JPH0616814B2 - Ventilation gas purification method in road tunnel - Google Patents

Ventilation gas purification method in road tunnel

Info

Publication number
JPH0616814B2
JPH0616814B2 JP62313778A JP31377887A JPH0616814B2 JP H0616814 B2 JPH0616814 B2 JP H0616814B2 JP 62313778 A JP62313778 A JP 62313778A JP 31377887 A JP31377887 A JP 31377887A JP H0616814 B2 JPH0616814 B2 JP H0616814B2
Authority
JP
Japan
Prior art keywords
ventilation gas
nox
adsorbent
preheating
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62313778A
Other languages
Japanese (ja)
Other versions
JPH01155934A (en
Inventor
健 金谷
正義 市来
高延 渡辺
重則 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKURITSU KOGAI KENKYUSHOCHO
Hitachi Zosen Corp
Original Assignee
KOKURITSU KOGAI KENKYUSHOCHO
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKURITSU KOGAI KENKYUSHOCHO, Hitachi Zosen Corp filed Critical KOKURITSU KOGAI KENKYUSHOCHO
Priority to JP62313778A priority Critical patent/JPH0616814B2/en
Publication of JPH01155934A publication Critical patent/JPH01155934A/en
Publication of JPH0616814B2 publication Critical patent/JPH0616814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • E21F1/003Ventilation of traffic tunnels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1044Rotary wheel performing other movements, e.g. sliding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、道路用の山岳トンネル、地下道路、シェル
ター付き道路等(この明細書において、これらを総称し
て「道路トンネル」という)において、内部の汚染空気
を換気し、換気ガスを窒素酸化物(NOx)除去等の浄
化処理に付す換気ガスの浄化方法に関する。
TECHNICAL FIELD The present invention relates to a mountain tunnel for roads, an underground road, a road with a shelter, etc. (in this specification, these are collectively referred to as “road tunnel”) The present invention relates to a method for purifying ventilation gas, in which contaminated air is ventilated and the ventilation gas is subjected to purification treatment such as nitrogen oxide (NOx) removal.

発明の背景 長距離でかつ自動車の交通量の多い道路トンネルでは、
ドライバーや歩行者等の健康を保護し、かつトンネル内
の煤煙の透過率を改善するために、内部の汚染空気を換
気する必要がある。また比較的短距離の道路トンネルに
おいても、都市部あるいはその近郊にあるものについて
は、出入口部に集中した一酸化炭素ガスやNOx等によ
る大気汚染に対処する目的で、トンネル内の汚染空気を
換気する必要がある。
BACKGROUND OF THE INVENTION In a long-distance road-traffic tunnel,
It is necessary to ventilate the contaminated air inside in order to protect the health of drivers and pedestrians and improve the permeability of soot in the tunnel. In addition, even in a relatively short distance road tunnel, for the one in the urban area or its suburbs, the contaminated air in the tunnel is ventilated in order to cope with the air pollution due to carbon monoxide gas and NOx concentrated in the entrance and exit. There is a need to.

しかしながら、換気ガスをそのままトンネルの周辺に放
散するのでは、地域的な環境改善に反するばかりか、特
に自動車排ガスによる汚染が平面的に拡大しつつある都
市部あるいはその近郊においては、汚染度の高い汚染地
域をさらに拡大させることにもなりかねない。既設道路
の公害対策として道路をトンネル化したり、シェルター
を設置する場合も、前述の事情は全く同じである。
However, if ventilation gas is diffused around the tunnel as it is, it is not only against the improvement of the local environment, but also the pollution level is high especially in the urban area where the exhaust gas pollution is spreading in the plane or its suburbs. It could lead to further expansion of the contaminated area. The above-mentioned situation is exactly the same even when a road is tunneled or a shelter is installed as a measure against pollution of an existing road.

したがって、道路トンネルから出た換気ガスを効率よく
NOx除去処理することができる方法が、要望せられて
いる。
Therefore, there is a demand for a method capable of efficiently removing NOx from ventilation gas emitted from a road tunnel.

従来の技術 本出願人は、道路トンネルにおける換気ガスの浄化方法
として、道路トンネルから出た換気ガスをゼオライト系
吸着剤で乾式処理して、主としてNOxを吸着除去し、
NOxを吸着した吸着剤をNH含有高温空気で処理し
て再生させる方法を提案し、本件とは別途に特許出願し
た。
2. Description of the Related Art As a method of purifying ventilation gas in a road tunnel, the present applicant dry-processes the ventilation gas discharged from the road tunnel with a zeolite-based adsorbent to mainly adsorb and remove NOx,
We proposed a method of regenerating an NOx-adsorbed adsorbent by treating it with NH 3 -containing high-temperature air, and filed a patent application separately from this case.

発明の解決しようとする問題点 ところで、一般に、ゼオライト系吸着剤のNOx吸着能
は、含銅ゼオライト系吸着剤のNOx吸着能と湿分との
関係を示す後述する第2図のグラフから明らかなよう
に、共存する湿分によって著しく阻害される。したがっ
て、湿分が共存すると、比較的高価な物質であるゼオラ
イト系吸着剤を多量に使用しなければならなくなる。ま
たゼオライト系吸着剤は、湿分が共存すると、これを不
可逆的に吸収するので、同吸着剤の再生工程において吸
着湿分を加熱により脱着させなければならず、これには
多大のエネルギー消費が必要となる。
Problems to be Solved by the Invention By the way, in general, the NOx adsorption capacity of a zeolite-based adsorbent is clear from the graph of FIG. 2 which will be described later and shows the relationship between the NOx adsorption capacity of a copper-containing zeolite-based adsorbent and moisture. As such, it is significantly inhibited by coexisting moisture. Therefore, if moisture coexists, a large amount of zeolite adsorbent, which is a relatively expensive substance, must be used. Further, the zeolite-based adsorbent irreversibly absorbs coexistence of moisture, so the adsorbed moisture must be desorbed by heating in the regeneration process of the adsorbent, which consumes a large amount of energy. Will be needed.

そこで、ゼオライト系吸着剤を用いる換気ガスの浄化に
おいては、つぎの事項が要求せられる。
Therefore, the following items are required for the purification of ventilation gas using the zeolite-based adsorbent.

(1) 換気ガスから予め湿分を除去しておき、ゼオライ
ト系吸着剤のNOx吸着能の湿分による阻害を予防して
おく。
(1) Remove moisture from ventilation gas in advance to prevent the NOx adsorption capacity of the zeolite adsorbent from being inhibited by moisture.

(2) 換気ガスからの湿分除去に要するエネルギー消費
を極力少なくする。
(2) Minimize the energy consumption required to remove moisture from ventilation gas.

この発明は、上記の如き実情に鑑み、道路トンネルから
出た換気ガスを低エネルギーコストで効率よくNOx除
去処理することができる実用的な換気ガス浄化方法を提
供することを目的とする。
In view of the above situation, an object of the present invention is to provide a practical ventilation gas purification method capable of efficiently removing NOx from ventilation gas emitted from a road tunnel at low energy cost.

問題点を解決するための手段 この発明による換気ガスの浄化方法は、道路トンネルか
ら出たNOx濃度で5ppm以下の換気ガスをゼオライ
ト系吸着剤で乾式処理してNOxを吸着除去するに当
り、 NOx吸着処理の前の吸湿工程において、シリカゲル系
脱湿剤を保持した移動ブロック列を、換気ガスを流す吸
湿ゾーンに向流方向に断続的に移動させて換気ガスを吸
湿処理し、吸湿ゾーンの出口端に達したブロックを順
次、NOx除去後の乾燥した処理換気ガスを流す予熱・
冷却ゾーンへ送ってその入口端からやはり向流方向に断
続的に移動させて通気乾燥し、さらに移動ブロックを予
熱・冷却ゾーンの中間部から抜き出して加熱ゾーンへ送
り、ここで脱湿剤を加熱乾燥した後、再生ブロックを再
び予熱・冷却ゾーンのブロック列の元の位置に挿入し、
予熱・冷却ゾーンの出口端から吸湿ゾーンの入口端に戻
すことを特徴とするものである。
Means for Solving the Problems The method for purifying ventilation gas according to the present invention is a method of dry-treating ventilation gas having a NOx concentration of 5 ppm or less discharged from a road tunnel with a zeolite adsorbent to remove NOx by adsorption. In the hygroscopic process before the adsorption process, the moving block row holding the silica gel dehumidifying agent is intermittently moved countercurrently to the hygroscopic zone through which the ventilation gas flows, to absorb the ventilation gas, and then the outlet of the hygroscopic zone. Preheat the flow of dry treated ventilation gas after removing NOx to the blocks that have reached the end sequentially.
It is sent to the cooling zone and intermittently moved in the countercurrent direction from its inlet end to be dried by aeration, and the moving block is extracted from the middle part of the preheating / cooling zone and sent to the heating zone where the dehumidifying agent is heated. After drying, insert the regeneration block back into the pre-heating / cooling zone at the original position of the block row,
It is characterized by returning from the exit end of the preheating / cooling zone to the entrance end of the moisture absorption zone.

この発明の好ましい実施態様では、吸湿工程において、
シリカゲル系脱湿剤は、換気ガス中の湿分のみならず、
共存する各種ハイドロカーボン蒸気、オイルミスト、煤
塵等をも吸着除去する。脱湿剤による吸湿、および吸湿
した脱湿剤の再生は、好ましくは移動床式の吸湿部、予
熱・冷却部および加熱部によって実施される。ただし、
脱湿剤を固定床に充填し、吸湿すべき換気ガスと再生用
の乾燥した処理換気ガスとを脱湿剤固定床に交番的に流
通させる方法をとってもよい。
In a preferred embodiment of this invention, in the moisture absorption step,
Silica gel-based dehumidifiers can be used not only for moisture in ventilation gas,
It also adsorbs and removes various coexisting hydrocarbon vapors, oil mists, and soot and dust. Moisture absorption by the dehumidifying agent and regeneration of the absorbed dehumidifying agent are preferably carried out by a moving bed type moisture absorbing section, preheating / cooling section and heating section. However,
A method may be used in which the fixed bed is filled with the dehumidifying agent and the ventilation gas to be absorbed and the dried treated ventilation gas for regeneration are alternately passed through the fixed bed of the dehumidifying agent.

脱湿剤に吸着された水分は、処理換気ガスによる通気乾
燥で脱湿剤から大部分脱着除去され、残部は加熱乾燥に
よって脱着除去される。
Most of the moisture adsorbed on the dehumidifying agent is desorbed and removed from the dehumidifying agent by aeration drying with a treatment ventilation gas, and the rest is desorbed and removed by heat drying.

NOx吸着工程において、吸着剤としては、好ましく
は、銅、バナジウム等の金属酸化物を含むゼオライト系
吸着剤が用いられる。
In the NOx adsorption step, a zeolite-based adsorbent containing a metal oxide such as copper or vanadium is preferably used as the adsorbent.

NOx吸着剤の再生工程において、NOxは還元剤とし
てNHによって窒素ガスに選択的に還元されて吸着剤
から脱着する。その結果、吸着剤が再生せられる。吸着
剤の再生は温度100℃以上、好ましくは150℃以上
で行なわれる。
In the NOx adsorbent regeneration step, NOx is selectively reduced to nitrogen gas by NH 3 as a reducing agent and desorbed from the adsorbent. As a result, the adsorbent is regenerated. Regeneration of the adsorbent is carried out at a temperature of 100 ° C or higher, preferably 150 ° C or higher.

NOxの吸着および吸着剤の再生は、好ましくは移動床
式の吸着部、予熱・冷却部および再生部によって実施さ
れる。ただし、吸着剤を固定床に充填し、浄化すべき換
気ガスと再生用のNH含有高温空気とを吸着剤固定床
に交番的に流通させる方法をとってもよい。
The adsorption of NOx and the regeneration of the adsorbent are preferably carried out by a moving bed type adsorption section, preheating / cooling section and regeneration section. However, a method may be used in which the fixed bed is filled with the adsorbent and the ventilation gas to be purified and the NH 3 -containing high-temperature air for regeneration are alternately passed through the fixed bed.

実施例 つぎに、この発明の実施例について具体的に説明する。EXAMPLES Next, examples of the present invention will be specifically described.

実施例 第1図において、道路トンネル(1) から換気ブロワー
(2) によって排出された換気ガスは、吸湿設備(3) の吸
湿部(4) に導かれる。吸湿設備(3) は換気ガス中の湿分
を脱湿剤で吸着する吸湿部(4) と、吸湿した脱湿剤を乾
燥換気ガスで予熱し、かつ加熱後の再生脱湿剤を冷却す
る予熱・冷却部(5) と、予熱・冷却部(5) から来た脱湿
剤を加熱乾燥により再生させる加熱部(6) とより構成さ
れている。吸湿部(4) 、予熱・冷却部(5) および加熱部
(6) はいずれも移動床式であって、シリカゲル系脱湿剤
を保持した複数の移動ブロック(7) が吸湿部(4) および
予熱・冷却部(5) の内部に一列に並べられている。移動
ブロック(7) は吸湿部(4) 内を換気ガス流れに対して向
流方向に断続的に移動させられ、吸湿部(4) の出口端に
達したものは予熱・冷却部(5) へ送られ、この内部をや
はり断続的に入口端から出口端に向けて移動させられ
る。ついで移動ブロック(7) は予熱・冷却部(5) の中間
部において抜き出されて加熱部(6) へ送られる。脱湿剤
再生後の移動ブロック(7) は再び予熱・冷却部(5) のブ
ロック列の元の位置に挿入され、予熱・冷却部(5) の出
口端から吸湿部(4) の入口端に戻される。
Example In FIG. 1, a ventilation blower is installed from a road tunnel (1).
The ventilation gas discharged by (2) is guided to the moisture absorption section (4) of the moisture absorption facility (3). The moisture absorption equipment (3) preheats the moisture absorption part (4) that adsorbs the moisture in the ventilation gas with the dehumidifying agent and the absorbed dehumidifying agent with dry ventilation gas, and cools the regenerated dehumidifying agent after heating. It is composed of a preheating / cooling unit (5) and a heating unit (6) for regenerating the dehumidifying agent coming from the preheating / cooling unit (5) by heating and drying. Moisture absorber (4), preheating / cooling unit (5) and heating unit
Each of (6) is a moving bed type, and a plurality of moving blocks (7) holding a silica gel dehumidifying agent are arranged in a line inside the moisture absorbing section (4) and the preheating / cooling section (5). There is. The moving block (7) is intermittently moved in the moisture absorption section (4) in the countercurrent direction to the ventilation gas flow, and the one reaching the outlet end of the moisture absorption section (4) is the preheating / cooling section (5). And is discontinuously moved in the interior from the inlet end toward the outlet end. Then, the moving block (7) is taken out at an intermediate portion of the preheating / cooling section (5) and sent to the heating section (6). After the dehumidifying agent is regenerated, the moving block (7) is inserted again into the original position of the block row of the preheating / cooling unit (5), and the moving end (5) is moved from the outlet end of the preheating / cooling unit (5) to the inlet end of the moisture absorption unit (4). Returned to.

予熱・冷却部(5) にはブロックの移動方向に対して向流
方向に、後述するNOx除去設備(8) のNOx吸着部
(9) から出た乾燥した処理換気ガスが流通される。その
結果この乾燥した処理換気ガスは予熱・冷却部(5) の出
口端側では加熱により再生させた脱湿剤の冷却用に、ま
た入口端側では吸湿した未再生脱湿剤の予熱用にそれぞ
れ使用される。また加熱部(6) には、同じく後述するN
Ox除去設備(8) の吸着剤再生部(11)からブロワー(12)
を介して送られかつヒーター(13)で加熱された高温空気
が流通される。
In the preheating / cooling section (5), the NOx adsorbing section of the NOx removal facility (8) described later is provided in the countercurrent direction to the moving direction of the block
The dried treated ventilation gas from (9) is circulated. As a result, this dried treated ventilation gas is used for cooling the dehumidifying agent regenerated by heating on the outlet end side of the preheating / cooling section (5) and for preheating the absorbed unregenerated dehumidifying agent on the inlet end side. Used respectively. Also, the heating section (6) has a N
From the adsorbent regeneration part (11) of the Ox removal equipment (8) to the blower (12)
The hot air that has been sent through and heated by the heater (13) is circulated.

吸湿部(4) において、換気ガスの湿分は、移動ブロック
(7) に保持された乾燥状態のシリカゲル系脱湿剤に、露
点−16℃まで吸着され、こうして乾燥させられた換気
ガスは吸湿部(4) からNOx除去設備(8) のNOx吸着
部(9) へ送られる。ついで、吸湿した脱湿剤を保持した
移動ブロック(7) は吸湿部(4) から予熱・冷却部(5) に
移動され、その入口端側において脱湿剤は乾燥した処理
換気ガス(これは後述するNOx除去部(9) で湿分が露
点−22℃まで除湿されている)によって予熱され、あ
る程度まで乾燥される。ついで移動ブロック(7) は予熱
・冷却部(5) の中間部から加熱部(6) へ送られ、ここで
脱湿剤は高温空気によって温度150℃に加熱されて完
全に乾燥され、再生せられる。再生脱湿剤を保持した移
動ブロック(7) は予熱・冷却部(5) のブロック列の元の
位置に挿入され、出口端側で乾燥処理換気ガスで冷却せ
られ、ついで吸湿部(4) の入口端に戻される。脱湿剤の
乾燥に必要な処理換気ガスの熱量は、吸湿部(4) および
NOx吸着部(9) における湿分の吸着熱によって、なら
びに加熱後の脱湿剤の冷却によって、充分補われる。
In the moisture absorption section (4), the ventilation gas moisture is
The dried silica gel dehumidifying agent held in (7) adsorbs the ventilation gas adsorbed up to a dew point of -16 ° C and dried in this way from the moisture absorption section (4) to the NOx adsorption section (8) of the NOx removal facility (8). 9) sent to. Next, the moving block (7) holding the absorbed dehumidifying agent is moved from the moisture absorbing section (4) to the preheating / cooling section (5), and the dehumidifying agent on the inlet end side of the moving block (this is It is preheated by a NOx removing section (9) described later to dehumidify the moisture to a dew point of −22 ° C., and is dried to some extent. The transfer block (7) is then sent from the middle part of the preheating / cooling section (5) to the heating section (6), where the dehumidifying agent is heated to a temperature of 150 ° C by hot air to be completely dried and regenerated. To be The moving block (7) holding the regenerated dehumidifying agent is inserted into the original position of the block row of the preheating / cooling section (5), cooled by the drying treatment ventilation gas at the outlet end side, and then the moisture absorption section (4). Returned to the entrance end of. The heat quantity of the process ventilation gas required for drying the dehumidifying agent is sufficiently supplemented by the heat of adsorption of the moisture in the moisture absorbing section (4) and the NOx adsorbing section (9) and by cooling the dehumidifying agent after heating.

吸湿設備(3) の後流側に設けられたNOx除去設備(8)
は、換気ガス中のNOxを吸着剤で吸着するNOx吸着
部(9) と、NOx吸着状態の未再生吸着剤を予熱し、か
つ再生後の吸着剤を冷却する予熱・冷却部(10)と、予熱
・冷却部(10)から来た吸着剤をNOx脱着処理する吸着
剤再生部(11)とより主として構成されている。NOx吸
着部(9) 、予熱・冷却部(10)および吸着剤再生部(11)は
いずれも移動床式であって、NOx吸着剤を保持した複
数の移動ブロック(14)が、NOx吸着部(9) →予熱・冷
却部(10)→吸着剤再生部(11)→予熱・冷却部(10)→NO
x吸着部(9) の順に、交番的に移動し、かつこれらの部
分(9)(10)(11) に一定時間ずつ停止する。
NOx removal equipment (8) installed on the downstream side of the moisture absorption equipment (3)
Is a NOx adsorber (9) that adsorbs NOx in ventilation gas with an adsorbent, and a preheater / cooler (10) that preheats the unregenerated adsorbent in the NOx adsorbed state and cools the adsorbent after regeneration. It mainly comprises an adsorbent regeneration section (11) for NOx desorption treatment of the adsorbent coming from the preheating / cooling section (10). The NOx adsorbing section (9), the preheating / cooling section (10) and the adsorbent regeneration section (11) are all of a moving bed type, and the plurality of moving blocks (14) holding the NOx adsorbent are the NOx adsorbing section. (9) → preheating / cooling section (10) → adsorbent regeneration section (11) → preheating / cooling section (10) → NO
The x adsorption portion (9) is moved alternately in the order, and these portions (9), (10) and (11) are stopped for a certain period of time.

吸着剤としては、銅、バナジウム等の金属酸化物を含む
ゼオライト系吸着剤が用いられる。NOx吸着部(9) に
おいて乾式処理によってNOx除去された処理換気ガス
は、一部、前述したように、吸湿設備(3) の予熱・冷却
部(5) へ送られる。また同ガスの残部は、NOx吸着部
(9) から切換え弁(15)を経て予熱・冷却部(10)へ送ら
れ、これを縦方向に流通させられる。その結果この処理
換気ガスは、NOx吸着部(9) から吸着剤再生部(11)へ
移動する未再生吸着剤の予熱用に、また逆方向に移動す
る加熱後の再生吸着剤の冷却用にそれぞれ使用される。
As the adsorbent, a zeolite adsorbent containing a metal oxide such as copper or vanadium is used. Part of the treated ventilation gas from which NOx has been removed by the dry treatment in the NOx adsorbing section (9) is sent to the preheating / cooling section (5) of the moisture absorption equipment (3) as described above. The rest of the gas is the NOx adsorption part.
It is sent from (9) through the switching valve (15) to the preheating / cooling section (10) and is circulated in the vertical direction. As a result, this treated ventilation gas is used for preheating the unregenerated adsorbent that moves from the NOx adsorption part (9) to the adsorbent regeneration part (11) and for cooling the regenerated adsorbent that moves in the opposite direction after heating. Used respectively.

吸着剤再生部(11)においては、予熱・冷却部(10)から来
た移動ブロック(14)の未再生吸着剤が、NHを含む高
温空気で接触処理される。この空気は予熱・冷却部(10)
から出た処理換気ガスであって、循環ブロワー(16)で吸
着剤再生部(11)に送られ、かつヒーター(17)で100℃
以上に加熱される。NHはボンベ(18)から加熱空気に
添加される。その結果、NOxは還元剤としてのNH
によって窒素ガスに還元されて吸着剤から脱着し、吸着
剤が再生せられる。
In the adsorbent regeneration unit (11), the unregenerated adsorbent of the moving block (14) coming from the preheating / cooling unit (10) is contact-treated with high-temperature air containing NH 3 . This air is preheated / cooled (10)
It is the process ventilation gas that is discharged from the exhaust gas, is sent to the adsorbent regeneration section (11) by the circulation blower (16), and is 100 ℃ by the heater (17).
It is heated above. NH 3 is added to the heated air from the cylinder (18). As a result, NOx is NH 3 as a reducing agent.
Is reduced to nitrogen gas and desorbed from the adsorbent to regenerate the adsorbent.

吸着剤再生部(11)を通過した空気は、循環ブロワー(16)
で循環再使用され、必要に応じて予熱・冷却部(11)から
処理換気ガスが補充される。またこの空気の一部は循環
ラインから抜き取られ、前述したように、吸湿設備(3)
の加熱部(6) へ脱湿剤再生用の高温空気として送られ
る。
The air that has passed through the adsorbent regeneration unit (11) is circulated blower (16).
Is circulated and reused, and the process ventilation gas is replenished from the preheating / cooling unit (11) as necessary. Also, a part of this air is extracted from the circulation line, and as described above, the moisture absorption facility (3)
It is sent to the heating part (6) of the as hot air for regenerating the dehumidifying agent.

ゼオライトのNOx吸着能 銅酸化物を含むゼオライト系吸着剤のNOx吸着能と湿
分との関係を第2図に示す。同図からゼオライトのNO
x吸着能は湿分によって著しく阻害されることがわか
る。
Zeolite NOx Adsorption Capacity The relationship between the NOx adsorption capacity and moisture content of the zeolite adsorbent containing copper oxide is shown in FIG. From the figure, NO of zeolite
It can be seen that the x adsorption capacity is significantly inhibited by moisture.

吸着剤の脱湿性 ゼオライトおよびシリカゲルについて、関係温度と水分
の平衡吸着量の関係を第3図に示す。同図から明らかな
ように、ゼオライトはいかなる関係温度においてもほぼ
一定の吸湿量を示すのに対し、シリカゲルは関係温度0
〜60%でほぼ湿度に比例した吸湿量を示す。このこと
から、ゼオライトは湿分を不可逆的に吸着するのに対
し、シリカゲルは湿分を可逆的に吸着していることがわ
かる。一般に、湿分の不可逆的吸着の場合、脱湿剤から
水分を脱着してこれを乾燥するには加熱が必要である
が、可逆的吸着の場合には加熱は必しも必要でなく、吸
着剤を乾燥空気によって乾燥することができる。ただ
し、シリカゲル吸着湿分が0.01kg(水分)/kg(シ
リカゲル)以下になると、加熱を行なわないと乾燥速度
が非常に遅くなって実用的でなくなる。したがってこの
発明のプロセスでは乾燥空気によるシリカゲル乾燥は吸
着湿分0.01kg(水分)/kg(シリカゲル)以上の領
域のみにとどめ、残りの湿分は加熱によって脱着除去し
ている。
Dehumidifying Properties of Adsorbents The relationship between the relevant temperature and the equilibrium adsorption amount of water is shown in FIG. 3 for zeolite and silica gel. As is clear from the figure, zeolite shows almost constant moisture absorption at any relevant temperature, whereas silica gel has a relative moisture absorption of 0.
A moisture absorption amount of approximately 60% is almost proportional to humidity. This shows that zeolite adsorbs moisture irreversibly, while silica gel adsorbs moisture reversibly. Generally, in the case of irreversible adsorption of moisture, heating is required to desorb water from the dehumidifying agent and dry it, but in the case of reversible adsorption, heating is not absolutely necessary. The agent can be dried with dry air. However, if the moisture content adsorbed on silica gel becomes 0.01 kg (water content) / kg (silica gel) or less, the drying speed becomes very slow and heating becomes impractical unless heating is performed. Therefore, in the process of the present invention, silica gel drying with dry air is limited to an area having an adsorbed moisture content of 0.01 kg (moisture) / kg (silica gel) or more, and the remaining moisture is desorbed and removed by heating.

試験1(シリカゲルの吸湿試験) 第4図および第5図において、左右一対のステンレス鋼
製の側板(51)(52)の各上面および各下面にそれぞれ上下
一対の5メッシュのステンレス鋼製の金網(53)(54)の各
側面を溶接し、上下の金網(53)(54)の間に厚さ1.8mm
の板状シリカゲルよりなる脱湿剤(55)を挿入した。こう
してシリカゲル系脱湿剤のテストピース(56)を複数製作
した。
Test 1 (Silica gel moisture absorption test) Referring to FIGS. 4 and 5, a pair of upper and lower 5-mesh stainless steel wire nets are provided on the upper and lower surfaces of the pair of left and right stainless steel side plates (51, 52). Weld each side of (53) (54), and the thickness is 1.8mm between the upper and lower wire nets (53) (54).
The dehumidifying agent (55) consisting of the plate-like silica gel of was inserted. Thus, a plurality of silica gel dehumidifying agent test pieces (56) were manufactured.

これとは別に、第5図に示すように、内部両側にガイド
溝(57)(58)を有する長さ10mのポリ塩化ビニル製の角
型ダクト(59)を用意した。
Separately from this, as shown in FIG. 5, a 10 m long polyvinyl chloride rectangular duct (59) having guide grooves (57) and (58) on both inner sides was prepared.

角型ダクト(59)のガイド溝(57)(58)に、充分に乾燥した
テストピース(56)の側板(51)(52)をそれぞれ差し込み、
複数のテストピース(56)を5分毎に1枚ずづ順次ダクト
(59)の入口端に押し込み、これらを1.2m/hの速度
で押し込み方向に移動させ、5分毎に1枚ずつ出口端か
ら抜き取った。また差し込み方向に対して向流方向に、
2%の湿分を含む空気を36/分で送入した。
Insert the side plates (51) (52) of the sufficiently dried test piece (56) into the guide grooves (57) (58) of the rectangular duct (59), respectively.
Ducts of multiple test pieces (56), one by one every 5 minutes
It was pushed into the inlet end of (59), moved in the pushing direction at a speed of 1.2 m / h, and pulled out from the outlet end one by one every 5 minutes. Also, in the countercurrent direction to the insertion direction,
Air containing 2% moisture was pumped at 36 / min.

16時間操作後、ダクト(59)に1m間隔で設けられたサ
ンプリング部から湿分分析用の空気サンプリングを行な
い、各サンプリング空気について湿分を測定し、ダクト
(59)内の湿分の濃度分布を調べた。また空気の流通およ
びテストピースの差し込みを終了した後、ダクト(59)を
解放し、ダクト(59)内の各サンプリング位置におけるテ
ストピース中の水分分析を行ない、これからシリカゲル
の平衡分圧を求めた。こうして得られた結果を第6図に
示す。同図から、板状シリカゲルは上記の如き条件にお
いて充分な吸湿能力を有することがわかる。
After operating for 16 hours, air sampling for moisture analysis is performed from the sampling unit provided in the duct (59) at intervals of 1 m, moisture is measured for each sampling air, and the duct is used.
The concentration distribution of moisture in (59) was investigated. Also, after the air circulation and the insertion of the test piece were completed, the duct (59) was opened, the water content in the test piece at each sampling position in the duct (59) was analyzed, and the equilibrium partial pressure of silica gel was calculated from this. . The results thus obtained are shown in FIG. From the figure, it can be seen that the plate-like silica gel has a sufficient moisture absorption capacity under the above conditions.

試験2(シリカゲルの吸湿試験) 試験1で用いたダクトと同じ構造の角型ダクトを用い、
ダクトに押し込むテストピースとして、試験1で用いた
テストピースを湿分1.6%の空気で処理して湿分を飽
和状態まで吸着させたものを用い、ダクトに送入する空
気として、露点−22℃の乾燥空気を用い、その他につ
いては試験1と同じ条件で操作を行なった。そしてダク
ト内の湿分の濃度分布およびシリカゲルの平衡分圧を求
めた。その結果を第7図に示す。同図から、ダクトに押
し込んだテストピースが保有している湿分の約90%が
乾燥空気によって吸着除去されていることがわかる。
Test 2 (moisture absorption test of silica gel) Using a rectangular duct having the same structure as the duct used in Test 1,
As the test piece to be pushed into the duct, the test piece used in Test 1 was treated with air having a moisture content of 1.6% to adsorb the moisture to a saturated state, and the air fed into the duct had a dew point of − The operation was performed under the same conditions as in Test 1 except that dry air of 22 ° C. was used. Then, the concentration distribution of moisture in the duct and the equilibrium partial pressure of silica gel were obtained. The results are shown in FIG. From the figure, it can be seen that about 90% of the moisture contained in the test piece pushed into the duct is adsorbed and removed by the dry air.

発明の効果 この発明の換気ガス浄化方法によれば、道路トンネルか
ら出た換気ガスをゼオライト系吸着剤で乾式処理してN
Oxを吸着除去するに当り、NOx吸着処理の前に予め
換気ガスをシリカゲル系脱湿剤で吸湿処理するので、N
Ox吸着処理の前に吸湿処理を行なわない場合に比べ
て、ゼオライト系吸着剤のNOx吸着能を大幅に向上さ
せることができる(換気ガイ中の湿分を0.1%とする
と、NOx吸着量は約15倍向上する)。したがって高
価な物質であるゼオライト系吸着剤の使用量を大幅に
(実際には1/5以下に)減少させることができるとと
もに、NOx除去設備の小型を達成することができる。
EFFECTS OF THE INVENTION According to the method for purifying ventilation gas of the present invention, the ventilation gas discharged from the road tunnel is dry-processed with a zeolite-based adsorbent to obtain N 2.
When the Ox is adsorbed and removed, the ventilation gas is preliminarily adsorbed with a silica gel-based dehumidifying agent before the NOx adsorption treatment.
The NOx adsorption capacity of the zeolitic adsorbent can be significantly improved compared to the case where the moisture absorption treatment is not performed before the Ox adsorption treatment (If the moisture content in the ventilation guy is 0.1%, the NOx adsorption amount Improves about 15 times). Therefore, the amount of the expensive zeolite-based adsorbent used can be significantly reduced (actually to 1/5 or less), and the NOx removal equipment can be downsized.

また吸湿した脱湿剤を再生するには、加熱乾燥の前に、
NOx除去後の乾燥した処理換気ガスで脱湿剤を通気乾
燥するので、脱湿剤の加熱乾燥に要する熱量を、NOx
吸着処理の前に吸湿処理を行なわない場合に比べて、大
幅に(実際には1/4に)減少させることができる。
To regenerate the absorbed dehumidifying agent, before heating and drying,
Since the dehumidifying agent is dried by aeration with the dried treatment ventilation gas after removing NOx, the heat quantity required for heating and drying the dehumidifying agent is
It can be significantly (actually 1/4) reduced as compared with the case where the moisture absorption treatment is not performed before the adsorption treatment.

したがってこの発明の方法によれば、高価な物質である
ゼオライト系吸着剤がNOx吸着性能の低下をきたすの
を確実に防止して、低エネルギーコストで効率よく換気
ガスの浄化を行なうことができる。
Therefore, according to the method of the present invention, it is possible to reliably prevent the expensive zeolite-based adsorbent from deteriorating the NOx adsorption performance, and to efficiently purify the ventilation gas at a low energy cost.

また脱湿剤としてはシリカゲル系のものを用いるので、
シリカゲルによって換気ガス中の湿分が吸着除去される
のみならず、共存する各種ハイドロカーボン蒸気、オイ
ルミスト、煤塵等も吸着除去される。したがってこれら
共存物が後流側のNOx除去設備に蓄積するおそれがな
くなるため、上記蓄積物の除去のためにNOx吸着剤を
250℃以上もの高温で加熱する必要がなくなり、高価
なゼオライト系吸着剤のシンタリングによる性能低下を
避けることができる。
Since a silica gel-based dehumidifying agent is used,
Silica gel not only adsorbs and removes the moisture in the ventilation gas, but also adsorbs and removes various coexisting hydrocarbon vapors, oil mist, and soot. Therefore, since these coexisting substances do not accumulate in the NOx removal equipment on the downstream side, it is not necessary to heat the NOx adsorbent at a temperature as high as 250 ° C. or higher to remove the accumulated substances, and an expensive zeolite adsorbent is used. It is possible to avoid the performance deterioration due to the sintering of.

また、NOx吸着処理の前の吸湿工程において、シリカ
ゲル系脱湿剤を保持した移動ブロック列を、換気ガスを
流す吸湿ゾーンに向流方向に断続的に移動させるので、
換気ガスの湿分を、移動ブロック列に保持された乾燥状
態のシリカゲル系脱湿剤に、露点まで吸着させることが
できる。こうして換気ガスの吸湿処理を効果的に行うこ
とができる。
Further, in the hygroscopic step before the NOx adsorption treatment, the moving block row holding the silica gel dehumidifying agent is intermittently moved in the countercurrent direction to the hygroscopic zone in which the ventilation gas flows,
The moisture of the ventilation gas can be adsorbed up to the dew point by the dry silica gel-based dehumidifying agent held in the moving block row. Thus, the hygroscopic treatment of the ventilation gas can be effectively performed.

吸湿ゾーンの出口端に達したブロックを順次、NOx除
去後の乾燥した処理換気ガスを流す予熱・冷却ゾーンへ
送ってその入口端からやはり向流方向に断続的に移動さ
せるので、乾燥した処理換気ガスを、予熱・冷却ゾーン
の出口端側では加熱により再生された脱湿剤の冷却用
に、また入口端側では吸湿した未再生脱湿剤の予熱用に
それぞれ使用することができる。こうして脱湿剤を効果
的に通気乾燥することができる。
The blocks reaching the outlet end of the moisture absorption zone are sequentially sent to the preheating / cooling zone in which the dried process ventilation gas after NOx removal is made to flow and are also intermittently moved in the countercurrent direction from the inlet end, so dry process ventilation The gas can be used for cooling the dehumidifying agent regenerated by heating at the outlet end side of the preheating / cooling zone, and for preheating the absorbed unregenerated dehumidifying agent at the inlet end side. Thus, the dehumidifying agent can be effectively dried by aeration.

さらに移動ブロックを予熱・冷却ゾーンの中間部から抜
き出して加熱ゾーンヘ送し、ここで脱湿剤を加熱するの
で、脱湿剤を高温空気によって加熱し完全に乾燥するこ
とができ、再生使用することができる。
Furthermore, the moving block is extracted from the middle part of the preheating / cooling zone and sent to the heating zone, where the dehumidifying agent is heated, so the dehumidifying agent can be heated by hot air and completely dried, and can be reused. You can

脱湿剤の乾燥に必要な処理換気ガスの熱量は、吸湿ゾー
ンおよびNOx吸着ゾーンにおける湿分の吸着熱によっ
て、ならびに加熱後の脱湿剤の冷却によって、充分補わ
れる。
The heat quantity of the processing ventilation gas required for drying the dehumidifying agent is sufficiently supplemented by the heat of adsorption of moisture in the moisture absorption zone and the NOx adsorption zone and by cooling the dehumidifying agent after heating.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すフローシート、第2図
は水分濃度とNOx平衡吸着量の関係を示すグラフ、第
3図は関係温度と平衡吸着量の関係を示すグラフ、第4
図はテストピースの斜視図、第5図はテストピースを入
れた角型ダクトの斜視図、第6図および第7図はいずれ
も床長さと水分分圧の関係を示すグラフである。 (1) ……逆路トンネル、(3) ……吸湿設備、(4) ……吸
湿部、(5) ……予熱・冷却部、(6) ……加熱部、(7) …
…移動ブロック、(8) ……NOx除去設備、(9) ……N
Ox吸着部、(10)……予熱・冷却部、(11)……吸着剤再
生部、(14)……移動ブロック。
FIG. 1 is a flow sheet showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between water concentration and NOx equilibrium adsorption amount, FIG. 3 is a graph showing the relationship between relational temperature and equilibrium adsorption amount, and FIG.
The figure is a perspective view of the test piece, FIG. 5 is a perspective view of a rectangular duct containing the test piece, and FIGS. 6 and 7 are graphs showing the relationship between the floor length and the water partial pressure. (1) …… Reverse path tunnel, (3) …… Moisture absorption equipment, (4) …… Moisture absorption part, (5) …… Preheating / cooling part, (6) …… Heating part, (7)…
… Movement block, (8) …… NOx removal equipment, (9) …… N
Ox adsorber, (10) ... preheating / cooling unit, (11) ... adsorbent regeneration unit, (14) ... moving block.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鬼塚 重則 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (56)参考文献 特開 昭47−14071(JP,A) 特開 昭49−44969(JP,A) 特開 昭50−10282(JP,A) 特開 昭53−28944(JP,A) 特公 昭53−17114(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigenori Onizuka 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (56) References JP-A-47-14071 (JP, A) JP-A-SHO 49-44969 (JP, A) JP-A-50-10282 (JP, A) JP-A-53-28944 (JP, A) JP-B-53-17114 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】道路トンネルから出たNOx濃度5ppm
以下の換気ガスをゼオライト系吸着剤で乾式処理してN
Oxを吸着除去するに当り、 NOx吸着処理の前の吸湿工程において、シリカゲル系
脱湿剤を保持した移動ブロック列を、換気ガスを流す吸
湿ゾーンに向流方向に断続的に移動させて換気ガスを吸
湿処理し、吸湿ゾーンの出口端に達したブロックを順
次、NOx除去後の乾燥した処理換気ガスを流す予熱・
冷却ゾーンへ送ってその入口端からやはり向流方向に断
続的に移動させて通気乾燥し、さらに移動ブロックを予
熱・冷却ゾーンの中間部から抜き出して加熱ゾーンへ送
り、ここで脱湿剤を加熱乾燥した後、再生ブロックを再
び予熱・冷却ゾーンのブロック列の元の位置に挿入し、
予熱・冷却ゾーンの出口端から吸湿ゾーンの入口端に戻
すことを特徴とする、道路トンネルにおける換気ガスの
浄化方法。
1. The concentration of NOx emitted from a road tunnel is 5 ppm.
The following ventilation gases are dry treated with a zeolite-based adsorbent to produce N
In adsorbing and removing Ox, in the hygroscopic process before the NOx adsorbing process, the moving block row holding the silica gel dehumidifying agent is intermittently moved in the countercurrent direction to the hygroscopic zone through which the ventilation gas flows and the ventilation gas is discharged. Preheats the blocks that reach the outlet end of the moisture absorption zone by sequentially adsorbing dry treated ventilation gas after removing NOx.
It is sent to the cooling zone and intermittently moved in the countercurrent direction from its inlet end to be dried by aeration, and the moving block is extracted from the middle part of the preheating / cooling zone and sent to the heating zone where the dehumidifying agent is heated. After drying, insert the regeneration block back into the pre-heating / cooling zone at the original position of the block row,
A method for purifying ventilation gas in a road tunnel, which comprises returning from the exit end of the preheating / cooling zone to the entrance end of the moisture absorption zone.
【請求項2】特許請求の範囲第1項の記載において、N
Oxを吸着した吸着剤を、NHを含む高温空気で処理
して再生させる方法。
2. In the description of claim 1, N
A method of treating an adsorbent that has adsorbed Ox with high-temperature air containing NH 3 to regenerate it.
JP62313778A 1987-12-10 1987-12-10 Ventilation gas purification method in road tunnel Expired - Fee Related JPH0616814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313778A JPH0616814B2 (en) 1987-12-10 1987-12-10 Ventilation gas purification method in road tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313778A JPH0616814B2 (en) 1987-12-10 1987-12-10 Ventilation gas purification method in road tunnel

Publications (2)

Publication Number Publication Date
JPH01155934A JPH01155934A (en) 1989-06-19
JPH0616814B2 true JPH0616814B2 (en) 1994-03-09

Family

ID=18045411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313778A Expired - Fee Related JPH0616814B2 (en) 1987-12-10 1987-12-10 Ventilation gas purification method in road tunnel

Country Status (1)

Country Link
JP (1) JPH0616814B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044237A1 (en) * 1997-03-28 1998-10-08 Vanco Dimitrov System for absorption of the exhaust gases in a tunnel for road traffic
EP1186764A3 (en) 2000-09-07 2003-11-12 Nissan Motor Co., Ltd. Engine exhaust gas purification device
JP3636116B2 (en) 2001-03-21 2005-04-06 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3632614B2 (en) 2001-05-11 2005-03-23 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2006305497A (en) * 2005-04-28 2006-11-09 Seibu Giken Co Ltd Adsorption type dehumidifier
JP4607667B2 (en) * 2005-05-31 2011-01-05 株式会社西部技研 Adsorption dehumidifier
WO2007004426A1 (en) * 2005-07-04 2007-01-11 Mitsubishi Electric Corporation Apparatus for volatile organic compound treatment and method of volatile organic compound treatment
JP2007229580A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Method for exchanging absorbent in harmful gas removing device
JP2008190364A (en) 2007-02-01 2008-08-21 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP5414016B2 (en) * 2007-12-25 2014-02-12 独立行政法人産業技術総合研究所 Gas processing equipment
JP2009291685A (en) * 2008-06-03 2009-12-17 Ihi Corp Device and method for recovering volatile organic compound
DE102012022941B4 (en) * 2012-11-24 2024-05-29 Daimler Truck AG Exhaust aftertreatment system for an internal combustion engine, method for operating an exhaust aftertreatment system and motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944969A (en) * 1972-09-05 1974-04-27
JPS5618246B2 (en) * 1973-06-01 1981-04-27
JPS5317114A (en) * 1976-07-26 1978-02-16 Tsugio Tanazawa Outer blade for reaper
JPS5328944A (en) * 1976-08-27 1978-03-17 Matsushita Electric Ind Co Ltd Apparatus of cleaning air for tunnels

Also Published As

Publication number Publication date
JPH01155934A (en) 1989-06-19

Similar Documents

Publication Publication Date Title
US5158582A (en) Method of removing NOx by adsorption, NOx adsorbent and apparatus for purifying NOx-containing gas
JP2557307B2 (en) NOx adsorption removal method
CA2130718C (en) Nox adsorption and removal apparatus
JPH0616814B2 (en) Ventilation gas purification method in road tunnel
KR20110132234A (en) Desiccant air conditioner
JPH05192535A (en) Method and apparatus for purifying exhaust gas
GB2267047A (en) Purifying NOx-containing gas
JPH03258324A (en) Device for cleaning ventilating gas of road tunnel or the like
US4367204A (en) Process for the recirculation of nitrogen oxides
JPH0616813B2 (en) Ventilation gas purification method in road tunnel
RU2274485C2 (en) Method of cleaning air to remove carbon monoxide and filter module for removing carbon monoxide from air
JP3197072B2 (en) Regeneration method of ammonia adsorbent
JPH0226616A (en) Device for purifying ventilation gas for road tunnel
JP2743044B2 (en) Simultaneous adsorption removal agent for low concentration NOx and SOx, and method for simultaneous removal of these
JP3014725B2 (en) Exhaust gas purification method and apparatus
JPH05337333A (en) Simultaneous removal of low-concentration nox and sox
DE58904299D1 (en) METHOD AND SYSTEM FOR THE DRY CLEANING OF EXHAUST GASES CONTAINING POLLUTANTS.
JP4014393B2 (en) Dehumidifier
JPH05277324A (en) Method for regenerating nitrogen oxides adsorbent
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JPH05123525A (en) Gas purifying method and apparatus therefor
JPH05253445A (en) Method for adsorption removing low concentration nitrogen oxide
JP3342153B2 (en) Temperature swing type ammonia recovery device
JPH0866619A (en) Treatment of gas containing low concentration nitrogen oxide
JP3531187B2 (en) Deodorizing device and deodorizing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees