JPH06186015A - Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam - Google Patents

Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam

Info

Publication number
JPH06186015A
JPH06186015A JP4354612A JP35461292A JPH06186015A JP H06186015 A JPH06186015 A JP H06186015A JP 4354612 A JP4354612 A JP 4354612A JP 35461292 A JP35461292 A JP 35461292A JP H06186015 A JPH06186015 A JP H06186015A
Authority
JP
Japan
Prior art keywords
wavelength
radiation
compton
scattering
compton scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4354612A
Other languages
Japanese (ja)
Inventor
Tomoya Arai
智也 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP4354612A priority Critical patent/JPH06186015A/en
Publication of JPH06186015A publication Critical patent/JPH06186015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of analysis by setting up a scattering angle to a fixed angle, and inserting a filter containing an element having an absorbing end between the wavelength of radiation incident on a test piece and the wavelength of Compton scattering beam into the optical path of the scattering beam. CONSTITUTION:When radiation B1 is irradiated onto the surface of the coating film 14 of a measured test piece 10, a scattering beam and a fluorescent X-beam are generated from the test piece 10. In this case, a scattering angle phi is set up so that an element having the wavelength lambdak of a K absorbing end may be found between the wavelength lambdas (wavelength lambdas of Thomson scattering beam B,) of the radiation B1 and the wavelength lambdac of Compton scattering beam Bc. For instance, when the angle phi is set up to be 140 deg., and Mo-Kalpha beam is used as the radiation B1, a Y-element is an element having the wavelength lambdak. In this case, a scattering beam Bs is mostly or wholly absorbed by inserting a filter 32 having the Y-element as a main component into the optical path of the scattering beam Bc, to pass the scattering beam Bc and the fluorescent X-beam for making them enter a detector 3c. Thus the damping of strength of the scattering beam Bc becomes smaller (to about 1/10), and the accuracy of analysis can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コンプトン散乱線を
利用した分析方法および分析装置や、単色器において、
散乱線から単色化したコンプトン散乱線を得る方法およ
び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method and an analysis device using Compton scattered rays, and a monochromator.
The present invention relates to a method and an apparatus for obtaining monochromatic Compton scattered rays from scattered rays.

【0002】[0002]

【従来の技術】コンプトン散乱線は、散乱線の一種で、
従来より分析に利用されている。たとえば、下地基板上
に塗装膜を有するカラー鋼板のような試料に、γ線など
の放射線を照射し、この放射線を受けた試料からのコン
プトン散乱線の強度に基づいて、塗装膜の付着量を測定
する方法が知られている(たとえば、特公昭63−19
004号公報、特開昭64−41810号公報参照)。
ここで、散乱線には、コンプトン散乱線の他にトムソン
散乱線が含まれているので、散乱線から単色化したコン
プトン散乱線を得る必要がある。この単色化する方法と
して、従来は分光結晶を用いていた。
2. Description of the Related Art Compton scattered radiation is a kind of scattered radiation,
Traditionally used for analysis. For example, a sample such as a color steel plate having a coating film on a base substrate is irradiated with radiation such as γ-rays, and the adhesion amount of the coating film is determined based on the intensity of Compton scattered rays from the sample that receives this radiation. A method for measuring is known (for example, Japanese Examined Patent Publication Sho 63-19).
(See Japanese Patent Application Laid-Open No. 004-41810).
Here, since the scattered rays include Thomson scattered rays in addition to Compton scattered rays, it is necessary to obtain Compton scattered rays that are monochromatic from the scattered rays. Conventionally, a dispersive crystal has been used as the method for monochromatization.

【0003】[0003]

【発明が解決しようとする課題】しかし、分光結晶を用
いて単色化すると、得られるコンプトン散乱線の強度
が、たとえば1/1000程度まで減衰するので、電気ノイズ
などによる統計誤差が大きくなって、分析精度の低下を
招く。この発明は、上記従来の問題に鑑みてなされたも
ので、強度の大きいコンプトン散乱線が得られる単色器
を提供して、分析精度の向上を図り得る分析方法および
分析装置を提供することを目的とする。
However, when the monochromatization is performed using a dispersive crystal, the intensity of the Compton scattered ray obtained is attenuated to, for example, about 1/1000, so that the statistical error due to electrical noise becomes large, This leads to a decrease in analysis accuracy. The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a monochromator capable of obtaining Compton scattered rays with high intensity, and to provide an analysis method and an analysis device capable of improving analysis accuracy. And

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、この発明の分析方法は、散乱角を所定角度に設定す
ることで、試料に入射した放射線の波長と上記散乱角に
おいて生じるコンプトン散乱線の波長との間に吸収端を
持つ元素を見い出し、この元素を含むフィルタを上記散
乱角の光路に挿入してコンプトン散乱線を単色化する。
一方、この発明の分析装置および単色器は、所定角度に
設定された散乱角の光路にフィルタを配設したもので、
このフィルタには、放射線の波長(トムソン散乱線の波
長)と、上記散乱角において生じるコンプトン散乱線の
波長との間に吸収端を持つ元素が含まれている。
In order to achieve the above object, the analysis method of the present invention sets the scattering angle to a predetermined angle so that the wavelength of the radiation incident on the sample and the Compton scattering generated at the above scattering angle. An element having an absorption edge with respect to the wavelength of the line is found, and a filter containing this element is inserted into the optical path of the above scattering angle to make the Compton scattering line monochromatic.
On the other hand, the analyzer and the monochromator of the present invention are those in which a filter is arranged in the optical path of the scattering angle set to a predetermined angle,
This filter contains an element having an absorption edge between the wavelength of the radiation (the wavelength of the Thomson scattered ray) and the wavelength of the Compton scattered ray generated at the above scattering angle.

【0005】[0005]

【作用】つぎに、この発明の原理について説明する。図
2のように、原子Aに放射線B1が衝突すると、原子A
からは、その元素固有の蛍光X線の他に、コンプトン散
乱線BC およびトムソン散乱線BS が発生する。これら
の散乱線BC ,BS の波長には、下記の(1)式のよう
な関係がある。 Δλ=λC −λS =0.0243(1-COSφ) …(1) 但し、λS :トムソン散乱線の波長 (10-10 m) λC :コンプトン散乱線の波長(10-10 m) φ :散乱角(衝突によって粒子の進行方向が曲げられ
たときの角度)
Next, the principle of the present invention will be described. When the radiation B1 collides with the atom A as shown in FIG.
In addition to the fluorescent X-rays peculiar to the element, Compton scattered radiation B C and Thomson scattered radiation B S are generated. The wavelengths of these scattered rays B C and B S have a relationship as shown in the following expression (1). Δλ = λ C −λ S = 0.0243 (1-COSφ) (1) where λ S : wavelength of Thomson scattered ray (10 −10 m) λ C : wavelength of Compton scattered ray (10 −10 m) φ: Scattering angle (angle when the traveling direction of particles is bent by collision)

【0006】ここで、上記(1)式から分るように、ト
ムソン散乱線BS とコンプトン散乱線BC の波長差Δλ
は、一般に小さいので、従来は分解能の高い分光結晶を
用いて、単色化したコンプトン散乱線BC を得ていた。
As can be seen from the above equation (1), the wavelength difference Δλ between the Thomson scattered ray B S and the Compton scattered ray B C.
Is generally small, and conventionally, a monochromatic Compton scattered ray B C was obtained by using a dispersive crystal with high resolution.

【0007】しかし、上記(1)式から分るように、散
乱角φを大きく設定すれば、波長差Δλが大きくなる。
したがって、この発明者は、上記散乱角φを大きな所定
角度に設定すれば、図3のようにトムソン散乱線BS
波長λS と、コンプトン散乱線BC の波長λC との間に
K吸収端λK を持つ元素を見い出せることを発見し、こ
の発明を完成した。
However, as can be seen from the above equation (1), if the scattering angle φ is set large, the wavelength difference Δλ becomes large.
Accordingly, the inventors, by setting the scattering angle φ to a large predetermined angle, K between the wavelength lambda S Thomson scattered radiation B S as shown in FIG. 3, the wavelength lambda C Compton scattered radiation B C The inventors have completed the invention by discovering that an element having an absorption edge λ K can be found.

【0008】この発明によれば、分光結晶ではなく、フ
ィルタを用いて、単色化した(トムソン散乱線を減衰さ
せた)コンプトン散乱線BC が得られるので、コンプト
ン散乱線BC の強度減衰が1/10程度の極めて小さい値と
なる。したがって、強度の大きいコンプトン散乱線BC
が得られるので、統計誤差が小さくなって、分析精度が
向上する。
[0008] According to the present invention, rather than analyzing crystal, using a filter, and monochromatic (attenuated Thomson scattered radiation) since Compton scattered radiation B C is obtained, the intensity decay of the Compton scattered radiation B C It will be an extremely small value of about 1/10. Therefore, Compton scattered ray B C with high intensity
Therefore, the statistical error is reduced and the analysis accuracy is improved.

【0009】[0009]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。図1において、被測定試料10は、下地基
板11上に塗装膜14を有している。この被測定試料1
0は、たとえば連続的に移動している。この被測定試料
10が移動している箇所の任意の一箇所には、付着量測
定装置20が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the sample 10 to be measured has a coating film 14 on a base substrate 11. This measured sample 1
0 moves continuously, for example. An adhesion amount measuring device 20 is provided at an arbitrary position where the measured sample 10 is moving.

【0010】付着量測定装置20は、放射線源21と、
測定器30と、演算器23とを備えている。放射線源2
1は、被測定試料10の塗装膜14の表面に放射線B1
を照射するもので、たとえば、X線管やアメリシウムの
放射性同位元素が用いられる。測定器30は、平行光学
系31、フィルタ32、検出器33および波高分析器3
4を備えており、放射線B1を受けた被測定試料10か
らのコンプトン散乱線BC の強度を測定するものであ
る。
The adhesion amount measuring device 20 includes a radiation source 21 and
The measuring device 30 and the calculator 23 are provided. Radiation source 2
1 is radiation B1 on the surface of the coating film 14 of the sample 10 to be measured.
For example, an X-ray tube or a radioactive isotope of americium is used. The measuring device 30 includes a parallel optical system 31, a filter 32, a detector 33 and a wave height analyzer 3.
4 for measuring the intensity of Compton scattered radiation B C from the sample 10 to be measured which has received the radiation B1.

【0011】上記フィルタ32は、後述する所定角度に
設定された散乱角φにおいて生じるコンプトン散乱線B
C の光路に挿入されている。この散乱角φは、図3のよ
うに、たとえばアメリシウム241 から発生するγ線(放
射線)B1の波長λS (トムソン散乱線BS の波長
λS )と、所定角度に設定された散乱角φにおいて生じ
るコンプトン散乱線BC の波長λC との間にK吸収端λ
K を持つ元素が見い出せるように設定する。
The filter 32 is a Compton scattered ray B generated at a scattering angle φ set at a predetermined angle described later.
It is inserted in the optical path of C. The scattering angle phi, as shown in FIG. 3, for example, γ-rays generated from americium 241 and (radiation) wavelengths B1 lambda S (wavelength lambda S Thomson scattered radiation B S), the scattering angle is set to a predetermined angle phi At the K absorption edge λ between the wavelength λ C of the Compton scattered ray B C
Set so that the element with K can be found.

【0012】今、散乱角φを140 °に設定した場合の、
コンプトン散乱線BC の波長λC は、下記の表1のよう
になり、放射線の波長(トムソン散乱線の波長)λ
S と、コンプトン散乱線BC の波長λC に基づいてフィ
ルタ32(図1)を構成する元素が決定される。たとえ
ば、Mo−Kα線を励起用の放射線B1(図1)として
用いた場合には、イットリウムを主成分とするフィルタ
32(図1)を用いる。
Now, when the scattering angle φ is set to 140 °,
The wavelength λ C of the Compton scattered ray B C is as shown in Table 1 below, and the wavelength of the radiation (wavelength of the Thomson scattered ray) λ
Elements constituting the filter 32 (FIG. 1) are determined based on S and the wavelength λ C of the Compton scattered ray B C. For example, when Mo-Kα rays are used as the radiation B1 for excitation (FIG. 1), the filter 32 (FIG. 1) containing yttrium as a main component is used.

【0013】[0013]

【表1】 [Table 1]

【0014】上記散乱角φは、一般に、 100°〜 160°
程度に設定される。その理由は、散乱角φが100 °より
も小さいと、Δλ=λC −λS が小さくなりすぎるから
であり、一方、散乱角φが160 °よりも大きいと、コン
プトン散乱線BC の強度低下が著しくなるからである。
The scattering angle φ is generally 100 ° to 160 °.
It is set to a degree. The reason is that if the scattering angle φ is smaller than 100 °, Δλ = λ C −λ S becomes too small. On the other hand, if the scattering angle φ is larger than 160 °, the intensity of the Compton scattered ray B C is increased. This is because the decrease becomes remarkable.

【0015】上記フィルタ32は、被測定試料10から
散乱した散乱線および蛍光X線のうち、コンプトン散乱
線BC および蛍光X線を通過させ、トムソン散乱線BS
の大部分または全部を吸収する厚さに設定されている。
フィルタ32を通過したコンプトン散乱線BC は、検出
器33に入射する。
The filter 32 allows Compton scattered rays B C and fluorescent X-rays of the scattered rays and fluorescent X-rays scattered from the sample to be measured 10 to pass therethrough, and Thomson scattered rays B S.
Is set to a thickness that absorbs most or all of the.
The Compton scattered ray B C that has passed through the filter 32 enters the detector 33.

【0016】上記検出器33は、入射したコンプトン散
乱線BC を検出して、検出出力e1として波高分析器3
4に出力する。この波高分析器34は検出出力e1から
コンプトン散乱線BC のエネルギに相当する所定の波高
のパルスのみをカウントして、コンプトン散乱線BC
強度を測定信号cとして演算器23に出力する。演算器
23は、上記測定信号cを受けて、コンプトン散乱線B
C の強度に基づいて周知の方法で、塗装膜14の付着量
を演算する。なお、塗装膜14の下にメッキ被膜がある
場合には、このメッキ被膜から発生するコンプトン散乱
線BC の強度に対応する蛍光X線を測定し、減算するな
どの補正を行う。
The detector 33 detects the incident Compton scattered ray B C and outputs it as the detection output e1 to the wave height analyzer 3
Output to 4. The wave height analyzer 34 counts only the pulses having a predetermined wave height corresponding to the energy of the Compton scattered ray B C from the detection output e1 and outputs the intensity of the Compton scattered ray B C to the calculator 23 as the measurement signal c. The calculator 23 receives the measurement signal c and receives the Compton scattered radiation B
The adhesion amount of the coating film 14 is calculated by a known method based on the strength of C. When there is a plated film under the coating film 14, the fluorescent X-ray corresponding to the intensity of the Compton scattered ray B C generated from this plated film is measured, and correction such as subtraction is performed.

【0017】上記構成においては、図3のトムソン散乱
線BS の波長λS と、コンプトン散乱線BC の波長λC
との間にK吸収端λK を有する元素を主成分とする図1
のフィルタ32を用いて、トムソン散乱線BS の強度を
減衰させるから、コンプトン散乱線BC の強度減衰が分
光結晶を用いる場合よりも著しく小さくなる。したがっ
て、強度の大きいコンプトン散乱線BC が得られるの
で、分析精度が向上する。
[0017] In the above structure, the wavelength lambda S Thomson scattered radiation B S in FIG. 3, the wavelength of the Compton scattered X-ray B C lambda C
Fig. 1 mainly containing an element having a K absorption edge λ K between
Since the intensity of the Thomson scattered ray B S is attenuated by using the filter 32 of No. 2, the intensity attenuation of the Compton scattered ray B C becomes significantly smaller than that in the case of using the dispersive crystal. Therefore, the Compton scattered ray B C having a high intensity can be obtained, and the analysis accuracy is improved.

【0018】また、フィルタ32は、一般に分光結晶に
比べ安価であるから、装置のコストダウンも図り得る。
Further, since the filter 32 is generally cheaper than the dispersive crystal, the cost of the device can be reduced.

【0019】なお、上記実施例の場合、カラー鋼板につ
いて説明したが、この発明は、カラー鋼板以外の有機物
などの分析についても適用できる。また、この発明は、
かかる分析方法および装置としてだけでなく、単色器に
ついても適用される。
In the above embodiments, the color steel plate was described, but the present invention can be applied to the analysis of organic substances other than the color steel plate. Further, the present invention is
It applies not only as such an analysis method and device but also to a monochromator.

【0020】[0020]

【発明の効果】以上説明したように、この発明によれ
ば、分光結晶ではなくフィルタを用いてトムソン散乱線
を減衰させるので、得られるコンプトン散乱線の強度が
従来よりも著しく大きくなって、分析精度が向上すると
ともに、装置のコストダウンを図り得る。
As described above, according to the present invention, since the Thomson scattered ray is attenuated by using the filter instead of the dispersive crystal, the intensity of the obtained Compton scattered ray becomes remarkably larger than that of the conventional method, and the analysis is performed. The accuracy can be improved and the cost of the device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す分析装置の一例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an analyzer according to an embodiment of the present invention.

【図2】コンプトン散乱線の発生状態を示す概念図であ
る。
FIG. 2 is a conceptual diagram showing a generation state of Compton scattered rays.

【図3】散乱線の波長と強度の関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing the relationship between the wavelength and intensity of scattered radiation.

【符号の説明】[Explanation of symbols]

10…試料、21…放射線源、32…フィルタ、B1…
放射線、BC …コンプトン散乱線、BS …トムソン散乱
線、φ…散乱角。
10 ... Sample, 21 ... Radiation source, 32 ... Filter, B1 ...
Radiation, B C ... Compton scattered ray, B S ... Thomson scattered ray, φ ... Scattered angle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料に放射線を照射して、この放射線を
受けた試料からのコンプトン散乱線の強度に基づいて試
料の分析を行うコンプトン散乱線を利用した分析方法に
おいて、 散乱角を所定角度に設定することで、上記放射線の波長
と上記散乱角において生じるコンプトン散乱線の波長と
の間に吸収端を持つ元素を見い出し、 この元素を含むフィルタを上記散乱角において生じるコ
ンプトン散乱線の光路に挿入してコンプトン散乱線を単
色化することを特徴とするコンプトン散乱線を利用した
分析方法。
1. An analysis method using Compton scattered rays, which comprises irradiating a sample with radiation and analyzing the sample based on the intensity of the Compton scattered rays from the sample that has received the radiation, wherein the scattering angle is a predetermined angle. By setting, we find an element that has an absorption edge between the wavelength of the radiation and the wavelength of the Compton scattering line generated at the scattering angle, and insert a filter containing this element into the optical path of the Compton scattering line generated at the scattering angle. An analysis method using Compton scattered rays, which is characterized in that the Compton scattered rays are monochromaticized.
【請求項2】 試料に放射線を照射して、この放射線を
受けた試料からのコンプトン散乱線の強度に基づいて試
料の分析を行うコンプトン散乱線を利用した分析装置に
おいて、 所定角度に設定された散乱角において生じるコンプトン
散乱線の光路にフィルタが配設され、 このフィルタには、上記放射線の波長と上記散乱角にお
いて生じるコンプトン散乱線の波長との間に吸収端を持
つ元素が含まれていることを特徴とするコンプトン散乱
線を利用した分析装置。
2. An analyzer using Compton scattered rays, which irradiates a sample with radiation and analyzes the sample based on the intensity of the Compton scattered rays from the sample that has received this radiation, is set at a predetermined angle. A filter is arranged in the optical path of the Compton scattered ray generated at the scattering angle, and the filter includes an element having an absorption edge between the wavelength of the radiation and the wavelength of the Compton scattered ray generated at the scattering angle. An analyzer using Compton scattered radiation, which is characterized in that
【請求項3】 散乱線から単色化したコンプトン散乱線
を得るコンプトン散乱線の単色器において、 所定角度に設定された散乱角において生じるコンプトン
散乱線の光路にフィルタが配設され、 このフィルタには、トムソン散乱線の波長と上記散乱角
において生じるコンプトン散乱線の波長との間に吸収端
を持つ元素が含まれていることを特徴とするコンプトン
散乱線用の単色器。
3. A Compton scatter ray monochromator for obtaining a Compton scatter ray obtained by monochromatic conversion from scattered rays, wherein a filter is arranged in the optical path of the Compton scatter ray generated at a scattering angle set to a predetermined angle, and this filter is provided in this filter. A monochromator for Compton scattered rays, which contains an element having an absorption edge between the wavelength of the Thomson scattered rays and the wavelength of the Compton scattered rays generated at the above scattering angle.
JP4354612A 1992-12-15 1992-12-15 Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam Pending JPH06186015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354612A JPH06186015A (en) 1992-12-15 1992-12-15 Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354612A JPH06186015A (en) 1992-12-15 1992-12-15 Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam

Publications (1)

Publication Number Publication Date
JPH06186015A true JPH06186015A (en) 1994-07-08

Family

ID=18438738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354612A Pending JPH06186015A (en) 1992-12-15 1992-12-15 Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam

Country Status (1)

Country Link
JP (1) JPH06186015A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355313A (en) * 1991-06-03 1992-12-09 Nkk Corp Method for measuring thickness of paint film on metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355313A (en) * 1991-06-03 1992-12-09 Nkk Corp Method for measuring thickness of paint film on metal

Similar Documents

Publication Publication Date Title
US9784699B2 (en) Quantitative X-ray analysis—matrix thickness correction
US5185773A (en) Method and apparatus for nondestructive selective determination of a metal
JPH09511068A (en) Method for GE-XRF X-ray analysis of material and apparatus for implementing this method
US3859525A (en) Method and apparatus for fluorescent x-ray analysis
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP2589638B2 (en) X-ray fluorescence analysis method and apparatus
JPH06186015A (en) Analyzing method utilizing compton scattering beam, its device and monochrome apparatus for compton scattering beam
JPS6362694B2 (en)
WO2003107037A2 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JPH05119000A (en) Fluorescent x-ray analyzing device
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP3399861B2 (en) X-ray analyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence
JP2940810B2 (en) X-ray fluorescence analyzer
JP2685722B2 (en) X-ray analysis method
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JPS6398550A (en) Exafs apparatus of soft x-ray region
JPH0619267B2 (en) Thickness measurement method for multi-layer metal sheets
SU741122A1 (en) X-ray spectral analysis method
JP3404338B2 (en) X-ray reflectance measuring method and apparatus
JP2554104Y2 (en) X-ray fluorescence analyzer
JPH04198745A (en) X-ray diffracting method
JP2000065944A (en) X-ray energy-measuring apparatus of handy type
JPH02107952A (en) X-ray diffraction measurement for powder
JPS6353457A (en) 2-d scan type state analyzer