JPH06182182A - Synthesis of single crystal diamond - Google Patents

Synthesis of single crystal diamond

Info

Publication number
JPH06182182A
JPH06182182A JP4341941A JP34194192A JPH06182182A JP H06182182 A JPH06182182 A JP H06182182A JP 4341941 A JP4341941 A JP 4341941A JP 34194192 A JP34194192 A JP 34194192A JP H06182182 A JPH06182182 A JP H06182182A
Authority
JP
Japan
Prior art keywords
diamond
solvent
synthesis
crystal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4341941A
Other languages
Japanese (ja)
Other versions
JP3282249B2 (en
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP34194192A priority Critical patent/JP3282249B2/en
Priority to ZA934354A priority patent/ZA934354B/en
Priority to KR1019930013401A priority patent/KR940014144A/en
Priority to EP93306785A priority patent/EP0603995A1/en
Publication of JPH06182182A publication Critical patent/JPH06182182A/en
Application granted granted Critical
Publication of JP3282249B2 publication Critical patent/JP3282249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To advantageously produce a colorless, transparent high-quality single- crystal diamond in the synthesis thereof employing temp. difference process by a method where Ti, etc., are added as nitrogen getter to a solvent metal, a metal plate such as made of iron is interposed between the solvent metal and seed crystal and, in this condition, the synthesis of the diamond is started. CONSTITUTION:In the synthesis of a single crystal diamond employing temp. difference process, one or more metals selected as nitrogen getter from among Ti, Zr, Hf, V, Nb and Ta are added to a solvent metal 2, a metal plate 3 consisting of one or more metals selected from among Fe, Co, Ni and Mn is interposed between the solvent metal 2 and seed crystal 4 and, in this condition, the diamond synthesis is started. Since, in this way, a colorless, transparent high quality IIa type diamond almost free from inclusion can be synthesized inexpensively and stably, a synthetic diamond useable for accessory or optical part application can be produced advantageously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は装飾用途や光学部品など
に用いられる無色で透明なダイヤモンド単結晶の合成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing colorless and transparent diamond single crystals used for decorative purposes and optical parts.

【0002】[0002]

【従来の技術】現在市販されている装飾用ダイヤモンド
は、主に南アフリカ、ロシアより産出されるものの中か
ら、無色透明で内部欠陥の少ないものを選別して用いら
れている。天然装飾用ダイヤモンドは宝石の中でも最も
販売量が多い。また、ダイヤモンドを用いた光学部品と
して、レーザー窓やIRアンビルセルなどがあるが、い
ずれも天然原石の中から赤外領域に光の吸収のない透明
なダイヤモンド(IIa型とよばれる)が選ばれて用いら
れている。しかし、透明無色な原石の産出は極めて少な
く、安定供給や価格に問題がある。一方、人工合成によ
るダイヤモンドは通常、超高圧高温下で合成する際に溶
媒中の窒素が結晶格子内に取り込まれるために黄色く着
色してしまうが、溶媒中に窒素ゲッターを添加すること
で無色透明のダイヤモンドを得ることができる。この窒
素ゲッターとしては、たとえば、The Journal of Physi
cal Chemistry, vol.75, No.12 (1971) p1838 に示され
ているように、Alがよく知られている。具体的には、
米国特許第4034066号明細書には、Fe溶媒にA
lを3〜5重量%添加することにより宝石級の無色透明
なダイヤモンド単結晶が得られると記載されている。A
l以外の窒素ゲッターを用いた例として、たとえば無機
材質研究所研究報告書第39号、p16〜にTiやZr
を溶媒金属に添加することで結晶中の窒素が除去された
という報告がある。
2. Description of the Related Art Decorative diamonds currently on the market are used by selecting those which are colorless and transparent and have few internal defects from those mainly produced in South Africa and Russia. Natural ornamental diamonds are the most sold gemstones. Moreover, there are laser windows and IR anvil cells as optical parts using diamond, but in each case, transparent diamond (called type IIa) that does not absorb light in the infrared region is selected from natural rough stones. Is used. However, the production of transparent and colorless rough stones is extremely low, and there are problems with stable supply and prices. On the other hand, artificially synthesized diamond is usually colored yellow because it is incorporated in the crystal lattice of nitrogen in the solvent when synthesized under ultrahigh pressure and high temperature, but it is colorless and transparent by adding a nitrogen getter to the solvent. You can get a diamond. As this nitrogen getter, for example, The Journal of Physi
Al is well known as shown in cal Chemistry, vol.75, No.12 (1971) p1838. In particular,
U.S. Pat. No. 4,034,066 describes Fe solvent as A
It is described that a gem-grade colorless and transparent diamond single crystal can be obtained by adding 3 to 5% by weight of 1. A
Examples of the use of nitrogen getters other than 1 include, for example, Research Report No. 39 of Inorganic Materials Research Institute, p.
There is a report that nitrogen in the crystal was removed by adding the to the solvent metal.

【0003】[0003]

【発明が解決しようとする課題】しかし、特に無色透明
の合成ダイヤモンドは合成コストが天然ダイヤモンドよ
りはるかに高くなるため工業生産は行われていない。こ
の理由は、合成には高価で特殊な装置が必要である上
に、Alなどを窒素ゲッターとして添加した場合、その
添加量の増加に従って溶媒が結晶中に取り込まれ(以下
インクルージョンと呼ぶ)て、不良結晶となることが多
くなるため、良質な結晶とするためには成長速度を大幅
に下げる必要があるからである。とくにTiやZrを窒
素ゲッターとして用いた場合は合成中に溶媒中に生成し
たTiCやZrCなどの炭化物が原因でより多くのイン
クルージョンが結晶中に取り込まれるようになる。
However, since the synthetic cost of a colorless and transparent synthetic diamond is much higher than that of natural diamond, industrial production has not been carried out. The reason for this is that, in addition to requiring expensive and special equipment for synthesis, when Al or the like is added as a nitrogen getter, the solvent is taken into the crystal as the amount of addition increases (hereinafter referred to as inclusion), This is because the number of defective crystals increases, and thus the growth rate must be significantly reduced in order to obtain good quality crystals. In particular, when Ti or Zr is used as a nitrogen getter, more inclusions are taken into the crystal due to carbides such as TiC and ZrC formed in the solvent during the synthesis.

【0004】本発明者らが行った実験による結果では、
窒素ゲッターとしてAlを用い、溶媒金属に均一混合し
た場合、無色透明なダイヤモンド結晶を合成するために
は、その添加量は溶媒に対し少なくとも4重量%(約1
2体積%)必要であるが、この場合インクルージョンの
巻き込みなしに結晶成長させるためには成長速度を1m
g/hr以下にする必要があった。この成長速度では、
たとえば1カラット(200mg)の結晶を合成するに
は200時間以上の合成時間を要し、製造コストは膨大
なものとなる。また、Ti、Zrなど、Alより窒素と
の反応性の高い物質を窒素ゲッターとして溶媒に均一添
加した場合、添加量は1重量%でも無色透明な結晶とな
る。しかし、これらは炭化物を形成しやすく、成長速度
を大幅に低下させたとしてもTiCやZrCなどの炭化
物の影響で、良質な結晶は殆ど得られない。本発明はか
かる問題点を解決し、無色透明でインクルージョのほと
んどない結晶を、安価にしかも安定して合成できる方法
を提供し、人工合成ダイヤモンドの装飾用途又は光学部
品用途への使用を可能とするものである。
According to the result of the experiment conducted by the present inventors,
When Al is used as a nitrogen getter and uniformly mixed with a solvent metal, in order to synthesize a colorless and transparent diamond crystal, the addition amount thereof is at least 4% by weight (about 1%) with respect to the solvent.
2% by volume), but in this case the growth rate is 1 m in order to grow crystals without inclusion inclusion.
It was necessary to make it g / hr or less. At this growth rate,
For example, it takes 200 hours or more to synthesize 1 carat (200 mg) crystals, and the production cost becomes enormous. Further, when a substance having a higher reactivity with nitrogen than Al, such as Ti or Zr, is uniformly added to the solvent as a nitrogen getter, even if the addition amount is 1% by weight, colorless and transparent crystals are obtained. However, these tend to form carbides, and even if the growth rate is greatly reduced, good quality crystals are hardly obtained due to the influence of carbides such as TiC and ZrC. The present invention solves such a problem, provides a method of synthesizing a colorless and transparent crystal having almost no inclusions stably at low cost, and makes it possible to use an artificial synthetic diamond for a decorative use or an optical component use. To do.

【0005】[0005]

【課題を解決するための手段】本発明者らは、TiやZ
rを窒素ゲッターとして溶媒に添加して成長させたダイ
ヤモンド結晶を観察したところ、インクルージョンのほ
とんどは種結晶を起点として連続して結晶中に取り込ま
れていることがわかった。さらに、詳細に調べると成長
初期に種結晶面上に生成したTiCやZrCなどの炭化
物がインクルージョンの起点となっていることがわかっ
た。溶媒中に添加したTiやZrが種結晶のダイヤモン
ドと直接接触したところがあり、その部分で合成開始と
ともにTiやZrとダイヤモンドが反応した結果、種面
上にTiCやZrCが生成したものと思われる。そこで
本発明者らは、溶媒と種結晶が直接接触しないように、
溶媒と種結晶の間にあらかじめFe,Co,Niなど、
ダイヤモンド合成の溶媒となりうるものでかつ容易には
炭化物をつくらない金属板を配置したところ、種面上に
ほとんどTiCやZrCなどの炭化物が生成しないこと
を見いだした。また、同時に成長初期の成長が安定なも
のとなることもわかった。その結果、炭化物を起点とし
たインクルージョンの混入や、初期の不安定成長による
インクルージョンの巻き込みを防ぐことができ、そのた
め、従来の2倍以上の早い成長速度でも、良質なIIa結
晶が得られることを確認した。
The present inventors have found that Ti and Z
Observation of a diamond crystal grown by adding r to a solvent as a nitrogen getter showed that most of the inclusions were continuously incorporated into the crystal starting from the seed crystal. Furthermore, detailed examination revealed that carbides such as TiC and ZrC formed on the seed crystal surface at the initial stage of growth were the starting points of inclusion. There is a place where Ti and Zr added in the solvent were in direct contact with the diamond of the seed crystal, and it is considered that TiC and ZrC were formed on the seed surface as a result of the reaction of Ti and Zr with the diamond when the synthesis started at that part. . Therefore, the present inventors, so that the solvent and the seed crystal do not come into direct contact,
Between the solvent and the seed crystal, Fe, Co, Ni, etc.
When a metal plate that can be a solvent for diamond synthesis and does not easily form carbide is arranged, it was found that almost no carbide such as TiC or ZrC is formed on the seed surface. At the same time, it was also found that the growth at the initial stage of growth was stable. As a result, it is possible to prevent inclusion of inclusions originating from carbide and inclusion of inclusions due to unstable initial growth, so that a high-quality IIa crystal can be obtained even at a growth rate twice or more faster than the conventional one. confirmed.

【0006】本発明は温度差法によるダイヤモンド結晶
合成において、溶媒金属に、窒素ゲッターとしてTi,
Zr,Hf,V,Nb,Taから選ばれる一種もしくは
二種以上の金属を添加し、さらに前記溶媒金属と種結晶
との間にFe,Co,Ni,Mnから選ばれる一種もし
くは二種以上からなる金属板を配置した状態でダイヤモ
ンドの合成を開始することを特徴とするものである。本
発明において溶媒金属と種結晶との間に配置される金属
板の厚みは0.01mm以上、0.5mm以下であるこ
とが好ましい。また、窒素ゲッターとして用いられるT
i,Zr,Hf,V,Nb,Taから選ばれる一種もし
くは二種以上の金属の含有量は、溶媒金属に対して0.
2〜10重量%であることが好ましい。窒素ゲッターと
してのこれら金属は、他の金属、例えば、Al、Cu、
Si、Sn等との合金の形で添加することもできる。ま
た、溶媒金属は、Fe,Co,Ni,Mn,Crの中か
ら選ばれる一種もしくは二種以上からなり、且つ0.1
〜6.0重量%の炭素を含むことが好ましい。
In the present invention, in the diamond crystal synthesis by the temperature difference method, the solvent metal, Ti as a nitrogen getter,
One or more metals selected from Zr, Hf, V, Nb and Ta are added, and further one or more metals selected from Fe, Co, Ni and Mn are added between the solvent metal and the seed crystal. It is characterized in that the synthesis of diamond is started in a state where the metal plate is formed. In the present invention, the thickness of the metal plate arranged between the solvent metal and the seed crystal is preferably 0.01 mm or more and 0.5 mm or less. Also, T used as a nitrogen getter
The content of one or more metals selected from i, Zr, Hf, V, Nb, and Ta is 0.
It is preferably from 2 to 10% by weight. These metals as nitrogen getters include other metals such as Al, Cu,
It can also be added in the form of an alloy with Si, Sn or the like. The solvent metal is composed of one or more selected from Fe, Co, Ni, Mn, and Cr, and is 0.1
It is preferred to contain ˜6.0 wt% carbon.

【0007】図1は本発明の一具体例であってダイヤモ
ンド結晶合成用の試料室構成を示す概略断面図である。
溶媒金属2には窒素ゲッターとしてTi,Zr,Hf,
V,Nb,Taが添加され、この溶媒金属と種結晶4の
間にFe,Co,Ni,Mnから選ばれる金属板3が配
置される。この金属板3はFe−CoやFe−Niなど
の合金でもよい。1は炭素源、5は絶縁体、6は黒鉛ヒ
ーター、7は圧力媒体である。この金属板3の厚みは
0.01mm未満では効果は不十分で、0.5mmをこ
えると種結晶が溶けてなくなることが多くなる。また溶
媒2に窒素ゲッターとして添加するTi,Zr,Hf,
V,Nb,Taの添加量としては、0.2重量%未満で
は窒素は十分に除去されず、合成されたダイヤモンドは
黄色みを帯びた結晶となる。一方、10重量%をこえる
と多結晶化や自然核発生が多くなり、良質なダイヤモン
ド結晶が得られなくなる。
FIG. 1 is a schematic sectional view showing the structure of a sample chamber for synthesizing a diamond crystal, which is one embodiment of the present invention.
The solvent metal 2 includes Ti, Zr, Hf, as a nitrogen getter,
V, Nb, and Ta are added, and the metal plate 3 selected from Fe, Co, Ni, and Mn is arranged between the solvent metal and the seed crystal 4. The metal plate 3 may be an alloy such as Fe-Co or Fe-Ni. 1 is a carbon source, 5 is an insulator, 6 is a graphite heater, and 7 is a pressure medium. If the thickness of the metal plate 3 is less than 0.01 mm, the effect is insufficient, and if it exceeds 0.5 mm, the seed crystal often melts and disappears. Further, Ti, Zr, Hf, which is added to the solvent 2 as a nitrogen getter,
If the added amount of V, Nb, or Ta is less than 0.2% by weight, nitrogen is not sufficiently removed, and the synthesized diamond becomes yellowish crystals. On the other hand, if it exceeds 10% by weight, polycrystallization and natural nucleation increase, and a good quality diamond crystal cannot be obtained.

【0008】ここで、2の溶媒金属はFe,Co,N
i,Mn,Crの中から選ばれる一種もしくは二種以上
からなる金属であり、種結晶溶解防止のため0.1〜
6.0重量%の炭素をあらかじめ添加しておく。炭素添
加量が0.1重量%未満もしくは炭素を含まない溶媒金
属を用いた場合、種結晶上にPtなどの種結晶溶解防止
材を配置する必要があるが、このような種結晶溶解防止
材を配置することは、多結晶化やインクルージョンの巻
き込みの原因となり好ましくない。また、炭素添加量が
6重量%をこえると、自然核発生がおこりやすくなり、
種結晶以外の部所より結晶成長するため結晶同士が干渉
し、良質な結晶が得られなくなる。
Here, the solvent metals of 2 are Fe, Co, N.
It is a metal consisting of one or more selected from i, Mn, and Cr, and is 0.1 to prevent seed crystal dissolution.
Carbon in an amount of 6.0% by weight is added in advance. When a solvent metal containing less than 0.1% by weight of carbon or containing no carbon is used, it is necessary to dispose a seed crystal dissolution inhibitor such as Pt on the seed crystal. It is not preferable to dispose because of causing polycrystallization and inclusion inclusion. If the amount of carbon added exceeds 6% by weight, spontaneous nucleation tends to occur,
Since the crystals grow from a portion other than the seed crystal, the crystals interfere with each other, and a good quality crystal cannot be obtained.

【0009】[0009]

【作用】本発明ではTi,Zr,Hf,V,Nb,Ta
など、窒素との反応性の高い元素を窒素ゲッターとする
ため、少量の添加でほとんど窒素を含まない無色透明な
IIa型のダイヤモンド結晶が得られ、また、溶媒と種結
晶の間に、炭化物生成防止あるいは初期成長安定化のた
めにFe,Co,Ni,Mnの金属板もしくは合金板を
あらかじめ配置した状態で合成を開始する構成になって
いるため、インクルージョンの混入を大幅に抑えること
ができる。その結果、従来よりかなり速い成長速度でも
良質なIIa型のダイヤモンド結晶が得られるようにな
る。また、本発明に用いる種結晶、炭素源等はこの種の
技術分野で公知のものを用いることができる。また、温
度差法による合成の条件等は適宜選択することができ
る。
In the present invention, Ti, Zr, Hf, V, Nb, Ta are used.
For example, the element that has high reactivity with nitrogen is used as a nitrogen getter.
A IIa type diamond crystal is obtained, and is synthesized with a metal plate or alloy plate of Fe, Co, Ni, Mn pre-disposed between the solvent and the seed crystal for preventing carbide formation or stabilizing initial growth. Since it is configured to start, inclusion can be greatly suppressed. As a result, a good quality IIa type diamond crystal can be obtained even at a much higher growth rate than before. The seed crystal, carbon source, etc. used in the present invention may be those known in the technical field of this type. Further, the conditions for synthesis by the temperature difference method can be appropriately selected.

【0010】[0010]

【実施例】以下実施例により本発明をさらに詳細に説明
する。実施例1 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Co粉末、グラファイト粉末を用い、 Fe:Co:C=60:40:4.5(重量比) となるように配合した。これに、さらに窒素ゲッターと
して平均粒径50ミクロンのTi粉末を1.5重量%添
加し、十分に混合した。この混合粉末を型押し成形し、
脱ガス、焼成したもの(直径20mm、厚み10mm)
を溶媒とした。図1に示す試料室構成で炭素源1にはダ
イヤモンドの粉末、種結晶4には直径500ミクロンの
ダイヤモンド結晶3個を用いた。種結晶4と溶媒2の間
に配置する金属板3としては厚み0.1mmのCo板を
用いた。そして、炭素源1と種結晶4部に約30℃の温
度差がつくように加熱ヒーター6内にセットした。これ
を超高圧発生装置を用いて、圧力5.5GPa、温度1
300℃で70時間保持し、ダイヤモンドの合成を行っ
た。その結果0.7〜0.9カラットの無色透明な、イ
ンクルージョンのほとんどない良質なIIa型のダイヤモ
ンド結晶が得られた。ESRにより、結晶中の窒素濃度
を測定するといずれも0.1ppm以下であった。磁気
天秤によりインクルージョン量を測定するといずれも
0.3重量%以下であった。
The present invention will be described in more detail with reference to the following examples. Example 1 High purity F having a particle size of 50 to 100 microns as a raw material of a solvent
e powder, Co powder, and graphite powder were used and blended so that Fe: Co: C = 60: 40: 4.5 (weight ratio). To this, 1.5% by weight of Ti powder having an average particle size of 50 μm was further added as a nitrogen getter, and they were sufficiently mixed. This mixed powder is pressed and molded,
Degassed and fired (20 mm diameter, 10 mm thickness)
Was used as the solvent. In the sample chamber structure shown in FIG. 1, diamond powder was used as the carbon source 1, and three diamond crystals having a diameter of 500 μm were used as the seed crystals 4. As the metal plate 3 arranged between the seed crystal 4 and the solvent 2, a Co plate having a thickness of 0.1 mm was used. Then, the carbon source 1 and the seed crystal 4 were set in the heater 6 so that there was a temperature difference of about 30 ° C. Using an ultrahigh pressure generator, the pressure was 5.5 GPa and the temperature was 1
The temperature was maintained at 300 ° C. for 70 hours to synthesize diamond. As a result, a colorless and transparent 0.7-0.9 carat type IIa diamond crystal of good quality with almost no inclusion was obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less. When the inclusion amount was measured with a magnetic balance, all were 0.3% by weight or less.

【0011】実施例2 種結晶4と溶媒2の間に配置する金属板3に厚み0.1
mmのNi板を用いた他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。実施例3 種結晶4と溶媒2の間に配置する金属板3に厚み0.1
mmの73Fe−27Co合金板を用いた他は実施例1
と同様にしてダイヤモンドの合成を行った。その結果、
実施例1とほとんど同じ良質なIIa型ダイヤモンド結晶
が得られた。実施例4 種結晶4と溶媒2の間に配置する金属板3に厚み0.1
mmの50Fe−50Ni合金板を用いた他は実施例1
と同様にしてダイヤモンドの合成を行った。その結果、
実施例1とほとんど同じ良質なIIa型ダイヤモンド結晶
が得られた。
Example 2 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.1.
Diamond was synthesized in the same manner as in Example 1 except that a Ni plate of mm was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 3 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.1.
Example 1 with the exception of using a 73 mm Fe-27 Co alloy plate
Diamond was synthesized in the same manner as in. as a result,
Almost the same quality IIa type diamond crystals as in Example 1 were obtained. Example 4 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.1.
Example 1 except using a 50 Fe-50 Ni alloy plate of mm
Diamond was synthesized in the same manner as in. as a result,
Almost the same quality IIa type diamond crystals as in Example 1 were obtained.

【0012】実施例5 種結晶4と溶媒2の間に配置する金属板3に厚み0.0
5mmの95Co−50Fe合金板を用いた他は実施例
1と同様にしてダイヤモンドの合成を行った。その結
果、実施例1とほとんど同じ良質なIIa型ダイヤモンド
結晶が得られた。 実施例6 種結晶4と溶媒2の間に配置する金属板3に厚み0.3
5mmのCo板を用いた他は実施例1と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例1とほとん
ど同じ良質なIIa型ダイヤモンド結晶が得られた。実施例7 溶媒2に添加する窒素ゲッターに粒径44ミクロン以下
(平均10ミクロン)のZr粉末を溶媒に対し3重量%
添加した他は実施例1と同様にしてダイヤモンドの合成
を行った。その結果、実施例1とほとんど同じ良質なII
a型ダイヤモンド結晶が得られた。
[0012]Example 5 The thickness of the metal plate 3 arranged between the seed crystal 4 and the solvent 2 is 0.0
Example other than using a 5 mm 95Co-50Fe alloy plate
Diamond was synthesized in the same manner as in 1. That conclusion
As a result, IIa diamond of good quality which is almost the same as that of Example 1
Crystals were obtained. Example 6 The metal plate 3 arranged between the seed crystal 4 and the solvent 2 has a thickness of 0.3.
Die in the same manner as in Example 1 except that a 5 mm Co plate was used.
The synthesis of yamond was performed. As a result,
The same high quality type IIa diamond crystals were obtained.Example 7 Nitrogen getter added to solvent 2 has a particle size of 44 microns or less
3% by weight of Zr powder (average of 10 microns) in the solvent
Synthesis of diamond in the same manner as in Example 1 except for the addition
I went. As a result, II of almost the same quality as in Example 1
An a-type diamond crystal was obtained.

【0013】実施例8 溶媒2に添加する窒素ゲッターに粒径44ミクロン以下
(平均10ミクロン)のAlTi合金粉末を溶媒に対し
3重量%添加した他は実施例1と同様にしてダイヤモン
ドの合成を行った。その結果、実施例1とほとんど同じ
良質なIIa型ダイヤモンド結晶が得られた。実施例9 溶媒2に添加する窒素ゲッターとしてAlTi合金粉末
の代わりに、CuTi、SnTi又はSi5 Ti6 合金
粉末を用いた他は実施例8と同様にしてダイヤモンドの
合成を行った。その結果、いずれの場合も、実施例1と
ほとんど同じ良質なIIa型ダイヤモンド結晶が得られ
た。実施例10 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:4.2(重
量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 8 Synthesis of diamond was carried out in the same manner as in Example 1 except that 3% by weight of AlTi alloy powder having a particle size of 44 microns or less (average of 10 microns) was added to the solvent in the nitrogen getter added to the solvent 2. went. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 9 Diamond was synthesized in the same manner as in Example 8 except that CuTi, SnTi, or Si 5 Ti 6 alloy powder was used instead of the AlTi alloy powder as the nitrogen getter added to the solvent 2. As a result, in each case, a good quality IIa diamond crystal, which is almost the same as that of Example 1, was obtained. Example 10 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
e powder, Ni powder, Co powder, and graphite powder were used, and blended so as to be Fe: Ni: Co: C = 60: 30: 10: 4.2 (weight ratio), in the same manner as in Example 1. Diamond was synthesized. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained.

【0014】実施例11 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Mn粉末、グラファイト粉末を用
い、 Fe:Ni:Mn:C=60:30:10:4(重量
比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 実施例12 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、グラファイト粉末を用い、 Fe:Ni:C=70:30:3.5(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 実施例13 溶媒の原料として粒径50〜100ミクロンの高純度C
o粉末、グラファイト粉末を用い、 Co:C=100:4.7(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。
[0014]Example 11 High-purity F with a particle size of 50-100 microns as a solvent raw material
e powder, Ni powder, Mn powder, graphite powder
Fe: Ni: Mn: C = 60: 30: 10: 4 (weight
The same as in Example 1 except that the composition was
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained. Example 12 High-purity F with a particle size of 50-100 microns as a solvent raw material
Diamond powder was prepared in the same manner as in Example 1 except that e powder, Ni powder, and graphite powder were used and blended so that Fe: Ni: C = 70: 30: 3.5 (weight ratio).
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained. Example 13 High-purity C with a particle size of 50-100 microns as a solvent raw material
Diamond powder was used in the same manner as in Example 1 except that Co powder and graphite powder were blended so that Co: C = 100: 4.7 (weight ratio).
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained.

【0015】実施例14 溶媒の原料として粒径50〜100ミクロンの高純度N
i粉末、グラファイト粉末を用い、 Ni:C=100:4.2(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 14 High-purity N having a particle size of 50 to 100 μm as a solvent raw material
Diamond was synthesized in the same manner as in Example 1 except that the i powder and the graphite powder were used and were mixed so that Ni: C = 100: 4.2 (weight ratio). As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained.

【0016】比較例1 溶媒と種結晶の間に金属板を配置せずに、他は実施例1
と同様にダイヤモンドの合成を試みた。窒素含有量の少
ない(約0.1ppm)の結晶が得られたが、インクル
ージョンの巻き込み量は約1.5重量%と多く、良質な
結晶は得られなかった。実施例15 溶媒と種結晶の間に配置するCo板の厚みを1mmとし
た他は実施例1と同様にダイヤモンドの合成を試みた。
種結晶はすべて溶解消滅して、ダイヤモンドは得られな
かった。実施例16 窒素ゲッターとして溶媒に添加するTiの量を15重量
%とした他は実施例1と同様にダイヤモンドの合成を試
みた。種結晶から成長した結晶は多結晶化しており、良
質な単結晶は得られなかった。、また、自然核発生も多
数みられた。
COMPARATIVE EXAMPLE 1 No metal plate was placed between the solvent and the seed crystal, and the other example was used.
The synthesis of diamond was tried in the same manner as in. Crystals with a low nitrogen content (about 0.1 ppm) were obtained, but the inclusion amount was about 1.5% by weight, and a good quality crystal could not be obtained. Example 15 An attempt was made to synthesize diamond in the same manner as in Example 1 except that the thickness of the Co plate placed between the solvent and the seed crystal was 1 mm.
All the seed crystals were dissolved and disappeared, and no diamond was obtained. Example 16 An attempt was made to synthesize diamond as in Example 1, except that the amount of Ti added to the solvent as a nitrogen getter was 15% by weight. The crystal grown from the seed crystal was polycrystallized, and a good single crystal could not be obtained. Moreover, many spontaneous nuclei were also observed.

【0017】実施例17 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末を用い、 Fe:Ni:Co=60:30:10(重量比) となるように配合し、グラファイトを添加しなかった他
は実施例1と同様にしてダイヤモンドの合成を行った。
その結果、種結晶は溶媒中に溶解して消失してしまい、
ダイヤモンドの成長は認められなかった。実施例18 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:7(重量
比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、種結晶以外の所より
ダイヤモンドが多数自然核発生し、このため結晶同士が
干渉し、良質なダイヤモンド結晶はほとんど得られなか
った。
Example 17 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Ni powder, and Co powder were used, blended in such a manner that Fe: Ni: Co = 60: 30: 10 (weight ratio), and graphite was not added. The synthesis was carried out.
As a result, the seed crystal dissolves in the solvent and disappears,
No diamond growth was observed. Example 18 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
Diamond powder was prepared in the same manner as in Example 1 except that Fe powder, Ni powder, Co powder, and graphite powder were mixed so that Fe: Ni: Co: C = 60: 30: 10: 10 (weight ratio). The synthesis was carried out. As a result, a large number of natural nuclei of diamond were generated from places other than the seed crystal, and the crystals interfered with each other, so that a good quality diamond crystal was hardly obtained.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
無色透明でインクルージョンのほとんどないダイヤモン
ド結晶を、安価に安定して合成できる。本方法によって
合成ダイヤモンドを装飾用途、光学部品などに利用する
ことが可能なものとなる。
As described above, according to the present invention,
A colorless and transparent diamond crystal with almost no inclusion can be stably synthesized at low cost. This method makes it possible to use synthetic diamond for decorative purposes, optical parts, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一具体例であって、結晶合成用
の試料室構成を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a sample chamber for crystal synthesis, which is one specific example of the present invention.

【符号の説明】[Explanation of symbols]

1:炭素源 2:溶媒金属(窒素ゲッターを含む) 3:金属板 4:種結晶 5:絶縁体 6:黒鉛ヒーター 7:圧力媒体 1: Carbon source 2: Solvent metal (including nitrogen getter) 3: Metal plate 4: Seed crystal 5: Insulator 6: Graphite heater 7: Pressure medium

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度差法によるダイヤモンド結晶合成に
おいて、溶媒金属に窒素ゲッターとしてTi,Zr,H
f,V,Nb,Taから選ばれる一種もしくは二種以上
の金属を添加し、かつ、前記溶媒金属と種結晶との間に
Fe,Co,Ni,Mnから選ばれる一種もしくは二種
以上からなる金属板を配置した状態でダイヤモンドの合
成を開始することを特徴とするダイヤモンド単結晶の合
成方法。
1. In a diamond crystal synthesis by a temperature difference method, Ti, Zr, H as a nitrogen getter is used as a solvent metal.
One or more metals selected from f, V, Nb, and Ta are added, and one or more metals selected from Fe, Co, Ni, and Mn are included between the solvent metal and the seed crystal. A method for synthesizing a diamond single crystal, characterized in that synthesis of diamond is started in a state where a metal plate is arranged.
【請求項2】 前記の溶媒金属と種結晶との間に配置さ
れる金属板の厚みは0.01mm以上、0.5mm以下
であることを特徴とする請求項1記載のダイヤモンド単
結晶の合成方法。
2. The synthesis of diamond single crystal according to claim 1, wherein the metal plate arranged between the solvent metal and the seed crystal has a thickness of 0.01 mm or more and 0.5 mm or less. Method.
【請求項3】 前記窒素ゲッターとして用いられるT
i,Zr,Hf,V,Nb,Taから選ばれる一種もし
くは二種以上の金属の含有量が、溶媒金属に対して0.
2〜10重量%であることを特徴とする請求項1または
2記載のダイヤモンド単結晶の合成方法。
3. T used as the nitrogen getter
The content of one or more metals selected from i, Zr, Hf, V, Nb and Ta is 0.
The method for synthesizing a diamond single crystal according to claim 1 or 2, wherein the content is 2 to 10% by weight.
【請求項4】 前記溶媒金属は、Fe,Co,Ni,M
n,Crの中から選ばれる一種もしくは二種以上からな
り、且つ0.1〜6.0重量%の炭素を含むことを特徴
とする請求項1または2または3記載のダイヤモンド単
結晶の合成方法。
4. The solvent metal is Fe, Co, Ni, M.
The method for synthesizing a diamond single crystal according to claim 1, 2 or 3, which is composed of one or more selected from n and Cr and contains 0.1 to 6.0% by weight of carbon. .
JP34194192A 1992-01-22 1992-12-22 Method of synthesizing diamond single crystal Expired - Fee Related JP3282249B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34194192A JP3282249B2 (en) 1992-12-22 1992-12-22 Method of synthesizing diamond single crystal
ZA934354A ZA934354B (en) 1992-12-22 1993-06-17 A process for the synthesis of diamond single crystal
KR1019930013401A KR940014144A (en) 1992-01-22 1993-07-16 Manufacturing method of diamond single crystal
EP93306785A EP0603995A1 (en) 1992-12-22 1993-08-26 Process for the synthesising diamond single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34194192A JP3282249B2 (en) 1992-12-22 1992-12-22 Method of synthesizing diamond single crystal

Publications (2)

Publication Number Publication Date
JPH06182182A true JPH06182182A (en) 1994-07-05
JP3282249B2 JP3282249B2 (en) 2002-05-13

Family

ID=18349951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34194192A Expired - Fee Related JP3282249B2 (en) 1992-01-22 1992-12-22 Method of synthesizing diamond single crystal

Country Status (2)

Country Link
JP (1) JP3282249B2 (en)
ZA (1) ZA934354B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404399B2 (en) 2003-10-10 2008-07-29 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404399B2 (en) 2003-10-10 2008-07-29 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry
EP2468392A2 (en) 2003-10-10 2012-06-27 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry

Also Published As

Publication number Publication date
ZA934354B (en) 1994-02-16
JP3282249B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US6129900A (en) Process for the synthesis of diamond
KR100216619B1 (en) Diamond synthesis
JP3259384B2 (en) Method of synthesizing diamond single crystal
EP0780153B1 (en) Diamond synthesis
US4836881A (en) Process for synthesizing large diamond
JP3282249B2 (en) Method of synthesizing diamond single crystal
US4406871A (en) Process for growing diamonds
JP3291804B2 (en) Method of synthesizing diamond single crystal
JP3206050B2 (en) Method of synthesizing diamond single crystal
JP3259383B2 (en) Method of synthesizing diamond single crystal
JPH06165929A (en) Method for synthesizing diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
JPH05137999A (en) Method for synthesizing diamond single crystal
US3124422A (en) Synthesis of diamonds
JPH0686927A (en) Method for synthesis of diamond signal crystal
Yan et al. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent
JP3205970B2 (en) Diamond synthesis method
JPS58161995A (en) Method for synthesizing diamond
JPH0576747A (en) Synthetic method for diamond single crystal
JP2003137686A (en) Diamond window
JPH06269654A (en) Synthesis of diamond
JPH1114524A (en) Diamond indenter
JPS6225601B2 (en)
JPS6253218B2 (en)
Iizuka et al. Nucleation and growth of diamond using Ni Ti, Ni Nb and Fe B alloy as solvents

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees