JP4979360B2 - Railway vehicle - Google Patents

Railway vehicle Download PDF

Info

Publication number
JP4979360B2
JP4979360B2 JP2006332337A JP2006332337A JP4979360B2 JP 4979360 B2 JP4979360 B2 JP 4979360B2 JP 2006332337 A JP2006332337 A JP 2006332337A JP 2006332337 A JP2006332337 A JP 2006332337A JP 4979360 B2 JP4979360 B2 JP 4979360B2
Authority
JP
Japan
Prior art keywords
air spring
vehicle body
pendulum
air
gauge side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006332337A
Other languages
Japanese (ja)
Other versions
JP2008143335A5 (en
JP2008143335A (en
Inventor
博彦 柿沼
巌 佐藤
禎之 井原
頼光 佐藤
匡 稲場
行伸 河野
嘉彦 尾崎
秀明 江崎
真明 平山
聡子 中垣
英樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Railway Co
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Hokkaido Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Hokkaido Railway Co filed Critical Kawasaki Jukogyo KK
Priority to JP2006332337A priority Critical patent/JP4979360B2/en
Publication of JP2008143335A publication Critical patent/JP2008143335A/en
Publication of JP2008143335A5 publication Critical patent/JP2008143335A5/ja
Application granted granted Critical
Publication of JP4979360B2 publication Critical patent/JP4979360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

この発明は、台車と、この台車の上方に配置された車体と、両者の間に振子梁が設けられ、曲線軌道走行時に前記車体の重心に作用する遠心力を利用して、振子回転中心を中心として前記車体の左右方向における自然振子運動を実現する自然振子機構と、前記振子梁と車体の間に左右に配置された空気ばねによる空気ばね式強制車体傾斜手段とを備え、前記自然振子機構および前記強制車体傾斜手段による複合的な車体傾斜機能を有する鉄道車両に関するものである。 According to the present invention, a pendulum, a car body disposed above the car, and a pendulum beam are provided between the two, and a centrifugal force acting on the center of gravity of the car body when traveling on a curved track is used to determine the pendulum rotation center. A natural pendulum mechanism that realizes a natural pendulum motion in the left-right direction of the vehicle body as a center, and an air spring type forced vehicle body tilting means that uses air springs arranged on the left and right between the pendulum beam and the vehicle body, and the natural pendulum mechanism And a railway vehicle having a complex vehicle body tilting function by the forced vehicle body tilting means.

車両が曲線区間を走行する際に、曲線の半径方向外方へ遠心力が作用し、乗り心地を悪くしたり、外軌側線路の輪重が増加したり、横圧力が増加したりするなどの不都合が生じる。そこで、遠心力を打ち消すために、一般に曲線区間では内外軌道に高低差(カント)が設けられている。しかし、カントだけで遠心力を完全に打ち消すようにすると、車両の傾斜が大きくなり、車両が曲線上に停車した場合に乗客があまりに不快感を感じたり、また内軌側方向への強い横風を車両が受けた場合に車両が内軌側へ転覆するおそれがある。このため、通常、曲線区間におけるカント量は不足気味に設定されている。   When the vehicle travels in a curved section, centrifugal force acts outward in the radial direction of the curve, resulting in poor ride comfort, increased wheel load on the outer track, increased lateral pressure, etc. Inconvenience occurs. Therefore, in order to cancel out the centrifugal force, generally, a height difference (cant) is provided on the inner and outer tracks in the curved section. However, if the centrifugal force is completely canceled only by the cant, the inclination of the vehicle increases, and when the vehicle stops on the curve, the passenger feels too uncomfortable, or a strong crosswind toward the inner gauge side. When the vehicle receives it, the vehicle may overturn to the inner gauge side. For this reason, the cant amount in the curve section is usually set to be deficient.

こうした曲線区間におけるカント量の不足を補うために、車両が曲線区間を走行するときに車体を内軌側に傾斜させる車体傾斜式鉄道車両が開発され実用化されている。   In order to compensate for the shortage of the cant amount in such a curved section, a body-tilted railway vehicle that inclines the vehicle body toward the inner track when the vehicle travels in the curved section has been developed and put into practical use.

この種の鉄道車両には、振子回転中心を中心として、台車の台車枠上にコロ、ベアリングローラまたリンク式等で、振子梁を遥動可能に支持し、曲線走行時に車体に作用する重力と遠心力の釣り合いの関係により車体が内軌側へ傾斜し、乗客に作用する車幅方向の遠心加速度を最小限に抑え、乗り心地を向上させる自然振子式鉄道車両がある。 In this type of railway vehicle, the pendulum beam is supported by a roller, bearing roller, link type, etc. on the bogie frame around the center of the pendulum rotation so that the pendulum beam can swing, There is a natural pendulum type railway vehicle that improves the riding comfort by minimizing the centrifugal acceleration in the vehicle width direction that acts on passengers by tilting the vehicle body toward the inner track due to the balance of centrifugal force.

その他に、自然振子の振り遅れ、特に振子梁を揺動可能に支持するコロ等の回転抵抗と車体の慣性力により、曲線軌道進入後に遠心力を受けてから急に揺動を開始する振り遅れが乗り心地を悪くするのを改善するために、振子梁と台車との間にアクチュエータ(空気シリンダ)を介設し、曲線区間への緩和曲線入口走行時にアクチュエータによって振子梁を強制的に内軌側へ傾斜させ、曲線区間から緩和曲線出口走行時にアクチュエータによって振子梁を強制的に外軌側へ傾斜させることにして、振子の振り遅れを防止するようにしたアクチュエータ付き振子台車がある(例えば、特許文献1参照)。 In addition, natural pendulum swing delay, especially swing delay that suddenly starts swinging after receiving centrifugal force after entering a curved track due to the rotational resistance of the roller that supports the pendulum beam so as to swing and the inertial force of the vehicle body In order to improve the ride comfort, an actuator (air cylinder) is interposed between the pendulum beam and the carriage frame, and the pendulum beam is forcibly inserted by the actuator when traveling at the relaxation curve entrance to the curved section. There is a pendulum trolley with an actuator that prevents the pendulum from being delayed by tilting it toward the gauge side and forcibly tilting the pendulum beam toward the outer gauge side by the actuator when traveling from the curve section to the relaxation curve exit (for example, , See Patent Document 1).

この種の振子式鉄道車両に関する他の先行技術として「台車上に車体を左右に傾斜可能に支持し、走行速度を検知して記憶している曲線情報に基づいて車体を傾斜すべき量を演算し、台車と車体間に設けたシリンダを作動させて車体を傾斜させるようにした車体傾斜制御装置において、該シリンダの伸縮量を検知する変位センサを設けて実際の車体傾斜角度を演算し、車体傾斜の起動時において、車体の慣性力などの影響を受けなくなる所定角度になるまでは実際の車体傾斜角度に従って車体を傾斜させる制御信号を送出し、車体傾斜の停止時は、実際の車体傾斜角度が所定の値になった後に車体傾斜を停止させる制御信号を送出するようにした」アクチュエータ(シリンダ)による振子式鉄道車両の車体傾斜制御装置が提案されている(例えば、特許文献2参照)。 Another prior art related to this type of pendulum type railway vehicle is “the body is supported on a carriage so that it can be tilted to the left and right, and the amount by which the body should be tilted is calculated based on the curve information stored by detecting the travel speed. In a vehicle body tilt control device in which a cylinder provided between the carriage and the vehicle body is operated to tilt the vehicle body, a displacement sensor for detecting the expansion / contraction amount of the cylinder is provided to calculate an actual vehicle body tilt angle. When the tilt starts, a control signal is sent to tilt the vehicle according to the actual vehicle tilt angle until it reaches a predetermined angle that is not affected by the inertial force of the vehicle body. When the vehicle tilt is stopped, the actual vehicle tilt angle (example body tilt control apparatus is proposed in pendulum railroad vehicle according to the control signal so as to deliver the "actuators (cylinders) for stopping the vehicle body inclination after but has reached a predetermined value If, see Patent Document 2).

その他の先行技術に「台車とこの上方に配置された車体とを有する鉄道車両において、曲線軌道走行時に車体の重心に作用する遠心力を利用して、所定の振子回転中心を中心とした車体の左右における自然振子運動を実現させる自然振子機構(ローラおよび振子梁)と、車体を左右に強制的に傾斜させる空気ばねを用いた強制傾斜手段とを備え、自然振子機構および強制傾斜手段による複合的な車体傾斜機能により、曲線軌道走行時に車体に発生する左右方向の加速度を打ち消して曲線走行速度を増大させる」複合的な車体傾斜鉄道車両が提案されている(例えば、特許文献3参照)。   As another prior art, “in a railway vehicle having a bogie and a vehicle body disposed above this, a centrifugal force acting on the center of gravity of the vehicle body when traveling on a curved track is used to make a vehicle body centered on a predetermined center of rotation of the pendulum. It has a natural pendulum mechanism (roller and pendulum beam) that realizes natural pendulum motion on the left and right, and a forced tilting means that uses an air spring that forcibly tilts the vehicle body to the left and right. A complex vehicle body tilt railway vehicle has been proposed that cancels the lateral acceleration generated in the vehicle body when traveling on a curved track and increases the curve traveling speed by a simple vehicle body tilt function (see, for example, Patent Document 3).

また、振子式鉄道車両以外の先行技術として「車体が左右の空気ばねを介して台車に支持され、曲線部通過時に、旋回方向外側および内側の空気ばねの高さ寸法を増減して車体の左右傾斜角を制御して、車体における遠心力および向心力が相互に相殺されるようにした」鉄道車両の車体傾斜角制御装置が提案されている(例えば、特許文献4参照)。この制御装置には、曲線部通過時に空気ばねの上面部と下面部との口径の相違に因る台車に対する車体の左右方向変位力に対抗し、車体を左右方向中心位置にほぼ保持する力を発生する保持力発生手段が設けられている。
特公昭60−52018号公報(第2頁〜第4頁および図3〜図5) 特開2002−67944号公報(第3頁・第4頁および図1) 特開2005−193773号公報(第3頁〜第5頁および図1) 特開平11−198806号公報(第2頁・第3頁および図1)
Further, as a prior art other than the pendulum type railway vehicle, “the vehicle body is supported by the carriage via the left and right air springs, and when passing the curved portion, the height of the air springs on the outer side and the inner side in the turning direction is increased or decreased. There has been proposed a vehicle body tilt angle control device for a railway vehicle in which the tilt angle is controlled so that the centrifugal force and the centripetal force cancel each other out (see, for example, Patent Document 4). This control device has a force that substantially holds the vehicle body at the center position in the left-right direction against the lateral displacement force of the vehicle body against the carriage due to the difference in the diameter between the upper surface portion and the lower surface portion of the air spring when passing the curved portion. A holding force generating means is provided.
Japanese Patent Publication No. 60-52018 (pages 2 to 4 and FIGS. 3 to 5) JP 2002-67944 (pages 3 and 4 and FIG. 1) Japanese Patent Laying-Open No. 2005-193773 (pages 3 to 5 and FIG. 1) Japanese Patent Laid-Open No. 11-198806 (Pages 2 and 3 and FIG. 1)

しかしながら、上記した従来の振子式鉄道車両や先行技術として記載の車体傾斜制御装置には、次のような点で課題が残されている。   However, the above-described conventional pendulum railway vehicle and the vehicle body tilt control device described as the prior art still have problems in the following points.

1)自然振子式鉄道車両:
a)車体の慣性モーメントの影響により振子の振れ遅れが生じ、その際に乗客が受ける遠心力が増大するため、乗り心地が充分には向上しない。
1) Natural pendulum railway vehicle:
a) The pendulum shake delay occurs due to the influence of the inertial moment of the vehicle body, and the centrifugal force experienced by the passenger increases at that time, so the ride comfort is not sufficiently improved.

b)振子車両の構造上、車体および振子梁が左右方向に揺動し易く、軌道の狂いやポイント通過時やカント量(角度)の不足した曲線部の通過時などに発生するローリング振れが残る傾向がある。これを解決する対策として、台車と振子梁との間にダンパを介設する方法でこのローリング振れを押える方法があるが、ダンパを取付けた場合はa)に記載の振子の振れ遅れを助長する。   b) Due to the structure of the pendulum vehicle, the car body and the pendulum beam are likely to swing in the left-right direction, leaving rolling runout that occurs when the trajectory is out of place, passing through a point, or passing through a curved part where the amount of cant (angle) is insufficient. Tend. As a measure to solve this, there is a method of suppressing this rolling runout by inserting a damper between the carriage and the pendulum beam, but when a damper is attached, the pendulum runout described in a) is promoted. .

2)特許文献1のアクチュエータ(空気シリンダ)付き振子式鉄道車両:
一般的には「制御付き振子」といわれているタイプであるが、この場合は、空気ばねとは別に空気シリンダが必要になるうえ、空気シリンダの作動を曲線軌道の程度に応じて、空気シリンダの作動量を制御する必要が有る。
2) Pendulum rail vehicle with actuator (air cylinder) of Patent Document 1:
In general, this type is called a “pendulum with control.” In this case, an air cylinder is required in addition to the air spring, and the operation of the air cylinder depends on the degree of the curved track. It is necessary to control the operation amount.

3)特許文献2の制御装置:
a)振子式台車と車体との間に油圧や空気圧等のシリンダからなるアクチュエータを介設し、曲線区間の走行時に車体を強制的に特定方向(内軌側または外軌側)に傾斜させることにより車体に作用する遠心力を最小限に抑えることができるが、そのための専用機器を別途追加して設ける必要があり、システムが煩雑で大型化する。
3) Control device of Patent Document 2:
a) An actuator consisting of a cylinder such as hydraulic or pneumatic pressure is interposed between the pendulum type carriage and the vehicle body, and the vehicle body is forcibly inclined in a specific direction (inner or outer track side) when traveling in a curved section. The centrifugal force acting on the vehicle body can be minimized by this, but it is necessary to additionally provide a dedicated device for that purpose, which makes the system complicated and large.

b)曲線走行時に半径方向外方に作用する遠心力と、車体が内軌側に傾斜することで作用する向心力との釣り合いにより本曲線区間で最適な傾斜角度が決定する自然振子機構の場合とは異なり、アクチュエータで車体を傾斜させる場合に安全でかつ乗り心地を満足できるものにするには、正確にかつリアルタイムで車体の傾斜角度を導出しアクチュエータを的確に制御する必要がある。   b) In the case of a natural pendulum mechanism in which the optimum inclination angle is determined in the section of this curve by the balance between the centrifugal force acting radially outward when traveling on a curve and the centripetal force acting when the vehicle body tilts toward the inner track On the other hand, in order to achieve a safe and comfortable ride when the vehicle body is tilted by the actuator, it is necessary to accurately control the actuator by deriving the vehicle tilt angle in real time.

4)特許文献3の自然振子機構と空気ばね式の強制車体傾斜機構を持つ複合式車体傾斜機構を持つ鉄道車両:
台車とこの上方に配置された車体とを有する鉄道車両において、曲線軌道走行時に車体の重心に作用する遠心力を利用して、所定の振子回転中心を中心とした車体の左右における自然振子運動を実現させる自然振子機構(ローラおよび振子梁)と、車体を左右に強制的に傾斜させる空気ばねを用いた強制傾斜手段とを備え、自然振子機構および強制傾斜手段による複合的な車体傾斜機能により、曲線軌道走行時に車体に発生する左右方向の加速度を打ち消して曲線走行速度を増大させる。また台車と振子梁間のエアシリンダ装置は、制御装置により駆動制御されることにより、自然振子機構を構成する振子梁の左右方向の移動範囲を制限するものである。振子梁の自然振子運動により車体が左側又は右側に傾斜するが、制御装置がこのエアシリンダ装置を駆動することにより振子梁の左右方向の移動範囲が制限される。自然振子機構による車体の傾斜角が約8°に達したことが検出されると、制御装置は、その検出信号を受けてエアシリンダ装置を駆動して自然振子運動を停止させる。その後、制御装置は、電磁弁を制御して、空気ばねに圧縮空気を供給することにより車体を強制的に傾斜させる。つまり、車体は自然振子機構によって車体が8°傾斜したのちに、空気ばねによってさらに2〜3°傾斜させられる。したがって、基本的には自然振子機構は遠心力と重力の釣り合いで傾斜を行った後に、空気ばね式車体傾斜を作動させるため、両車体傾斜機構が関連をもって同時に作動するものではない。
4) Railway vehicle having a combined vehicle body tilt mechanism having a natural pendulum mechanism of Patent Document 3 and an air spring type forced vehicle body tilt mechanism:
In a railway vehicle having a bogie and a vehicle body disposed above, a natural pendulum motion on the left and right sides of the vehicle body around a predetermined pendulum rotation center is utilized using a centrifugal force acting on the center of gravity of the vehicle body when traveling on a curved track. It has a natural pendulum mechanism (roller and pendulum beam) to be realized and a forced tilting means using an air spring that forcibly tilts the vehicle body to the left and right. The curve traveling speed is increased by canceling the lateral acceleration generated in the vehicle body when traveling on a curved track. The air cylinder device between the carriage and the pendulum beam is driven and controlled by the control device, thereby limiting the range of movement of the pendulum beam that forms the natural pendulum mechanism in the left-right direction. Although the vehicle body tilts to the left or right side due to the natural pendulum movement of the pendulum beam, the movement range of the pendulum beam in the left-right direction is limited by driving the air cylinder device. When it is detected that the inclination angle of the vehicle body by the natural pendulum mechanism has reached about 8 °, the control device receives the detection signal and drives the air cylinder device to stop the natural pendulum motion. Thereafter, the control device controls the electromagnetic valve to forcibly tilt the vehicle body by supplying compressed air to the air spring. That is, the vehicle body is further tilted by 2 to 3 ° by the air spring after the vehicle body is tilted by 8 ° by the natural pendulum mechanism. Therefore, basically, the natural pendulum mechanism operates the air spring type vehicle body inclination after performing the inclination with the balance between the centrifugal force and the gravity. Therefore, both the vehicle body inclination mechanisms do not operate simultaneously in relation to each other.

5)特許文献4の車体傾斜角制御装置:
空気ばねの上昇で車体を傾斜し、この傾斜角を大きくするには、空気ばねの高さをかなり高くする必要がある。しかし、空気ばねの高さを余り高くしすぎると、車体の重心位置が上方へ移動するので、車両が転覆するおそれが生じるとともに、車体傾斜の度合いを多くすると車両限界との関係から、車体上部がその度合いに応じて、上方に行くほど車体幅を狭くせざるを得ないため客室空間が狭くなるため、車体傾斜の角度の制限のある方式である。
5) The vehicle body tilt angle control device of Patent Document 4:
In order to incline the vehicle body by raising the air spring and increase the inclination angle, it is necessary to make the height of the air spring considerably high. However, if the height of the air spring is too high, the position of the center of gravity of the vehicle body will move upward, which may cause the vehicle to overturn, and if the degree of vehicle body inclination is increased, However, depending on the degree, the width of the vehicle body must be narrowed as it goes upward, and the cabin space is narrowed.

この発明は上述の点に鑑みなされたもので、車両が曲線軌道(正確には入口緩和曲線)に進入する直前に空気ばね式強制車体傾斜装置によって車体を内軌側へ傾斜させることにより振子機構が働く前に、車体傾斜を開始し、緩和曲線に入る前より自然振子機構により振子中心を中心に車体と振子梁を遠心力と重力による振子の作用力により自然に最適な傾斜角に傾斜させることができ、出口緩和曲線進入直前に空気ばね式強制車体傾斜装置によって車体を外軌側へ傾斜させることにより、振子梁の振れを支援して振り遅れの発生を補正するとともに、複雑な制御が不要で、既存の空気ばね付き振子式鉄道車両からも簡単に改良できる複合的な車体傾斜機構を有する鉄道車両を提供しようとする。 The present invention has been made in view of the above points, and the pendulum mechanism is configured by inclining the vehicle body toward the inner track side by the air spring type forced vehicle body tilting device immediately before the vehicle enters the curved track (more precisely, the entrance relaxation curve). Before the machine works, the body starts tilting, and before entering the relaxation curve, the body and pendulum beam are naturally tilted to the optimum tilt angle by the pendulum acting force due to centrifugal force and gravity centered on the pendulum center. it can be, the body just before the exit transition curve entrance by the air spring force body tilt device Ri by the tilting to the curve outside, while correcting the generation of swing late to help runout vibration child beams, complex Therefore, the present invention aims to provide a railway vehicle having a complex vehicle body tilt mechanism that does not require any control and can be easily improved from the existing pendulum railway vehicle with air spring.

上記の目的を達成するために本発明にかかる鉄道車両は、)台車と、この台車の上方に配置された車体と、両者の間に振子梁が設けられ、曲線軌道走行時に前記車体の重心に作用する遠心力を利用して、振子回転中心を中心とした前記車体の自然振子運動を実現する自然振子機構と、前記振子梁と車体の間に左右に配置された空気ばねによる空気ばね式強制車体傾斜機構とを備え、前記自然振子機構および前記空気ばね式強制車体傾斜機構による複合的な車体傾斜機能を有する鉄道車両において、b)前記空気ばね式強制車体傾斜機構は、入口緩和曲線進入の直前に前記車体を内軌側へ傾斜させた後すぐ(通常、数秒以内)に元の姿勢に戻す一方、出口緩和曲線進入の直前の一定時間前に前記車体を外軌側へ傾斜させた後すぐ(通常、数秒以内)に元の姿勢に戻すことにより、前記自然振子機構の振れを支援する構成からなることを特徴とする。 In order to achieve the above object, a railway vehicle according to the present invention comprises: a ) a bogie, a vehicle body disposed above the bogie, and a pendulum beam provided between the two. A natural pendulum mechanism that realizes the natural pendulum motion of the vehicle body around the center of the pendulum rotation by utilizing a centrifugal force acting on the air spring, and an air spring type using an air spring disposed on the left and right between the pendulum beam and the vehicle body A railway vehicle having a complex vehicle body tilt function by the natural pendulum mechanism and the air spring type forced vehicle body tilt mechanism; b) the air spring type forced vehicle body tilt mechanism is configured to enter an entrance relaxation curve. Immediately after tilting the vehicle body to the inner gauge side immediately before (usually within a few seconds), the vehicle body is tilted to the outer gauge side a certain time before entering the exit relaxation curve. Soon after (usually number By returning to the original posture within), characterized by comprising the structure for supporting the deflection of the natural pendulum mechanism.

上記の構成を有する本発明にかかる鉄道車両によれば、入口緩和曲線進入の直前に車体が外軌側空気ばねの上昇(あるいは外軌側空気ばねの上昇と内軌側空気ばねの下降)により内軌側へ傾斜するので車体の重心が振子中心から見て内軌側に移動するため、振子機構の振子作用により内軌側に車体傾斜が開始されたのちに、入口緩和曲線に車両が進入するため振子中心を中心として振子梁が重力と遠心力の作用力により自然に最適な振子角に傾動する一方、出口緩和曲線進入直前には車体が内軌側空気ばねの上昇(あるいは内軌側空気ばねの上昇と外軌側空気ばねの下降)で外軌側へ傾斜するので車体の重心が振子中心から見て外軌側に移動するため、振子機構の振子作用により外軌側に車体傾斜が開始され、その後に出口緩和曲線に進入するため振子梁が振子中心を中心として重力と遠心力の作用力により自然に最適な振子角に傾動する。なお、空気ばね制御装置による傾斜角度の制御は一切不要である。また、入口緩和曲線進入直前(例えば進入する2秒前に)で車体を内軌側へ傾斜させたのちに元の姿勢に戻せばよい。そのため、本システムを制御するための地点検知装置から車両がN秒後に緩和曲線(出口・入口とも)に進入する情報と曲がりの方向に関する情報だけを出力可能な制御装置と、空気ばね式強制車体傾斜機構と接続させた構成であればよい。つまり、空気ばねに対して車体傾斜角を逐時計算出力を行うものでなく、トリガーとしての情報を出力するだけでよい。なお、地点検知装置は、予め記録された路線データ(曲線の位置データとその曲線の曲率、カント等)とATS等の地上子からの地上信号やGPS等の位置情報と車両の走行距離(例えば、地上子からの信号を受信した後の走行距離)の比較から車両が走行している位置を検知する装置である。 According to the railway vehicle according to the present invention having the above-described configuration, the vehicle body is raised by the rise of the outer gauge side air spring (or the rise of the outer gauge side air spring and the lowering of the inner gauge side air spring) immediately before entering the entrance relaxation curve. Since the center of gravity of the vehicle body moves toward the inner rail as seen from the center of the pendulum, the vehicle enters the entrance relaxation curve after the vehicle body starts to tilt toward the inner rail due to the pendulum action of the pendulum mechanism. Therefore, the pendulum beam naturally tilts to the optimum pendulum angle by the force of gravity and centrifugal force around the center of the pendulum, while the vehicle body rises on the inner gauge side air spring (or on the inner gauge side) immediately before entering the exit relaxation curve. since the vehicle body center of gravity is moved to the curve outside as viewed from the pendulum center so inclined to the curve outside the falling rising and the curve outside air spring of the air spring), the vehicle body tilt to the curve outside the pendulum action of the pendulum mechanism Starts and then enters the exit relaxation curve Pendulum beam is tilted naturally optimal pendulum angle by the action force of gravity and centrifugal force around the pendulum center for. It is not necessary to control the tilt angle by the air spring control device. Further, the vehicle body may be returned to the original posture after inclining the vehicle body toward the inner track immediately before entering the entrance relaxation curve (for example, 2 seconds before entering). Therefore, a control device capable of outputting only the information about the direction of the curve and the information that the vehicle enters the relaxation curve (both exit and entrance) after N seconds from the point detection device for controlling this system, and the air spring type forced vehicle body Any structure connected to the tilt mechanism may be used. That is, it is only necessary to output information as a trigger, instead of performing calculation output of the vehicle body inclination angle with respect to the air spring. In addition, the point detection device can record route data (curve position data and curvature of the curve, cant, etc.) recorded in advance, ground signals from ground elements such as ATS, position information such as GPS, and vehicle travel distance (for example, This is a device for detecting the position where the vehicle is traveling from the comparison of the traveling distance after receiving a signal from the ground unit.

請求項2に記載のように、前記台車と前記振子梁との間にパッシブダンパを介設することが望ましい。請求項1記載のように、自然振子式鉄道車両の振り遅れを補正すべく、曲線軌道の入口緩和曲線に進入する直前や出口緩和曲線に進入する直前に、空気ばね式強制車体傾斜機構により車体を振子梁上で一方へ傾斜させる場合、質量の大きい車体が傾斜を行う力を受けて、振子梁が強制車体傾斜の反作用によって反対方向への回転を行うことを抑制するために、パッシブダンパが有効に機能する。また曲線軌道走行時以外、つまり直線軌道および極めて曲率の緩い曲線軌道の走行時にも、パッシブダンパにより台車と振子梁間の相対的な揺れ(自然振子式鉄道車両に特有のローリング揺れ)が抑制(軽減)される。 As described in claim 2, it is desirable to provide a passive damper between the carriage and the pendulum beam. As in claim 1, wherein, in order to correct the swing delay of natural pendulum railroad vehicle, immediately before going into the last minute and the outlet transition curve entering the inlet transition curve of the curved track, the air spring force vehicle body tilt mechanism When tilting the car body to one side on the pendulum beam, passive dampers are used to prevent the car body with a large mass from being tilted and to prevent the pendulum beam from rotating in the opposite direction due to the reaction of the forced car body tilt. Works effectively. In addition, the relative vibration between the bogie and the pendulum beam (rolling vibration peculiar to natural pendulum type railcars) is suppressed (reduced) by the passive damper even when running on a curved track, that is, when traveling on a curved track with a very gentle curvature. )

請求項3に記載のように、前記空気ばね式強制車体傾斜機構は前記空気ばねの空気量を制御する空気ばね制御装置を備え、この空気ばね制御装置は車両の地点検知装置と接続され、同地点検知装置は、少なくとも曲線の位置データと本曲線における曲率およびカント量ならびに曲線の方向を含む路線データが記憶されており、地上信号情報またはGPS情報等の位置情報と前記地点検知装置の持つ前記路線データおよび車両の走行距離(例えば、地上子からの信号を受信後の走行距離)を比較することにより、少なくとも前記空気ばね式強制車体傾斜機構の作動のトリガーとなる入口緩和曲線と出口緩和曲線に進入するための情報を、進入の一定時間前に曲線軌道の曲がり方向とともに前記空気ばね制御装置へ出力するものであることが好ましい。 According to a third aspect of the present invention, the air spring type forced vehicle body tilting mechanism includes an air spring control device that controls an air amount of the air spring, and the air spring control device is connected to a vehicle point detection device. the point detection device, which is line data store containing the direction of curvature and cant amount and curves in position data and the curve of at least the curve, with the position information, such as terrestrial signal information or GPS information of the point detecting device mileage of the route data Contact and vehicle (e.g., distance traveled after receiving a signal from the ground coil) by comparing an inlet transition curve comprising at least the triggering of the operation of the air spring force vehicle body tilt mechanism It is preferable that information for entering the exit relaxation curve is output to the air spring control device together with the curve direction of the curved track at a certain time before the approach. Arbitrariness.

このように構成すれば、直線軌道走行から入口緩和曲線軌道に進入する直前に緩和曲線に関する位置情報とその曲線の曲がり方向とを地点検知装置から空気ばね制御装置へ出力し、空気ばね制御装置を介して外軌側空気ばねに加圧空気が供給されて上昇し(あるいは同時に内軌側空気ばね内の空気が排出されて下降し)、車体を内軌側傾斜させるので、振子遅れを空気ばね式強制車体傾斜機構で補正し、本曲線軌道走行時には出口緩和曲線軌道に進入する直前に緩和曲線に関する情報とその曲線の曲がり方向とを地点検知装置から空気ばね制御装置へ出力し、空気ばね制御装置を介して内軌側空気ばねに加圧空気が供給されて上昇しあるいは同時に外軌側空気ばね内の空気が排出されて下降し)、車体を外軌側傾斜させるので、振子遅れを空気ばね式強制車体傾斜機構で補正できる。 With this configuration, the position information on the relaxation curve and the curve direction of the curve are output from the point detection device to the air spring control device immediately before entering the entrance relaxation curve track from the straight track running to the air spring control device. The pressurized air is supplied to the outer gauge side air spring through the air gauge (or the air in the inner gauge side air spring is discharged and lowered at the same time), and the vehicle body is inclined toward the inner gauge side. Is corrected by the forced forced vehicle body tilt mechanism, and when traveling on a curved track, the information about the relaxation curve and the curve direction of the curve are output from the point detection device to the air spring control device immediately before entering the exit relaxation curve track, and the air spring control device rises pressurized air to the curve inside the air spring is supplied via a (or lowered is discharged air in the curve outside air springs at the same time), since thereby the curve outside leaning the vehicle body, a pendulum delay It can be corrected by the gas spring force vehicle body tilt mechanism.

請求項4に記載のように、前記空気ばね式強制車体傾斜機構は、前記地点検知装置により検知される入口緩和曲線進入直前で、前記空気ばね制御装置により外軌側空気ばねに空気を供給し外軌側空気ばねを上昇させて前記車体を前記振子梁に対し内軌側へ傾斜させ、入口緩和曲線走行時に前記空気ばね制御装置により外軌側空気ばね内の空気を排出し外軌側空気ばねの下降を行い、前記外軌側空気ばねの高さを元の中立位置に戻し、出口緩和曲線進入直前で、前記空気ばね制御装置により内軌側空気ばねに空気を供給し内軌側空気ばねを上昇させて前記車体を前記振子梁に対し外軌側へ傾斜させ、出口緩和曲線走行時に前記空気ばね制御装置により内軌側空気ばね内の空気を排出し、前記内軌側空気ばねの高さを元の中立位置に戻すことができる。   According to a fourth aspect of the present invention, the air spring type forced vehicle body tilt mechanism supplies air to the outer gauge side air spring by the air spring control device immediately before entering the inlet relaxation curve detected by the point detection device. The outer gauge side air spring is raised to incline the vehicle body toward the inner gauge side with respect to the pendulum beam, and the air spring control device discharges the air in the outer gauge side air spring and travels the outer gauge side air when traveling on the entrance relaxation curve. The spring is lowered, the height of the outer gauge side air spring is returned to the original neutral position, and immediately before entering the exit relaxation curve, the air spring control device supplies air to the inner gauge side air spring to supply the inner gauge side air. The spring is raised to incline the vehicle body toward the outer gauge side with respect to the pendulum beam, and the air spring control device discharges the air in the inner gauge side air spring when traveling on the exit relaxation curve, The height can be returned to the neutral position That.

このように構成すれば、車両は直線軌道走行から入口緩和曲線軌道に進入直前(例えば進入する2秒前)に地点検知装置が緩和曲線とその曲線の曲がり方向を空気ばね制御装置へ出力することにより、空気ばね制御装置を介して外軌側空気ばねに加圧空気が供給されて上昇することにより図6(b)に示すように、車体を内軌側傾斜させるので、車体重心Gが車体振子中心より見かけ上内軌側へ移動することにより振子中心を中心として内軌側に振子梁の回転が始まるため、振子梁の振り遅れ補正される。入口緩和曲線走行時において図6(c)に示すように重力と遠心力の作用力により振子回転中心oを中心として回転し始めた後は、空気ばね制御装置は外軌側空気ばねを排気し空気ばね式強制車体傾斜機構による車体の傾斜角を0°に戻すことにより振子梁に対して車体を中立位置に戻し、曲率の大きい本曲線軌道の走行時において重力と遠心力の作用力(図6(d)参照)により自然に振子角が増大し、最適な振子角に揺動する。 With this configuration, the point detection device outputs the relaxation curve and the curve direction of the curve to the air spring control device immediately before entering the entrance relaxation curve track from the straight track running (for example, 2 seconds before entering the vehicle). Thus, the pressurized air is supplied to the outer gauge side air spring via the air spring control device, and as shown in FIG. 6 (b), the vehicle body is inclined toward the inner gauge side. since the rotation of the pendulum beam begins to curve inside around the pendulum center by moving onto the rail side apparent from the pendulum center, swing delay of the pendulum beam is corrected. After running around the pendulum rotation center o due to the action force of gravity and centrifugal force as shown in FIG. 6 (c) during traveling at the entrance relaxation curve, the air spring control device exhausts the outer spring air spring. By returning the vehicle body tilt angle by the air spring type forced vehicle body tilt mechanism to 0 °, the vehicle body is returned to the neutral position with respect to the pendulum beam , and the force of gravity and centrifugal force acting on this curved track with large curvature (Fig. 6 (d)) naturally increases the pendulum angle and swings to the optimum pendulum angle.

本曲線走行時の自然な振子角走行時を示す図8()の状態において、車両は出口緩和曲線軌道に進入する直前(例えば2秒前)に緩和曲線に関する位置情報とその曲線の曲がり方向とを地点検知装置から空気ばね制御装置へ出力し、図8(b)に示されるように空気ばね制御装置を介して内軌側空気ばねに加圧空気が供給されて内側空気ばねが上昇し、車体を外軌側傾斜させるので、車体重心Gが車体の振子中心oより見かけ上外軌側へ移動することにより振子中心oを中心として外軌側への振子梁の回転が始まることによって、振子梁の振り遅れを空気ばね式強制車体傾斜機構で補正する。その後すぐに内軌側空気ばねを排気することで下降が開始され(図8(c))、出口緩和曲線走行時には重力と遠心力の作用力により振子角が的確に減少し、直線区間走行時には内軌側空気ばねの高さが元の位置に戻って振子梁も自然に左右方向の中立(中間)位置に揺動し、ほぼ水平な姿勢になる(図8(d))。 In the state of Fig. 8 ( a ) showing the natural pendulum angle traveling at the time of the main curve traveling, the vehicle immediately before entering the exit relaxation curve track (for example, 2 seconds before) and the bending direction of the curve. Is output from the point detection device to the air spring control device, and as shown in FIG. 8B, pressurized air is supplied to the inner gauge side air spring via the air spring control device, and the inner air spring rises. Since the vehicle body is inclined toward the outer gauge side, the center of gravity G of the vehicle body is apparently moved from the pendulum center o of the vehicle body toward the outer gauge side, whereby the rotation of the pendulum beam toward the outer gauge side starts around the pendulum center o. The swing delay of the pendulum beam is corrected by the air spring type forced body tilt mechanism. Immediately after that, the lowering is started by exhausting the air spring on the inner gauge side (FIG. 8 (c)), and the pendulum angle is accurately reduced by the action force of gravity and centrifugal force when traveling on the exit relaxation curve, and when traveling on the straight section The height of the inner-gauge air spring returns to the original position, and the pendulum beam naturally swings to the neutral (intermediate) position in the left-right direction so that the posture becomes substantially horizontal (FIG. 8D).

請求項5に記載のように、前記空気ばね式強制車体傾斜機構は、前記地点検知装置により検知される入口緩和曲線進入直前で、前記空気ばね制御装置により外軌側空気ばねに空気を供給し外軌側空気ばねを上昇させるとともに内軌側の空気ばね内の空気を排出して前記車体を前記振子梁に対し内軌側へ傾斜させ、入口緩和曲線走行時に前記空気ばね制御装置により外軌側空気ばね内の空気を排出し外軌側空気ばねの下降を行うとともに内軌側の空気ばねに給気して、前記各空気ばねの高さを元の中立位置に戻し、出口緩和曲線進入直前で、前記空気ばね制御装置により内軌側空気ばねに空気を供給し内軌側空気ばねを上昇させるとともに外軌側空気ばね内の空気を排出して前記車体を前記振子梁に対し外軌側へ傾斜させ、出口緩和曲線走行時に前記空気ばね制御装置により内軌側空気ばね内の空気を排出するとともに外軌側空気ばねに空気を供給し、前記各空気ばねの高さを元の中立位置に戻すことができる。 According to a fifth aspect of the present invention, the air spring type forced vehicle body tilting mechanism supplies air to the outer gauge side air spring by the air spring control device immediately before entering the inlet relaxation curve detected by the point detection device. The outer gauge side air spring is raised and the air in the inner gauge side air spring is discharged to incline the vehicle body toward the inner gauge side with respect to the pendulum beam. The air in the side air spring is discharged and the outer gauge side air spring is lowered and supplied to the inner gauge side air spring, the height of each air spring is returned to the original neutral position, and the exit relaxation curve is entered. Immediately before, the air spring control device supplies air to the inner gauge side air spring to raise the inner gauge side air spring, and discharges the air in the outer gauge side air spring to discharge the vehicle body to the pendulum beam. Tilt to the side and drive on the exit relaxation curve The air supply to the roots if the curve outside air while discharging air from the curve inside air in the spring by the air spring control device, wherein it is possible to return to the height original neutral position of the air spring.

このように構成することにより、請求項4記載の鉄道車両と同様に車体の内軌側または外軌側への傾斜に伴って、自然振子機構による振子梁の振り遅れが補正されるが、本請求項の鉄道車両では、振子梁上の左右の空気ばね、いいかえれば外軌側と内軌側の両方の空気ばねが協働して車体の傾動を行うので、よりスムーズに自然振子機構による振子梁の振り遅れの補正が行なわれる。   With this configuration, the swing delay of the pendulum beam due to the natural pendulum mechanism is corrected in accordance with the inclination of the vehicle body toward the inner track side or the outer track side in the same manner as the railway vehicle according to claim 4. In the railcar of the claim, since the left and right air springs on the pendulum beam, in other words, both the outer and inner gauge air springs cooperate to tilt the vehicle body, the pendulum by the natural pendulum mechanism is smoother. Correction of beam swing delay is performed.

本発明にかかる複合的な車体傾斜機能を持つ鉄道車両は、上記先行技術と比べて下記の表1に示すような優れた効果がある。   The railway vehicle having a composite vehicle body tilting function according to the present invention has excellent effects as shown in Table 1 below compared with the prior art.

Figure 0004979360
Figure 0004979360
上記表1中の空気バネ内空気量制御装置は、一般的に空気ばね車体傾斜制御装置のことをいう。The air spring air amount control device in Table 1 generally refers to an air spring vehicle body tilt control device.

以下、本発明にかかる鉄道車両について実施の形態を図面に基づいて説明する。   Embodiments of a railway vehicle according to the present invention will be described below with reference to the drawings.

図1(a)は本発明にかかる複合的な車体傾斜機能を持つ鉄道車両の一実施形態を概略的に示す正面視断面図で、曲線走行状態を表し、図1(b)は図1(a)の車両において遠心力と重力が車体に作用する関係を示す説明図である。   FIG. 1A is a front cross-sectional view schematically showing an embodiment of a railway vehicle having a composite vehicle body tilt function according to the present invention, showing a curved traveling state, and FIG. It is explanatory drawing which shows the relationship in which the centrifugal force and gravity act on a vehicle body in the vehicle of a).

本実施形態の複合的な車体傾斜機能を持つ鉄道車両1は、図1(a)に示すように、振子台車2の台車枠2a上に振子梁3を両側のコロ3cを介して左右車幅方向に傾動(揺動)可能に配備している。振子台車2の下方に輪軸4を備え、この輪軸4は車軸4aとこの両側に一体回転可能に取り付けられ、レールR上を走行する左右一対の車輪4bとからなっている。振子台車2の台車枠2a上に配備された振子梁3は、下部が車体6の振子中心oを円の中心とする半円弧面3aに形成され、コロ3cを介して遠心力や重力の作用により振子中心oを中心として左右(車幅)方向に揺動する。下部半円弧面3aの周方向のほぼ中間位置に略台形状の凹所3bが設けられ、この凹所3b内の一端と振子台車2の台車枠2a上面との間にパッシブダンパ5が介設されている。パッシブダンパ5は、振子梁3との台車枠2a間の速度の速い動きを抑制するための抵抗力として機能し、振子梁3の左右(車幅)方向の速度の速い振れ(振子運動)を抑制する。本例の場合、緩和曲線進入直前に振子梁3上の車体6を空気ばね式強制車体傾斜機構8により傾斜させることにより質量の小さい振子梁3が台車枠2aに対して空気ばね式強制車体傾斜機構8の反作用で逆回転するのを抑制するためにパッシブダンパ5が有効に働き、空気ばね式強制車体傾斜機構8の機能を発揮させることにより振子梁3の振り遅れを軽減することができる。 As shown in FIG. 1 (a), the railway vehicle 1 having a complex vehicle body tilting function according to the present embodiment has a pendulum beam 3 placed on the left and right sides of the pendulum carriage 2 via the rollers 3c on both sides ( vehicles). It can be tilted (oscillated) in the (width ) direction. A wheel shaft 4 is provided below the pendulum carriage 2, and the wheel shaft 4 includes an wheel shaft 4 a and a pair of left and right wheels 4 b that run on the rail R and are attached to both sides of the wheel shaft 4 a. The pendulum beam 3 provided on the carriage frame 2a of the pendulum carriage 2 has a lower part formed in a semicircular arc surface 3a with the pendulum center o of the vehicle body 6 as the center of the circle, and the action of centrifugal force and gravity via the roller 3c. As a result, it swings in the left-right (vehicle width) direction around the pendulum center o. A substantially trapezoidal recess 3b is provided at a substantially intermediate position in the circumferential direction of the lower semicircular arc surface 3a, and a passive damper 5 is interposed between one end in the recess 3b and the upper surface of the carriage frame 2a of the pendulum carriage 2. Has been. Passive dampers 5 acts as a resistance force for suppressing the rate of rapid movement between the bogie frame 2a of the pendulum beam 3, left right (vehicle width) of the pendulum beam 3 direction of fast velocity fluctuation (pendulum movement) Suppress. In the case of this example, by tilting the vehicle body 6 on the pendulum beam 3 by the air spring type forced vehicle body tilt mechanism 8 immediately before entering the relaxation curve, the small mass of the pendulum beam 3 is tilted by the air spring type forced vehicle body with respect to the carriage frame 2a. The passive damper 5 works effectively to suppress the reverse rotation due to the reaction of the mechanism 8, and the swinging delay of the pendulum beam 3 can be reduced by exerting the function of the air spring type forced vehicle body tilting mechanism 8.

そして、緩和曲線走行時には、車体6の空気ばね式強制車体傾斜機構8による車体傾斜姿勢から中立姿勢に戻る過程において、振子梁3が空気ばね式強制車体傾斜の反作用で逆回転するのを抑制する。また、この抑制力は、本曲線軌道走行時に振子梁3の不要な乱動(ローリング振れ)を抑制することになる。 The relaxation time curve travels in the course Returns to the neutral position from the vehicle body inclined position by the air spring force vehicle body tilt mechanism 8 of the vehicle body 6, suppressing the pendulum beam 3 to the reverse rotation by reaction of the air spring force body tilt To do. In addition, this suppression force suppresses unnecessary turbulence (rolling vibration) of the pendulum beam 3 when traveling on the curved track.

なお、他の実施例として、パッシブダンパ5に制御付きの可変ダンパを使用してもよい。本例の場合、図示は省略するが、例えば可変オイルダンパを使用した場合、オイルダンパ本体を構成するシリンダ内のピストンを挟んで左右の油室の連通管の中央には電磁制御の流量制御弁を設け、パッシブダンパ5内の油の流れを微妙に調節してパッシブダンパ5の減衰力を自在に変更可能にする。そして、本例のパッシブダンパ5で、後述する地点検知装置10からの情報に基づき直線軌道や緩やかな曲率の曲線軌道を走行するときには流量制御弁を細く絞り、振子台車2の台車枠2a上の振子梁3の傾動を抑制する。自然振子機構の作動速度を高めるため、空気ばね式強制車体傾斜機構8が働いていない状態での曲線軌道を走行するときには、流量制御弁を開放、本来の振子動作のための振子梁3の自由な傾動(振れ)を許容する。 As another embodiment, a passive damper with control may be used for the passive damper 5. In the case of this example, although illustration is omitted, for example, when a variable oil damper is used, an electromagnetically controlled flow control valve is located at the center of the communication pipes of the left and right oil chambers across the piston in the cylinder constituting the oil damper body. And the damping force of the passive damper 5 can be freely changed by finely adjusting the flow of oil in the passive damper 5. The passive damper 5 of this embodiment, based on information from the point detecting device 10 described later, squeezed thinner flow control valve when the traveling curve trajectory of straight track and gentle curvature of the pendulum bogie 2 truck frame 2a The tilting of the upper pendulum beam 3 is suppressed. In order to increase the operating speed of the natural pendulum mechanism, when traveling on a curved track with the air spring type forced vehicle body tilt mechanism 8 not working, the flow control valve is opened, and the pendulum beam 3 for the original pendulum operation is opened. Allow free tilting.

振子梁3の上方に車体6が配置され、この車体6は振子梁3の上面の両側の空気ばね7(7・7)により支持されている。これら左右一対の空気ばね7・7は従来より台車の枕ばねとして使用されている装置であるが、本実施形態では各空気ばね7・7に対し加圧空気源図示せずから加圧空気を供給したり、各空気ばね7・7から加圧空気を排出したり、そのタイミングを決定したりする空気ばね制御装置9図2参照により空気ばね7への圧縮空気量を増減でき、この空気ばね制御装置9を含めて空気ばね式強制車体傾斜機構8が構成されている。 A vehicle body 6 is disposed above the pendulum beam 3, and the vehicle body 6 is supported by air springs 7 (7 R · 7 L ) on both sides of the upper surface of the pendulum beam 3. The pair of left and right air springs 7 R and 7 L are devices conventionally used as pillow springs for carts. In this embodiment, a pressurized air source ( not shown) is used for each air spring 7 R and 7 L. ) To supply air to the air spring 7 by an air spring control device 9 ( see FIG. 2 ) for supplying pressurized air from the air springs 7 R and 7 L and for determining the timing thereof. The amount of compressed air can be increased or decreased, and an air spring type forced vehicle body tilting mechanism 8 including this air spring control device 9 is configured.

鉄道車両1に搭載されている地点検知装置10は、地上信号情報またはGPS情報等の位置情報等と、地点検知装置の持つ路線データ(曲線の位置とその曲線の曲率やカント等)および車両の走行距離(位置情報受信後の走行距離)を比較することで、少なくとも空気ばね式強制車体傾斜機構8の作動のトリガーとなる。例えば「直線走行からn秒後に左曲線の入口緩和曲線に進入する」または「左曲線走行からn秒後に出口緩和曲線に進入する」との入口緩和曲線と出口緩和曲線までの走行時間と曲線軌道の曲がり方向との情報を空気ばね制御装置9に指令するものである。ただし、n秒後とは、速度や曲線形状などによって変更する。   The point detection device 10 installed in the railway vehicle 1 includes position information such as ground signal information or GPS information, route data (curve position and curvature of the curve, cant, etc.) of the point detection device, and vehicle information. By comparing the travel distance (travel distance after receiving position information), at least a trigger for the operation of the air spring type forced vehicle body tilt mechanism 8 is obtained. For example, the travel time and the curve trajectory to the entrance relaxation curve and the exit relaxation curve, “Enter the left relaxation curve after n seconds from straight travel” or “Enter the exit relaxation curve after n seconds from left travel” The air spring control device 9 is instructed for information on the bending direction of the air spring. However, after n seconds, it is changed depending on the speed, curve shape, and the like.

各空気ばね7・7は、例えば図示されていない電磁弁を介して加圧空気源に接続されており、上記空気ばね制御装置9により電磁弁が開閉駆動されることにより、空気ばね7・7への加圧空気の供給と、空気ばね7・7からの加圧空気の排出とが適宜行われる。この結果、本例では図1に示すように外軌側の空気ばね7が上昇し、高さが高くなることによって車体6を内軌側へ強制的に傾斜する。なお、制御はやや複雑になるが、外軌側空気ばね7へ加圧空気が供給され、同時に内軌側空気ばね7内の加圧空気が排出されて車体6を内軌側へ強制的に傾斜する制御も可能である。 Each of the air springs 7 R and 7 L is connected to a pressurized air source via, for example, an electromagnetic valve (not shown), and the air spring 7 is opened and closed by the air spring control device 9 to open and close the air spring 7. Supply of pressurized air to R · 7 L and discharge of pressurized air from the air springs 7 R · 7 L are appropriately performed. As a result, in this example an air spring 7 R of the curve outside is increased as shown in FIG. 1, it is forcibly tilted to the curve inside the vehicle body 6 by the height increases. Although control becomes somewhat complicated, the curve outside air springs 7 compressed air to R are supplied, forced pressurized air the curve inside the air spring 7 in L is discharged to the curve inside the vehicle body 6 at the same time Tilting control is also possible.

すなわち、本例の鉄道車両1では、後述するように曲線軌道(入口緩和曲線)に進入する直前(例えば2秒前)に、曲線軌道の内軌側へ車体6が傾斜する。これ等の操作により、空気ばね式強制車体傾斜機構8により車体6が比較的速い速度で回転し傾斜を始める作動時に、振子台車2の台車枠2a上にコロ3cによって支持されている振子梁3には車体6の回転方向(傾斜方向)と逆方向へ回転力が発生するが、速い速度の変位に対して大きな抑制力のあるパッシブダンパ5により振子梁3の逆回転力の抑制が行なわれる。 That is, in the railway vehicle 1 of this embodiment, just prior to entering the curved track (entrance mouth relaxation curve) as described below (e.g., 2 seconds ago), the vehicle body 6 is inclined to the inner of the curved track rail side. By these operations, the pendulum beam 3 supported by the roller 3c on the carriage frame 2a of the pendulum carriage 2 when the body 6 is rotated at a relatively high speed by the air spring type forced body tilting mechanism 8 and starts to tilt. In this case, a rotational force is generated in a direction opposite to the rotational direction (inclination direction) of the vehicle body 6, but the reverse rotational force of the pendulum beam 3 is suppressed by the passive damper 5 having a large suppression force against a high-speed displacement. .

入口緩和曲線進入直前に、空気ばね式強制車体傾斜機構8による車体傾斜により車体6の重心Gが振子中心oより内軌側に移動する。パッシブダンパ5を備えているため振子梁3の揺動する速度は比較的遅い速度であるが、振子作用により内軌側への傾斜が始まり、車体6と振子梁3は内軌側へ傾斜する。その後一定時間後(例えば5秒後)に空気ばね7Rを中立位置にもどし空気ばね式強制車体傾斜機構8の作動を終了するが、曲線軌道走行時には何ら制御を行うことなく、振子梁3が重力と遠心力の作用力(図1(b)参照)により自然に最適な振子角に傾動する。 Immediately before entering the entrance relaxation curve, the center of gravity G of the vehicle body 6 moves from the pendulum center o to the inner gauge side by the vehicle body tilt by the air spring type forced vehicle body tilt mechanism 8. Since the passive damper 5 is provided, the swinging speed of the pendulum beam 3 is relatively slow, but the tilt toward the inner track side starts by the pendulum action, and the vehicle body 6 and the pendulum beam 3 tilt toward the inner track side. . Thereafter, after a certain time (for example, after 5 seconds), the air spring 7R is returned to the neutral position, and the operation of the air spring type forced vehicle body tilting mechanism 8 is finished. And the force of centrifugal force (see FIG. 1B) naturally tilts to the optimum pendulum angle.

また、反対に出口緩和曲線に進入する直前(例えば2秒前)には、内軌側の空気ばね7Lが上昇し、高さが高くなることによって車体6を外軌側へ強制的に傾斜させる。車体傾斜により車体6の重心Gが振子中心oより外軌側に移動する。パッシブダンパ5を備えているため振子の速度は比較的遅い速度であるが、振子作用により外軌側への車体6の傾斜が始まり、車体6と振子梁3は外軌側へ傾斜する。その後一定時間後(例えば5秒後)に空気ばね7Lを中立位置に戻し空気ばね式強制車体傾斜機構8の作動を終了するが、出口緩和曲線軌道走行時には何ら制御を行うことなく、振子梁3が重力と遠心力の作用力(図1(b)参照)により自然に中立位置へ傾動する。 On the other hand, immediately before entering the exit relaxation curve (for example, 2 seconds before), the air spring 7L on the inner gauge side rises, and the vehicle body 6 is forcibly inclined toward the outer gauge side as the height increases. . The center of gravity G of the vehicle body 6 moves from the pendulum center o to the outer gauge side due to the vehicle body inclination. Since the passive damper 5 is provided, the pendulum has a relatively slow speed. However, the pendulum action causes the vehicle body 6 to tilt toward the outer track side, and the vehicle body 6 and the pendulum beam 3 tilt toward the outer track side. After a certain time (for example, after 5 seconds), the air spring 7L is returned to the neutral position, and the operation of the air spring type forced vehicle body tilting mechanism 8 is terminated. Is naturally tilted to the neutral position by the acting force of gravity and centrifugal force (see FIG. 1B).

なお、出口緩和曲線部における空気ばね式強制車体傾斜機構8による逆車体傾斜に対しても、自然振子の空気ばね式強制傾斜による車体傾斜の動きに対する反作用による逆回転を抑制する場合においても、パッシブダンパ5は有効に逆回転を抑制する。また本例の場合、パッシブダンパ5に対する制御は一切必要としない。 Incidentally, even for reverse vehicle body inclination that by the air spring force vehicle body tilt mechanism 8 at the outlet transition curve section, also in the case of suppressing the reverse rotation by reaction to the movement of the vehicle body tilt by natural pendulum air spring force slope The passive damper 5 effectively suppresses reverse rotation. In the case of this example, no control is required for the passive damper 5.

図2(a)は空気ばね制御装置9の論理回路の一例を示す説明図、図2(b)は図2(a)の制御装置9の論理回路に関する内容を説明する線図である。
本実施形態の空気ばね制御装置9は、図2に示すように論理回路で構成されている。
FIG. 2A is an explanatory diagram illustrating an example of a logic circuit of the air spring control device 9, and FIG. 2B is a diagram illustrating contents related to the logic circuit of the control device 9 of FIG. 2A.
The air spring control device 9 of this embodiment is configured by a logic circuit as shown in FIG.

鉄道車両1に設置された地点検知装置10はATS地上子等からの地上信号情報またはGPS情報等の位置情報と同装置の持つ路線データ(曲線の位置データとその曲線の曲率、カント等)と車両走行距離を比較することにより前方の入口緩和曲線軌道まで走行するのに必要な鉄道車両1の走行時間の検知を行う。   The point detection device 10 installed in the railway vehicle 1 includes ground signal information from an ATS ground element or the like, position information such as GPS information, and route data (curve position data and curvature of the curve, cant, etc.) of the device. By comparing the vehicle travel distance, the travel time of the railway vehicle 1 required to travel to the front entrance relaxation curve track is detected.

その上で、地点検知装置10から空気ばね制御装置9へ、鉄道車両1の前方に曲率が設定値以上の曲線軌道がないか、あるいは直線軌道が連続して存在する場合はフラグ0が出力されるため、空気ばね式強制車体傾斜機構8が稼動しない状態である。   Then, flag 0 is output from the point detection device 10 to the air spring control device 9 when there is no curved track having a curvature equal to or greater than the set value in front of the railway vehicle 1 or when there are continuous straight tracks. Therefore, the air spring type forced vehicle body tilting mechanism 8 is not operating.

鉄道車両1が直線走行時には、前方に曲率が設定値以上の曲線軌道がある場合は、入口緩和曲線に入る一定時間前に、地点検知装置10から空気ばね制御装置9へ、前方における緩和曲線軌道の有無が0以外の値である±1のフラグ信号で入力され、また緩和曲線の曲線方向が±で区別され(例えば、右方向に曲がった場合はフラグ+1、左方向に曲がった場合は−)出力され、空気ばね式強制車体傾斜機構8が稼動される。 When the railway vehicle 1 travels in a straight line, if there is a curved track whose curvature is equal to or greater than the set value ahead, a relaxation curve track in front from the point detection device 10 to the air spring control device 9 before a certain time before entering the entrance relaxation curve. Is input with a flag signal of ± 1, which is a value other than 0, and the curve direction of the relaxation curve is distinguished by ± (for example, flag +1 when turning to the right, and-when turning to the left 1 ) The power is output and the air spring type forced vehicle body tilting mechanism 8 is operated.

空気ばね式強制車体傾斜機構8が稼動され、例えば、傾斜角度が一定値(設定値)以上となると、空気ばね制御装置9による車体6の傾斜角が0°となるように、空気ばね式強制車体傾斜機構8が稼動される。 It is operated air spring force vehicle body tilt mechanism 8, for example, when the inclination angle becomes a constant value (set value) or more, as the inclination angle of the vehicle body 6 by the air springs control device 9 is 0 °, the air spring The type forced vehicle body tilt mechanism 8 is operated.

同様に鉄道車両1が本曲線走行時にも、地点検知装置10は、路線データ(曲線の位置データとその曲線の曲率、カント等)と実際の走行距離を比較することで、車両1が連続した本曲線走行時においては、空気ばね制御装置9へフラグ0が出力されるため、空気ばね式強制車体傾斜機構8が稼動しない状態である。   Similarly, even when the railway vehicle 1 travels on the main curve, the point detection device 10 compares the route data (curve position data and curvature of the curve, cant, etc.) with the actual travel distance so that the vehicle 1 continues. During traveling on this curve, since the flag 0 is output to the air spring control device 9, the air spring type forced vehicle body tilt mechanism 8 is not in operation.

本曲線軌道から出口緩和曲線へ移行する時は、出口緩和曲線へ進入する一定時間前に、地点検知装置10から空気ばね制御装置9へ、前方における緩和曲線軌道の有無が0以外の値である±1のフラグ信号(例えば、右方向に曲がった場合はフラグ−1、左方向に曲がった場合は+)で入力され、また緩和曲線の曲線方向が±で区別され、出力され、空気ばね式強制車体傾斜機構8が稼動される。なお、本曲線走行時から出口緩和曲線に進入する場合の±1のフラグ信号は、直線走行時から入口緩和曲線に入る場合の±が反対となっている点が重要である。 When transitioning from this curved track to the exit relaxation curve, the presence or absence of the relaxation curve track in front from the point detection device 10 to the air spring control device 9 is a value other than 0, a certain time before entering the exit relaxation curve. ± 1 of the flag signal (e.g., flag -1 if bent to the right, if you turn left direction + 1) is input, and the curve direction of the relaxation curve is distinguished by ±, is output, the air spring The type forced vehicle body tilt mechanism 8 is operated. It is important that the ± 1 flag signal when entering the exit relaxation curve from the time of running on this curve is the opposite of ± when entering the entrance relaxation curve from the time of straight running.

空気ばね式強制車体傾斜機構8が稼動され、例えば、傾斜角度が一定値(設定値)以上となると、空気ばね制御装置9による車体6の傾斜角が0°となるように、空気ばね式強制車体傾斜機構8が稼動される。 It is operated air spring force vehicle body tilt mechanism 8, for example, when the inclination angle becomes a constant value (set value) or more, as the inclination angle of the vehicle body 6 by the air springs control device 9 is 0 °, the air spring The type forced vehicle body tilt mechanism 8 is operated.

制御装置9は、図2(a)に示すように、(2)保持ロジック9a、(3)出力判定ロジック9b、(4)PIDなどの制御演算器(パラメータ乗算・微分)9cを備えている。   As shown in FIG. 2A, the control device 9 includes (2) a holding logic 9a, (3) an output determination logic 9b, and (4) a control arithmetic unit (parameter multiplication / differentiation) 9c such as a PID. .

保持ロジック9aでは、緩和曲線進入直前の実傾斜角(実際の傾斜角)を保持する指令を発するが、地点検知装置10からフラグ0が入力されると、実傾斜角の保持値がリセットされる。   In the holding logic 9a, a command to hold the actual inclination angle (actual inclination angle) immediately before entering the relaxation curve is issued, but when the flag 0 is input from the point detection device 10, the holding value of the actual inclination angle is reset. .

点検知装置10からあらかじめ記憶された路線データ(曲線の位置データとその曲線の曲率、カント等)と車両走行距離に基づき入口緩和曲線および出口緩和曲線の進入の一定時間前に、曲線の方向を表すフラグ(±1)を出力する。このフラグ(−1、0または1)が保持ロジック9aに入力されるが、図2(b)の中段に示すように矢印の出力開始点では保持ロジック9aには0°が記憶される。出力判定ロジック9bでは、図2(b)の下段に示すように出力開始点において空気ばね式強制車体傾斜機構の実傾斜角−保持ロジック9aで保持されている傾斜角<設定値であるので、1が出力される。続いて地点検知装置10からのフラグ信号値(−1・0・1)との乗算処理9fで車体6の傾斜方向が決定される。そして、制御演算器9cで車体傾斜角が演算され、車体傾斜角指令(空気ばねの高さ指令)が空気ばね式強制車体傾斜機構8へ出力される。一方、図2(b)の下段に示すように出力終了点では実傾斜角−保持ロジック9aで保持されている傾斜角|≧設定値であるので、0が出力され、車体6の傾斜角が元の状態(0°)に戻される。なお、9dは加算処理、9eは絶対値処理である。 (Curvature of the position data and the curve of the curve, cant, etc.) routes data previously stored from the earth point touch device 10 to a predetermined time before the entry of the inlet transition curve and outlet transition curve based and the vehicle travel distance, the direction of the curve Is output as a flag (± 1). This flag (-1, 0 or 1) is input to the holding logic 9a, but 0 ° is stored in the holding logic 9a at the output start point of the arrow as shown in the middle part of FIG. In the output determination logic 9b, as shown in the lower part of FIG. 2B, at the output start point, | the actual inclination angle of the air spring type forced vehicle body inclination mechanism—the inclination angle held by the holding logic 9a | <the set value. Therefore, 1 is output. Subsequently, the inclination direction of the vehicle body 6 is determined by the multiplication process 9f with the flag signal value (−1, 0, 1) from the point detection device 10. Then, the vehicle body inclination angle is calculated by the control arithmetic unit 9 c, and a vehicle body inclination angle command (air spring height command) is output to the air spring type forced vehicle body inclination mechanism 8. On the other hand, as shown in the lower part of FIG. 2B, since the output end point is | the actual inclination angle−the inclination angle held by the holding logic 9 a ≧≧ the set value, 0 is output, and the inclination angle of the vehicle body 6 Is returned to its original state (0 °). In addition, 9d is an addition process, and 9e is an absolute value process.

図2に示す空気ばね制御装置9のロジックでは、鉄道車両1が緩和曲線に侵入する直前で車両1側の地点検知装置10から出力されるフラグ(−1または+1)により曲線の内軌側へ車体6を傾斜させる指令が空気ばね制御装置9へ発せられ、空気ばね式強制車体傾斜機構8により車体6が傾斜するが、車体6は傾斜すると、傾斜角度設定値超過後に元の姿勢に戻される。このため、非常に簡単なロジックによって制御し得る。 In the logic of the air spring control device 9 shown in FIG. 2, the flag (-1 or +1) output from the point detection device 10 on the vehicle 1 side immediately before the railcar 1 enters the relaxation curve, to the inner track side of the curve. A command to incline the vehicle body 6 is issued to the air spring control device 9, and the vehicle body 6 is inclined by the air spring type forced vehicle body inclination mechanism 8. However, when the vehicle body 6 is inclined, it returns to its original posture after the inclination angle set value is exceeded. . For this reason, it can be controlled by very simple logic.

以上のようにして本実施形態の振子式鉄道車両1が構成されるが、次に曲線軌道走行時の車体傾斜機構および自然振子機構の動作について図面に基づいて説明する。   As described above, the pendulum type railway vehicle 1 of the present embodiment is configured. Next, operations of the vehicle body tilt mechanism and the natural pendulum mechanism when traveling on a curved track will be described with reference to the drawings.

図3は曲線軌道入口側の軌道を示す平面図(上段)と同軌道に対応して曲線検知信号を時間の経過(横軸)との関係で表した説明図(中段)と前記軌道に対応して外軌側空気ばねの圧縮空気量を時間の経過(横軸)との関係で表した説明図(下段)、図4は曲線軌道出口側の軌道を示す平面図(上段)と同軌道に対応して曲線検知信号を時間の経過(横軸)との関係で表した説明図(中段)と前記軌道に対応して外軌側空気ばねの圧縮空気量を時間の経過(横軸)との関係で表した説明図(下段)である。図5は曲線軌道入口側を示す軌道と車両の位置とを示す平面図、図6(a)〜(d)は図5の車両の状態1〜4に対応する車両を概略的に示す後方視(後方より見た)断面図である。図7は曲線軌道出口側を示す軌道と車両の位置とを示す平面図、図8(a)〜(d)は図7の車両の状態1〜4に対応する車両を概略的に示す後方視断面図である。 Fig. 3 is a plan view showing the trajectory at the entrance of the curved trajectory (top), and an explanatory diagram (middle) showing the curve detection signal in relation to the same trajectory, corresponding to the trajectory. over time the compressed air flow amount to the curve outside air springs and graph, illustrating the relationship between the (horizontal axis) (bottom), FIG. 4 is a plan view showing the trajectory of the curved track outlet side (top) course curve detection signal in the time corresponding to the same trajectory graph, illustrating the relationship between the (horizontal axis) (middle) and the course of the compressed air flow amount time to curve outside air springs in response to the track It is explanatory drawing (lower stage) represented by the relationship with (horizontal axis). FIG. 5 is a plan view showing the track showing the curved track entrance side and the position of the vehicle. FIGS. 6A to 6D are rear views schematically showing the vehicle corresponding to the vehicle states 1 to 4 in FIG. It is sectional drawing (viewed from back). 7 is a plan view showing a track showing the curved track exit side and the position of the vehicle. FIGS. 8A to 8D are rear views schematically showing the vehicle corresponding to the vehicle states 1 to 4 in FIG. It is sectional drawing.

本実施形態の空気ばね式強制車体傾斜機構8と自然振子機構を持つ複合車体傾斜式鉄道車両1では、図3や図5(の状態1)に示すように直線軌道を走行中の車両1は振子梁3および車体6が傾斜しておらず、重心が振子台車2の中心軸線S−S上に位置する(図6(a))。そして、図5(の状態2)に示すように、入口緩和曲線進入直前に一定時間前(例えば2秒前に)に、車両1側の地点検知装置10から車体6の傾斜角と傾斜方向とが制御装置9へ出力される。なお、傾斜角は車体仕様により決定される。ここで、空気ばね式強制車体傾斜機構8の空気ばね制御装置9により外軌側空気ばね7へ圧縮空気が供給され、空気ばね7Lの高さが上昇し、振子梁3上の車体6は、曲線軌道の内軌側へ傾斜する(図5の状態2・図6(b))。車体6が傾動する際の反力による無用な車体6と振子梁3の車体傾斜の反対方向への振子回転は、パッシブダンパ5により抑止される。そして、入口緩和曲線進入前に車体6が内軌側へ傾斜することにより、図6(b)に示すように車体重心Gが振子台車2の振子中心oを通る中心軸線S−Sに対し内軌側へ移動を開始し、緩和曲線に進入したときには車体重心Gが振子中心oから見て内軌側へ移動しているため、振子梁3の内軌側への振れは、遠心力と重力の作用により車体と振子梁3の振子傾斜が容易になる。これにより、従来の一般的な振子式鉄道車両に特有の振り遅れが解消される。 In the combined vehicle body tilt type railway vehicle 1 having the air spring type forced vehicle body tilt mechanism 8 and the natural pendulum mechanism of the present embodiment, the vehicle 1 traveling on a straight track as shown in FIG. 3 and FIG. pendulum beam 3 and the vehicle body 6 are not inclined, the center of gravity is located on the central axis S-S of the pendulum carriage 2 (FIGS. 6 (a)). As shown in FIG. 5 (state 2), the inclination angle and the inclination direction of the vehicle body 6 from the point detection device 10 on the vehicle 1 side before a certain time (for example, 2 seconds before) immediately before entering the entrance relaxation curve. Is output to the control device 9. Note that the tilt angle is determined by the vehicle body specifications. Here, the compressed air to the curve outside the air spring 7 L supplied by the air spring control unit 9 of the air spring force vehicle body tilt mechanism 8, the height is increased in the air spring 7L, body 6 on the pendulum beam 3 is Inclined toward the inner track side of the curved track (state 2 in FIG. 5 and FIG. 6B). The passive damper 5 prevents the pendulum rotation of the unnecessary vehicle body 6 and the pendulum beam 3 in the opposite direction of the vehicle body tilt due to the reaction force when the vehicle body 6 tilts. Then, the vehicle body 6 tilts inward toward the inner track before entering the entrance relaxation curve, so that the vehicle body center of gravity G is inward relative to the central axis SS passing through the pendulum center o of the pendulum carriage 2 as shown in FIG. The movement of the pendulum beam 3 toward the inner gauge side is caused by centrifugal force and gravity because the vehicle body center of gravity G moves toward the inner gauge side when viewed from the pendulum center o when the movement starts to the gauge side and enters the relaxation curve. As a result, the pendulum inclination of the vehicle body 6 and the pendulum beam 3 is facilitated. Thereby, the swing delay peculiar to the conventional general pendulum type railway vehicle is eliminated.

そして、空気ばね式強制車体傾斜機構8によって強制的に内軌側へ傾斜した車体6は、一定時間後(例えば車体傾斜の指令が出て5秒後)に、図5の状態3や図6(c)に示すように再び空気ばね式強制車体傾斜機構8の空気ばね制御装置9からの指令によって外軌側の空気ばね7から圧縮空気が排出され、元の高さに戻されることにより、車体重心Gは振子台車2の中心軸線S−Sに対し外軌側へ移動し、車体6は振子梁3に対し平行な中立位置である元の非傾斜姿勢に戻される。この結果、本曲線軌道の走行時には、図5の状態4(図7の状態1)や図6(d)(図8(a))に示すように振子中心oを回転中心として、車体重心Gにかかる重力と遠心力とが釣り合う最適な傾斜角度に車体と振子梁3が傾斜する。 Then, the vehicle body 6 that is forcibly inclined toward the inner track side by the air spring type forced vehicle body tilting mechanism 8 is in a state 3 of FIG. 5 or FIG. 6 after a certain time (for example, 5 seconds after the vehicle body tilt command is issued ) . compressed air from the air spring 7 L of the curve outside is discharged by a command from the air spring control device 9 again air spring force as shown in (c) the vehicle body tilt mechanism 8, by being returned to the original height The vehicle body center of gravity G moves to the outer gauge side with respect to the central axis SS of the pendulum carriage 2, and the vehicle body 6 is returned to the original non-inclined posture which is a neutral position parallel to the pendulum beam 3. Consequently, during running of the curved track, as the center of rotation the pendulum center o as shown in state 4 of FIG. 5 and FIG. 6 (state 1 in FIG. 7) (d) (FIG. 8 (a)), the body center of gravity G The vehicle body 6 and the pendulum beam 3 are inclined at an optimal inclination angle in which the gravity and centrifugal force applied to each other are balanced.

こうして本曲線軌道を走行し、出口緩和曲線に進入する直前の一定時間前(例えば2秒前に)に、車両1側の地点検知装置10からの線路データに基づく指令信号で、図7の状態2や図8(b)に示すように入口緩和曲線進入前とは逆の方向、すなわち外軌側へ車体6は傾斜する。これにより、車体重心Gが振子中心oから見て外軌側へ移動を開始し、緩和曲線に進入したときには車体重心Gが振子中心oから見て外軌側へ移動しているため、振子梁3の外軌側への振れは、遠心力と重力の作用により車体と振子梁3の振子傾斜が容易になり、これにより、振子式鉄道車両に特有の振り遅れが解消される。一定時間後(例えば車体傾斜の指令が出て5秒後)に、車体と振子梁は、出口緩和曲線走行時には、図7の状態3や図8(c)に示すように再び空気ばね式強制車体傾斜機構8の空気ばね制御装置9によって内軌側の空気ばね7から加圧空気が排出され、元の高さまで下降することにより自然振子状態に戻り、安定した走行が遂行される。 In this way, a command signal based on the track data from the point detection device 10 on the vehicle 1 side before a certain time (for example, 2 seconds) immediately before traveling on this curved track and entering the exit relaxation curve, the state of FIG. As shown in FIG. 2 and FIG. 8B, the vehicle body 6 tilts in the direction opposite to that before entering the entrance relaxation curve, that is, toward the outer gauge. As a result, the vehicle body center of gravity G starts to move toward the outer gauge as viewed from the pendulum center o, and when entering the relaxation curve, the vehicle body center of gravity G moves from the pendulum center o to the outer gauge side. As for the swing to the outer track side of 3, the pendulum inclination of the vehicle body 6 and the pendulum beam 3 is facilitated by the action of centrifugal force and gravity, thereby eliminating the swing delay peculiar to the pendulum type railway vehicle. After a certain period of time (for example, 5 seconds after the vehicle body tilt command is issued), the vehicle body 6 and the pendulum beam 3 again move to the air spring as shown in state 3 of FIG. 7 and FIG. Pressurized air is discharged from the air spring 7 on the inner gauge side by the air spring control device 9 of the type forced vehicle body tilting mechanism 8, and returns to the natural pendulum state by descending to the original height, so that stable running is performed.

なお、直線軌道走行時には、パッシブダンパ5による振子梁3の振れに対する抑制力(抵抗力)にて、振子梁3の不要なローリング振れは抑制される。   Note that, when traveling on a straight track, unnecessary rolling deflection of the pendulum beam 3 is suppressed by the suppression force (resistance force) against the deflection of the pendulum beam 3 by the passive damper 5.

上記のように、本実施形態の振子式鉄道車両1によれば、入口緩和曲線進入直前に車体6が空気ばね式強制車体傾斜機構8により内軌側へ傾斜し、入口緩和曲線走行時には車体6が空気ばね式強制車体傾斜機構8にて中立位置に戻り、出口緩和曲線進入直前に車体6が空気ばね式強制車体傾斜機構8により外軌側へ傾斜し、出口曲線走行時に空気ばね式強制車体傾斜機構8にて車体6が中立位置に戻ることにより、自然振子動作の振り遅れを空気ばね式強制車体傾斜機構8により補正することで振り遅れが解消する。また上記したとおり、本実施形態の複合車体傾斜式鉄道車両1では、車体6は入口緩和曲線手前で一度内軌側へ強制車体傾斜し、緩和曲線走行時には強制車体傾斜が中立位置に戻されるなど、車体6と振子梁3が曲線軌道通過時に生じる遠心力と重力の作用で振子中心を回転中心として自然に内軌側へ傾斜したり元の中立状態に戻ったりする前に、車体6を自然振子動作の振り遅れを空気ばね式強制車体傾斜機構8により補正することで振り遅れが解消するため、複雑かつ緻密な制御は一切不要である。また、上記した空気ばね制御装置9(図2参照)は、上記した車体6の傾斜制御をロジックで表した一例に過ぎず、これに限定されるものでないことは言うまでもない。 As described above, according to the pendulum type railway vehicle 1 of the present embodiment, the vehicle body 6 is inclined toward the inner gauge side by the air spring type forced vehicle body tilt mechanism 8 immediately before entering the entrance relaxation curve, and the vehicle body 6 is traveling during the entrance relaxation curve traveling. Is returned to the neutral position by the air spring type forced vehicle body tilting mechanism 8, and the vehicle body 6 is inclined to the outer gauge side by the air spring type forced vehicle body tilting mechanism 8 immediately before entering the exit relaxation curve. By returning the vehicle body 6 to the neutral position by the tilt mechanism 8, the swing delay of the natural pendulum operation is corrected by the air spring type forced vehicle body tilt mechanism 8 to eliminate the swing delay. Further, as described above, in the composite vehicle body tilt type railway vehicle 1 of the present embodiment, the vehicle body 6 is once forcedly inclined toward the inner rail side before the entrance relaxation curve, and the forced vehicle body inclination is returned to the neutral position during the relaxation curve traveling, etc. Before the vehicle body 6 and the pendulum beam 3 are naturally inclined to the inner track side or returned to the original neutral state with the pendulum center o as the rotation center by the action of the centrifugal force and gravity generated when passing through the curved track, the vehicle body 6 is Since the swing delay is eliminated by correcting the swing delay of the natural pendulum operation by the air spring type forced vehicle body tilt mechanism 8, no complicated and precise control is required. Further, the above-described air spring control device 9 (see FIG. 2) is merely an example in which the above-described tilt control of the vehicle body 6 is expressed by logic, and it goes without saying that the present invention is not limited to this.

図1(a)は本発明にかかる複合的な振子式鉄道車両の一実施形態を概略的に示す正面視断面図で、曲線走行状態を表し、図1(b)は図1(a)の車両において遠心力と重力が車体に作用する関係を示す説明図である。FIG. 1 (a) is a front sectional view schematically showing an embodiment of a composite pendulum type railway vehicle according to the present invention, showing a curving state, and FIG. 1 (b) is a diagram of FIG. 1 (a). It is explanatory drawing which shows the relationship which centrifugal force and gravity act on a vehicle body in a vehicle. 図2(a)は本発明の振子式鉄道車両1に用いられる制御装置9の論理回路の一例を示す説明図、図2(b)は図2(a)の制御装置9の論理回路に関する内容を説明する線図である。FIG. 2A is an explanatory diagram showing an example of a logic circuit of the control device 9 used in the pendulum type railway vehicle 1 of the present invention, and FIG. 2B is a content related to the logic circuit of the control device 9 of FIG. FIG. 曲線軌道入口側の軌道を示す平面図(上段)と同軌道に対応して曲線検知信号を時間の経過(横軸)との関係で表した説明図(中段)と前記軌道に対応して外軌側空気ばね流量を時間の経過(横軸)との関係で表した説明図(下段)である。A plan view showing the trajectory on the curved track entrance side (upper stage) and an explanatory diagram (middle stage) showing the curve detection signal in relation to the same trajectory and the outside (corresponding to the trajectory) a if rail side air roots flow quantity over time graph, illustrating the relationship between the (horizontal axis) (bottom). 曲線軌道出口側の軌道を示す平面図(上段)と同軌道に対応して曲線検知信号を時間の経過(横軸)との関係で表した説明図(中段)と前記軌道に対応して軌側空気ばね流量を時間の経過(横軸)との関係で表した説明図(下段)である。Corresponding to the trajectory at the exit side of the curved trajectory (top) and the explanatory diagram (middle) representing the curve detection signal in relation to the same trajectory and the inner passage corresponding to the trajectory a if rail side air roots flow quantity over time graph, illustrating the relationship between the (horizontal axis) (bottom). 曲線軌道入口側を示す軌道と車両の位置とを示す平面図である。It is a top view which shows the track | orbit which shows a curved track entrance side, and the position of a vehicle. 図6(a)〜(d)は図5の車両の状態1〜4に対応する車両を概略的に示す後方視断面図である。6A to 6D are rear-view sectional views schematically showing the vehicle corresponding to the vehicle states 1 to 4 in FIG. 曲線軌道出口側を示す軌道と車両の位置とを示す平面図である。It is a top view which shows the track | orbit which shows a curved track exit side, and the position of a vehicle. 図8(a)〜(d)は図7の車両の状態1〜4に対応する車両を概略的に示す後方視断面図である。8A to 8D are rear-view sectional views schematically showing the vehicle corresponding to the vehicle states 1 to 4 in FIG.

符号の説明Explanation of symbols

1複合車体傾斜式鉄道車両
2振子台車
2a台車枠
3振子梁
3a下部半円弧面
3b凹所
3cコロ
4輪軸
4a車軸
4b車輪
5パッシブダンパ
6車体
7(7R) 空気ばね
7(7L) 空気ばね
8空気ばね式強制車体傾斜機構
9空気ばね制御装置
9a保持ロジック
9b出力判定ロジック
9c空気ばね制御演算器
10地点検知装置
Rレール
1 Compound vehicle body tilting railway vehicle 2 Pendulum cart
2a bogie frame 3 pendulum beam 3a lower semicircular arc surface 3b recess 3c roller 4 wheel shaft 4a axle 4b wheel 5 passive damper 6 vehicle body 7 (7R) air spring 7 (7L) air spring 8 air spring type forced vehicle body tilt mechanism 9 air spring Control device 9a holding logic 9b output determination logic 9c air spring control calculator 10 point detector R rail

Claims (5)

台車と、この台車の上方に配置された車体と、両者の間に振子梁が設けられ、曲線軌道走行時に前記車体の重心に作用する遠心力を利用して、振子回転中心を中心とした前記車体の自然振子運動を実現する自然振子機構と、前記振子梁と車体の間に左右に配置された空気ばねによる空気ばね式強制車体傾斜機構とを備え、前記自然振子機構および前記空気ばね式強制車体傾斜機構による複合的な車体傾斜機能を有する鉄道車両において、
前記空気ばね式強制車体傾斜機構は、入口緩和曲線進入の直前に前記車体を内軌側へ傾斜させた後すぐに元の姿勢に戻す一方、出口緩和曲線進入の直前に前記車体を外軌側へ傾斜させた後すぐに元の姿勢に戻すことにより、前記自然振子機構の振れを支援する構成からなることを特徴とする鉄道車両。
A cart, a vehicle body arranged above the cart, and a pendulum beam provided between them, and utilizing the centrifugal force acting on the center of gravity of the vehicle body when traveling on a curved track, the center around the pendulum rotation center A natural pendulum mechanism that realizes a natural pendulum movement of the vehicle body, and an air spring type forced vehicle body tilting mechanism that includes air springs disposed between the pendulum beam and the vehicle body on the left and right, the natural pendulum mechanism and the air spring type forced In a railway vehicle having a complex vehicle body tilt function by a vehicle body tilt mechanism,
The air spring type forced vehicle body tilting mechanism returns the vehicle body to its original posture immediately after tilting the vehicle body toward the inner track immediately before entering the entrance relaxation curve, while moving the vehicle body to the outer track side immediately before entering the exit relaxation curve. A railway vehicle comprising a configuration that supports the swing of the natural pendulum mechanism by returning to the original posture immediately after tilting to the right.
前記台車と前記振子梁との間にパッシブダンパを介設することを特徴とする請求項1記載の鉄道車両。   The railway vehicle according to claim 1, wherein a passive damper is interposed between the carriage and the pendulum beam. 前記空気ばね式強制車体傾斜機構は前記空気ばねの空気量を制御する空気ばね制御装置を備え、この空気ばね制御装置は車両の地点検知装置と接続され、
前記地点検知装置は、少なくとも曲線の位置データと本曲線における曲率およびカント量ならびに曲線の方向を含む路線データが記憶されており、地上信号情報またはGPS情報等の位置情報と前記地点検知装置の持つ前記路線データおよび車両の走行距離を比較することにより、少なくとも前記空気ばね式強制車体傾斜機構の作動のトリガーとなる入口緩和曲線と出口緩和曲線とに進入する直前に少なくとも曲線軌道の曲がり方向を前記空気ばね制御装置に出力するものであることを特徴とする請求項1または2記載の鉄道車両。
The air spring type forced vehicle body tilt mechanism includes an air spring control device that controls an air amount of the air spring, and the air spring control device is connected to a vehicle point detection device,
The said point detecting device, are route data store containing the direction of curvature and cant amount and curves in position data and the curve of at least the curve, and the position information, such as terrestrial signal information or GPS information of the point detecting device by comparing the travel distance of the route data Contact and vehicles with, bending of at least the curved track immediately before going into the inlet transition curve and outlet transition curve comprising at least the triggering of the operation of the air spring force vehicle body tilt mechanism The railway vehicle according to claim 1 or 2, wherein a direction is output to the air spring control device.
前記空気ばね式強制車体傾斜機構は、前記地点検知装置により検知される入口緩和曲線進入直前で、前記空気ばね制御装置により外軌側空気ばねに空気を供給し外軌側空気ばねを上昇させて前記車体を前記振子梁に対し内軌側へ傾斜させ、入口緩和曲線走行時に前記空気ばね制御装置により外軌側空気ばね内の空気を排出し外軌側空気ばねの下降を行い、前記外軌側空気ばねの高さを元の中立位置に戻し、出口緩和曲線進入直前で、前記空気ばね制御装置により内軌側空気ばねに空気を供給し内軌側空気ばねを上昇させて前記車体を前記振子梁に対し外軌側へ傾斜させ、出口緩和曲線走行時に前記空気ばね制御装置により内軌側空気ばね内の空気を排出し、前記内軌側空気ばねの高さを元の中立位置に戻すことを特徴とする請求項3に記載の鉄道車両。   The air spring type forced vehicle body tilting mechanism raises the outer gauge side air spring by supplying air to the outer gauge side air spring by the air spring control apparatus immediately before entering the entrance relaxation curve detected by the point detection device. The vehicle body is inclined toward the inner gauge side with respect to the pendulum beam, and the air spring control device discharges air in the outer gauge side air spring and lowers the outer gauge side air spring during traveling of the entrance relaxation curve, and the outer gauge side air spring is lowered. The height of the side air spring is returned to the original neutral position, and immediately before entering the exit relaxation curve, the air spring control device supplies air to the inner gauge side air spring and raises the inner gauge side air spring so that the vehicle body is Inclined to the outer gauge side with respect to the pendulum beam, the air spring control device discharges the air in the inner gauge side air spring when traveling on the exit relaxation curve, and returns the height of the inner gauge side air spring to the original neutral position The method according to claim 3, Road vehicle. 前記空気ばね式強制車体傾斜機構は、前記地点検知装置により検知される入口緩和曲線進入直前で、前記空気ばね制御装置により外軌側空気ばねに空気を供給し外軌側空気ばねを上昇させるとともに内軌側の空気ばね内の空気を排出して前記車体を前記振子梁に対し内軌側へ傾斜させ、入口緩和曲線走行時に前記空気ばね制御装置により外軌側空気ばね内の空気を排出し外軌側空気ばねの下降を行うとともに内軌側の空気ばねに給気して、前記各空気ばねの高さを元の中立位置に戻し、出口緩和曲線進入直前で、前記空気ばね制御装置により内軌側空気ばねに空気を供給し内軌側空気ばねを上昇させるとともに外軌側空気ばね内の空気を排出して前記車体を前記振子梁に対し外軌側へ傾斜させ、出口緩和曲線走行時に前記空気ばね制御装置により内軌側空気ばね内の空気を排出するとともに外軌側空気ばねに空気を供給し、前記各空気ばねの高さを元の中立位置に戻すことを特徴とする請求項3に記載の鉄道車両。 The air spring type forced vehicle body tilt mechanism raises the outer gauge side air spring by supplying air to the outer gauge side air spring by the air spring control apparatus immediately before entering the inlet relaxation curve detected by the point detection device. The air in the air spring on the inner gauge side is discharged to incline the vehicle body toward the inner gauge side with respect to the pendulum beam, and the air spring control device discharges the air in the outer gauge side air spring when traveling on the entrance relaxation curve. The outer gauge side air spring is lowered and the inner gauge side air spring is supplied with air to return the height of each air spring to the original neutral position. Air is supplied to the inner gauge side air spring to raise the inner gauge side air spring, and the air in the outer gauge side air spring is discharged to incline the vehicle body toward the outer gauge side with respect to the pendulum beam. Sometimes the air spring control device Ri air is supplied to the root if the curve outside air as well as exhaust air rail side air in the spring, according to claim 3, characterized in that return to the original neutral position the height of the respective air springs Railway vehicle.
JP2006332337A 2006-12-08 2006-12-08 Railway vehicle Expired - Fee Related JP4979360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332337A JP4979360B2 (en) 2006-12-08 2006-12-08 Railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332337A JP4979360B2 (en) 2006-12-08 2006-12-08 Railway vehicle

Publications (3)

Publication Number Publication Date
JP2008143335A JP2008143335A (en) 2008-06-26
JP2008143335A5 JP2008143335A5 (en) 2010-01-14
JP4979360B2 true JP4979360B2 (en) 2012-07-18

Family

ID=39603984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332337A Expired - Fee Related JP4979360B2 (en) 2006-12-08 2006-12-08 Railway vehicle

Country Status (1)

Country Link
JP (1) JP4979360B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214379B2 (en) * 2008-09-19 2013-06-19 公益財団法人鉄道総合技術研究所 Rolling over prevention method and rolling over prevention apparatus for railway vehicles
JP6618474B2 (en) * 2014-08-29 2019-12-11 日立オートモティブシステムズ株式会社 Railway vehicle vibration control device
CN114771594B (en) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 Small-amplitude tilting adjustment system for railway vehicle and control method thereof
CN114852118A (en) * 2022-04-29 2022-08-05 株洲时代新材料科技股份有限公司 Connecting rod length adjusting method and hydraulic connecting rod
CN114771595B (en) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 Rapid small-amplitude tilting and swinging adjusting system for railway vehicle and control method thereof
CN114852117B (en) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 Adjustable torsion bar system and anti-rolling method
CN114802332B (en) * 2022-04-29 2024-05-07 株洲时代新材料科技股份有限公司 Method for improving curve running speed of railway vehicle and small-amplitude tilting system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101867A (en) * 1981-12-09 1983-06-17 株式会社日立製作所 Tilter for car body
JP4300122B2 (en) * 2004-01-07 2009-07-22 北海道旅客鉄道株式会社 Railway vehicle
JP4799039B2 (en) * 2005-04-20 2011-10-19 北海道旅客鉄道株式会社 Railway vehicle body tilting device

Also Published As

Publication number Publication date
JP2008143335A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4979360B2 (en) Railway vehicle
JP2002104183A (en) Rolling stock
KR20130045930A (en) System and method for estimating acceleration of vibration component in railcar
JP6673074B2 (en) Yaw damper device for railway vehicles
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JP5675405B2 (en) Track-based transportation vehicle and vehicle body posture control device
JP6833477B2 (en) Railroad vehicle height adjustment device
JP5038960B2 (en) Method for controlling body tilt angle of pendulum vehicle and control system for body tilt angle of pendulum vehicle
JPH08282487A (en) Railroad rolling stock with trim variable body
JP4160741B2 (en) Bogie steered rail vehicle
JP4300122B2 (en) Railway vehicle
JP6696369B2 (en) Railway vehicle body tilt control method
JP6673073B2 (en) Yaw damper device for railway vehicles
JP6864490B2 (en) Vibration control device for railway vehicles
JP4429957B2 (en) Vehicle system vibration device
JP5917343B2 (en) Railway vehicle body tilt control device and body tilt control method
JP4799039B2 (en) Railway vehicle body tilting device
JPH10175547A (en) Active steering support device for railway rolling stock
JP5981829B2 (en) Railway vehicle body height adjusting device and body height adjusting method
JP6492362B2 (en) Body tilt control device
JP3422341B2 (en) Vehicle body tilt control method for railway vehicles
JP2006062512A (en) Air spring height adjusting mechanism for rolling stock and control method of the air spring height adjusting mechanism
JP2002211393A (en) Car body inclining device
JPH06199236A (en) Meandering control device for bogie of rolling stock
JP2005238937A (en) Rolling stock

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees