a to 13d. I thought I should do it. Further, the creep force is decomposed into a longitudinal creep force that is a component in the front-rear direction and a lateral creep force that is a component in the left-right direction. The inventors have found that the longitudinal creep force has a high correlation with the amount of deviation y R1 to y R4 . The longitudinal creep force is measured by a force in the front-rear direction generated in a member disposed between the wheel shafts 13a to 13b (13c to 13d) and the carriage 12a (12b) provided with the wheel shafts 13a to 13b (13c to 13d). Is done. The force in the front-rear direction generated in this member will be referred to as the front-rear direction force. From the above, the inventors have come up with a method for calculating the amount of deviation y R1 to y R4 using the measured value of the longitudinal force.
 また、1つの輪軸における左右の車輪のうち一方の車輪における縦クリープ力と他方の車輪における縦クリープ力との同相の成分は、ブレーキ力や駆動力に対応する成分である。従って、鉄道車両が加減速を行っているときにも通り狂い量yR1~yR4を算出するために、縦クリープ力の逆相成分に対応するように前後方向力を定めるのが好ましい。縦クリープ力の逆相成分とは、1つの輪軸における左右の車輪のうち一方の車輪における縦クリープ力と他方の車輪における縦クリープ力との相互に逆位相となる成分である。即ち、縦クリープ力の逆相成分とは、縦クリープ力の、車軸をねじる方向の成分である。この場合、前後方向力は、1つの輪軸の左右方向の両側に取り付けられた2つの部材に生じる力の前後方向の成分のうち、相互に逆位相となる成分となる。 The in-phase component of the longitudinal creep force on one wheel and the longitudinal creep force on the other wheel of the left and right wheels on one wheel axle is a component corresponding to the braking force and driving force. Accordingly, in order to calculate the deviation amounts y R1 to y R4 even when the railway vehicle is accelerating / decelerating, it is preferable to determine the longitudinal force so as to correspond to the reverse phase component of the longitudinal creep force. The anti-phase component of the longitudinal creep force is a component in which the longitudinal creep force on one wheel and the longitudinal creep force on the other wheel out of the left and right wheels on one wheel shaft are in opposite phases. That is, the reverse phase component of the longitudinal creep force is a component of the longitudinal creep force in the direction of twisting the axle. In this case, the front / rear direction force is a component having phases opposite to each other among the front / rear direction components of the force generated in the two members attached to the left and right sides of one wheel shaft.
 以下に、縦クリープ力の逆相成分に対応するように前後方向力を定める場合の前後方向力の具体例について説明する。
 軸箱支持装置が、モノリンク式の軸箱支持装置である場合、軸箱支持装置は、リンクを備えており、軸箱と台車枠とがリンクにより連結されている。このリンクの両端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つのリンクのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、リンクの配置および構成により、リンクは、前後方向、左右方向、前後方向の荷重のうち主に前後方向の荷重を受ける。従って、例えば、各リンクに歪ゲージを1つ取り付ければよい。この歪みゲージの測定値を用いて、当該リンクが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、リンクに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、モノリンク式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、リンクまたはゴムブッシュになる。
Hereinafter, a specific example of the longitudinal force when the longitudinal force is determined so as to correspond to the antiphase component of the longitudinal creep force will be described.
When the axle box support device is a monolink type axle box support device, the axle box support device includes a link, and the axle box and the carriage frame are connected by a link. Rubber bushes are attached to both ends of the link. In this case, the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two links, which are respectively attached to the left and right ends of one wheel shaft. Further, depending on the arrangement and configuration of the link, the link mainly receives a load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the front-rear direction. Therefore, for example, one strain gauge may be attached to each link. By using the measured value of the strain gauge to derive the longitudinal component of the load received by the link, the measured value of the longitudinal force is obtained. In place of this, the displacement in the front-rear direction of the rubber bush attached to the link may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force. When the axle box support device is a monolink type axle box support device, the above-described member for supporting the axle box is a link or a rubber bush.
 尚、リンクに取り付けられる歪ゲージにより測定される荷重には、前後方向の成分だでけなく、左右方向の成分および上下方向の成分のうち少なくとも何れか一方の成分が含まれる場合がある。しかしながら、このような場合であっても、軸箱支持装置の構造上、リンクが受ける左右方向の成分の荷重および上下方向の成分の荷重は、前後方向の成分の荷重に比べて十分に小さい。従って、各リンクに歪ゲージを1つ取り付けるだけで、実用上要求される精度を有する前後方向力の測定値を得ることができる。このように、計測された前後方向力には、前後方向の成分以外の成分が含まれることがあり、上下方向および左右方向の歪みがキャンセルされるように3つ以上の歪みゲージを各リンクに取り付けてもよい。このようにすれば、前後方向力の測定値の精度を向上させることができる。 Note that the load measured by the strain gauge attached to the link may include not only the front-rear direction component but also at least one of the left-right direction component and the up-down direction component. However, even in such a case, due to the structure of the axle box support device, the load of the left-right component and the load of the vertical component received by the link are sufficiently smaller than the load of the front-rear component. Therefore, by simply attaching one strain gauge to each link, it is possible to obtain a measurement value of the longitudinal force having the accuracy required in practice. Thus, the measured longitudinal force may include components other than the longitudinal component, and three or more strain gauges are attached to each link so that the vertical and lateral strains are canceled. It may be attached. In this way, the accuracy of the measurement value of the longitudinal force can be improved.
 軸箱支持装置が、軸はり式の軸箱支持装置である場合、軸箱支持装置は、軸はりを備えており、軸箱と台車枠とが、軸はりにより連結されている。軸はりは、軸箱と一体に構成されていてもよい。この軸はりの台車枠側の端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つの軸はりのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、軸はりの配置構成により、軸はりは、前後方向、左右方向、上下方向の荷重のうち前後方向の荷重に加えて、左右方向の荷重も受けやすい。従って、例えば、左右方向の歪みがキャンセルされるように2つ以上の歪ゲージを各軸はりに取り付ける。これらの歪ゲージの測定値を用いて、軸はりが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、軸はりに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、軸はり式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、軸はりまたはゴムブッシュになる。 When the axle box support device is an axle beam type axle box support device, the axle box support device includes an axle beam, and the axle box and the carriage frame are connected by the axle beam. The shaft beam may be configured integrally with the shaft box. A rubber bush is attached to the end of the shaft beam on the cart frame side. In this case, the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two axial beams, which are respectively attached to the left and right ends of one wheel shaft. Further, due to the arrangement configuration of the shaft beam, the shaft beam is easily subjected to the load in the left-right direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the vertical direction. Therefore, for example, two or more strain gauges are attached to each shaft beam so that the strain in the left-right direction is canceled. Using these strain gauge measurement values, the longitudinal force component is obtained by deriving the longitudinal component of the load applied to the axial beam. In place of this, the displacement in the front-rear direction of the rubber bush attached to the shaft beam may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force. When the axle box support device is an axle beam type axle box support device, the aforementioned member for supporting the axle box is an axle beam or a rubber bush.
 尚、軸はりに取り付けられる歪ゲージにより測定される荷重には、前後方向および左右方向の成分だでけなく、上下方向の成分が含まれる場合がある。しかしながら、このような場合であっても、軸箱支持装置の構造上、軸はりが受ける上下方向の成分の荷重は、前後方向の成分の荷重および左右方向の成分の荷重に比べて十分に小さい。従って、軸はりが受ける上下方向の成分の荷重をキャンセルするように歪みゲージを取り付けなくても、実用上要求される精度を有する前後方向力の測定値を得ることができる。このように、計測された前後方向力には、前後方向の成分以外の成分が含まれることがあり、左右方向の歪みに加えて上下方向の歪みもキャンセルされるように3つ以上の歪みゲージを各軸はりに取り付けてもよい。このようにすれば、前後方向力の測定値の精度を向上させることができる。 Note that the load measured by the strain gauge attached to the shaft beam may include not only the longitudinal and lateral components but also the vertical component. However, even in such a case, due to the structure of the axle box support device, the load of the vertical component received by the shaft beam is sufficiently smaller than the load of the front-rear component and the load of the left-right component. . Therefore, it is possible to obtain a measurement value of the longitudinal force having the accuracy required for practical use without attaching a strain gauge so as to cancel the load of the vertical component received by the shaft beam. As described above, the measured longitudinal force may include components other than the longitudinal component, and three or more strain gauges so that the vertical strain is canceled in addition to the lateral strain. May be attached to each shaft beam. In this way, the accuracy of the measurement value of the longitudinal force can be improved.
 軸箱支持装置が、板バネ式の軸箱支持装置である場合、軸箱支持装置は、板バネを備えており、軸箱と台車枠とが、板バネにより連結されている。この板バネの端にはゴムブッシュが取り付けられる。この場合、前後方向力は、1つの輪軸の左右方向の端にそれぞれ1つずつ取り付けられる2つの板バネのそれぞれが受ける荷重の前後方向の成分のうち、相互に逆位相となる成分になる。また、板バネの配置構成により、板バネは、前後方向、左右方向、上下方向の荷重のうち前後方向の荷重に加えて、左右方向の荷重及び上下方向の荷重も受けやすい。従って、例えば、左右方向および上下方向の歪みがキャンセルされるように3つ以上の歪ゲージを各板バネに取り付ける。これらの歪ゲージの測定値を用いて、板バネが受ける荷重の前後方向の成分を導出することにより、前後方向力の測定値を得る。また、このようにすることに替えて、板バネに取り付けられたゴムブッシュの前後方向の変位を変位計で測定してもよい。この場合、測定した変位と当該ゴムブッシュのバネ定数との積を、前後方向力の測定値とする。軸箱支持装置が、板バネ式の軸箱支持装置である場合、前述した、軸箱を支持するための部材は、板バネまたはゴムブッシュになる。 When the axle box support device is a leaf spring type axle box support device, the axle box support device includes a leaf spring, and the axle box and the carriage frame are connected by a leaf spring. A rubber bush is attached to the end of the leaf spring. In this case, the front / rear direction force is a component having phases opposite to each other among the components in the front / rear direction of the load received by each of the two leaf springs, which are respectively attached to the ends of one wheel shaft in the left / right direction. Further, due to the arrangement configuration of the leaf springs, the leaf springs are liable to receive a load in the left-right direction and a load in the up-down direction in addition to the load in the front-rear direction among the loads in the front-rear direction, the left-right direction, and the vertical direction. Therefore, for example, three or more strain gauges are attached to each leaf spring so that the lateral and vertical strains are canceled. By using these strain gauge measurement values, the longitudinal force component is derived by deriving the longitudinal component of the load applied to the leaf spring. In place of this, the displacement in the front-rear direction of the rubber bush attached to the leaf spring may be measured with a displacement meter. In this case, the product of the measured displacement and the spring constant of the rubber bush is used as the measured value of the longitudinal force. When the axle box support device is a leaf spring type axle box support device, the above-described member for supporting the axle box is a leaf spring or a rubber bush.
 尚、前述した変位計としては、公知のレーザ変位計や渦電流式の変位計を用いることができる。
 また、ここでは、軸箱支持装置の方式が、モノリンク式、軸はり式、および板バネ式である場合を例に挙げて、前後方向力を説明した。しかしながら、軸箱支持装置の方式は、モノリンク式、軸はり式、および板バネ式に限定されない。軸箱支持装置の方式に合わせて、モノリンク式、軸はり式、および板バネ式と同様に、前後方向力を定めることができる。
 また、以下では、説明を簡単にするために、1つの輪軸について1つの前後方向力の測定値が得られる場合を例に挙げて説明する。即ち、図1に示す鉄道車両は、4つの輪軸13a~13dを有する。従って、4つの前後方向力T~Tの測定値が得られる。
In addition, as a displacement meter mentioned above, a well-known laser displacement meter and an eddy current type displacement meter can be used.
Further, here, the longitudinal force has been described by taking as an example the case where the method of the axle box support device is a monolink type, a shaft beam type, and a leaf spring type. However, the type of the axle box support device is not limited to the monolink type, the axial beam type, and the leaf spring type. The longitudinal force can be determined in the same manner as the monolink type, the axial beam type, and the leaf spring type according to the type of the axle box support device.
Further, in the following, for the sake of simplicity of explanation, a case where one longitudinal force measurement value is obtained for one wheel shaft will be described as an example. That is, the railway vehicle shown in FIG. 1 has four wheel shafts 13a to 13d. Accordingly, four measured values of the longitudinal force T 1 to T 4 are obtained.
 図5は、前後方向力T~Tを用いて、通り狂い量yR1~yR4と鉄道車両の構成要素の運動との相互の作用関係の一例を示す図である。前後方向力T~Tの算出式、変換変数e~eの算出式、変換変数e~eを用いたときの輪軸13a~13dの横振動を記述する運動方程式、前後方向力T~Tを用いたときの輪軸13a~13dのヨーイングを記述する運動方程式の具体例については後述する(それぞれ(40)式~(43)式、(26)式~(29)式、(34)式~(37)式、(51)式~(54)式を参照)。 FIG. 5 is a diagram showing an example of a mutual action relationship between the traversing amounts y R1 to y R4 and the motions of the components of the railway vehicle using the longitudinal forces T 1 to T 4 . Formulas for calculating longitudinal forces T 1 to T 4 , formulas for conversion variables e 1 to e 4 , equations of motion describing the lateral vibrations of the wheel shafts 13a to 13d when using the conversion variables e 1 to e 4 , the longitudinal direction Specific examples of equations of motion describing the yawing of the wheel shafts 13a to 13d when the forces T 1 to T 4 are used will be described later (Equations (40) to (43) and (26) to (29), respectively). , (34) to (37), (51) to (54)).
 図6は、図5の作用関係から、輪軸13a~13dのヨーイングに直接作用する構成要素の運動を決定するのに必要な作用関係を取り出して示す図である。輪軸13a~13dのヨーイングが排除された分だけ運動の自由度が減る。また、前後方向力T~Tの分だけ、カルマンフィルタ等のデータ同化を行うフィルタで用いる測定値が増える。従って、カルマンフィルタ等のデータ同化を行うフィルタを用いた演算を行うことにより算出される運動の情報の精度は向上する。 FIG. 6 is a diagram showing the operational relationship necessary for determining the motion of the components that directly affect the yawing of the wheel shafts 13a to 13d from the operational relationship of FIG. The degree of freedom of movement is reduced by the amount by which yawing of the wheel shafts 13a to 13d is eliminated. In addition, the measurement value used in a filter for performing data assimilation such as a Kalman filter increases by the amount of the longitudinal force T 1 to T 4 . Therefore, the accuracy of the motion information calculated by performing an operation using a filter that performs data assimilation such as a Kalman filter is improved.
 一方、図7は、図5の作用関係から、通り狂い量yR1~yR4を決定するのに必要な作用関係を取り出して示す図である。変換変数e~eと台車12a、12bのヨーイングの情報とが既知である。従って、変換変数e~eの算出式(後述する例では(26)式~(29)式)を用いることにより、輪軸13a~13dのヨーイングの情報が算出される。このときの変換変数e~eは前後方向力T~Tの測定値から直接導出される。また、台車12a、12bのヨーイングの情報は図6の作用関係を用いて算出される。従って、変換変数e~eと台車12a、12bのヨーイングの情報とから算出される輪軸13a~13dのヨーイングの情報の精度は、図4の作用関係を用いて算出した場合と比べて向上する。さらに、輪軸13a~13dのヨーイングの情報と、前後方向力T~Tと、輪軸13a~13dのヨーイングに直接作用する構成要素の運動(輪軸13a~13dの横振動と台車12a、12bの横振動)の情報とが既知である。従って、輪軸13a~13dのヨーイングを記述する運動方程式(後述する例では(51)式~(54)式)を用いることにより、通り狂い量yR1~yR4が算出される。このときの輪軸13a~13dのヨーイングの情報の精度は、先にも述べたように図4の作用関係を用いて算出した場合と比べて向上する。また、前後方向力T~Tは測定値である。また、輪軸13a~13dのヨーイングに直接作用する構成要素の運動の情報は、図6の作用関係を用いて算出されるため、その精度は向上する。従って、以上のようにして算出された通り狂い量yR1~yR4の精度は向上する。
 以下に説明する検査装置800は、以上の知見のようにして通り狂い量yR1~yR4の精度を向上させる手法の一例を具現化する装置である。
On the other hand, FIG. 7 is a diagram showing the operational relationship necessary for determining the deviation amounts y R1 to y R4 from the operational relationship of FIG. The conversion variables e 1 to e 4 and the yawing information of the carriages 12a and 12b are known. Accordingly, yaw information of the wheel shafts 13a to 13d is calculated by using the calculation formulas of the conversion variables e 1 to e 4 (formulas (26) to (29) in the example described later). The conversion variables e 1 to e 4 at this time are directly derived from the measured values of the longitudinal forces T 1 to T 4 . Further, yawing information of the carriages 12a and 12b is calculated using the operational relationship of FIG. Therefore, the accuracy of the yawing information of the wheel shafts 13a to 13d calculated from the conversion variables e 1 to e 4 and the yawing information of the carriages 12a and 12b is improved as compared with the case of calculating using the operational relationship of FIG. To do. Further, the yawing information of the wheel shafts 13a to 13d, the longitudinal forces T 1 to T 4, and the movements of the components that directly act on the yawing of the wheel shafts 13a to 13d (the lateral vibration of the wheel shafts 13a to 13d and the trolleys 12a and 12b Information on lateral vibration) is known. Therefore, by using the equation of motion describing the yawing of the wheel shafts 13a to 13d (equations (51) to (54) in the example described later), the passing amounts y R1 to y R4 are calculated. At this time, the accuracy of the yawing information of the wheel shafts 13a to 13d is improved as compared with the case of calculation using the operational relationship of FIG. 4 as described above. Further, the longitudinal forces T 1 to T 4 are measured values. Further, since the motion information of the component that directly acts on the yawing of the wheel shafts 13a to 13d is calculated using the operational relationship of FIG. 6, the accuracy is improved. Therefore, the accuracy of the deviation amounts y R1 to y R4 is improved as calculated above.
The inspection apparatus 800 described below is an apparatus that embodies an example of a technique for improving the accuracy of the deviation amounts y R1 to y R4 as described above.
<検査装置800>
 図8は、検査装置800の機能的な構成の一例を示す図である。図9は、検査装置800のハードウェアの構成の一例を示す図である。図10は、検査装置800における事前処理の一例を示す図である。図11は、検査装置800における本処理の一例を示す図である。本実施形態では、図1に示すように、検査装置800が、鉄道車両に搭載される場合を例に挙げて示す。
<Inspection device 800>
FIG. 8 is a diagram illustrating an example of a functional configuration of the inspection apparatus 800. FIG. 9 is a diagram illustrating an example of a hardware configuration of the inspection apparatus 800. FIG. 10 is a diagram illustrating an example of pre-processing in the inspection apparatus 800. FIG. 11 is a diagram illustrating an example of this processing in the inspection apparatus 800. In the present embodiment, as shown in FIG. 1, an example in which an inspection apparatus 800 is mounted on a railway vehicle will be described.
 図8において、検査装置800は、その機能として、状態方程式記憶部801、観測方程式記憶部802、データ取得部803、フィルタ演算部804、軌道状態算出部805、および出力部806を有する。 8, the inspection apparatus 800 includes a state equation storage unit 801, an observation equation storage unit 802, a data acquisition unit 803, a filter calculation unit 804, an orbital state calculation unit 805, and an output unit 806 as its functions.
 図9において、検査装置800は、CPU901、主記憶装置902、補助記憶装置903、通信回路904、信号処理回路905、画像処理回路906、I/F回路907、ユーザインターフェース908、ディスプレイ909、およびバス910を有する。 In FIG. 9, an inspection apparatus 800 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, a communication circuit 904, a signal processing circuit 905, an image processing circuit 906, an I / F circuit 907, a user interface 908, a display 909, and a bus. 910.
 CPU901は、検査装置800の全体を統括制御する。CPU901は、主記憶装置902をワークエリアとして用いて、補助記憶装置903に記憶されているプログラムを実行する。主記憶装置902は、データを一時的に格納する。補助記憶装置903は、CPU901によって実行されるプログラムの他、各種のデータを記憶する。補助記憶装置903は、後述する状態方程式および観測方程式を記憶する。状態方程式記憶部801および観測方程式記憶部802は、例えば、CPU901および補助記憶装置903を用いることにより実現される。 The CPU 901 performs overall control of the entire inspection apparatus 800. The CPU 901 executes a program stored in the auxiliary storage device 903 using the main storage device 902 as a work area. The main storage device 902 temporarily stores data. The auxiliary storage device 903 stores various data in addition to the program executed by the CPU 901. The auxiliary storage device 903 stores a state equation and an observation equation described later. The state equation storage unit 801 and the observation equation storage unit 802 are realized by using the CPU 901 and the auxiliary storage device 903, for example.
 通信回路904は、検査装置800の外部との通信を行うための回路である。通信回路904は、例えば、前後方向力の測定値や、車体11、台車12a、12b、および輪軸13a~13dの左右方向における加速度の測定値の情報を受信する。通信回路904は、検査装置800の外部と無線通信を行っても有線通信を行ってもよい。通信回路904は、無線通信を行う場合、鉄道車両に設けられるアンテナに接続される。 The communication circuit 904 is a circuit for performing communication with the outside of the inspection apparatus 800. The communication circuit 904 receives, for example, information on measured values of longitudinal force and measured values of acceleration in the left-right direction of the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d. The communication circuit 904 may perform wireless communication or wired communication with the outside of the inspection apparatus 800. The communication circuit 904 is connected to an antenna provided in the railway vehicle when performing wireless communication.
 信号処理回路905は、通信回路904で受信された信号や、CPU901による制御に従って入力した信号に対し、各種の信号処理を行う。データ取得部803は、例えば、CPU901、通信回路904、および信号処理回路905を用いることにより実現される。また、フィルタ演算部804および軌道状態算出部805は、例えば、CPU901および信号処理回路905を用いることにより実現される。 The signal processing circuit 905 performs various types of signal processing on the signal received by the communication circuit 904 and the signal input according to the control by the CPU 901. The data acquisition unit 803 is realized by using, for example, the CPU 901, the communication circuit 904, and the signal processing circuit 905. Further, the filter calculation unit 804 and the trajectory state calculation unit 805 are realized by using the CPU 901 and the signal processing circuit 905, for example.
 画像処理回路906は、CPU901による制御に従って入力した信号に対し、各種の画像処理を行う。この画像処理が行われた信号は、ディスプレイ909に出力される。
 ユーザインターフェース908は、オペレータが検査装置800に対して指示を行う部分である。ユーザインターフェース908は、例えば、ボタン、スイッチ、およびダイヤル等を有する。また、ユーザインターフェース908は、ディスプレイ909を用いたグラフィカルユーザインターフェースを有していてもよい。
An image processing circuit 906 performs various types of image processing on signals input in accordance with control by the CPU 901. The signal subjected to the image processing is output to the display 909.
A user interface 908 is a part where an operator gives an instruction to the inspection apparatus 800. The user interface 908 includes, for example, buttons, switches, and dials. Further, the user interface 908 may have a graphical user interface using the display 909.
 ディスプレイ909は、画像処理回路906から出力された信号に基づく画像を表示する。I/F回路907は、I/F回路907に接続される装置との間でデータのやり取りを行う。図9では、I/F回路907に接続される装置として、ユーザインターフェース908およびディスプレイ909を示す。しかしながら、I/F回路907に接続される装置は、これらに限定されない。例えば、可搬型の記憶媒体がI/F回路907に接続されてもよい。また、ユーザインターフェース908の少なくとも一部およびディスプレイ909は、検査装置800の外部にあってもよい。
 出力部806は、例えば、通信回路904および信号処理回路905と、画像処理回路906、I/F回路907、およびディスプレイ909との少なくとも何れか一方を用いることにより実現される。
The display 909 displays an image based on the signal output from the image processing circuit 906. The I / F circuit 907 exchanges data with a device connected to the I / F circuit 907. In FIG. 9, a user interface 908 and a display 909 are shown as devices connected to the I / F circuit 907. However, the device connected to the I / F circuit 907 is not limited to these. For example, a portable storage medium may be connected to the I / F circuit 907. Further, at least a part of the user interface 908 and the display 909 may be outside the inspection apparatus 800.
The output unit 806 is realized by using at least one of the communication circuit 904 and the signal processing circuit 905, the image processing circuit 906, the I / F circuit 907, and the display 909, for example.
 尚、CPU901、主記憶装置902、補助記憶装置903、信号処理回路905、画像処理回路906、およびI/F回路907は、バス910に接続される。これらの構成要素間の通信は、バス910を介して行われる。また、検査装置800のハードウェアは、後述する検査装置800の機能を実現することができれば、図9に示すものに限定されない。 Note that the CPU 901, main storage device 902, auxiliary storage device 903, signal processing circuit 905, image processing circuit 906, and I / F circuit 907 are connected to the bus 910. Communication between these components is performed via a bus 910. The hardware of the inspection apparatus 800 is not limited to that shown in FIG. 9 as long as the functions of the inspection apparatus 800 described later can be realized.
[状態方程式記憶部801、S1001]
 状態方程式記憶部801は、状態方程式を記憶する。本実施形態では、前述した運動方程式のうち、(5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含めない。(5)式~(8)式には、通り狂い量yR1~yR4が含まれる。(5)式~(8)式を状態方程式に含めて、後述するカルマンフィルタによるフィルタリングを行う場合には、軌道16のモデルが必要になる。通り狂いは物理法則に則って記述できるものではない。従って、通り狂い量yR1~yR4の時間微分が例えばホワイトノイズとなるように、軌道16のモデルを作成する必要がある。そうすると、軌道16のモデルの不確かさが、後述するカルマンフィルタによるフィルタリングの結果に影響を与える虞がある。また、状態方程式を少なくし、状態変数を減らすことにより、後述するカルマンフィルタの動作を安定させることができる。
[State Equation Storage Unit 801, S1001]
The state equation storage unit 801 stores the state equation. In the present embodiment, the equation of motion describing the yawing of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the state equation among the equations of motion described above. The equations (5) to (8) include the passing amounts y R1 to y R4 . When the equations (5) to (8) are included in the state equation and filtering by a Kalman filter described later is performed, a model of the trajectory 16 is required. Passage is not something that can be described in accordance with the laws of physics. Therefore, it is necessary to create a model of the trajectory 16 so that the time differentiation of the amount of deviation y R1 to y R4 becomes white noise, for example. Then, the uncertainty of the model of the trajectory 16 may affect the result of filtering by the Kalman filter described later. Further, by reducing the state equation and reducing the state variables, the operation of the Kalman filter described later can be stabilized.
 以上の知見の下、本実施形態では、(5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含めずに、以下のようにして状態方程式を構成する。
 まず、(9)式、(10)式の台車12a、12bの横振動(左右方向における運動)を記述する運動方程式と、(13)式、(14)式の台車12a、12bのローリングを記述する運動方程式と、(15)式の車体11の横振動(左右方向における運動)を記述する運動方程式と、(16)式の車体11のヨーイングを記述する運動方程式と、(17)式の車体11のローリングを記述する運動方程式と、(18)式、(19)式の台車12aに配置されたヨーダンパ、台車12bに配置されたヨーダンパのヨーイングを記述する運動方程式と、(20)式、(21)式の台車12aに配置された空気バネ(枕バネ)、台車12bに配置された空気バネ(枕バネ)のローリングを記述する運動方程式については、これらをそのまま用いて状態方程式を構成する。
Based on the above knowledge, in the present embodiment, the equation of state describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the equation of state, and the equation of state is configured as follows. .
First, the equation of motion describing the lateral vibration (movement in the left-right direction) of the carriages 12a and 12b in the expressions (9) and (10) and the rolling of the carriages 12a and 12b in the expressions (13) and (14) are described. Equation of motion, equation of motion describing the lateral vibration (movement in the left-right direction) of the vehicle body 11 of equation (15), equation of motion describing yawing of the vehicle body 11 of equation (16), and vehicle body of equation (17) Equation of motion describing the rolling of 11, equation of motion describing the yawing of the yaw damper disposed in the carriage 12a, the yaw damper disposed in the carriage 12b of the equations (18) and (19), equation (20), ( 21) The equation of motion describing the rolling of the air spring (pillow spring) arranged on the carriage 12a and the air spring (pillow spring) arranged on the carriage 12b is used as it is. Constitute the state equation.
 一方、(1)式~(4)式の輪軸13a~13dの横振動(左右方向における運動)を記述する運動方程式と、(11)式、(12)式の台車12a、12bのヨーイングを記述する運動方程式には、輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4や角速度ψw1・~ψw4・が含まれる。前述したように本実施形態では、(5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含めない。そこで本実施形態では、以下のようにして(1)式~(4)式および(11)式、(12)式からこれらの変数を消去したものを用いて状態方程式を構成する。 On the other hand, the equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d in equations (1) to (4) and the yawing of the carriages 12a and 12b in equations (11) and (12) are described. The motion equation to be included includes rotation amounts (angular displacements) ψ w1 to ψ w4 and angular velocities ψ w1 · to ψ w4 · in the yawing direction of the wheel shafts 13a to 13d. As described above, in this embodiment, the equation of motion describing the yawing of the wheel shafts 13a to 13d in the equations (5) to (8) is not included in the state equation. Therefore, in the present embodiment, the state equation is constructed by using those obtained by eliminating these variables from the expressions (1) to (4), (11), and (12) as follows.
 まず、輪軸13a~13dにおける前後方向力T~Tは、以下の(22)式~(25)式で表される。このように、前後方向力T~Tは、輪軸のヨーイング方向の角変位ψw1~ψw4と、当該輪軸が設けられる台車のヨーイング方向の角変位ψt1~ψt2との差に応じて定まる。 First, the longitudinal forces T 1 to T 4 on the wheel shafts 13a to 13d are expressed by the following equations (22) to (25). Thus, the longitudinal forces T 1 to T 4 depend on the difference between the angular displacements ψ w1 to ψ w4 in the yawing direction of the wheel shaft and the angular displacements ψ t1 to ψ t2 in the yawing direction of the carriage on which the wheel shaft is provided. Determined.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以下の(26)式~(29)式のように、変換変数e~eを定義する。このように、変換変数e~eは、台車のヨーイング方向の角変位ψt1~ψt2と輪軸のヨーイング方向の角変位ψw1~ψw4との差で定義される。変換変数e~eは、台車のヨーイング方向の角変位ψt1~ψt2と輪軸のヨーイング方向の角変位ψw1~ψw4とを相互に変換するための変数である。 Conversion variables e 1 to e 4 are defined as in the following formulas (26) to (29). Thus, the conversion variables e 1 to e 4 are defined by the difference between the angular displacements ψ t1 to ψ t2 in the yawing direction of the carriage and the angular displacements ψ w1 to ψ w4 in the yawing direction of the wheel shaft. The conversion variables e 1 to e 4 are variables for mutually converting the angular displacements ψ t1 to ψ t2 in the yawing direction of the carriage and the angular displacements ψ w1 to ψ w4 in the yawing direction of the wheel shaft.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 (26)式~(29)式を式変形すると、以下の(30)式~(33)式が得られる。 When the equations (26) to (29) are modified, the following equations (30) to (33) are obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 (30)式~(33)式を、(1)式~(4)式の輪軸13a~13dの横振動(左右方向における運動)を記述する運動方程式に代入すると、以下の(34)式~(37)式が得られる。 Substituting the equations (30) to (33) into the equations of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d in the equations (1) to (4), the following equations (34) to Equation (37) is obtained.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、(1)式~(4)式の輪軸13a~13dの横振動(左右方向における運動)を記述する運動方程式を、変換変数e~eを用いて表現することで、当該運動方程式に含まれていた輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4を消去することができる。 Thus, by expressing the equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d in the equations (1) to (4) using the conversion variables e 1 to e 4 , The amount of rotation (angular displacement) ψ w1 to ψ w4 in the yawing direction of the wheel shafts 13a to 13d included in the equation of motion can be eliminated.
 (22)式~(25)式を、(11)式、(12)式の台車12a、12bのヨーイングを記述する運動方程式に代入すると、以下の(38)式、(39)式が得られる。 Substituting the equations (22) to (25) into the equations of motion describing the yawing of the carriages 12a and 12b in the equations (11) and (12), the following equations (38) and (39) are obtained. .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 このように、(11)式、(12)式の台車12a、12bのヨーイングを記述する運動方程式を、前後方向力T~Tを用いて表現することで、当該運動方程式に含まれていた輪軸13a~13dのヨーイング方向における角変位ψw1~ψw4および角速度ψw1・~ψw4・を消去できる。 In this way, the equation of motion describing the yawing of the carriages 12a and 12b in the equations (11) and (12) is expressed using the longitudinal forces T 1 to T 4 and is included in the equation of motion. Further, the angular displacements ψ w1 to ψ w4 and the angular velocities ψ w1 to ψ w4 · in the yawing direction of the wheel shafts 13a to 13d can be eliminated.
 また、(26)式~(29)式を、(22)式~(25)式に代入すると、以下の(40)式~(43)式が得られる。 Further, when the expressions (26) to (29) are substituted into the expressions (22) to (25), the following expressions (40) to (43) are obtained.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 以上のように本実施形態では、(34)式~(37)式のようにして輪軸13a~13dの横振動(左右方向における運動)を記述する運動方程式を表すと共に、(38)式、(39)式のようにして台車12a、12bのヨーイングを記述する運動方程式を表し、これらを用いて状態方程式を構成する。また、(40)式~(43)式は、常微分方程式であり、その解である変換変数e~eの実績値は、輪軸13a~13dにおける前後方向力T~Tの測定値を用いることにより求めることができる。 As described above, in the present embodiment, the equation of motion describing the lateral vibration (movement in the left-right direction) of the wheel shafts 13a to 13d is expressed as in equations (34) to (37), and equations (38) and (38) The equation of motion describing the yawing of the carriages 12a and 12b is expressed as in equation (39), and the equation of state is constructed using these equations. Equations (40) to (43) are ordinary differential equations, and the actual values of the conversion variables e 1 to e 4 that are the solutions thereof are the measurements of the longitudinal forces T 1 to T 4 on the wheel shafts 13a to 13d. It can be determined by using the value.
 このようにして求めた変換変数e~eの実績値を、(34)式~(37)式に与える。また、輪軸13a~13dにおける前後方向力T~Tの測定値を(38)式、(39)式に与える。 The actual values of the conversion variables e 1 to e 4 obtained in this way are given to the equations (34) to (37). Also, the measured values of the longitudinal forces T 1 to T 4 at the wheel shafts 13a to 13d are given to the equations (38) and (39).
 本実施形態では、以下の(44)式に示す変数を状態変数とし、(9)式、(10)式、(13)式~(21)式、(34)式~(39)式の運動方程式を用いて状態方程式を構成する。 In the present embodiment, the variables shown in the following equation (44) are used as state variables, and the movements of equations (9), (10), (13) to (21), and (34) to (39) An equation of state is constructed using the equation.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 状態方程式記憶部801は、例えば、以上のようにして構成される状態方程式を、オペレータによるユーザインターフェース908の操作に基づいて入力し、記憶する。 The state equation storage unit 801 inputs and stores the state equation configured as described above based on the operation of the user interface 908 by the operator, for example.
[観測方程式記憶部802、S1002]
 観測方程式記憶部802は、観測方程式を記憶する。本実施形態では、車体11の左右方向における加速度、台車12a、12bの左右方向における加速度、および輪軸13a~13dの左右方向における加速度を観測変数とする。この観測変数は、後述するカルマンフィルタによるフィルタリングの観測変数である。本実施形態では、(34)式~(37)式、(9)式、(10)式、および(15)式の横振動を記述する運動方程式を用いて観測方程式を構成する。観測方程式記憶部802は、例えば、このようにして構成される観測方程式を、オペレータによるユーザインターフェース908の操作に基づいて入力し、記憶する。
[Observation equation storage unit 802, S1002]
The observation equation storage unit 802 stores observation equations. In the present embodiment, acceleration in the left-right direction of the vehicle body 11, acceleration in the left-right direction of the carriages 12a and 12b, and acceleration in the left-right direction of the wheel shafts 13a to 13d are used as observation variables. This observation variable is an observation variable for filtering by a Kalman filter described later. In the present embodiment, the observation equation is configured using the equation of motion describing the lateral vibration of the equations (34) to (37), (9), (10), and (15). For example, the observation equation storage unit 802 inputs and stores the observation equation configured as described above based on the operation of the user interface 908 by the operator.
 以上のようにして、状態方程式および観測方程式が検査装置800に記憶された後に、データ取得部803、フィルタ演算部804、軌道状態算出部805、および出力部806が起動する。即ち、図3のフローチャートによる事前処理が終了した後に、図4のフローチャートによる本処理が開始する。 As described above, after the state equation and the observation equation are stored in the inspection apparatus 800, the data acquisition unit 803, the filter calculation unit 804, the trajectory state calculation unit 805, and the output unit 806 are activated. That is, after the pre-process according to the flowchart of FIG. 3 is completed, the main process according to the flowchart of FIG. 4 is started.
[データ取得部803、S1101]
 データ取得部803は、計測データを取得する。
 本実施形態では、データ取得部803は、計測データとして、車体11の左右方向における加速度の測定値、台車12a、12bの左右方向における加速度の測定値、および輪軸13a~13dの左右方向における加速度の測定値を取得する。各加速度は、例えば、車体11、台車12a、12b、および輪軸13a~13dにそれぞれ取り付けられた歪ゲージと、当該歪ゲージの測定値を用いて加速度を演算する演算装置とを用いることにより測定される。尚、加速度の測定は、公知の技術で実現することができるので、その詳細な説明を省略する。
[Data acquisition unit 803, S1101]
The data acquisition unit 803 acquires measurement data.
In the present embodiment, the data acquisition unit 803 uses, as measurement data, measured values of acceleration in the left-right direction of the vehicle body 11, measured values of acceleration in the left-right direction of the carriages 12a and 12b, and accelerations in the left-right direction of the wheel shafts 13a to 13d. Get the measured value. Each acceleration is measured by using, for example, a strain gauge attached to the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d, and an arithmetic unit that calculates the acceleration using the measured values of the strain gauge. The In addition, since the measurement of acceleration can be realized by a known technique, detailed description thereof is omitted.
 また、データ取得部803は、計測データとして、前後方向力の測定値を取得する。前後方向力の測定の方法は、前述した通りである。
 データ取得部803は、例えば、前述した演算装置との通信を行うことにより、計測データを取得することができる。
Further, the data acquisition unit 803 acquires a measurement value of the longitudinal force as measurement data. The method for measuring the longitudinal force is as described above.
The data acquisition unit 803 can acquire measurement data, for example, by performing communication with the arithmetic device described above.
[フィルタ演算部804、S1102]
 フィルタ演算部804は、観測方程式を観測方程式記憶部802により記憶された観測方程式とし、状態方程式を状態方程式記憶部801により記憶された状態方程式として、カルマンフィルタにより、データ取得部803で取得された計測データを用いて、(44)式に示す状態変数を決定する。前述したように本実施形態では、計測データには、車体11の左右方向における加速度の測定値、台車12a、12bの左右方向における加速度の測定値、輪軸13a~13dの左右方向における加速度の測定値、および輪軸13a~13dにおける前後方向力T~Tの測定値が含まれる。
[Filter operation unit 804, S1102]
The filter calculation unit 804 uses the Kalman filter as the measurement equation acquired by the data acquisition unit 803 using the observation equation as the observation equation stored in the observation equation storage unit 802 and the state equation as the state equation stored in the state equation storage unit 801. Using the data, the state variable shown in the equation (44) is determined. As described above, in the present embodiment, the measurement data includes measured values of acceleration in the left-right direction of the vehicle body 11, measured values of acceleration in the left-right direction of the carriages 12a and 12b, and measured values of acceleration in the left-right direction of the wheel shafts 13a to 13d. , And measured values of the longitudinal forces T 1 to T 4 at the wheel shafts 13a to 13d.
 カルマンフィルタは、データ同化を行う手法の一つである。即ち、カルマンフィルタは、観測できる変数(観測変数)の測定値と計算値との差異が小さく(最小に)なるように、未観測の変数(状態変数)の値を決定する手法の一例である。フィルタ演算部804は、観測変数の測定値と計算値との差異が小さく(最小に)なるカルマンゲインを求め、そのときの未観測の変数(状態変数)の値を求める。カルマンフィルタにおいては、以下の(45)式の観測方程式と、以下の(46)式の状態方程式を用いる。
 Y=HX+V ・・・(45)
 X・=ΦX+W ・・・(46)
 (45)式において、Yは、観測変数の測定値を格納するベクトルである。Hは、観測モデルである。Xは、状態変数を格納するベクトルである。Vは、観測ノイズである。X・は、Xの時間微分を示す。Φは、線形モデルである。Wは、システムノイズである。尚、カルマンフィルタ自体は、公知の技術で実現できるので、その詳細な説明を省略する。
The Kalman filter is one method for performing data assimilation. That is, the Kalman filter is an example of a method for determining the value of an unobserved variable (state variable) so that the difference between the measured value and the calculated value of the observable variable (observed variable) is small (minimized). The filter calculation unit 804 obtains a Kalman gain at which the difference between the measured value and the calculated value of the observed variable is small (minimum), and obtains the value of the unobserved variable (state variable) at that time. In the Kalman filter, the following observation equation (45) and the following equation (46) are used.
Y = HX + V (45)
X · = ΦX + W (46)
In equation (45), Y is a vector that stores the measured value of the observed variable. H is an observation model. X is a vector for storing state variables. V is observation noise. X · represents the time derivative of X. Φ is a linear model. W is system noise. Since the Kalman filter itself can be realized by a known technique, a detailed description thereof is omitted.
[軌道状態算出部805、S1103]
 (5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式に、(22)式~(25)式を代入すると、以下の(47)式~(50)式が得られる。
[Orbital state calculation unit 805, S1103]
When the equations (22) to (25) are substituted into the equations of motion describing the yawing of the wheel shafts 13a to 13d in the equations (5) to (8), the following equations (47) to (50) are obtained. .
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 軌道状態算出部805は、(30)式~(33)式より、輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4の推定値を算出する。そして、軌道状態算出部805は、輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4の推定値と、フィルタ演算部804で求められた(48)式に示す状態変数と、輪軸13a~13dにおける前後方向力T~Tの測定値とを、(47)式~(50)式に与えることにより、輪軸13a~13dの位置での通り狂い量yR1~yR4を算出する。ここで使用される状態変数は、台車12a~12bの左右方向の変位yt1~yt2、台車12a~12bの左右方向の速度yt1・~yt2・、輪軸13a~13dの左右方向の変位yw1~yw4、および輪軸13a~13dの左右方向の速度yw1・~yw4・である。 The track state calculation unit 805 calculates estimated values of the rotation amounts (angular displacements) ψ w1 to ψ w4 of the wheel shafts 13a to 13d in the yawing direction from the equations (30) to (33). The trajectory state calculation unit 805 then estimates the rotation amounts (angular displacements) ψ w1 to ψ w4 in the yawing direction of the wheel shafts 13a to 13d and the state variables shown in the equation (48) obtained by the filter calculation unit 804. By giving the measured values of the longitudinal forces T 1 to T 4 at the wheel shafts 13a to 13d to the equations (47) to (50), the deviation amounts y R1 to y R4 at the positions of the wheel shafts 13a to 13d are obtained. Is calculated. Here the state variables used are displaced in the lateral direction of the carriage 12a ~ 12b y t1 ~ y t2 , the left-right direction of the velocity y t1 · ~ y t2 · of the truck 12a ~ 12b, in the lateral direction of the wheel shaft 13a ~ 13d displacement y w1 to y w4 and the speeds y w1 · to y w4 · of the wheel shafts 13a to 13d in the left-right direction.
 そして、軌道状態算出部805は、通り狂い量yR1~yR4から、最終的な通り狂い量yを算出する。例えば、軌道状態算出部805は、通り狂い量yR1~yR4のうち、最大値と最小値を除く2つの値の算術平均値を通り狂い量yとして算出する。このとき、軌道状態算出部805は、輪軸13a~13dの位置での通り狂い量yR1~yR4のそれぞれについて移動平均をとり(即ち、ローパスフィルタを通し)、当該移動平均をとった輪軸13a~13dの位置での通り狂い量yR1~yR4から、最終的な通り狂い量yを算出してもよい。 Then, the trajectory state calculation unit 805 calculates the final passing amount y R from the passing amounts y R1 to y R4 . For example, the trajectory state calculation unit 805 calculates an arithmetic average value of two values excluding the maximum value and the minimum value among the passing amount y R1 to y R4 as the passing amount y R. At this time, the track state calculation unit 805 takes a moving average for each of the deviation amounts y R1 to y R4 at the positions of the wheel shafts 13a to 13d (that is, passes through a low-pass filter), and the wheel shaft 13a that takes the moving average. The final amount of deviation y R may be calculated from the amount of deviation y R1 to y R4 at the position of ~ 13d.
[出力部806、S1104]
 出力部806は、軌道状態算出部805により算出された通り狂い量yの情報を出力する。このとき出力部806は、通り狂い量yが、予め設定された値よりも大きい場合には、軌道16が異常であることを示す情報を出力してもよい。出力の形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、およびの内部または外部の記憶媒体への記憶の少なくとも何れか1つを採用することができる。
[Output unit 806, S1104]
The output unit 806 outputs information of the street deviation amount y R calculated by the trajectory state calculation section 805. At this time, the output unit 806 may output information indicating that the trajectory 16 is abnormal when the passing amount y R is larger than a preset value. As an output form, for example, at least one of display on a computer display, transmission to an external device, and storage in an internal or external storage medium can be employed.
<実施例>
 次に、実施例を説明する。本実施例では、図1に示したような、1つの車体11に、2つの台車12a、12bおよび4組の輪軸13a~13dが備わる鉄道車両を270km/hで走行させたケースの数値シミュレーションを実施した。また、本実施例では、軸箱支持装置が、モノリンク式の軸箱支持装置であるものとする。尚、本実施例では、前後方向力をモノリンク力と称する。そして、この数値シミュレーションで算出されたデータを用いて、本実施形態で説明した手法により通り狂い量を計算した。このとき、数値シミュレーションに用いたモデルは86自由度を有するものとした。従って、数値シミュレーションに用いたモデルには、通り狂い量を計算するために用いた21自由度モデルでは想定していない運動が追加される。このようにすることによって、本実施例では、実際の鉄道車両を走行させたときに相当する状態方程式のシステムノイズが得られているものとする。一方、実際の鉄道車両を走行させたときの観測方程式の観測ノイズは計測精度に依存する。本実施例の観測データには観測ノイズが含まれていない。このため、本実施例は、理想的な計測精度が得られたことを想定したケースとなる。
<Example>
Next, examples will be described. In the present embodiment, a numerical simulation of a case where a railway vehicle provided with two carriages 12a and 12b and four sets of wheel shafts 13a to 13d is run at 270 km / h as shown in FIG. Carried out. In this embodiment, the axle box support device is a monolink type axle box support device. In this embodiment, the longitudinal force is referred to as a monolink force. Then, using the data calculated by the numerical simulation, the amount of deviation is calculated by the method described in the present embodiment. At this time, the model used for the numerical simulation has 86 degrees of freedom. Therefore, a motion that is not assumed in the 21-degree-of-freedom model used to calculate the amount of deviation is added to the model used for the numerical simulation. In this way, in this embodiment, it is assumed that the system noise of the state equation corresponding to the actual running of the railway vehicle is obtained. On the other hand, the observation noise of the observation equation when an actual railway vehicle is driven depends on the measurement accuracy. The observation data of this example does not include observation noise. For this reason, the present embodiment assumes a case where ideal measurement accuracy is obtained.
 図12は、数値シミュレーションにより得られた観測データ(の一部)を示す図である。図12において、第1輪軸は、輪軸13aを指す。前台車は、台車12aを指す。横振動加速度は、左右方向の加速度を指す。
 図13は、通り狂い量の実測値1301と計算値1302の一例を示す図である。実測値1301は、数値シミュレーションを実施する際に設定した通り狂い量である。図13に示すように、通り狂い量の実測値1301と計算値1302は、実用上、許容されるレベルで一致する。従って、本実施形態の手法を用いることにより、通り狂い量を精度よく計算できることが分かる。
FIG. 12 is a diagram showing (part of) observation data obtained by numerical simulation. In FIG. 12, the first wheel shaft indicates the wheel shaft 13a. The front carriage refers to the carriage 12a. Lateral vibration acceleration refers to acceleration in the left-right direction.
FIG. 13 is a diagram illustrating an example of the actual measurement value 1301 and the calculation value 1302 of the amount of deviation. The actual measurement value 1301 is a deviation amount as set when the numerical simulation is performed. As shown in FIG. 13, the actually measured value 1301 and the calculated value 1302 of the amount of deviation match in practically acceptable levels. Therefore, it can be seen that by using the method of the present embodiment, the amount of deviation can be calculated with high accuracy.
 一方、モノリンク力を使用しないで、(5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含め、通り狂い量yR1~yR4の時間微分をホワイトノイズとして扱い、カルマンフィルタによるフィルタリングを行った。その結果、計算が不安定となり、推定結果が得られなかった。 On the other hand, the equation of motion describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is included in the state equation without using the monolink force, and the time derivative of the passing amounts y R1 to y R4 is white. Treated as noise and filtered with Kalman filter. As a result, the calculation became unstable and the estimation result could not be obtained.
<まとめ>
 以上のように本実施形態では、検査装置800は、車体11、台車12a、12b、および輪軸13a~13dの左右方向における加速度の測定値と、前後方向力T~Tの測定値と、変換変数e~eの実績値と、をカルマンフィルタに与えて、状態変数(yw1・~yw4・、yw1~yw4、yt1・~yt2・、yt1~yt2、ψt1・~ψt2・、ψt1~ψt2、φt1・~φt2・、φt1~φt2、y・、y、ψ・、ψ、φ・、φ、ψy1、ψy2、φa1、φa2)を導出する。次に、検査装置800は、前記状態変数に含まれる台車12a、12bのヨーイング方向における回動量(角変位)ψt1~ψt2と、変換変数e~eの実績値と、を用いて、輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4を導出する。次に、検査装置800は、輪軸13a~13dのヨーイングを記述する運動方程式に、輪軸13a~13dのヨーイング方向における回動量(角変位)ψw1~ψw4と、前記状態変数と、前後方向力T~Tの測定値と、を代入して、輪軸13a~13dの位置での通り狂い量yR1~yR4を算出する。そして、検査装置800は、通り狂い量yR1~yR4から、最終的な通り狂い量yを算出する。従って、輪軸13a~13dのヨーイングを記述する運動方程式として、通り狂い量yR1~yR4を変数として含む運動方程式を用いて状態方程式を構成する必要がなくなる。これにより、軌道16のモデルを作成する必要がなくなると共に状態変数の数を減らすことができる。本実施形態では、モデルの自由度を21自由度から17自由度に減らすことができると共に、状態変数の数を38から30に減らすことができる。また、前後方向力T~Tの分だけ、カルマンフィルタで用いる測定値が増える。
<Summary>
As described above, in the present embodiment, the inspection apparatus 800 includes the measurement values of the acceleration in the left-right direction of the vehicle body 11, the carriages 12a and 12b, and the wheel shafts 13a to 13d, and the measurement values of the longitudinal forces T 1 to T 4 . The actual values of the conversion variables e 1 to e 4 are given to the Kalman filter, and the state variables (y w1 · to y w4 ·, y w1 to y w4 , y t1 · to y t2 ·, y t1 to y t2 , ψ t1 · ˜ψ t2 ·, ψ t1 ∼ψ t2 , φ t1 · ˜φ t2 ·, φ t1 ∼φ t2 , y b ·, y b , ψ b ·, ψ b , φ b ·, φ b , ψ y1 , Ψ y2 , φ a1 , φ a2 ). Next, the inspection apparatus 800 uses the rotation amounts (angular displacements) ψ t1 to ψ t2 in the yawing direction of the carriages 12a and 12b included in the state variables and the actual values of the conversion variables e 1 to e 4. Then, rotation amounts (angular displacements) ψ w1 to ψ w4 in the yawing direction of the wheel shafts 13a to 13d are derived. Next, the inspection apparatus 800 adds the amount of rotation (angular displacement) ψ w1 to ψ w4 in the yawing direction of the wheel shafts 13a to 13d, the state variables, and the longitudinal force to the equation of motion describing the yawing of the wheel shafts 13a to 13d. By substituting the measured values of T 1 to T 4 , the deviation amounts y R1 to y R4 at the positions of the wheel shafts 13a to 13d are calculated. Then, the inspection apparatus 800 calculates a final passing amount y R from the passing amounts y R1 to y R4 . Therefore, it is not necessary to construct a state equation using an equation of motion that includes the deviation amounts y R1 to y R4 as variables as an equation of motion describing yawing of the wheel shafts 13a to 13d. Thereby, it is not necessary to create a model of the trajectory 16, and the number of state variables can be reduced. In this embodiment, the degree of freedom of the model can be reduced from 21 degrees of freedom to 17 degrees of freedom, and the number of state variables can be reduced from 38 to 30. Further, the measurement value used in the Kalman filter increases by the amount of the longitudinal force T 1 to T 4 .
 一方、実施例で説明したように、前後方向力T~Tを使用しないで、(5)式~(8)式の輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含めると、計算が不安定となり、推定結果が得られない場合がある。即ち、特許文献2に記載の技術のように状態変数を選定しないと、計算が不安定となり、推定結果が得られない場合がある。また、仮に推定結果が得られたとしても、本実施形態の方法の方が、状態変数を選定しない方法に比べ、軌道16の不整の検知精度が高くなる。本実施形態では、輪軸13a~13dのヨーイングを記述する運動方程式を状態方程式に含めないことと、前後方向力の測定値を用いることとを実現しているからである。 On the other hand, if the equation of motion describing the yaw of the wheel shafts 13a to 13d in the equations (5) to (8) is included in the state equation without using the longitudinal forces T 1 to T 4 as described in the embodiment, In some cases, the calculation becomes unstable and the estimation result cannot be obtained. That is, unless a state variable is selected as in the technique described in Patent Document 2, calculation may become unstable and an estimation result may not be obtained. Even if an estimation result is obtained, the method of the present embodiment has higher accuracy in detecting the irregularity of the trajectory 16 than the method in which no state variable is selected. This is because in the present embodiment, it is realized that the equation of motion describing the yawing of the wheel shafts 13a to 13d is not included in the state equation and that the measured value of the longitudinal force is used.
 また、本実施形態では、センサとして歪ゲージを用いることができるので、特別なセンサを必要としない。従って、軌道16の異常(軌道不整)を大きなコストをかけることなく精度よく検知することができる。また、特別なセンサを用いる必要がないので、営業車両に歪ゲージを取り付け、営業車に検査装置800を搭載することにより、営業車両の走行中に、軌道16の不整をリアルタイムで検知することができる。従って、検測車を走行させなくても、軌道16の不整を検知することができる。ただし、検測車に歪ゲージを取り付け、検測車に検査装置800を搭載してもよい。 In this embodiment, a strain gauge can be used as a sensor, so that no special sensor is required. Therefore, it is possible to accurately detect an abnormality (trajectory irregularity) in the track 16 without incurring a large cost. Further, since it is not necessary to use a special sensor, it is possible to detect an irregularity of the track 16 in real time while the business vehicle is running by attaching a strain gauge to the business vehicle and mounting the inspection device 800 on the business vehicle. it can. Therefore, it is possible to detect the irregularity of the track 16 without running the inspection vehicle. However, a strain gauge may be attached to the inspection vehicle, and the inspection device 800 may be mounted on the inspection vehicle.
<変形例>
 本実施形態では、カルマンフィルタを用いる場合を例に挙げて説明した。しかしながら、観測変数の測定値と計算値との誤差が最小または当該誤差の期待値が最小になるように状態変数を導出するフィルタ(即ち、データ同化を行うフィルタ)を用いていれば、必ずしもカルマンフィルタを用いる必要はない。例えば、粒子フィルタを用いてもよい。尚、観測変数の測定値と計算値との誤差としては、例えば、観測変数の測定値と計算値との二乗誤差が挙げられる。
<Modification>
In this embodiment, the case where the Kalman filter is used has been described as an example. However, if a filter that derives a state variable (that is, a filter that performs data assimilation) is used so that the error between the measured value and the calculated value of the observed variable is minimized or the expected value of the error is minimized, the Kalman filter is not necessarily used. There is no need to use. For example, a particle filter may be used. An example of the error between the measured value and the calculated value of the observed variable is a square error between the measured value and the calculated value of the observed variable.
 また、本実施形態では、通り狂い量を導出する場合を例に挙げて説明した。しかしながら、軌道16の状態を反映する情報として、軌道不整(軌道16の外観上の不良)を反映する情報を導出していれば、必ずしも通り狂い量を導出する必要はない。例えば、通り狂い量に加えてまたは代えて以下の(51)式~(54)式の計算を行うことにより、鉄道車両が直線軌道を走行しているときに生じる横圧(車輪とレールとの間における左右方向の応力)を導出してもよい。ただし、Q、Q、Q、Qはそれぞれ、車輪14a、14b、14c、14dにおける横圧である。fはスピンクリープ係数を表す。 Further, in the present embodiment, the case where the amount of deviation is derived is described as an example. However, if the information reflecting the irregularity of the trajectory (the appearance defect of the trajectory 16) is derived as the information reflecting the state of the trajectory 16, it is not always necessary to derive the deviation amount. For example, by calculating the following formulas (51) to (54) in addition to or instead of the amount of deviation, the lateral pressure generated between the railway vehicle and the rail Left-right direction stress) may be derived. However, Q 1 , Q 2 , Q 3 , and Q 4 are lateral pressures at the wheels 14a, 14b, 14c, and 14d, respectively. f 3 represents the spin creep coefficient.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 また、本実施形態では、車体11の状態を表す状態変数を含める場合を例に挙げて説明した。しかしながら、車体11は、車輪14a~14dと軌道16との間の作用力(クリープ力)による振動の伝搬が最後に伝わる部分である。従って、例えば、車体11においてその伝搬による影響が小さいと判断される場合には、車体11の状態を表す状態変数を含めなくてもよい。このようにする場合、(1)式~(21)式の運動方程式のうち、(15)式~(17)式の車体11の横振動、ヨーイング、ローリングを記述する運動方程式と、(18)式、(19)式の台車12aに配置されたヨーダンパ、台車12bに配置されたヨーダンパのヨーイングを記述する運動方程式は不要になる。また、(1)式~(21)式の運動方程式において、車体に関する状態量(添え字bを含む状態量)と、車体に関する状態量(添え字bを含む状態量)を含む{}内の値(例えば(21)式の左辺第3項の{φa2-φ})を0(ゼロ)にする。 Moreover, in this embodiment, the case where the state variable showing the state of the vehicle body 11 was included was described as an example. However, the vehicle body 11 is the part where the propagation of vibration due to the acting force (creep force) between the wheels 14a to 14d and the track 16 is finally transmitted. Therefore, for example, when it is determined that the influence of the propagation in the vehicle body 11 is small, the state variable indicating the state of the vehicle body 11 may not be included. In this case, among the equations of motion of equations (1) to (21), equations of motion describing the lateral vibration, yawing and rolling of the vehicle body 11 of equations (15) to (17), and (18) The equation of motion and the equation of motion describing the yawing of the yaw damper arranged in the carriage 12a and the yaw damper arranged in the carriage 12b are not required. In addition, in the equations of motion of equations (1) to (21), the state quantity relating to the vehicle body (state quantity including the subscript b) and the state quantity relating to the vehicle body (state quantity including the subscript b) are included in {}. The value (for example, {φ a2 −φ b } in the third term on the left side of equation (21)) is set to 0 (zero).
 また、本実施形態では、台車12a、12bがボルスタレス台車である場合を例に挙げて説明した。しかしながら、台車12a、12bは、ボルスタレス台車に限定されない。また、曲線軌道等において鉄道車両が遠心力を受ける場合には、この遠心力が含まれるように運動方程式が書き換えられる。この他、鉄道車両の構成要素、鉄道車両が受ける力、および鉄道車両の運動の方向等に応じて、運動方程式は、適宜書き換えられる。即ち、運動方程式は、本実施形態で例示したものに限定されない。 In the present embodiment, the case where the carriages 12a and 12b are bolsterless carriages has been described as an example. However, the carts 12a and 12b are not limited to bolsterless carts. Further, when the railway vehicle receives a centrifugal force on a curved track or the like, the equation of motion is rewritten so that the centrifugal force is included. In addition, the equation of motion is appropriately rewritten according to the components of the railway vehicle, the force received by the railway vehicle, the direction of motion of the railway vehicle, and the like. That is, the equation of motion is not limited to that exemplified in this embodiment.
(第2の実施形態)
 次に、第2の実施形態を説明する。
 第1の実施形態では、鉄道車両に搭載した検査装置800が通り狂い量yを算出する場合を例に挙げて説明した。これに対し、本実施形態では、検査装置800の一部の機能が実装されたデータ処理装置が、指令所に配置される。このデータ処理装置は、鉄道車両から送信される計測データを受信し、受信した計測データを用いて通り狂い量yを算出する。このように、本実施形態では、第1の実施形態の検査装置800が有する機能を、鉄道車両と指令所とで分担して実行する。本実施形態と第1の実施形態とは、このことによる構成および処理が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図13に付した符号と同一の符号を付す等して詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described.
In the first embodiment, the case where the inspection apparatus 800 mounted on the railway vehicle calculates the amount of deviation y R has been described as an example. On the other hand, in this embodiment, a data processing device in which a part of the function of the inspection device 800 is mounted is arranged at the command station. This data processing device receives measurement data transmitted from the railway vehicle, and calculates a passing amount y R using the received measurement data. As described above, in this embodiment, the functions of the inspection apparatus 800 of the first embodiment are shared between the railway vehicle and the command station. This embodiment and the first embodiment are mainly different in configuration and processing. Therefore, in the description of the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals as those in FIGS. 1 to 13 and the detailed description thereof is omitted.
 図14は、検査システムの構成の一例を示す図である。図14において、検査システムは、データ収集装置1410a、1410bと、データ処理装置1420とを有する。図14には、データ収集装置1410a、1410bおよびデータ処理装置1420の機能的な構成の一例も示す。尚、データ収集装置1410a、1410bおよびデータ処理装置1420のハードウェアは、例えば、図9に示すもので実現することができる。従って、データ収集装置1410a、1410bおよびデータ処理装置1420のハードウェアの構成の詳細な説明を省略する。 FIG. 14 is a diagram showing an example of the configuration of the inspection system. In FIG. 14, the inspection system includes data collection devices 1410 a and 1410 b and a data processing device 1420. FIG. 14 also illustrates an example of functional configurations of the data collection devices 1410a and 1410b and the data processing device 1420. Note that the hardware of the data collection devices 1410a and 1410b and the data processing device 1420 can be realized by, for example, the one shown in FIG. Therefore, detailed description of the hardware configuration of the data collection devices 1410a and 1410b and the data processing device 1420 is omitted.
 鉄道車両のそれぞれには、データ収集装置1410a、1410bが1つずつ搭載される。データ処理装置1420は、指令所に配置される。指令所は、例えば、複数の鉄道車両の運行を集中管理する。 Each data collection device 1410a and 1410b is mounted on each railway vehicle. Data processor 1420 is located at the command office. The command center centrally manages the operation of a plurality of railway vehicles, for example.
<データ収集装置1410a、1410b>
 データ収集装置1410a、1410bは、同じもので実現することができる。データ収集装置1410a、1410bは、データ取得部1411a、1411bと、データ送信部1412a、1412bとを有する。
< Data collection devices 1410a and 1410b>
The data collection devices 1410a and 1410b can be realized by the same device. The data collection devices 1410a and 1410b include data acquisition units 1411a and 1411b and data transmission units 1412a and 1412b.
[データ取得部1411a、1411b]
 データ取得部1411a、1411bは、データ取得部803と同じ機能を有する。即ち、データ取得部1411a、1411bは、計測データを取得する。本実施形態でも、第1の実施形態と同様に、データ取得部1411a、1411bは、計測データとして、車体11の左右方向における加速度の測定値、台車12a、12bの左右方向における加速度の測定値、輪軸13a~13dの左右方向における加速度の測定値、および前後方向力の測定値を取得する。これらの測定値を得るための歪ゲージおよび演算装置は、第1の実施形態で説明したものと同じである。
[Data Acquisition Units 1411a and 1411b]
The data acquisition units 1411a and 1411b have the same function as the data acquisition unit 803. That is, the data acquisition units 1411a and 1411b acquire measurement data. Also in the present embodiment, as in the first embodiment, the data acquisition units 1411a and 1411b use the measured values of acceleration in the left-right direction of the vehicle body 11, the measured values of acceleration in the left-right direction of the carriages 12a and 12b, as measurement data, The measurement value of the acceleration in the left-right direction and the measurement value of the longitudinal force of the wheel shafts 13a to 13d are acquired. The strain gauge and the arithmetic unit for obtaining these measurement values are the same as those described in the first embodiment.
[データ送信部1412a、1412b]
 データ送信部1412a、1412bは、データ取得部1411a、1411bで取得された計測データを、データ処理装置1420に送信する。本実施形態では、データ送信部1412a、1412bは、データ取得部1411a、1411bで取得された計測データを、無線通信により、データ処理装置1420に送信する。このとき、データ送信部1412a、1412bは、データ収集装置1410a、1410bが搭載されている鉄道車両の識別番号を、データ取得部1411a、1411bで取得された計測データに付加する。このようにデータ送信部1412a、1412bは、鉄道車両の識別番号が付加された計測データを送信する。
[ Data transmission units 1412a and 1412b]
The data transmission units 1412a and 1412b transmit the measurement data acquired by the data acquisition units 1411a and 1411b to the data processing device 1420. In the present embodiment, the data transmission units 1412a and 1412b transmit the measurement data acquired by the data acquisition units 1411a and 1411b to the data processing device 1420 by wireless communication. At this time, the data transmission units 1412a and 1412b add the identification numbers of the railway vehicles on which the data collection devices 1410a and 1410b are mounted to the measurement data acquired by the data acquisition units 1411a and 1411b. As described above, the data transmission units 1412a and 1412b transmit the measurement data to which the identification number of the railway vehicle is added.
<データ処理装置1420>
[データ受信部1421]
 データ受信部1421は、データ送信部1412a、1412bにより送信された計測データを受信する。この計測データには、当該計測データの送信元である鉄道車両の識別番号が付加されている。
<Data processing device 1420>
[Data receiving unit 1421]
The data reception unit 1421 receives the measurement data transmitted by the data transmission units 1412a and 1412b. The identification number of the railway vehicle that is the transmission source of the measurement data is added to the measurement data.
[データ記憶部1422]
 データ記憶部1422は、データ受信部1421で受信された計測データを記憶する。データ記憶部1422は、鉄道車両の識別番号ごとに計測データを記憶する。データ記憶部1422は、鉄道車両の現在の運行状況と、計測データの受信時刻とに基づいて、当該計測データの受信時刻における鉄道車両の位置を特定し、特定した位置の情報と当該計測データとを相互に関連付けて記憶する。尚、データ収集装置1410a、1410bが、鉄道車両の現在の位置の情報を収集し、取集した情報を計測データに含めてもよい。
[Data storage unit 1422]
The data storage unit 1422 stores the measurement data received by the data reception unit 1421. The data storage unit 1422 stores measurement data for each railcar identification number. The data storage unit 1422 identifies the position of the railway vehicle at the reception time of the measurement data based on the current operation status of the railway vehicle and the reception time of the measurement data, and information on the identified position and the measurement data Are stored in association with each other. Note that the data collection devices 1410a and 1410b may collect information on the current position of the railway vehicle and include the collected information in the measurement data.
[データ読み出し部1423]
 データ読み出し部1423は、データ記憶部1422により記憶された計測データを読み出す。データ読み出し部1423は、データ記憶部1422により記憶された計測データのうち、オペレータにより指定された計測データを読み出すことができる。また、データ読み出し部1423は、予め定められたタイミングで、予め定められた条件に合致する計測データを読み出すこともできる。本実施形態では、データ読み出し部1423により読み出される計測データは、例えば、鉄道車両の識別番号および位置の少なくとも何れか1つに基づいて決定される。
[Data reading unit 1423]
The data reading unit 1423 reads the measurement data stored in the data storage unit 1422. The data reading unit 1423 can read measurement data designated by the operator among the measurement data stored in the data storage unit 1422. The data reading unit 1423 can also read measurement data that matches a predetermined condition at a predetermined timing. In the present embodiment, the measurement data read by the data reading unit 1423 is determined based on, for example, at least one of the identification number and the position of the railway vehicle.
 状態方程式記憶部801、観測方程式記憶部802、フィルタ演算部804、軌道状態算出部805、および出力部806は、第1の実施形態と説明したものと同じである。従って、ここでは、これらの詳細な説明を省略する。尚、フィルタ演算部804は、データ取得部803で取得された計測データに代えてデータ読み出し部1423で読み出された計測データを用いて、(44)式に示す状態変数を決定する。 State equation storage unit 801, observation equation storage unit 802, filter operation unit 804, orbital state calculation unit 805, and output unit 806 are the same as those described in the first embodiment. Therefore, detailed description thereof is omitted here. Note that the filter calculation unit 804 determines the state variable represented by the equation (44) using the measurement data read by the data reading unit 1423 instead of the measurement data acquired by the data acquisition unit 803.
<まとめ>
 以上のように本実施形態では、鉄道車両に搭載されたデータ収集装置1410a、1410bは、計測データを収集してデータ処理装置1420に送信する。指令所に配置されたデータ処理装置1420は、データ収集装置1410a、1410bから受信した計測データを記憶し、記憶した計測データを用いて、通り狂い量yを算出する。従って、第1の実施形態で説明した効果に加え、例えば、以下の効果を奏する。即ち、データ処理装置1420は、計測データを任意のタイミングで読み出すことにより、任意のタイミングで通り狂い量yを算出することができる。また、データ処理装置1420は、同じ位置における通り狂い量yの時系列的な変化を出力することができる。また、データ処理装置1420は、複数の路線における通り狂い量yを路線ごとに出力することができる。
<Summary>
As described above, in the present embodiment, the data collection devices 1410a and 1410b mounted on the railway vehicle collect measurement data and transmit it to the data processing device 1420. Data processor 1420 disposed control center, the data collection device 1410a, and stores the measurement data received from 1410b, using the stored measurement data, calculates a street deviation amount y R. Accordingly, in addition to the effects described in the first embodiment, for example, the following effects can be obtained. That is, the data processing device 1420 can calculate the deviation amount y R at any timing by reading the measurement data at any timing. In addition, the data processing device 1420 can output a time-series change in the amount of deviation y R at the same position. In addition, the data processing device 1420 can output the amount of deviation y R on a plurality of routes for each route.
<変形例>
 本実施形態では、データ収集装置1410a、1410bからデータ処理装置1420に計測データを直接送信する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、クラウドコンピューティングを利用して検査システムを構築してもよい。その他、本実施形態においても、第1の実施形態で説明した種々の変形例を採用することができる。
<Modification>
In this embodiment, the case where measurement data is directly transmitted from the data collection devices 1410a and 1410b to the data processing device 1420 has been described as an example. However, this is not always necessary. For example, an inspection system may be constructed using cloud computing. In addition, also in the present embodiment, various modifications described in the first embodiment can be employed.
 また、第1の実施形態および第2の実施形態では、状態方程式記憶部801、観測方程式記憶部802、フィルタ演算部804、軌道状態算出部805、および出力部806が1つの装置に含まれる場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。状態方程式記憶部801、観測方程式記憶部802、フィルタ演算部804、軌道状態算出部805、および出力部806の機能を複数の装置で実現してもよい。この場合、これら複数の装置を用いて検査システムが構成される。 In the first embodiment and the second embodiment, the state equation storage unit 801, the observation equation storage unit 802, the filter calculation unit 804, the orbital state calculation unit 805, and the output unit 806 are included in one device. Was described as an example. However, this is not always necessary. The functions of the state equation storage unit 801, the observation equation storage unit 802, the filter calculation unit 804, the orbital state calculation unit 805, and the output unit 806 may be realized by a plurality of devices. In this case, an inspection system is configured using these plural devices.
(その他の実施形態)
 以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
(Other embodiments)
The embodiment of the present invention described above can be realized by a computer executing a program. Further, a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention. As the recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 本発明は、例えば、鉄道車両の軌道を検査することに利用することができる。 The present invention can be used for, for example, inspecting a railroad track.

Claims (16)

  1.  車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得手段と、
     前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算手段と、
     前記軌道の状態を反映する情報を導出する軌道状態導出手段と、を有し、
     前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、
     前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、
     前記部材は、軸箱を支持するための部材であり、
     前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、
     前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、
     前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、
     前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、
     前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、
     前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、
     前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、
     前記フィルタ演算手段は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、
     前記軌道状態導出手段は、前記フィルタ演算手段により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、
     前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とする検査システム。
    Data acquisition means for acquiring measurement data which is data of measurement values measured by running a railway vehicle having a vehicle body, a carriage, and a wheel shaft on a track;
    Filter operation means for determining a state variable that is a variable to be determined in the state equation by performing an operation using a filter that performs data assimilation using the measurement data, the state equation, and the observation equation; ,
    And orbital state deriving means for deriving information reflecting the state of the orbit,
    The measurement data includes a measurement value of acceleration in the left-right direction of the carriage and the wheel shaft, and a measurement value of longitudinal force,
    The left-right direction is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track,
    The front / rear direction force is the front / rear direction force generated in a member disposed between the wheel shaft and the carriage on which the wheel shaft is provided, and the angular displacement in the yawing direction of the wheel shaft and the wheel shaft provided by the wheel shaft. A force determined according to a difference from the angular displacement in the yawing direction of the carriage,
    The member is a member for supporting the axle box,
    The yawing direction is a rotation direction with the vertical direction as a rotation axis,
    The state equation is an equation described using the state variable, the longitudinal force, and a conversion variable.
    The state variables include a lateral displacement and speed of the carriage, an angular displacement and angular speed in the yawing direction of the carriage, an angular displacement and angular speed in the rolling direction of the carriage, and a lateral displacement and speed of the wheel shaft. And an angular displacement in the rolling direction of an air spring attached to the railway vehicle, and does not include an angular displacement and an angular velocity in the yawing direction of the wheel shaft,
    The rolling direction is a rotation direction with the front-rear direction as a rotation axis,
    The conversion variable is a variable for mutually converting the angular displacement in the yawing direction of the wheel shaft and the angular displacement in the yawing direction of the carriage,
    The observation equation is an equation described using an observation variable and the conversion variable,
    The observed variable includes a lateral acceleration of the carriage and the wheel axis,
    The filter calculation means includes the measurement value of the observation variable, the state equation in which the measurement value of the longitudinal force and the actual value of the conversion variable are substituted, and the observation equation in which the actual value of the conversion variable is substituted, To determine the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized,
    The track state deriving unit uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculating unit, and the actual value of the conversion variable, and the yawing direction of the wheel shaft. Deriving the information that reflects the state of the trajectory using the estimated value of the angular displacement in the yawing direction of the wheel shaft derived,
    The actual value of the conversion variable is derived using the measured value of the longitudinal force.
  2.  前記状態方程式は、前記輪軸の左右方向の運動を記述した運動方程式と、前記台車の左右方向の運動を記述した運動方程式と、前記台車のヨーイング方向の運動を記述した運動方程式と、前記台車のローリング方向の運動を記述した運動方程式と、前記空気バネのローリング方向の運動を記述した運動方程式と、を用いて構成され、
     前記輪軸の左右方向の運動を記述した運動方程式は、前記輪軸のヨーイング方向の角変位に代えて、前記変換変数を用いて記述された運動方程式であり、
     前記台車のヨーイング方向の運動を記述した運動方程式は、前記輪軸のヨーイング方向の角変位および角速度に代えて、前記前後方向力を用いて記述された運動方程式であり、
     前記変換変数は、前記台車のヨーイング方向の角変位と前記輪軸のヨーイング方向の角変位との差で表されることを特徴とする請求項1に記載の検査システム。
    The equation of state describes a motion equation describing the lateral movement of the wheel shaft, a motion equation describing the lateral movement of the carriage, a motion equation describing the movement of the carriage in the yawing direction, and the carriage A motion equation describing the motion in the rolling direction and a motion equation describing the motion of the air spring in the rolling direction.
    The equation of motion describing the movement of the wheel shaft in the left-right direction is an equation of motion described using the conversion variable instead of the angular displacement in the yawing direction of the wheel shaft,
    The equation of motion describing the movement of the carriage in the yawing direction is an equation of motion described using the longitudinal force instead of the angular displacement and angular velocity of the wheel shaft in the yawing direction,
    The inspection system according to claim 1, wherein the conversion variable is represented by a difference between an angular displacement in a yawing direction of the carriage and an angular displacement in the yawing direction of the wheel shaft.
  3.  前記データ取得手段は、前記車体の左右方向の加速度の測定値を更に取得し、
     前記観測変数は、前記車体の左右方向の加速度を更に含み、
     前記状態変数は、前記車体の左右方向の変位および速度と、前記車体のヨーイング方向の角変位および角速度と、前記車体のローリング方向の角変位および角速度と、前記鉄道車両に取り付けられるヨーダンパのヨーイング方向の角変位と、を更に有し、
     前記フィルタ演算手段は、前記車体、前記台車、および前記輪軸の左右方向の加速度の測定値と計算値との差が最小になるときの前記状態変数を決定することを特徴とする請求項1または2に記載の検査システム。
    The data acquisition means further acquires a measured value of acceleration in the left-right direction of the vehicle body,
    The observation variable further includes a lateral acceleration of the vehicle body,
    The state variables include a lateral displacement and velocity of the vehicle body, an angular displacement and angular velocity in the yawing direction of the vehicle body, an angular displacement and angular velocity in the rolling direction of the vehicle body, and a yawing direction of a yaw damper attached to the railway vehicle. An angular displacement of
    The said filter calculating means determines the said state variable when the difference of the measured value and the calculated value of the acceleration of the left-right direction of the said vehicle body, the said cart, and the said wheel shaft becomes the minimum. 2. The inspection system according to 2.
  4.  前記状態方程式は、前記車体の左右方向の運動を記述した運動方程式と、前記車体のヨーイング方向の運動を記述した運動方程式と、前記車体のローリング方向の運動を記述した運動方程式と、前記ヨーダンパのヨーイング方向の運動を記述した運動方程式と、を更に用いて構成されることを特徴とする請求項3に記載の検査システム。 The equation of state describes a motion equation describing the lateral motion of the vehicle body, a motion equation describing the motion of the vehicle body in the yawing direction, a motion equation describing the motion of the vehicle body in the rolling direction, and the yaw damper The inspection system according to claim 3, further comprising a motion equation describing a motion in a yawing direction.
  5.  前記観測方程式は、前記輪軸の左右方向の運動を記述した運動方程式と、前記台車の左右方向の運動を記述した運動方程式と、を更に用いて構成され、
     前記輪軸の左右方向の運動を記述した運動方程式は、前記輪軸のヨーイング方向の角変位に代えて、前記変換変数を用いて記述された運動方程式であることを特徴とする請求項1~4の何れか1項に記載の検査システム。
    The observation equation is further configured by using a motion equation describing a lateral motion of the wheel shaft and a motion equation describing a lateral motion of the carriage,
    5. The equation of motion describing the left-right motion of the wheel shaft is a motion equation described using the conversion variable instead of angular displacement in the yawing direction of the wheel shaft. An inspection system given in any 1 paragraph.
  6.  前記観測方程式は、前記車体の左右方向の運動を記述した運動方程式を更に用いて構成されることを特徴とする請求項5に記載の検査システム。 6. The inspection system according to claim 5, wherein the observation equation is configured by further using a motion equation describing a lateral motion of the vehicle body.
  7.  前記軌道状態導出手段は、前記フィルタ演算手段により決定された前記状態変数である前記台車の左右方向の変位および速度と、前記フィルタ演算手段により決定された前記状態変数である前記輪軸の左右方向の変位および速度と、前記輪軸のヨーイング方向の角変位の前記推定値と、前記前後方向力の測定値と、前記輪軸のヨーイング方向の運動を記述した運動方程式と、に基づいて、前記軌道の通り狂い量を、前記軌道の状態を反映する情報として導出し、
     前記輪軸のヨーイング方向の運動を記述した運動方程式は、前記前後方向力および前記軌道の通り狂い量を変数として含むことを特徴とする請求項1~6の何れか1項に記載の検査システム。
    The trajectory state deriving means includes the horizontal displacement and speed of the carriage, which are the state variables determined by the filter calculating means, and the horizontal direction of the wheel shaft, which is the state variable determined by the filter calculating means. Based on the displacement and speed, the estimated value of the angular displacement of the wheel shaft in the yawing direction, the measured value of the longitudinal force, and the equation of motion describing the motion of the wheel shaft in the yawing direction. Deriving the amount of deviation as information reflecting the state of the orbit,
    The inspection system according to any one of claims 1 to 6, wherein the equation of motion describing the movement of the wheel shaft in the yawing direction includes the front-rear direction force and a deviation amount of the trajectory as variables.
  8.  前記軌道状態導出手段は、前記輪軸のヨーイング方向の角変位と、前記状態変数に含まれる前記輪軸の左右方向の速度と、に基づいて、前記輪軸に設けられた車輪と前記軌道との間における左右方向の応力である横圧を、前記軌道の状態を反映する情報として導出することを特徴とする請求項1~7の何れか1項に記載の検査システム。 The track state deriving unit is configured to determine whether the wheel shaft is positioned between the wheel provided on the wheel shaft and the track based on the angular displacement of the wheel shaft in the yawing direction and the speed in the left-right direction of the wheel shaft included in the state variable. The inspection system according to any one of claims 1 to 7, wherein a lateral pressure, which is a stress in a lateral direction, is derived as information reflecting the state of the orbit.
  9.  前記前後方向力は、1つの前記輪軸の前記左右方向の両側に取り付けられた2つの前記部材のそれぞれに生じる力の前記前後方向の成分のうち、相互に逆位相となる成分であることを特徴とする請求項1~8の何れか1項に記載の検査システム。 The front / rear direction force is a component having mutually opposite phases among the front / rear direction components of the force generated on each of the two members attached to both sides of the one wheel shaft in the left / right direction. The inspection system according to any one of claims 1 to 8.
  10.  前記部材は、前記軸箱を支持するリンク、または、前記軸箱を支持するリンクに取り付けられたゴムブッシュであることを特徴とする請求項9に記載の検査システム。 The inspection system according to claim 9, wherein the member is a link that supports the axle box or a rubber bush attached to the link that supports the axle box.
  11.  前記部材は、前記軸箱を支持する軸はり、または、前記軸箱を支持する軸はりに取り付けられたゴムブッシュであることを特徴とする請求項9に記載の検査システム。 10. The inspection system according to claim 9, wherein the member is a shaft beam that supports the shaft box or a rubber bush that is attached to a shaft beam that supports the shaft box.
  12.  前記部材は、前記軸箱を支持する板バネ、または、前記軸箱を支持する板バネに取り付けられたゴムブッシュであることを特徴とする請求項9に記載の検査システム。 10. The inspection system according to claim 9, wherein the member is a leaf spring that supports the axle box or a rubber bush attached to the leaf spring that supports the axle box.
  13.  前記フィルタは、カルマンフィルタであることを特徴とする請求項1~12の何れか1項に記載の検査システム。 The inspection system according to any one of claims 1 to 12, wherein the filter is a Kalman filter.
  14.  前記データ取得手段により取得された前記計測データを送信する送信手段と、
     前記送信手段により送信された前記計測データを受信する受信手段と、を更に有し、
     前記フィルタ演算手段は、前記受信手段により受信された前記計測データと、前記状態方程式と、前記観測方程式と、を用いて、前記状態変数を決定することを特徴とする請求項1~13の何れか1項に記載の検査システム。
    Transmitting means for transmitting the measurement data acquired by the data acquisition means;
    Receiving means for receiving the measurement data transmitted by the transmitting means,
    The filter calculating means determines the state variable using the measurement data received by the receiving means, the state equation, and the observation equation. The inspection system according to claim 1.
  15.  車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得工程と、
     前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算工程と、
     前記軌道の状態を反映する情報を導出する軌道状態導出工程と、を有し、
     前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、
     前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、
     前記部材は、軸箱を支持するための部材であり、
     前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、
     前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、
     前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、
     前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、
     前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、
     前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、
     前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、
     前記フィルタ演算工程は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、
     前記軌道状態導出工程は、前記フィルタ演算工程により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、
     前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とする検査方法。
    A data acquisition step of acquiring measurement data which is data of measurement values measured by running a railway vehicle having a vehicle body, a carriage, and a wheel shaft on a track;
    A filter operation step of determining a state variable that is a variable to be determined in the state equation by performing an operation using a filter that performs data assimilation using the measurement data, the state equation, and the observation equation; ,
    A trajectory state deriving step for deriving information reflecting the state of the trajectory,
    The measurement data includes a measurement value of acceleration in the left-right direction of the carriage and the wheel shaft, and a measurement value of longitudinal force,
    The left-right direction is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track,
    The front / rear direction force is the front / rear direction force generated in a member disposed between the wheel shaft and the carriage on which the wheel shaft is provided, and the angular displacement in the yawing direction of the wheel shaft and the wheel shaft provided by the wheel shaft. A force determined according to a difference from the angular displacement in the yawing direction of the carriage,
    The member is a member for supporting the axle box,
    The yawing direction is a rotation direction with the vertical direction as a rotation axis,
    The state equation is an equation described using the state variable, the longitudinal force, and a conversion variable.
    The state variables include a lateral displacement and speed of the carriage, an angular displacement and angular speed in the yawing direction of the carriage, an angular displacement and angular speed in the rolling direction of the carriage, and a lateral displacement and speed of the wheel shaft. And an angular displacement in the rolling direction of an air spring attached to the railway vehicle, and does not include an angular displacement and an angular velocity in the yawing direction of the wheel shaft,
    The rolling direction is a rotation direction with the front-rear direction as a rotation axis,
    The conversion variable is a variable for mutually converting the angular displacement in the yawing direction of the wheel shaft and the angular displacement in the yawing direction of the carriage,
    The observation equation is an equation described using an observation variable and the conversion variable,
    The observed variable includes a lateral acceleration of the carriage and the wheel axis,
    The filter calculation step includes a measurement value of the observation variable, the state equation in which the measurement value of the longitudinal force and the actual value of the conversion variable are substituted, and the observation equation in which the actual value of the conversion variable is substituted, To determine the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized,
    The track state derivation step uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculation step, and the actual value of the conversion variable, and the yawing direction of the wheel shaft. Deriving the information that reflects the state of the trajectory using the estimated value of the angular displacement in the yawing direction of the wheel shaft derived,
    The inspection method, wherein the actual value of the conversion variable is derived using the measured value of the longitudinal force.
  16.  車体と台車と輪軸とを有する鉄道車両を軌道上で走行させることにより測定される測定値のデータである計測データを取得するデータ取得工程と、
     前記計測データと、状態方程式と、観測方程式と、を用いて、データ同化を行うフィルタを用いた演算を行うことにより、前記状態方程式で決定すべき変数である状態変数を決定するフィルタ演算工程と、
     前記軌道の状態を反映する情報を導出する軌道状態導出工程と、を含む工程をコンピュータに実行させ、
     前記計測データは、前記台車および前記輪軸の左右方向の加速度の測定値と、前後方向力の測定値と、を含み、
     前記左右方向は、前記鉄道車両の走行方向に沿う方向である前後方向と、前記軌道に対し垂直な方向である上下方向との双方に垂直な方向であり、
     前記前後方向力は、前記輪軸と、当該輪軸が設けられる前記台車との間に配置される部材に生じる前記前後方向の力であって、前記輪軸のヨーイング方向の角変位と、当該輪軸が設けられる前記台車のヨーイング方向の角変位との差に応じて定まる力であり、
     前記部材は、軸箱を支持するための部材であり、
     前記ヨーイング方向は、前記上下方向を回動軸とする回動方向であり、
     前記状態方程式は、前記状態変数と、前記前後方向力と、変換変数と、を用いて記述される方程式であり、
     前記状態変数は、前記台車の左右方向の変位および速度と、前記台車のヨーイング方向の角変位および角速度と、前記台車のローリング方向の角変位および角速度と、前記輪軸の左右方向の変位および速度と、前記鉄道車両に取り付けられている空気バネのローリング方向の角変位と、を含み、前記輪軸のヨーイング方向の角変位および角速度を含まず、
     前記ローリング方向は、前記前後方向を回動軸とする回動方向であり、
     前記変換変数は、前記輪軸のヨーイング方向の角変位と前記台車のヨーイング方向の角変位とを相互に変換する変数であり、
     前記観測方程式は、観測変数と、前記変換変数と、を用いて記述される方程式であり、
     前記観測変数は、前記台車および前記輪軸の左右方向の加速度を含み、
     前記フィルタ演算工程は、前記観測変数の測定値と、前記前後方向力の測定値および前記変換変数の実績値を代入した前記状態方程式と、前記変換変数の実績値を代入した前記観測方程式と、を用いて、前記観測変数の測定値と計算値との誤差または当該誤差の期待値が最小になるときの前記状態変数を決定し、
     前記軌道状態導出工程は、前記フィルタ演算工程により決定された前記状態変数の一つである前記台車のヨーイング方向の角変位と、前記変換変数の実績値と、を用いて、前記輪軸のヨーイング方向の角変位の推定値を導出し、導出した前記輪軸のヨーイング方向の角変位の推定値を用いて前記軌道の状態を反映する情報を導出し、
     前記変換変数の実績値は、前記前後方向力の測定値を用いて導出されることを特徴とするプログラム。
     
    A data acquisition step of acquiring measurement data which is data of measurement values measured by running a railway vehicle having a vehicle body, a carriage, and a wheel shaft on a track;
    A filter operation step of determining a state variable that is a variable to be determined in the state equation by performing an operation using a filter that performs data assimilation using the measurement data, the state equation, and the observation equation; ,
    Causing a computer to execute a process including a trajectory state deriving step for deriving information reflecting the state of the trajectory,
    The measurement data includes a measurement value of acceleration in the left-right direction of the carriage and the wheel shaft, and a measurement value of longitudinal force,
    The left-right direction is a direction perpendicular to both the front-rear direction, which is a direction along the traveling direction of the railway vehicle, and the up-down direction, which is a direction perpendicular to the track,
    The front / rear direction force is the front / rear direction force generated in a member disposed between the wheel shaft and the carriage on which the wheel shaft is provided, and the angular displacement in the yawing direction of the wheel shaft and the wheel shaft provided by the wheel shaft. A force determined according to a difference from the angular displacement in the yawing direction of the carriage,
    The member is a member for supporting the axle box,
    The yawing direction is a rotation direction with the vertical direction as a rotation axis,
    The state equation is an equation described using the state variable, the longitudinal force, and a conversion variable.
    The state variables include a lateral displacement and speed of the carriage, an angular displacement and angular speed in the yawing direction of the carriage, an angular displacement and angular speed in the rolling direction of the carriage, and a lateral displacement and speed of the wheel shaft. And an angular displacement in the rolling direction of an air spring attached to the railway vehicle, and does not include an angular displacement and an angular velocity in the yawing direction of the wheel shaft,
    The rolling direction is a rotation direction with the front-rear direction as a rotation axis,
    The conversion variable is a variable for mutually converting the angular displacement in the yawing direction of the wheel shaft and the angular displacement in the yawing direction of the carriage,
    The observation equation is an equation described using an observation variable and the conversion variable,
    The observed variable includes a lateral acceleration of the carriage and the wheel axis,
    The filter calculation step includes a measurement value of the observation variable, the state equation in which the measurement value of the longitudinal force and the actual value of the conversion variable are substituted, and the observation equation in which the actual value of the conversion variable is substituted, To determine the state variable when the error between the measured value and the calculated value of the observed variable or the expected value of the error is minimized,
    The track state derivation step uses the angular displacement in the yawing direction of the carriage, which is one of the state variables determined by the filter calculation step, and the actual value of the conversion variable, and the yawing direction of the wheel shaft. Deriving the information that reflects the state of the trajectory using the estimated value of the angular displacement in the yawing direction of the wheel shaft derived,
    The actual value of the conversion variable is derived using the measured value of the longitudinal force.
PCT/JP2017/011010 2016-03-23 2017-03-17 Inspection system, inspection method and program WO2017164133A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018507314A JP6547902B2 (en) 2016-03-23 2017-03-17 Inspection system, inspection method, and program
EP17770175.2A EP3434552B1 (en) 2016-03-23 2017-03-17 Inspection system, inspection method and program
CN201780016557.6A CN108778888B (en) 2016-03-23 2017-03-17 Inspection system, inspection method and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058638 2016-03-23
JP2016-058638 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017164133A1 true WO2017164133A1 (en) 2017-09-28

Family

ID=59899524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011010 WO2017164133A1 (en) 2016-03-23 2017-03-17 Inspection system, inspection method and program

Country Status (4)

Country Link
EP (1) EP3434552B1 (en)
JP (1) JP6547902B2 (en)
CN (1) CN108778888B (en)
WO (1) WO2017164133A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043859A1 (en) * 2017-08-31 2019-03-07 新日鐵住金株式会社 Inspection system, inspection method, and program
JP2019119306A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Contact angle estimation system and contact angle estimation method and program
WO2020008525A1 (en) 2018-07-03 2020-01-09 日本製鉄株式会社 Inspection system, inspection method, and program
WO2020027045A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Inspection system, inspecting method, and program
WO2020121943A1 (en) 2018-12-10 2020-06-18 日本製鉄株式会社 Inspection system, inspecting method, and program
JP2020172118A (en) * 2019-04-08 2020-10-22 東海旅客鉄道株式会社 Track irregularity measuring device
JPWO2020261959A1 (en) * 2019-06-28 2020-12-30
JP2021506677A (en) * 2018-08-01 2021-02-22 中▲車▼青▲島▼四方▲機車車▼輌股▲分▼有限公司Crrc Qingdao Sifang Co., Ltd. Electromagnetic lateral active vibration damping system, and its control method and equipment
US11170146B2 (en) 2018-03-27 2021-11-09 Nippon Steel Corporation Analysis system, analysis method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199700A1 (en) * 2009-08-13 2012-08-09 Technische Universiteit Delft Method and Instrumentation for Detection of Rail Defects, in Particular Rail Top Defects
JP2014043149A (en) * 2012-08-24 2014-03-13 Tokyo Keiki Inc Track position data giving system and track position data giving method
JP2014126451A (en) * 2012-12-26 2014-07-07 Railway Technical Research Institute Method of collectively displaying train vehicle ride comfort analysis and system therefor
JP2015227834A (en) * 2014-06-02 2015-12-17 日本信号株式会社 Track inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048601A1 (en) * 2008-09-23 2010-04-08 Bombardier Transportation Gmbh A method for determining a property of a route location parameter
KR101870482B1 (en) * 2014-01-27 2018-06-22 엘에스산전 주식회사 Apparatus for estimating lateral forces of railroad vehicles
CN104309640A (en) * 2014-09-29 2015-01-28 中国神华能源股份有限公司 Power performance detection device and system for railway subgrade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199700A1 (en) * 2009-08-13 2012-08-09 Technische Universiteit Delft Method and Instrumentation for Detection of Rail Defects, in Particular Rail Top Defects
JP2014043149A (en) * 2012-08-24 2014-03-13 Tokyo Keiki Inc Track position data giving system and track position data giving method
JP2014126451A (en) * 2012-12-26 2014-07-07 Railway Technical Research Institute Method of collectively displaying train vehicle ride comfort analysis and system therefor
JP2015227834A (en) * 2014-06-02 2015-12-17 日本信号株式会社 Track inspection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434552A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043859A1 (en) * 2017-08-31 2019-03-07 新日鐵住金株式会社 Inspection system, inspection method, and program
JP2019119306A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Contact angle estimation system and contact angle estimation method and program
US11170146B2 (en) 2018-03-27 2021-11-09 Nippon Steel Corporation Analysis system, analysis method, and program
WO2020008525A1 (en) 2018-07-03 2020-01-09 日本製鉄株式会社 Inspection system, inspection method, and program
JPWO2020008525A1 (en) * 2018-07-03 2021-06-24 日本製鉄株式会社 Inspection system, inspection method, and program
JP7017179B2 (en) 2018-07-03 2022-02-08 日本製鉄株式会社 Inspection system, inspection method, and program
WO2020027045A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Inspection system, inspecting method, and program
CN112740010B (en) * 2018-07-31 2023-10-27 日本制铁株式会社 Inspection system, inspection method, and storage medium
EP3832284A4 (en) * 2018-07-31 2022-03-16 Nippon Steel Corporation Inspection system, inspecting method, and program
CN112740010A (en) * 2018-07-31 2021-04-30 日本制铁株式会社 Inspection system, inspection method, and program
JP2021506677A (en) * 2018-08-01 2021-02-22 中▲車▼青▲島▼四方▲機車車▼輌股▲分▼有限公司Crrc Qingdao Sifang Co., Ltd. Electromagnetic lateral active vibration damping system, and its control method and equipment
US10960901B2 (en) 2018-08-01 2021-03-30 Crrc Qingdao Sifang Co., Ltd. Electromagnetic transverse active damping system, and control method and apparatus therefor
JP7088315B2 (en) 2018-12-10 2022-06-21 日本製鉄株式会社 Inspection system, inspection method, and program
JPWO2020121943A1 (en) * 2018-12-10 2021-10-28 日本製鉄株式会社 Inspection system, inspection method, and program
EP3895955A4 (en) * 2018-12-10 2022-10-12 Nippon Steel Corporation Inspection system, inspecting method, and program
WO2020121943A1 (en) 2018-12-10 2020-06-18 日本製鉄株式会社 Inspection system, inspecting method, and program
JP2020172118A (en) * 2019-04-08 2020-10-22 東海旅客鉄道株式会社 Track irregularity measuring device
JP7253186B2 (en) 2019-04-08 2023-04-06 東海旅客鉄道株式会社 Track irregularity measuring device
JPWO2020261959A1 (en) * 2019-06-28 2020-12-30
JP7184191B2 (en) 2019-06-28 2022-12-06 日本製鉄株式会社 Estimation device, estimation method, and program

Also Published As

Publication number Publication date
EP3434552A4 (en) 2020-01-08
EP3434552B1 (en) 2021-05-05
CN108778888B (en) 2019-11-12
CN108778888A (en) 2018-11-09
JP6547902B2 (en) 2019-07-24
EP3434552A1 (en) 2019-01-30
JPWO2017164133A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017164133A1 (en) Inspection system, inspection method and program
JP6747598B2 (en) Inspection system, inspection method, and program
CN110874450B (en) Railway bridge track irregularity calculation method based on vehicle-mounted monitoring
JP2001063570A (en) Track measuring device using inertial mid-chord offset method
Muñoz et al. Estimation of lateral track irregularity through Kalman filtering techniques
CN111444574B (en) Sensor layout optimization method based on dynamics analysis
JP2014002013A (en) Vehicle test method
Farkas Measurement of railway track geometry: A state-of-the-art review
JP7017179B2 (en) Inspection system, inspection method, and program
JP7024874B6 (en) Inspection systems, inspection methods, and programs
Mei et al. Kalman filter for the state estimation of a 2-axle railway vehicle
JP7088315B2 (en) Inspection system, inspection method, and program
JP6939540B2 (en) Contact angle estimation system, contact angle estimation method, and program
JP3778950B2 (en) Snake behavior control device for railcar bogie
JP7099637B2 (en) Inspection system, inspection method, and program
Li Measuring systems for active steering of railway vehicles
JP7328779B2 (en) Abnormality detection device for beam type bogie
JP7319801B2 (en) Wheel load measuring device for beam type bogie
JP6530329B2 (en) Abnormality detection method and abnormality detection device for secondary spring system
WO2024047741A1 (en) Inference method, inference device, and inference program
CN116956569A (en) Method and device for determining transverse force of wheel track
JP2023086002A (en) Abnormality detection device and abnormality detection method
CN109828550A (en) A kind of track column wheel based on fault tolerance analysis is to lateral stability control method
JP2020106389A (en) Rolling stock abnormality detector and system equipped with the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507314

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770175

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770175

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770175

Country of ref document: EP

Kind code of ref document: A1