JPH06192769A - High strength and high electric conductivity copper alloy - Google Patents

High strength and high electric conductivity copper alloy

Info

Publication number
JPH06192769A
JPH06192769A JP34650492A JP34650492A JPH06192769A JP H06192769 A JPH06192769 A JP H06192769A JP 34650492 A JP34650492 A JP 34650492A JP 34650492 A JP34650492 A JP 34650492A JP H06192769 A JPH06192769 A JP H06192769A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
less
alloy
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34650492A
Other languages
Japanese (ja)
Inventor
Hironobu Sawato
広信 沢渡
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP34650492A priority Critical patent/JPH06192769A/en
Publication of JPH06192769A publication Critical patent/JPH06192769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a copper alloy having electric conductivity, strength, spring characteristics, suitability to blanking and bendability required by the lead material of a semiconductor device and an electric conductive spring material. CONSTITUTION:A compsn. consisting of 0.05% to <1% Cr, 0.0005% to <0.05%, in total, of one or more among Ti, Hf and Th and the balance Cu with inevitable impurities or further contg. 0.01% to <1%, in total, of one or more among Si, Sn, P, Fe, Cr, B, Be, Co, Mg, Ni, Al and Mn is imparted to a copper alloy and the average grain diameter of the copper alloy is optionally regulated to <25mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トランジスタや集積
回路(IC)等のような半導体機器のリード材やコネク
ター端子、リレー、スイッチ等の導電性ばね材として好
適な、高い強度、導電性等に加えて優れた打ち抜き加工
性、曲げ加工性を備えた銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs), and a conductive spring material for connector terminals, relays, switches, etc., having high strength and conductivity. In addition to the above, the present invention relates to a copper alloy having excellent punching workability and bending workability.

【0002】[0002]

【従来の技術】従来、半導体機器のリード材には、熱膨
張係数が低く、素子及びセラミックスとの接着性、封着
性の良好な“コバール(商品名:Fe−29wt%Ni
−16wt%Co合金)”或いは“42合金”等といっ
た高ニッケル合金が好んで使われてきた。
2. Description of the Related Art Conventionally, as a lead material for semiconductor devices, "Kovar (trade name: Fe-29 wt% Ni) having a low coefficient of thermal expansion and good adhesiveness and sealing property with elements and ceramics.
High nickel alloys such as "-16 wt% Co alloy)" or "42 alloy" have been used favorably.

【0003】ところが、近年、半導体回路の集積度向上
に伴って消費電力の高いICが多く使用されるようにな
ってきたことや、封止材料として樹脂が多く用いられた
こと等の事情もあって、半導体機器のリード材に放熱性
の良い銅基合金を使用する傾向が目立つようになってい
る。
However, in recent years, ICs with high power consumption have come to be used more and more as the degree of integration of semiconductor circuits has increased, and there have been circumstances such as that a large amount of resin has been used as a sealing material. As a result, the tendency to use a copper-based alloy with good heat dissipation as a lead material for semiconductor devices has become prominent.

【0004】ところで、材料の種類はともかく、このよ
うな半導体機器のリード材には一般に次のような特性が
要求されている。
Regardless of the type of material, the following characteristics are generally required for the lead material of such a semiconductor device.

【0005】(1)リードは電気信号伝達部であると同
時に、パッケージング工程中及び回路使用中に発生する
熱を外部に放出する機能を必要とするので、熱及び電気
の伝導性に優れること。 (2)半導体素子保護の観点から“リードとモールドと
の密着性”が重要であるため、熱膨張係数がモールド材
と近いこと。 (3)パッケージング時に種々の加熱工程が加わるた
め、耐熱性が良好であること。
(1) The lead is an electric signal transmitting part and at the same time needs to have a function of radiating heat generated during the packaging process and during use of the circuit to the outside, so that it has excellent heat and electric conductivity. . (2) Since the "adhesion between the lead and the mold" is important from the viewpoint of protecting the semiconductor element, the coefficient of thermal expansion is close to that of the molding material. (3) Heat resistance is good because various heating steps are added during packaging.

【0006】(4)リードは、リード材を打ち抜きし、
また曲げ加工して作製されるものが殆どであるため、こ
れらの加工性が良好であること。 (5)リードには表面に貴金属のめっきが施されるた
め、これらの貴金属とのめっき密着性が良好であるこ
と。
(4) For the lead, the lead material is punched out,
Also, since most of them are manufactured by bending, they must have good workability. (5) Since the surface of the lead is plated with a noble metal, the adhesion of the plating to these noble metals must be good.

【0007】(6)パッケージング後にも封止材の外に
露出している所謂“アウター・リード部”に半田付けす
る場合が多いので、良好な半田付け性を示すこと。 (7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。 (8)価格が低廉であること。
(6) Since soldering is often performed on the so-called "outer lead portion" exposed to the outside of the encapsulant even after packaging, it should exhibit good solderability. (7) Good corrosion resistance from the viewpoint of equipment reliability and life. (8) The price is low.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の各種の要求特性に対し、従来より使用されている無酸
素銅、錫入り銅、りん青銅、コバール(商品名)及び4
2合金には何れも一長一短があり、前記特性の全てを満
足し得るものではなかった。
However, oxygen-free copper, tin-containing copper, phosphor bronze, Kovar (trade name) and 4 which have been used conventionally are used for these various required characteristics.
Each of the two alloys had merits and demerits, and it was not possible to satisfy all of the above characteristics.

【0009】特にリードの多ピン化、小型化の進展に伴
って形状の複雑化やピンの狭小化が進み、材料に一層良
好な打ち抜き性及び曲げ加工性が求められていることを
考慮すれば、上記従来材はこれらの点で十分な性能を有
しているとは言い難かった。
In consideration of the fact that the shape is becoming more complicated and the pin is becoming narrower with the increase in the number of pins of the lead and the miniaturization of the lead, and that the material is required to have better punchability and bending workability. However, it was difficult to say that the above-mentioned conventional materials have sufficient performance in these points.

【0010】一方、同様に優れた導電性、耐食性、強
度、打ち抜き性、曲げ加工性等が要求されるところの電
気機器、計測機器、スイッチあるいはコネクター等に用
いられるばね材料として、従来から比較的安価な“黄
銅”、ばね特性の優れた“りん青銅”、ばね特性に加え
て耐食性にも優れた“洋白”といった銅合金が使用され
てきた。
On the other hand, as a spring material used for electrical equipment, measuring equipment, switches, connectors, etc., which are also required to have excellent conductivity, corrosion resistance, strength, punchability, bending workability, etc., they have been comparatively used in the past. Copper alloys such as inexpensive “brass”, “phosphor bronze” with excellent spring characteristics, and “white silver” with excellent corrosion resistance in addition to spring characteristics have been used.

【0011】しかし、一層の高性能化が進む前記機器類
のばね材として上記銅合金を検討すると、黄銅は強度や
ばね特性の点で十分満足できるものではなく、また強度
及びばね特性に優れる洋白やりん青銅にしても部品の軽
薄短小化が進むにつれてより厳しい打ち抜き加工、曲げ
加工が施されるようになったことから、従来の材料では
これらの加工性面で不満が指摘されるようになってき
た。したがって、より改善された打ち抜き加工性及び曲
げ加工性を示し、かつばね特性の優れた合金の出現が待
たれていた。
However, when the above-mentioned copper alloy is examined as a spring material for the above-mentioned devices which are further improved in performance, brass is not sufficiently satisfactory in terms of strength and spring characteristics, and it is excellent in strength and spring characteristics. Even with white and phosphor bronze, as parts become lighter, thinner and smaller, more severe punching and bending processes have been applied, so it is pointed out that conventional materials are dissatisfied in terms of workability. It's coming. Therefore, the emergence of an alloy exhibiting further improved punching workability and bending workability and having excellent spring properties has been awaited.

【0012】このようなことから、本発明の目的は、銅
系材料の優れた電気、熱の伝導性を生かすと同時に、半
導体機器のリード材や導電性ばね材として十分に満足で
きる強度、ばね特性、耐食性、打ち抜き加工性並びに曲
げ加工性をも兼備した銅合金を実現することに置かれ
た。
Therefore, an object of the present invention is to make use of the excellent electric and thermal conductivity of copper-based materials, and at the same time, to obtain the strength and spring which are sufficiently satisfactory as a lead material or a conductive spring material for semiconductor devices. It was placed on realizing a copper alloy that also has properties, corrosion resistance, punching workability, and bending workability.

【0013】[0013]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を重ねたところ、「優れた
強度、ばね特性等を備えるCu−Cr合金の成分調整を
行った上で、これに適量のTi,HfまたはThを含有
させると、半導体機器のリード材や導電性ばね材として
の必要特性に格別な悪影響を及ぼすことなく十分とは言
えなかった打ち抜き加工性や曲げ加工性が著しく向上す
る。」との新事実が明らかとなり、更には「このような
組成を有した銅合金の結晶粒度を特性の細かい領域に調
整するとその打ち抜き加工性や曲げ加工性が一層向上す
る」という知見も得ることができた。
Therefore, the inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and found that "the components of a Cu-Cr alloy having excellent strength and spring characteristics are adjusted. However, if an appropriate amount of Ti, Hf, or Th is added to this, punching workability and bending work that could not be said to be sufficient without adversely affecting the required characteristics as the lead material or conductive spring material of semiconductor devices Of the copper alloy having such a composition is further improved in punching workability and bending workability. I was able to obtain the knowledge.

【0014】本発明は、上記知見事項等を基にして完成
されたものであり、「銅合金を、Cr:0.05%以上
1%未満(以降、成分割合を表す%は重量%とする)、
Ti,HfまたはThのうちの1種以上:総量で0.0
005%以上0.05%未満を含有し、あるいはさらに
Si,Sn,P,Fe,B,Be,Co,Mg,Zn,
AlまたはMnのうちの1種以上:総量で0.01%以
上1%未満を含むと共に残部がCu及び不可避的不純物
からなる成分組成とするか、又はこれに加えてその平均
結晶粒径を25μm未満に調整することにより、半導体
機器のリード材として十分満足できる優れた電気及び熱
伝導性ばね材としても十分な強度、ばね特性、導電性、
加工性を兼備せしめた点」に大きな特徴を有している。
The present invention has been completed on the basis of the above-mentioned findings and the like. "In a copper alloy, Cr: 0.05% or more and less than 1% (hereinafter,% representing a component ratio is defined as% by weight). ),
One or more of Ti, Hf or Th: 0.0 in total
Containing 005% or more and less than 0.05%, or further containing Si, Sn, P, Fe, B, Be, Co, Mg, Zn,
One or more of Al or Mn: a total composition of 0.01% or more and less than 1% and the balance being Cu and inevitable impurities, or an average crystal grain size of 25 μm By adjusting to less than, the strength, spring characteristics, conductivity, sufficient as an excellent electrical and thermal conductive spring material that can be sufficiently satisfied as the lead material of the semiconductor device,
It has a great feature in that it has both processability ".

【0015】次に本発明において銅合金の成分組成、平
均結晶粒径を前記の如くに限定した理由を、その作用と
共に説明する。
Next, the reason why the component composition and average crystal grain size of the copper alloy are limited as described above in the present invention will be explained together with its action.

【0016】Cr量:Crは合金の強度を確保する作用
があるが、その含有量が0.05%未満であると所望と
する300N/mm2以上の強度が得られず、一方、1
%以上の割合でCrを含有させると伸びが4%まで低下
することから、Cr含有量は「0.05%以上1%未
満」と定めた。
Cr content: Cr acts to secure the strength of the alloy, but if the content of Cr is less than 0.05%, the desired strength of 300 N / mm 2 or more cannot be obtained, while 1
Since the elongation decreases to 4% when Cr is contained in a proportion of not less than%, the Cr content is defined as "0.05% or more and less than 1%".

【0017】Ti,HfまたはTh量:Ti,Hf,T
hの微量添加により打ち抜き加工性及び曲げ加工性を改
善する等しい作用があることから、この1種又は2種以
上の添加がなされる。なお、上記元素がこれらの作用を
発揮する機構は現在研究中であるが、Ti,Hfまたは
Thのうちの1種又は2種以上の含有量が総量で0.0
005%未満であると前記作用による所望の効果が得ら
れず、一方、その含有量が総量で0.05%以上である
と打ち抜き加工性及び曲げ加工性が逆に劣化すると共
に、導電性も低下することから、これら元素の含有量は
総量で「0.0005%以上0.05%未満」と定め
た。
Ti, Hf or Th amount: Ti, Hf, T
Since the addition of a small amount of h has the same effect of improving punching workability and bending workability, one or more additions are made. The mechanism by which the above elements exert these actions is currently under study, but the total content of one or more of Ti, Hf or Th is 0.0.
If it is less than 005%, the desired effect due to the above-mentioned action cannot be obtained. On the other hand, if the total content is 0.05% or more, punching workability and bending workability are deteriorated conversely, and conductivity is also increased. Therefore, the total content of these elements was determined to be “0.0005% or more and less than 0.05%”.

【0018】Si,Sn,P,Fe,B,Co,Mg,
Zn,AlまたはMn量;Si,Sn,P,Fe,B,
Co,Mg,Zn,AlまたはMnには、上記銅合金の
強度並びに耐熱性を更に改善する等しい作用があるので
必要により1種又は2種以上の添加がなされる。しか
し、その含有量が総量で0.01%未満であると前記作
用による所望・効果が得られず、一方、総含有量が1%
以上になると導電率が著しく低下することから、これら
の含有量は総量で「0.01%以上1%未満」と定め
た。
Si, Sn, P, Fe, B, Co, Mg,
Zn, Al or Mn amount; Si, Sn, P, Fe, B,
Co, Mg, Zn, Al or Mn have the same effect to further improve the strength and heat resistance of the above copper alloy, so one or more kinds of them are added if necessary. However, if the total content is less than 0.01%, the desired effect due to the above-mentioned action cannot be obtained, while the total content is 1%.
Since the electrical conductivity remarkably decreases when the content is higher than the above, the total content of these is defined as "0.01% or more and less than 1%".

【0019】結晶粒径;本発明に関わる銅合金では、そ
の結晶粒の粗大化が打ち抜き加工性及び曲げ加工性に少
なからぬ悪影響を及ぼす。特に平均結晶粒径が25μm
以上となると打ち抜き加工性、曲げ加工性の劣化が顕著
となる。従って、良好な打ち抜き加工性及び曲げ加工性
を確保するためには、平均結晶粒径25μm以上となら
ぬように調整するのが良い。
Crystal grain size: In the copper alloy according to the present invention, coarsening of the crystal grains has a considerable adverse effect on punching workability and bending workability. Especially the average crystal grain size is 25 μm
If it becomes the above, punching workability and bending workability will become remarkable. Therefore, in order to secure good punching workability and bending workability, it is preferable to adjust so that the average crystal grain size is not 25 μm or more.

【0020】上述のように、本発明に係わる銅合金は、
優れた強度、ばね特性、電気伝導性、耐熱性等を具備す
ると共に良好な打ち抜き加工性及び曲げ加工性を示し、
しかも半田付け性、めっき密着性にも優れるものである
が、以下、実施例によって本発明をより具体的に説明す
る。
As mentioned above, the copper alloy according to the present invention is
It has excellent strength, spring characteristics, electrical conductivity, heat resistance, etc., and shows good punching and bending workability.
Moreover, although the solderability and the plating adhesion are excellent, the present invention will be described in more detail with reference to the following examples.

【0021】[0021]

【実施例】電気銅を原料とし高周波溶解炉にて表1及び
表2に示される各種成分組成の銅合金を1200℃で溶
製し、皮削り後熱間圧延を行い6mmの厚さとした。こ
の材料を皮削り後100℃から焼入れを行い、冷間圧
延、時効処理、圧延を行い、最後に歪取焼鈍を行い、
0.3mm厚さの板とした。これらの材料について、引
張り強さ、伸び、曲げ性の調査を行った。
[Examples] Electrolytic copper was used as a raw material to melt copper alloys having various component compositions shown in Tables 1 and 2 at 1200 ° C. in a high frequency melting furnace, and after skinning, hot rolling was performed to a thickness of 6 mm. After this material is skinned, quenching is performed from 100 ° C., cold rolling, aging treatment, rolling are performed, and finally strain relief annealing is performed,
The plate was 0.3 mm thick. The tensile strength, elongation and bendability of these materials were investigated.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】引張り強さは、伸びは圧延方向に平行方向
にJIS5号引張り試験片を採取し、引張り試験を行い
測定した。電気伝導性(放熱性)の評価は導電率(%I
ACS)の測定により評価した。また、“打ち抜き加工
性”の評価は打ち抜き加工後のプレス破面を観察するこ
とで行い、破断面率[(破断面)/(板厚)×100]
が20%以上のときを「良好」、20%未満のときを
「不良」と判断した。
The tensile strength was measured by taking a JIS No. 5 tensile test piece in the direction parallel to the rolling direction and performing a tensile test. Electrical conductivity (heat dissipation) is evaluated by conductivity (% I
It was evaluated by measuring ACS). The "punching workability" is evaluated by observing the press fracture surface after punching, and the fracture surface ratio [(fracture surface) / (plate thickness) x 100]
When it was 20% or more, it was judged as "good", and when it was less than 20%, it was judged as "bad".

【0026】曲げ加工性については、図1に示すように
10mm幅の件の試験片を、内側曲げ半径0.3mm
(=板厚)で圧延方向と直角に、片側に90°の曲げを
繰返し行い、破断までの曲げ回数(往復で1回とする)
を測定した。試験はn=5で行い、その平均値で評価し
た。これらの評価結果を、前記表1及び表2に併せて示
す。
Regarding bending workability, as shown in FIG. 1, a test piece having a width of 10 mm was subjected to an inward bending radius of 0.3 mm.
(= Plate thickness), 90 degree bending is repeated on one side at right angles to the rolling direction, and the number of bendings until breakage (1 time for reciprocation)
Was measured. The test was conducted at n = 5, and the average value was evaluated. The results of these evaluations are also shown in Tables 1 and 2 above.

【0027】さて、表1及び表2に示される結果からも
明らかなように、本発明合金No.1〜No.19は、いず
れも優れた強度、伸び、導電率、耐熱性を有すると共に
良好な打ち抜き加工性及び曲げ加工性を示すことがわか
る。
As is clear from the results shown in Tables 1 and 2, the alloys No. 1 to No. 19 of the present invention all have excellent strength, elongation, electrical conductivity and heat resistance and are good. It can be seen that it exhibits excellent punching workability and bending workability.

【0028】これに対し、比較合金No.20は本発明合
金No.1に比べて、比較合金No.21は本発明合金No.
13と比べて、比較合金No.22は本発明合金No.7と
比べて、そして比較合金No.23は本発明合金No.11
と比べて、同量のCr及びその他の成分を含有し結晶粒
径が同等であるにもかかわらず、Ti,HfまたはTh
を含有していないため打ち抜き加工性及び曲げ性が劣
る。また、比較合金No.26はCrの含有量が少ないた
めに強度が低く、一方、比較合金No.27はCr含有量
が多すぎるために伸びが小さくなっている。
On the other hand, the comparative alloy No. 20 is in comparison with the invented alloy No. 1, and the comparative alloy No. 21 is in the invented alloy No. 1.
Comparative alloy No. 22 compared to invention alloy No. 7 and comparative alloy No. 23 to invention alloy No. 11
Compared with Ti, Hf or Th, despite containing the same amount of Cr and other components and having the same crystal grain size.
Since it does not contain, it is inferior in punching workability and bendability. Further, the comparative alloy No. 26 has a low strength due to the low Cr content, while the comparative alloy No. 27 has a small elongation due to the excessive Cr content.

【0029】更に比較合金No.25はZn含有量が1%
以上と高いために導電率が低くなっている。ところで、
合金No.24は結晶粒の粗大化したものの例であるが、
合金No.1と比較すれば明らかなように、結晶粒径がこ
のように大きいと打ち抜き加工性及び曲げ加工性が悪く
なることを確認できる。
Further, the comparative alloy No. 25 has a Zn content of 1%.
Since it is higher than the above, the conductivity is low. by the way,
Alloy No. 24 is an example of a coarse crystal grain,
As is clear from the comparison with Alloy No. 1, it can be confirmed that the punching workability and bending workability are deteriorated when the crystal grain size is such large.

【0030】[0030]

【発明の効果】以上説明した如く、この発明によれば、
半導体機器のリード材及び導電性ばね材としての従来合
金に指摘された打ち抜き性及び加工性の難点を克服し、
前記材料の性能を大幅に向上する高力高導電性銅合金を
提供することが可能となるほど、産業上極めて有用な効
果がもたらされる。
As described above, according to the present invention,
Overcoming the problems of punchability and workability pointed out in conventional alloys as lead materials and conductive spring materials for semiconductor devices,
As it becomes possible to provide a high-strength and high-conductivity copper alloy that greatly improves the performance of the material, a very useful effect in industry is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】曲げ加工性の試験の説明図である。FIG. 1 is an explanatory diagram of a bending workability test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて、Cr:0.05%以上1
%未満、Ti,HfまたはThのうちの1種以上:総量
で0.0005%以上0.05%未満を含むと共に、残
部がCu及び不可避的不純物からなることを特徴とする
高力高導電性銅合金。
1. By weight ratio, Cr: 0.05% or more 1
%, One or more of Ti, Hf, or Th: High strength and high conductivity characterized by containing 0.0005% or more and less than 0.05% in total and the balance being Cu and unavoidable impurities. Copper alloy.
【請求項2】 重量割合にて、Cr:0.05%以上1
%未満、Ti,HfまたはThのうちの1種以上:総量
で0.0005%以上0.05%未満、Si,Sn,
P,Fe,B,Be,Co,Mg,Zn,AlまたはM
nのうちの1種以上:総量で0.01%以上1%未満を
含むと共に、残部がCu及び不可避的不純物からなるこ
とを特徴とする高力高導電性銅合金。
2. A weight ratio of Cr: 0.05% or more 1
%, One or more of Ti, Hf or Th: 0.0005% or more and less than 0.05% in total, Si, Sn,
P, Fe, B, Be, Co, Mg, Zn, Al or M
One or more of n: A high-strength and high-conductivity copper alloy containing 0.01% or more and less than 1% in total and the balance being Cu and inevitable impurities.
【請求項3】 重量割合にて、Cr:0.05%以上1
%未満、Ti,HfまたはThのうちの1種以上:総量
で0.0005%以上0.05%未満を含むと共に、残
部がCu及び不可避的不純物からなり、かつ平均結晶粒
径が25μm未満であることを特徴とする高力高導電性
銅合金。
3. In a weight ratio, Cr: 0.05% or more 1
%, One or more of Ti, Hf, or Th: 0.0005% or more and less than 0.05% in total, with the balance being Cu and inevitable impurities, and having an average crystal grain size of less than 25 μm. A high-strength and highly conductive copper alloy.
【請求項4】 重量割合にて、Cr:0.05%以上1
%未満、Ti,HfまたはThのうちの1種以上:総量
で0.0005%以上0.05%未満、Si,Sn,
P,Fe,B,Be,Co,Mg,Zn,AlまたはM
nのうちの1種以上:総量で0.01%以上1%未満を
含むと共に、残部がCu及び不可避的不純物からなり、
かつ平均結晶粒径が25μm未満であることを特徴とす
る高力高導電性銅合金。
4. A weight ratio of Cr: 0.05% or more 1
%, One or more of Ti, Hf or Th: 0.0005% or more and less than 0.05% in total, Si, Sn,
P, Fe, B, Be, Co, Mg, Zn, Al or M
One or more of n: 0.01% or more and less than 1% in total, with the balance being Cu and inevitable impurities,
A high-strength and high-conductivity copper alloy having an average crystal grain size of less than 25 μm.
JP34650492A 1992-12-25 1992-12-25 High strength and high electric conductivity copper alloy Pending JPH06192769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34650492A JPH06192769A (en) 1992-12-25 1992-12-25 High strength and high electric conductivity copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34650492A JPH06192769A (en) 1992-12-25 1992-12-25 High strength and high electric conductivity copper alloy

Publications (1)

Publication Number Publication Date
JPH06192769A true JPH06192769A (en) 1994-07-12

Family

ID=18383874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34650492A Pending JPH06192769A (en) 1992-12-25 1992-12-25 High strength and high electric conductivity copper alloy

Country Status (1)

Country Link
JP (1) JPH06192769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918391A2 (en) * 2002-09-04 2008-05-07 Dept Corporation Metallic material, electroinic component, electronic device and electronic optical component manufactured by using the metallic material and working method of the metallic material
CN107739878A (en) * 2017-11-23 2018-02-27 全南晶环科技有限责任公司 A kind of anti-softening copper alloy of high-strength highly-conductive and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918391A2 (en) * 2002-09-04 2008-05-07 Dept Corporation Metallic material, electroinic component, electronic device and electronic optical component manufactured by using the metallic material and working method of the metallic material
EP1956104A1 (en) * 2002-09-04 2008-08-13 Dept Corporation Working method of a metallic material and a manufacturing method of an electronic component
EP1918391A3 (en) * 2002-09-04 2009-01-07 Dept Corp Metallic material, electroinic component, electronic device and electronic optical component manufactured by using the metallic material and working method of the metallic material
CN107739878A (en) * 2017-11-23 2018-02-27 全南晶环科技有限责任公司 A kind of anti-softening copper alloy of high-strength highly-conductive and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH0551671A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH08957B2 (en) Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH07331363A (en) High strength and high conductivity copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPS61127840A (en) Copper alloy having high strength and electric conductivity
JPH0551673A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH06192769A (en) High strength and high electric conductivity copper alloy
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH03162536A (en) High strength and high conductivity copper alloy having improved thermal peeling resistance in plating
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPH06192771A (en) High strength and high electric conductivity copper alloy
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0551670A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH0551672A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property