JPH06194262A - Method and apparatus for meauring radius of curvature of surface - Google Patents

Method and apparatus for meauring radius of curvature of surface

Info

Publication number
JPH06194262A
JPH06194262A JP34403192A JP34403192A JPH06194262A JP H06194262 A JPH06194262 A JP H06194262A JP 34403192 A JP34403192 A JP 34403192A JP 34403192 A JP34403192 A JP 34403192A JP H06194262 A JPH06194262 A JP H06194262A
Authority
JP
Japan
Prior art keywords
inspected
curvature
electro
optical lens
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34403192A
Other languages
Japanese (ja)
Inventor
Masaaki Takai
雅明 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34403192A priority Critical patent/JPH06194262A/en
Publication of JPH06194262A publication Critical patent/JPH06194262A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To provide a method and apparatus for measuring a radius of a curvature of a surface to be measured by a simple structure without a driving mechanism. CONSTITUTION:A light from a light source 11 is converted into a parallel beam by a collimator 12 and is refracted by an electro-optical lens 13 to be emitted to a surface 14 to be measured. A voltage applied to the electro-optical lens is varied by a voltage-applying means 19 so that the inputted beam to the surface 14 to be measured is emitted to focus on a point (A). The beam reflected by the surface 14 overlaps with the inputted beam and goes in the reverse direction to take back to the light source 11. In this stage, when the intensity of the reflected beam becomes a peak level is realized from an output of a photodetector 17 so that a focal distance of the electro-optical lens 13 at that time is obtained. Next, the inputted beam is emitted to focus on a center of curvature (O) in the surface 14 so that a focal distance is obtained likewise. The difference of both of the focal distances is calculated to obtain a radius of curvature (r) of the surface 14 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ等の球面形状を
有する光学素子の曲率半径を測定する方法、及び装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring a radius of curvature of an optical element having a spherical shape such as a lens.

【0002】[0002]

【従来の技術】従来、レンズ等の球面の曲率半径を測定
するには、図4に示す方法によっていた。すなわち、同
図において、光源1から射出されたレーザービームをコ
リメータ2で平行ビームにし、対物レンズ3を通して被
検面4に照射し、対物レンズ3を光軸上で移動する。図
示の対物レンズ3は、ビームが被検面4上のA点に収束
した状態で、対物レンズ3′は、ビームが被検面4の曲
率中心Oに収束するように進んだ状態を示す。
2. Description of the Related Art Conventionally, the method shown in FIG. 4 has been used to measure the radius of curvature of a spherical surface of a lens or the like. That is, in the figure, the laser beam emitted from the light source 1 is made into a parallel beam by the collimator 2, is irradiated onto the surface 4 to be inspected through the objective lens 3, and the objective lens 3 is moved on the optical axis. The objective lens 3 shown in the drawing shows a state in which the beam converges on the point A on the surface 4 to be inspected, and the objective lens 3 ′ shows a state in which the beam advances so as to converge on the center of curvature O of the surface 4 to be inspected.

【0003】対物レンズが、図示の3の位置に来ると、
被検面4上のA点に収束したビームは被検面で反射さ
れ、上下左右が反転して、全ての反射ビームは入射ビー
ムに重なり、対物レンズ3を逆方向に通過して平行ビー
ムに戻る。もし、対物レンズ3の位置が前後いずれかに
ずれると、被検面4からの反射ビームは拡散され、平行
ビームに戻る光量が減少することになる。
When the objective lens comes to the position shown in FIG.
The beam converged to the point A on the surface to be inspected 4 is reflected by the surface to be inspected, and the vertical and horizontal directions are inverted, and all the reflected beams overlap the incident beam and pass through the objective lens 3 in the opposite direction to become a parallel beam. Return. If the position of the objective lens 3 shifts to the front or back, the reflected beam from the surface 4 to be inspected is diffused and the amount of light returning to a parallel beam is reduced.

【0004】そこで、対物レンズ3とコリメータ2との
間にハーフミラー5を置き、反射ビームを取り出し、収
束レンズ6で光検知器7上に結像させてその光量を測定
する。すなわち、対物レンズ3を光軸上で進退させ、処
理回路8で監視して光検知器7の出力がピークになる対
物レンズ3の位置を求めれば、ビームが被検面4上のA
点に収束する位置を求めることができる。
Therefore, a half mirror 5 is placed between the objective lens 3 and the collimator 2, the reflected beam is taken out, and an image is formed on the photodetector 7 by the converging lens 6, and the amount of light is measured. That is, if the objective lens 3 is moved back and forth on the optical axis, and the processing circuit 8 monitors it to find the position of the objective lens 3 at which the output of the photodetector 7 reaches its peak, the beam A
The position that converges to a point can be obtained.

【0005】対物レンズ3を図7の右方へ移動し、3′
の位置も持って来ると、入射ビームが被検面4の曲率中
心Oに収束するように進み、被検面4に入射する光は、
全て被検面4に垂直に入射する。したがって、反射ビー
ムは、入射ビームと同じ光路を逆行し、対物レンズ3を
透過して平行ビームとなる。すなわち、この場合も、被
検面4で反射されたビームが全て入射ビームと重なるの
で、光検知器7の出力が同様にピークに達する。
The objective lens 3 is moved to the right in FIG.
When the position of is also brought, the incident beam advances so as to converge on the center of curvature O of the surface to be inspected 4, and the light incident on the surface to be inspected 4 is
All are incident on the surface 4 to be inspected vertically. Therefore, the reflected beam traverses the same optical path as the incident beam, passes through the objective lens 3, and becomes a parallel beam. That is, also in this case, all the beams reflected by the surface 4 to be inspected overlap the incident beam, so that the output of the photodetector 7 similarly reaches a peak.

【0006】以上のようにして、対物レンズ3,3′の
位置を求め、それらの間の距離Sを求めると、S=rの
関係から被検面4の曲率半径rを求めることができる。
As described above, when the positions of the objective lenses 3 and 3'are determined and the distance S between them is determined, the radius of curvature r of the surface to be inspected 4 can be determined from the relationship of S = r.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の従来技
術によれば、対物レンズ3を光軸に沿って移動する駆動
機構が必要となり、同時に、ハーフミラー5,収束レン
ズ6,光検知器7もそれぞれ、5′,6′,7′の位置
へ移動しなければならない。しかも、駆動精度が曲率半
径の測定精度に直接影響するので、曲率半径を高精度に
測定するためには、駆動機構も高精度なものが必要とな
り、装置が複雑で非常に高価なものになってしまう。
However, according to the above-mentioned prior art, a drive mechanism for moving the objective lens 3 along the optical axis is required, and at the same time, the half mirror 5, the converging lens 6, and the photodetector 7 are required. Must also move to the 5 ', 6', 7'positions respectively. Moreover, since the drive accuracy directly affects the measurement accuracy of the radius of curvature, in order to measure the radius of curvature with high accuracy, the drive mechanism also needs to have high accuracy, which makes the device complicated and very expensive. Will end up.

【0008】本発明は、このような事実に鑑みてなされ
たもので、駆動機構のない簡単な構成で被検面の曲率半
径を測定できる方法及びその装置を提供することを目的
としている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method and an apparatus for measuring the radius of curvature of a surface to be inspected with a simple structure having no driving mechanism.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の方法は、光源からの平行ビームを電気光学
レンズで屈折して被検面に照射し、電気光学レンズに印
加する電圧を変化させつつ被検面で反射され入射ビーム
を逆行して光源へと戻る反射ビームの強度を光検知器で
求め、該強度がピークに達することを利用し、前記被検
面に照射されたビームが被検面上に収束するときと、被
検面の曲率中心に収束するときとの電気光学レンズの焦
点距離を求め、両焦点距離の差から被検面の曲率半径を
求める構成を特徴としている。
In order to achieve the above object, the method of the present invention comprises a voltage applied to an electro-optical lens by refracting a parallel beam from a light source with an electro-optical lens to irradiate the surface to be inspected. The intensity of the reflected beam which is reflected by the surface to be inspected and goes back to the light source while being reflected is determined by a photodetector, and the fact that the intensity reaches a peak is used to irradiate the surface to be inspected. Characterized by the focal length of the electro-optical lens when the beam converges on the surface to be inspected and when it converges on the center of curvature of the surface to be inspected, and the radius of curvature of the surface to be inspected is calculated from the difference between the focal lengths. I am trying.

【0010】また、本発明の装置は、平行ビームを照射
する光源と、電圧に応じて焦点距離が変化し前記平行ビ
ームを屈折させて被検面に照射する電気光学レンズと、
該電気光学レンズに印加する電圧を調節する電圧印加手
段と、前記被検面で反射されて光源へと戻る反射光の光
量を検知する光検知手段と、からなる構成を特徴として
いる。
Further, the apparatus of the present invention comprises a light source for irradiating a parallel beam, and an electro-optical lens for refracting the parallel beam whose focal length changes according to a voltage to irradiate the surface to be inspected.
It is characterized by a voltage applying means for adjusting the voltage applied to the electro-optical lens and a light detecting means for detecting the amount of reflected light reflected by the surface to be inspected and returning to the light source.

【0011】[0011]

【実施例】図1は本発明の曲率半径測定装置の一実施例
を示す図である。同図において、11は光源で、レーザ
ダイオード(LD)からなり、レーザービームを射出す
る。12はコリメータで、光源11からのレーザービー
ムを平行ビームにする。13は電気光学レンズで、印加
電圧により焦点距離が変化するレンズである。14は被
検面で、球面である。15は光分割器で、ハーフミラー
を使用している。16は収束レンズ、17は光検知器で
ある。18は信号処理回路で、電圧印加回路19と協同
して光検知器17が出す信号がピークになるように、電
気光学レンズ13に印加する電圧を変化させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an embodiment of the radius-of-curvature measuring apparatus of the present invention. In the figure, 11 is a light source, which is composed of a laser diode (LD) and emits a laser beam. A collimator 12 collimates the laser beam from the light source 11 into a parallel beam. Reference numeral 13 denotes an electro-optical lens, which is a lens whose focal length changes depending on the applied voltage. 14 is a surface to be inspected, which is a spherical surface. Reference numeral 15 is an optical splitter, which uses a half mirror. Reference numeral 16 is a converging lens, and 17 is a photodetector. Reference numeral 18 denotes a signal processing circuit that changes the voltage applied to the electro-optical lens 13 in cooperation with the voltage application circuit 19 so that the signal output from the photodetector 17 reaches a peak.

【0012】図1の実線は、電気光学レンズ13を透過
したビームが、被検面14上のA点に収束した状態で、
仮想線は、被検面14の曲率中心Oに収束するように照
射された状態を示す。いずれの場合も、反射ビームは入
射ビームと重なり、電気光学レンズ13を透過すると平
行ビームとなる。反射ビームは光分割器15に達してこ
こで少なくとも一部が反射され、分岐されて光検知器1
7に入射する。電気光学レンズ13から射出されたビー
ムが、図のA点又はO点以外の位置に収束する場合は、
反射ビームは入射ビームに一部だけしか重なり合わず、
入射ビームより広い角度に拡がる。そのため、電気光学
レンズ13を透過しても平行ビームに戻らずに発散し、
光検知器で検知する反射ビームの光量は減少する。
The solid line in FIG. 1 indicates that the beam transmitted through the electro-optical lens 13 is converged on the point A on the surface 14 to be inspected.
The imaginary line indicates the state of irradiation so as to converge on the center of curvature O of the surface to be inspected 14. In either case, the reflected beam overlaps the incident beam and becomes a parallel beam when transmitted through the electro-optical lens 13. The reflected beam reaches the light splitter 15 where it is at least partially reflected and split into photodetectors 1
It is incident on 7. When the beam emitted from the electro-optical lens 13 converges on a position other than point A or point O in the figure,
The reflected beam only partially overlaps the incident beam,
Spreads over a wider angle than the incident beam. Therefore, even if it passes through the electro-optical lens 13, it does not return to a parallel beam but diverges,
The amount of reflected beam detected by the photodetector is reduced.

【0013】そこで、光検知器17においてビームの強
度を監視していれば、図1の状態を作り出せ、そのとき
の印加電圧からA点とO点に収束するの場合の電気光学
レンズ13の焦点距離が分かり、両方の焦点距離の差か
ら被検面の曲率半径rを得ることができる。
Therefore, if the beam intensity is monitored by the photodetector 17, the state shown in FIG. 1 can be created, and the focus of the electro-optical lens 13 in the case where the applied voltage at that time converges to the points A and O. The distance is known, and the radius of curvature r of the surface to be inspected can be obtained from the difference between both focal lengths.

【0014】図2の実施例は、図1の実施例に、収束レ
ンズ16が反射ビームを収束させ、その後光検知器17
に入射させる位置に配置された構成と、収束点にピンホ
ール20を置いた構成とを付加したものである。このよ
うな構成とすれば、光分割器15で曲げられた反射ビー
ムが平行でない場合に、ピンホール20で光がけられて
光の損失が起こる。これによって、図1に示した実施例
より、さらに高精度に曲率半径の測定ができる。
The embodiment of FIG. 2 differs from the embodiment of FIG. 1 in that the converging lens 16 converges the reflected beam and then the photodetector 17
The configuration in which the pinhole 20 is made incident on and the configuration in which the pinhole 20 is placed at the converging point are added. With such a configuration, when the reflected beams bent by the light splitter 15 are not parallel, light is eclipsed by the pinhole 20 and light is lost. As a result, the radius of curvature can be measured with higher accuracy than in the embodiment shown in FIG.

【0015】図3は本発明の他の実施例を示す図であ
る。図1の実施例と共通する点も多いので、相違する点
を中心に説明する。15′は、前述の光分割器15と同
じものであるが、ここでは第1の光分割器21を設けた
ので、15′の方を第2の光分割器といい、ともにハー
フミラーを使用している。第2の光分割器15′が反射
ビームの一部を光路外に曲げるのに対し、この第1の光
分割器21は、入射ビーム、又は光源からの平行ビーム
の一部を曲げる。22,23は第1,第2の光検知器
で、この実施例ではCCDを使用している。24は画像
処理回路である。
FIG. 3 is a diagram showing another embodiment of the present invention. Since there are many points in common with the embodiment of FIG. 1, the points of difference will be mainly described. Reference numeral 15 'is the same as the above-mentioned optical splitter 15, but here, since the first optical splitter 21 is provided, 15' is referred to as the second optical splitter, and both use a half mirror. is doing. The second light splitter 15 'bends a part of the reflected beam out of the optical path, whereas this first light splitter 21 bends a part of the incident beam or a collimated beam from the light source. Reference numerals 22 and 23 denote first and second photodetectors, which are CCDs in this embodiment. Reference numeral 24 is an image processing circuit.

【0016】光源(LD)11からのレーザービーム
は、コリメータ12で平行ビームにされ、第1の光分割
器21で一部が反射されて第1の光検知器22に入射す
る。残りは電気光学レンズ13を通って被検面14を照
射する。実線は、ビームが被検面14上のA点に収束し
た場合で、仮想線は被検面14の曲率中心Oに収束する
ように進んだ場合である。被検面14で反射されたビー
ムは、入射ビームの来た光路を戻り、電気光学レンズ1
3を逆側から通過し、第2の光分割器15で曲げられ、
第2の光検知器23に入射する。なお、第1,2の光検
知器22,23は、入射するビームに対して同一の角度
になるように配置されている。
The laser beam from the light source (LD) 11 is collimated by the collimator 12 and partly reflected by the first light splitter 21 to enter the first photodetector 22. The rest passes through the electro-optical lens 13 and illuminates the surface 14 to be inspected. The solid line shows the case where the beam converges on the point A on the surface 14 to be inspected, and the imaginary line shows the case where the beam advances so as to converge on the center of curvature O of the surface 14 to be inspected. The beam reflected by the surface 14 to be inspected returns to the optical path of the incident beam, and the electro-optical lens 1
3 from the opposite side, bent by the second light splitter 15,
It is incident on the second photodetector 23. The first and second photodetectors 22 and 23 are arranged at the same angle with respect to the incident beam.

【0017】電気光学レンズ13から射出されたビーム
が、A点又はO点で収束すれば、コリメータ12と電気
光学レンズ13との間の入射ビームと反射ビームとは重
なりあっているので、ビームの径は同一である。したが
って、第1,第2の光分割器21,15′から、第1,
第2の光検知器22,23に入射するビームの径も、各
光検知器のビームに対する角度が同一である限り同一に
なる。もし、電気光学レンズのビームが図3に示すA点
又はO点に収束しない場合は、第1,第2の光検知器2
2,23のビーム径は等しくならない。そこで、画像処
理回路24で、第1,第2の光検知器22,23のビー
ム径が同一になるように監視していれば、図3の状態を
作り出せ、それぞれの場合の焦点距離の差から被検面1
4の曲率半径を求めることができる。
If the beam emitted from the electro-optical lens 13 converges at the point A or the point O, the incident beam and the reflected beam between the collimator 12 and the electro-optical lens 13 overlap with each other. The diameter is the same. Therefore, from the first and second optical splitters 21 and 15 ',
The diameters of the beams incident on the second photodetectors 22 and 23 are also the same as long as the angles of the respective photodetectors with respect to the beam are the same. If the beam of the electro-optical lens does not converge to the points A or O shown in FIG. 3, the first and second photodetectors 2
The beam diameters of 2 and 23 are not equal. Therefore, if the image processing circuit 24 is monitoring the beam diameters of the first and second photodetectors 22 and 23 to be the same, the state of FIG. 3 can be created, and the difference in focal length in each case can be created. To test surface 1
A radius of curvature of 4 can be obtained.

【0018】[0018]

【発明の効果】以上に説明したように、本発明によれ
ば、電気光学レンズを利用することで従来の装置のよう
な駆動系を不要とし、簡単な構成とすることができた。
同時に、高精度な被検面の曲率半径の測定ができ、ま
た、ピンホールを使用する構成とすれば、さらに高精度
の測定が可能になる。
As described above, according to the present invention, the use of the electro-optical lens eliminates the need for a drive system such as that in the conventional device, and enables a simple structure.
At the same time, the radius of curvature of the surface to be inspected can be measured with high precision, and if a pinhole is used, even higher precision can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図で、被検面の曲率半
径測定装置の構成を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention and is a diagram showing a configuration of a radius-of-curvature measuring device for a surface to be tested.

【図2】本発明の第2実施例で、収束レンズと光検知手
段との間にピンホールを設けた図である。
FIG. 2 is a view showing a second embodiment of the present invention in which a pinhole is provided between a converging lens and a light detecting means.

【図3】本発明の第3実施例の構成を示す図である。FIG. 3 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図4】従来の被検面の曲率半径測定装置の構成を示す
図である。
FIG. 4 is a diagram showing a configuration of a conventional curvature radius measuring apparatus for a surface to be inspected.

【符号の説明】[Explanation of symbols]

11 光源 13 電気光学レンズ 14 被検面 15 光分割器 15′ 第1の光分割器 16 収束レンズ 17 光検知器 19 電圧印加手段 20 ピンホール 21 第2の光分割器 22 第1の光検知器 23 第2の光検知器 11 Light Source 13 Electro-Optical Lens 14 Test Surface 15 Light Splitter 15 'First Light Splitter 16 Converging Lens 17 Photodetector 19 Voltage Applying Means 20 Pinhole 21 Second Light Splitter 22 First Photodetector 23 Second photodetector

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光源からの平行ビームを電気光学レンズ
で屈折して被検面に照射し、電気光学レンズに印加する
電圧を変化させつつ被検面で反射され入射ビームを逆行
して光源へと戻る反射ビームの強度を光検知器で求め、
該強度がピークに達することを利用し、前記被検面に照
射されたビームが被検面上に収束するときと、被検面の
曲率中心に収束するときとの電気光学レンズの焦点距離
を求め、両焦点距離の差から被検面の曲率半径を求める
ことを特徴とする被検面の曲率半径測定方法。
1. A parallel beam from a light source is refracted by an electro-optical lens to irradiate the surface to be inspected, and while the voltage applied to the electro-optical lens is changed, the incident beam reflected by the surface to be inspected goes backward to the light source. The intensity of the reflected beam that returns
By utilizing the fact that the intensity reaches a peak, the focal length of the electro-optical lens when the beam applied to the surface to be inspected converges on the surface to be inspected and when it converges to the center of curvature of the surface to be inspected A method for measuring a radius of curvature of a surface to be inspected, characterized by obtaining the radius of curvature of the surface to be inspected from the difference between both focal lengths.
【請求項2】 前記反射ビームの強度を光検知器で求め
る際に、反射ビームを収束レンズで収束した後光検知器
に入射させると共に、該収束位置にピンホールを設けて
周辺光をカットすることを特徴とする請求項1記載の被
検面の曲率半径測定方法。
2. When obtaining the intensity of the reflected beam by a photodetector, the reflected beam is converged by a converging lens and then incident on the photodetector, and a pinhole is provided at the converging position to cut ambient light. The method for measuring the radius of curvature of the surface to be inspected according to claim 1, wherein.
【請求項3】 光源からの平行ビームを電気光学レンズ
で屈折して被検面に照射し、電気光学レンズに印加する
電圧を変化させつつ被検面で反射させ、入射方向を逆行
する反射ビームの外径と、平行な入射ビームの外径とを
光検知器で測定し、両ビームの外径が同一になることを
利用し、前記被検面に照射されたビームが被検面上に収
束するときと、被検面の曲率中心に収束するときとの電
気光学レンズの焦点距離を求め、両焦点距離の差から被
検面の曲率半径を求めることを特徴とする被検面の曲率
半径測定方法。
3. A reflected beam in which a parallel beam from a light source is refracted by an electro-optical lens to irradiate the surface to be inspected, is reflected on the surface to be inspected while changing the voltage applied to the electro-optical lens, and is incident in the opposite direction. The outer diameter of the beam and the outer diameter of the parallel incident beam are measured with a photodetector, and the fact that the outer diameters of both beams are the same is used, and the beam irradiated on the surface to be inspected The curvature of the surface to be inspected, which is characterized in that the focal length of the electro-optical lens is obtained at the time of convergence and at the time of convergence to the center of curvature of the surface to be inspected, and the radius of curvature of the surface to be inspected is obtained from the difference between both focal lengths. Radius measuring method.
【請求項4】 平行ビームを照射する光源と、電圧に応
じて焦点距離が変化し前記平行ビームを屈折させて被検
面に照射する電気光学レンズと、該電気光学レンズに印
加する電圧を調節する電圧印加手段と、前記被検面で反
射されて光源へと戻る反射光の光量を検知する光検知手
段と、からなることを特徴とする被検面の曲率半径測定
装置。
4. A light source for irradiating a parallel beam, an electro-optical lens for changing a focal length according to a voltage to refract the parallel beam to irradiate a surface to be inspected, and a voltage applied to the electro-optical lens. And a light detection unit that detects the amount of reflected light that returns to the light source after being reflected by the surface to be inspected, and a radius-of-curvature measuring device for the surface to be inspected.
【請求項5】 前記電気光学レンズと光源との間に被検
面からの反射ビームの少なくとも一部を分岐する光分割
器を設け、該光分割器から射出された前記反射ビームを
入射して前記光検知手段へと射出する収束レンズを設け
たことを特徴とする請求項4記載の被検面の曲率半径測
定装置。
5. An optical splitter for branching at least a part of the reflected beam from the surface to be inspected is provided between the electro-optical lens and the light source, and the reflected beam emitted from the optical splitter is made incident. The curvature radius measuring apparatus for the surface to be inspected according to claim 4, further comprising a converging lens which is emitted to said light detecting means.
【請求項6】 前記収束レンズが、該レンズから射出さ
れた反射ビームを前記光検知手段に入射する前方で収束
するように配置し、該収束位置にピンホールを設けたこ
とを特徴とする請求項5記載の被検面の曲率半径測定装
置。
6. The converging lens is arranged so that the reflected beam emitted from the lens is converged in front of entering the light detecting means, and a pinhole is provided at the converging position. Item 5. The radius-of-curvature measuring device for the surface to be inspected according to item 5.
【請求項7】 平行ビームを照射する光源と、電圧に応
じて焦点距離が変化し前記平行ビームを屈折して被検面
に照射する電気光学レンズと、該電気光学レンズに印加
する電圧を調節する電圧印加手段と、前記光源からの平
行ビームの外径を測定する第1の光検知器と、前記被検
面で反射されて光源へと戻る反射ビームの外径を測定す
る第2の光検知手段と、からなることを特徴とする被検
面の曲率半径測定装置。
7. A light source for irradiating a parallel beam, an electro-optical lens for changing a focal length according to a voltage to refract the parallel beam and irradiate the surface to be inspected, and a voltage applied to the electro-optical lens are adjusted. Voltage applying means, a first photodetector for measuring the outer diameter of the parallel beam from the light source, and a second light for measuring the outer diameter of the reflected beam reflected by the surface to be inspected and returning to the light source. An apparatus for measuring a radius of curvature of a surface to be inspected, comprising: a detection unit.
【請求項8】 前記電気光学レンズと光源との間に、前
記光源からの平行ビームの一部を分岐する第1の光分割
器と、被検面からの反射ビームの少なくとも一部を分岐
する第2の光分割器とを設け、各光分割器で分岐させた
ビームを前記第1,第2の光検知手段に入射させること
特徴とする請求項7記載の被検面の曲率半径測定装置。
8. A first light splitter that splits a part of a parallel beam from the light source between the electro-optical lens and the light source, and splits at least a part of a reflected beam from the surface to be inspected. 8. A radius of curvature measuring apparatus for a surface to be inspected according to claim 7, further comprising: a second light splitter, wherein the beams branched by the respective light splitters are made incident on the first and second light detecting means. .
JP34403192A 1992-12-24 1992-12-24 Method and apparatus for meauring radius of curvature of surface Withdrawn JPH06194262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34403192A JPH06194262A (en) 1992-12-24 1992-12-24 Method and apparatus for meauring radius of curvature of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34403192A JPH06194262A (en) 1992-12-24 1992-12-24 Method and apparatus for meauring radius of curvature of surface

Publications (1)

Publication Number Publication Date
JPH06194262A true JPH06194262A (en) 1994-07-15

Family

ID=18366125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34403192A Withdrawn JPH06194262A (en) 1992-12-24 1992-12-24 Method and apparatus for meauring radius of curvature of surface

Country Status (1)

Country Link
JP (1) JPH06194262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306669A1 (en) * 2003-02-13 2004-09-09 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Interferometric shape checking device, used during shaping of a lens surface, couples light into lens through surface not being shaped and measures light rays reflected from inside of surface being shaped
JP2008524566A (en) * 2004-12-20 2008-07-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Non-contact measuring method of curvature of ophthalmic article and measuring apparatus therefor
CN114295078A (en) * 2021-12-28 2022-04-08 歌尔股份有限公司 Prism calibration device and parallelism calibration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306669A1 (en) * 2003-02-13 2004-09-09 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Interferometric shape checking device, used during shaping of a lens surface, couples light into lens through surface not being shaped and measures light rays reflected from inside of surface being shaped
DE10306669B4 (en) * 2003-02-13 2005-04-14 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for checking the shaping and apparatus for the shaping of an optically transparent body
JP2008524566A (en) * 2004-12-20 2008-07-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Non-contact measuring method of curvature of ophthalmic article and measuring apparatus therefor
CN114295078A (en) * 2021-12-28 2022-04-08 歌尔股份有限公司 Prism calibration device and parallelism calibration method

Similar Documents

Publication Publication Date Title
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
US20050206905A1 (en) Optical displacement measurement device
CN109358435B (en) Device and method for adjusting perpendicularity of double telecentric lenses
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
CN108132142A (en) Detection device and method for large-caliber reflection optical system
KR890013458A (en) Surface roughness photodetection method and apparatus
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JPH06194262A (en) Method and apparatus for meauring radius of curvature of surface
JPH0914935A (en) Measuring device for three-dimensional object
US6486942B1 (en) Method and system for measurement of a characteristic of lens
JP2004502927A (en) Method and apparatus for suppressing multiple scattering during inspection of turbid media by three-dimensional cross-correlation technique
KR102008253B1 (en) Multi channel optical profiler based on interferometer
JPH04151502A (en) Photosensor device
JP3491464B2 (en) Laser beam divergence angle measuring device
US4136960A (en) Test apparatus for optical waveguides
JPH08261734A (en) Shape measuring apparatus
CN101467026A (en) Optical focusing devices
JPH0471453B2 (en)
JP2808713B2 (en) Optical micro displacement measuring device
JPH01304339A (en) Instrument for measuring angle of refraction
JPH11304640A (en) Inspection apparatus for optical element
KR0160694B1 (en) Tilt measuring device of optical pick up object lens
JPH0231103A (en) Apparatus for detecting three-dimensional shape of pattern
JP2023113092A (en) Optical inspection device and optical inspection method
JP2989995B2 (en) Positioning device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307