JP4014393B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP4014393B2
JP4014393B2 JP2001345893A JP2001345893A JP4014393B2 JP 4014393 B2 JP4014393 B2 JP 4014393B2 JP 2001345893 A JP2001345893 A JP 2001345893A JP 2001345893 A JP2001345893 A JP 2001345893A JP 4014393 B2 JP4014393 B2 JP 4014393B2
Authority
JP
Japan
Prior art keywords
dehumidifying
adsorbent layer
regeneration
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345893A
Other languages
Japanese (ja)
Other versions
JP2003144832A (en
Inventor
崇 吉田
彰久 永廣
直人 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2001345893A priority Critical patent/JP4014393B2/en
Publication of JP2003144832A publication Critical patent/JP2003144832A/en
Application granted granted Critical
Publication of JP4014393B2 publication Critical patent/JP4014393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着式の除湿装置に関し、詳しくは、空気を除湿用吸着剤層への通風により除湿し、この空気除湿に用いた前記除湿用吸着剤層を、その除湿用吸着剤層への再生用高温気体の通風により再生処理して再び前記空気除湿に使用する構成にしてある除湿装置に関する。
【0002】
【従来の技術】
この種の除湿装置において再生用の熱源装置にバーナを用いる場合、そのバーナの燃焼ガスを再生用高温気体として除湿用吸着剤層に対し直接に通風すると、バーナへの供給燃料に含まれる付臭成分等の不純成分の酸化物(特に硫黄酸化物)により除湿用吸着剤層の劣化を招くとともに、除湿用吸着剤層周りの種々の装置構成品の劣化も招くことから、従来は、バーナの燃焼ガスを熱源として熱交換器で高温空気や蒸気を生成し、これら高温空気や蒸気を再生用高温気体として除湿用吸着剤層に通風するようにしていた。
【0003】
【発明が解決しようとする課題】
しかし、上記の従来装置では、燃焼ガスを熱源として高温空気や蒸気を加熱生成する熱交換器での熱交換に伴う熱ロスや、その熱交換器の熱容量による熱ロスのために、必要な再生用熱量を得るのに要する燃焼量が大きくなって、装置の運転費が嵩む問題があり、また、その熱交換器の装備のために装置が大型化するとともに装置コストも高く付く問題があった。
【0004】
この実情に鑑み、本発明の主たる課題は、再生用の熱源装置にバーナを用いることにおいて、吸着剤層等の劣化を防止しながら上記問題を効果的に解消する点にある。
【0005】
【課題を解決するための手段】
〔1〕請求項1に係る発明は除湿装置に係り、その特徴は、
空気を除湿用吸着剤層への通風により除湿し、この空気除湿に用いた前記除湿用吸着剤層を、その除湿用吸着剤層への再生用高温気体の通風により再生処理して再び前記空気除湿に使用する構成にしてある除湿装置であって、
前記除湿用吸着剤層を配した吸着ロータの回転経路に、前記空気の除湿を行う処理域と前記除湿用吸着剤層の再生処理を行う再生域とをロータ回転方向に並べて配置し、
前記再生域では、前記再生用高温気体としてバーナの燃焼ガスを前記除湿用吸着剤層に通風する構成にし、
前記燃焼ガスを前記再生域に導く燃焼ガス路には、ダンパ開度の調整により再生域に対して前記処理域を陽圧に保つ再生側ダンパを介装するとともに、前記バーナへの供給燃料から前記除湿用吸着剤層の劣化原因となる不純成分を除去する燃料純化手段を設けてある点にある。
【0006】
つまり、この構成では、空気を除湿用吸着剤層への通風により除湿し、この空気除湿に用いた除湿用吸着剤層を、その除湿用吸着剤層への再生用高温気体の通風により再生処理して再び空気除湿に使用する構成にするのに、除湿用吸着剤層を配した吸着ロータの回転経路に、前記空気の除湿を行う処理域と前記除湿用吸着剤層の再生処理を行う再生域とをロータ回転方向に並べて配置する構成を採り、また、再生域では、再生用高温気体としてバーナの燃焼ガスを除湿用吸着剤層に通風する構成を採るが、この構成において、上記の如く再生域に対して処理域を陽圧に保つ構成にすることから、再生域から処理域への気体漏洩(すなわち、再生用高温気体としてのバーナ燃焼ガスの再生域から処理域への漏洩)を防止することができる。
また、除湿用吸着剤層の劣化原因となる不純成分を上記燃料純化手段により除去した燃料をバーナへ供給して燃焼させるから、その燃焼ガスは除湿用吸着剤層を劣化させる不純成分酸化物の濃度が効果的に低減されたものになり、これにより、燃焼ガスを再生用高温気体として除湿用吸着剤層に直接に通風する構成を採りながらも、その除湿用吸着剤層の劣化を効果的に防止することができ、また、除湿用吸着剤層周りの種々の装置構成品(例えば、後述の実施形態における除湿用吸着剤層以外のロータ素材やハニカム素材などのロータ構成品)の劣化も合わせ効果的に防止することができる。
【0007】
そして、このように除湿用吸着剤層等の劣化防止を図りながらバーナの燃焼ガスを再生用高温気体として除湿用吸着剤層に対し直接に通風する構成を採ることにより、先述の従来装置の如き燃焼ガス熱源の熱交換器(再生用高温気体として用いる高温空気や蒸気を加熱生成する燃焼ガス熱源の熱交換器)を不要にすることができて、その熱交換器での熱交換に伴う熱ロスや、その熱交換器の熱容量による熱ロスを回避した状態でバーナの発生熱量を効率的に再生処理に使用でき、これにより、従来装置に比べ、必要な再生用熱量を得るのに要する燃焼量を効果的に低減することができて装置の運転費を安価にすることができる。
【0008】
また、燃焼ガス熱源の熱交換器が不要になることで、従来装置に比べ装置を小型化し得るとともに装置コストも安価にすることができる。
【0009】
なお、請求項1に係る発明の実施において、バーナへの供給燃料はガス燃料、液体燃料、固体燃料のいずれであってもよい。
【0010】
また、燃料純化手段は、燃料に含まれる不純成分を吸着や吸収により除去する方式、あるいはまた、不純成分を化学的に別物質化ないし改質して除去する方式など、どのような除去方式のものであってもよく、使用燃料種や除去対象の不純成分に応じて適当な除去方式を選択すればよい。
【0011】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
ガス燃料の付臭成分を吸着により除去する通気性の燃料用吸着剤層を前記燃料純化手段として前記バーナへのガス燃料供給路に介装してある点にある。
【0012】
つまり、ガス燃料の付臭成分は除湿用吸着剤層の劣化原因となるもの(例えば、メルカプタン類やサルファイド類)が多いのに対し、請求項2に係る発明の上記構成では、ガス燃料をバーナへの給送過程において燃料用吸着剤層に通風することでそのガス燃料中の付臭成分を除去し、これにより、再生用高温気体として除湿用吸着剤層に通風する燃焼ガスにおける付臭成分酸化物の濃度を低減して、除湿用吸着剤層の劣化を防止し、また、除湿用吸着剤層周りの種々の装置構成品の劣化も合わせ防止する。
【0013】
したがって、請求項2に係る発明によれば、ガス会社が販売する都市ガス(天然ガスを含む)やプロパンガスなどの付臭ガス燃料を用いる場合に適した装置にすることができる。
【0014】
なお、請求項2に係る発明の実施において、燃料用吸着剤層は充填層構造のものや網構造のもの、あるいはハニカム構造のものなど、どのような構造のものであってもよい。
【0015】
また、燃料用吸着剤層を構成する吸着剤には、活性炭、シリカゲル、ゼオライトあるいは各種触媒など、ガス燃料の付臭成分を吸着し得るものであれば、種々のものを使用でき、ガス燃料種や除去対象の付臭成分に応じて適当な吸着剤を選択すればよい。
【0016】
【発明の実施の形態】
図1において、1は空気中水分の存在を嫌う物品(例えば電子部品、薬剤、フィルム等)の製造作業を行なう低湿化対象域としてのドライルームであり、このドライルーム1へは、吸着ロータ使用の除湿装置2により生成した極低湿の空気SA(例えば、露点温度−35℃の空気)を供給し、この低湿空気SAの供給によりドライルーム1を所要の低湿雰囲気に維持する。
【0017】
除湿装置2の吸着ロータ3は、シリカゲル、ゼオライト、活性炭などの吸着剤を用いたハニカム構造の通気性の除湿用吸着剤層Xをロータ構成材としてロータ回転方向に連続的に配置したものであり、本実施形態では図2に示す如く、ロータ回転軸芯Pの方向に気体通過させる円盤状の吸着ロータ3を用いている。
【0018】
また、吸着ロータ3の回転経路は、ロータ回転方向において予処理域4、再生域5、パージ域6、主処理域7の四域に区画してあり、これら四域4〜7を上記の記載順にロータ回転方向に並べた配置にすることで、吸着ロータ3の回転に伴い、ロータ各部を予処理域4、再生域5、パージ域6、主処理域7の順に移行させる。
【0019】
8は外部から外気OAを導入する外気導入路であり、この外気導入路8には、導入外気OA(例えば、乾球温度34℃,絶対湿度22.1g/kgDAの空気)を浄化するフィルタ9A、及び、そのフィルタ9Aにより浄化した外気OAを予冷するプレクーラ9Bを装備してある。9Cはプレクーラ9Bに装備のエリミネータである。
【0020】
そして、前記予処理域4では、これらフィルタ9A及びプレクーラ9Bにより浄化・予冷処理した導入外気OAを処理対象空気として域内通過過程にあるロータ部分の除湿用吸着剤層Xに通風することで、その外気OAを除湿用吸着剤層Xによる水分吸着により除湿(予除湿)する。
【0021】
また、前記主処理域7では、域間導風路10を通じて予処理域4から導かれる予除湿後の外気OA′を域内通過過程にあるロータ部分の除湿用吸着剤層X(すなわち、予処理域4での使用前の吸着能力が高い吸着剤層)に対し、予処理域4での外気OAの通風向きとは逆向きに通風することで、その予除湿後の外気OA′を同じく除湿用吸着剤層Xによる水分吸着により所要湿度までさらに除湿(主除湿)し、この主除湿後の外気OA″をアフタークーラ11により冷却した上で生成低湿空気SAとして給気路12を通じてドライルーム1に供給する。
【0022】
一方、13はフィルタ13Aを通じて外気OAを導入する再生側の外気導入路、14は再生側外気導入路13からの導入外気OAを燃焼用空気としてガス燃料Gを燃焼させる再生用バーナであり、前記再生域5では、この再生用バーナ14で生成される燃焼ガスHAを再生用高温気体として域内通過過程にあるロータ部分の除湿用吸着剤層X(すなわち、主除湿及び予除湿に用いた後の吸着剤層)に対し、予処理域4での外気OAの通風向きとは逆向きに通風することで、主処理域7及び予処理域4での吸着水分を除湿用吸着剤層Xから脱着させて、その除湿用吸着剤層Xを再生する。
【0023】
また、パージ域6では、前記域間導風路10からパージ用分流路16へ分流した一部の予除湿後外気OA′をパージ用気体PAとして域内通過過程にあるロータ部分の除湿用吸着剤層Xに対し、主処理域7での外気OA′の通風向きと同じ向きに通風することで、その除湿用吸着剤層X中に残る燃焼ガスHAの掃気(パージ)、及び、除湿用吸着剤層Xの冷却を行ない、このパージ域6での掃気・冷却処理を経て、再生域5での再生後の除湿用吸着剤層Xをロータ3の回転に伴い主処理域7及びそれに続く予処理域4へ再び移行させる。
【0024】
再生用バーナ14への燃料供給路14aには、燃料純化手段として、再生用バーナ14へ供給するガス燃料Gの付臭成分を吸着により除去する通気性の燃料用吸着剤層15を介装してあり、この付臭成分除去により、再生用高温気体として除湿用吸着剤層Xに通風する燃焼ガスHA中の付臭成分酸化物(特に硫黄酸化物)の濃度を低減して、その付臭成分酸化物による除湿用吸着剤層Xの劣化並びに除湿用吸着剤層X周りの種々の装置構成品(吸着剤層X以外のロータ素材やハニカム素材)の劣化を防止する。
【0025】
燃料用吸着剤層15は図3に示す如く、通気性の容器15aに粒状や繊維状の吸着剤15b(例えば活性炭、シリカゲル、ゼオライトなど)を充填した充填層構造にしてあり、また、この吸着剤15bを充填した容器15aは燃料供給路14aの途中に設けた収納部14bに対して着脱自在に装着するカートリッジ構造にしてある。
【0026】
17は再生域5から送出される使用済みの燃焼ガスHA′を外部へ排出する排気路、18はこの排気路17から使用済み燃焼ガスHA′の一部を分流して、その分流気体HA″を再生側外気導入路13の導入外気OAに混合する排気側の熱回収用混合路であり、また、19はパージ域6から送出される使用済みのパージ用気体PA′を再生側外気導入路13の導入外気OAに混合するパージ側の熱回収用混合路である。
【0027】
20はパージ用分流路16の分岐箇所よりも上流側で域間導風路10に介装した処理側ファンであり、この処理側ファン20により、外気導入路8を通じての外気OAの導入、予処理域4及び主処理域7の夫々での除湿用吸着剤層Xに対する外気OA,OA′の通風、並びに、パージ域6での除湿用吸着剤層Xに対するパージ用気体PAの通風を行なう。
【0028】
また、21は排気側の熱回収用混合路18の分岐箇所よりも上流側で排気路17に介装した再生側ファンであり、この再生側ファン21により再生域5での除湿用着剤層Xに対する燃焼ガスHAの通風を行なう。
【0029】
22はパージ用分流路16に介装したパージ側ダンパであり、上記の如く処理側ファン20を主処理域7での除湿用吸着剤層Xに対する外気OA′の通風とパージ域6での除湿用吸着剤層Xに対するパージ用気体PAの通風とに兼用することに対し、このパージ側ダンパ22の開度を調整することで主処理域7を隣のパージ域6に対して陽圧に保ち、これにより、除湿性能の低下原因となるパージ域6から主処理域7への気体漏洩を確実に防止する。
【0030】
なお、処理側ファン20を域間導風路10に介装する形式を採ることで、主処理域7は反対隣の予処理域4に対しても陽圧に維持され、これにより、除湿性能の低下原因となる予処理域4から主処理域7への気体漏洩も確実に防止される。
【0031】
23は再生用バーナ14の燃焼ガスHAを再生域5に導く燃焼ガス路24に介装した再生側ダンパであり、上記の如く処理側ファン20を域間導風路10に介装する形式を採ることに対し、この再生側ダンパ23の開度(つまり、ダンパ開度)を調整することで予処理域4を隣の再生域5に対して陽圧に保ち、これにより、やはり除湿性能の低下原因となる再生域5から予処理域4への気体漏洩も確実に防止する。
【0032】
〔別実施形態〕
次に別実施形態を列記する。
【0033】
前述の実施形態では、予処理域4において除湿用吸着剤層Xに100%外気を通風する全外気方式の例を示したが、予処理域4での処理対象空気は100%外気に限られるものでなく、外部からの導入外気OAに対しドライルーム1からの排気空気の一部や主除湿後の空気OA″の一部あるいは予除湿後の空気OA′の一部を混合した空気などを予処理域4において予除湿するようにしてもよい。
【0034】
また、主処理域7での主除湿についても、前述の実施形態の如く予除湿後の空気OA′のみを主処理域7で主除湿するのに代え、予除湿後の空気OA′に対しドライルーム1からの排気空気の一部や主除湿後の空気OA″の一部を混合した空気を主処理域7において主除湿するようにしてもよい。
【0035】
前述の実施形態では除湿対象の空気OAを予処理域4と主処理域7とで2段階に除湿する例を示したが、除湿対象空気OAに対する除湿段数は1段階であってもよく、また、3段階以上であってもよい。
【0036】
除湿用吸着剤層Xを配した吸着ロータ3は、ロータ回転軸芯Pの方向に気体通過させる円盤状のロータに限らず、回転半径方向に気体通過させる円筒状のロータであってもよく、また、帯面に対し直交する方向に気体通過させる無端帯状のロータであってもよい。
【0037】
また、前述の実施形態では、空気OA,OA′の除湿を行なう処理域4,7と再生処理を行なう再生域5とにわたって除湿用吸着剤層Xを交互に移動させる形式の装置を示したが、本発明は固定の除湿用吸着剤層Xに対する通風気を除湿対象空気OAと再生用高温気体としての燃焼ガスHAとに交互に切り換える形式の除湿装置にも適用できる。
【0038】
パージ用気体PAは、予除湿後の空気OA′の一部に限らず、主除湿後の空気OA″の一部やその他の気体など、再生後の除湿用吸着剤層Xに対する掃気・冷却処理を行ない得るものであれば、どのような気体であってもよい。
【0039】
除湿処理した低湿空気の用途はどのようなものであってもよく、本発明による除湿装置は各種分野において種々の用途に使用できる。
【0040】
請求項1に係る発明の実施において、燃料純化手段により除去する燃料中の不純成分は付臭成分に限られるものではなく、除湿用吸着剤層Xの劣化原因となる不純成分であれば、付臭成分以外の成分を除去対象にしてもよい。
【0041】
また、請求項1に係る発明の実施において、再生用高温気体として用いる燃焼ガスを生成するバーナ14の燃料はガス燃料に限られるものではなく、液体燃料や固体燃料であってもよい。
【図面の簡単な説明】
【図1】 装置の全体構成を示す図
【図2】 吸着ロータ部分の斜視図
【図3】 燃料用吸着剤層の構造図
【符号の説明】
吸着ロータ
4,7 処理域
再生域
14 バーナ
14a 燃料供給路
15 燃料純化手段,燃料用吸着剤層
G 燃料
HA 燃焼ガス,再生用高温気体
OA,OA′ 空気
X 除湿用吸着剤層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorption-type dehumidifying device, and more specifically, dehumidifies air by ventilating the dehumidifying adsorbent layer, and applies the dehumidifying adsorbent layer used for the air dehumidification to the dehumidifying adsorbent layer. The present invention relates to a dehumidifying device that is configured to be regenerated by ventilation of a high-temperature gas for regeneration and used again for the air dehumidification.
[0002]
[Prior art]
When a burner is used as a heat source device for regeneration in this type of dehumidifier, if the combustion gas of the burner is directly ventilated as a regeneration high-temperature gas through the dehumidifying adsorbent layer, the odor contained in the fuel supplied to the burner Impurity oxides (especially sulfur oxides) such as components cause deterioration of the dehumidifying adsorbent layer, and also cause deterioration of various equipment components around the dehumidifying adsorbent layer. High-temperature air or steam is generated by a heat exchanger using the combustion gas as a heat source, and these high-temperature air or steam is passed as a regeneration high-temperature gas to the dehumidifying adsorbent layer.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional apparatus, necessary regeneration is caused by heat loss due to heat exchange in a heat exchanger that generates high-temperature air or steam by using combustion gas as a heat source and heat loss due to the heat capacity of the heat exchanger. There is a problem that the amount of combustion required to obtain the amount of heat for use increases and the operating cost of the apparatus increases, and the equipment becomes larger and the apparatus cost increases due to the installation of the heat exchanger. .
[0004]
In view of this situation, the main problem of the present invention is to effectively solve the above problem while preventing the deterioration of the adsorbent layer and the like by using a burner in the heat source device for regeneration.
[0005]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a dehumidifying device, the feature of which is
The air is dehumidified by ventilating the dehumidifying adsorbent layer, and the dehumidifying adsorbent layer used for the air dehumidification is regenerated by ventilating the regeneration high-temperature gas to the dehumidifying adsorbent layer, and the air is reused. A dehumidifying device configured to be used for dehumidification,
In the rotation path of the adsorption rotor on which the dehumidifying adsorbent layer is arranged, a processing area for dehumidifying the air and a regeneration area for regenerating the dehumidifying adsorbent layer are arranged side by side in the rotor rotation direction,
In the regeneration zone, the combustion gas of the burner is vented to the dehumidifying adsorbent layer as the regeneration high-temperature gas,
The combustion gas path that guides the combustion gas to the regeneration zone is provided with a regeneration side damper that maintains the processing zone at a positive pressure with respect to the regeneration zone by adjusting the damper opening, and from the fuel supplied to the burner A fuel purifying means is provided for removing an impure component that causes deterioration of the dehumidifying adsorbent layer.
[0006]
In other words, in this configuration, air is dehumidified by ventilation to the dehumidifying adsorbent layer, and the dehumidifying adsorbent layer used for this air dehumidification is regenerated by ventilating the regeneration high-temperature gas to the dehumidifying adsorbent layer. In order to re-use the air for dehumidification, the regeneration area for dehumidifying the adsorbent layer and the processing area for dehumidifying the air are regenerated on the rotation path of the adsorption rotor provided with the dehumidifying adsorbent layer. In the regeneration zone, the burner combustion gas is passed through the dehumidifying adsorbent layer as the regeneration high-temperature gas. In this configuration, as described above, Since the treatment area is maintained at a positive pressure with respect to the regeneration area, gas leakage from the regeneration area to the treatment area (that is, leakage of burner combustion gas as a regeneration high-temperature gas from the regeneration area to the treatment area) is prevented. Can be prevented.
In addition, since the fuel from which the impure components that cause the deterioration of the dehumidifying adsorbent layer are removed by the fuel purifying means is supplied to the burner and burned, the combustion gas is an impure component oxide that deteriorates the dehumidifying adsorbent layer. Concentration is effectively reduced, which makes it possible to effectively deteriorate the dehumidifying adsorbent layer while adopting a configuration in which the combustion gas is directly passed through the dehumidifying adsorbent layer as a high-temperature gas for regeneration. In addition, various apparatus components around the dehumidifying adsorbent layer (for example, rotor components other than the dehumidifying adsorbent layer in embodiments described later, such as rotor components such as honeycomb materials) may also deteriorate. It can be effectively prevented.
[0007]
In addition, by adopting a configuration in which the combustion gas of the burner is directly ventilated to the dehumidifying adsorbent layer as a regeneration high-temperature gas while preventing the deterioration of the dehumidifying adsorbent layer and the like as in the above-described conventional apparatus. A heat exchanger for a combustion gas heat source (a heat exchanger for a combustion gas heat source that heats and generates high-temperature air or steam used as a high-temperature gas for regeneration) can be eliminated, and the heat associated with the heat exchange in that heat exchanger The amount of heat generated by the burner can be used efficiently for regeneration while avoiding loss and heat loss due to the heat capacity of the heat exchanger, and as a result, combustion required to obtain the necessary amount of heat for regeneration compared to conventional devices The amount can be effectively reduced, and the operating cost of the apparatus can be reduced.
[0008]
Further, since the heat exchanger for the combustion gas heat source is not required, the apparatus can be downsized and the apparatus cost can be reduced as compared with the conventional apparatus.
[0009]
In the embodiment of the invention according to claim 1, the fuel supplied to the burner may be any of gas fuel, liquid fuel, and solid fuel.
[0010]
In addition, the fuel purifying means may be any type of removal method such as a method of removing impure components contained in fuel by adsorption or absorption, or a method of removing impurities by chemically separating or reforming them. Any suitable removal method may be selected according to the type of fuel used and the impurity component to be removed.
[0011]
[2] The invention according to claim 2 specifies a preferred embodiment for carrying out the invention according to claim 1, and its features are as follows:
An air-permeable fuel adsorbent layer that removes odorous components of the gas fuel by adsorption is provided in the gas fuel supply path to the burner as the fuel purification means.
[0012]
In other words, the odorous component of the gas fuel is often a cause of deterioration of the dehumidifying adsorbent layer (for example, mercaptans and sulfides), whereas in the above configuration of the invention according to claim 2, the gas fuel is burned. The odorous component in the gas fuel is removed by ventilating the fuel adsorbent layer in the process of feeding to the fuel, and as a result, the odorous component in the combustion gas ventilated to the dehumidifying adsorbent layer as a high-temperature regeneration gas By reducing the oxide concentration, the dehumidifying adsorbent layer is prevented from deteriorating, and the deterioration of various device components around the dehumidifying adsorbent layer is also prevented.
[0013]
Therefore, according to the invention which concerns on Claim 2, it can be set as the apparatus suitable when using odor gas fuels, such as city gas (a natural gas is included) and propane gas which a gas company sells.
[0014]
In the implementation of the invention according to claim 2, the fuel adsorbent layer may have any structure such as a packed bed structure, a net structure, or a honeycomb structure.
[0015]
In addition, as the adsorbent constituting the fuel adsorbent layer, various substances can be used as long as they can adsorb odorous components of gas fuel, such as activated carbon, silica gel, zeolite or various catalysts. An appropriate adsorbent may be selected according to the odor component to be removed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, reference numeral 1 denotes a dry room as a low humidity target area for manufacturing an article that dislikes the presence of moisture in the air (for example, electronic parts, drugs, films, etc.). The extremely low humidity air SA (for example, air having a dew point temperature of −35 ° C.) generated by the dehumidifying device 2 is supplied, and the dry room 1 is maintained in a required low humidity atmosphere by supplying the low humidity air SA.
[0017]
The adsorption rotor 3 of the dehumidifying device 2 is one in which a honeycomb-structured breathable dehumidifying adsorbent layer X using an adsorbent such as silica gel, zeolite, activated carbon or the like is continuously arranged in the rotor rotation direction as a rotor constituent material. In this embodiment, as shown in FIG. 2, a disk-like adsorption rotor 3 that allows gas to pass in the direction of the rotor rotation axis P is used.
[0018]
Further, the rotation path of the adsorption rotor 3 is divided into four regions of a pretreatment region 4, a regeneration region 5, a purge region 6, and a main treatment region 7 in the rotor rotation direction, and these four regions 4 to 7 are described above. By arranging them in order in the rotor rotation direction, each part of the rotor is shifted in the order of the preprocessing area 4, the regeneration area 5, the purge area 6, and the main processing area 7 as the suction rotor 3 rotates.
[0019]
Reference numeral 8 denotes an outside air introduction path for introducing outside air OA from the outside. The outside air introduction path 8 has a filter 9A for purifying the introduced outside air OA (for example, air having a dry bulb temperature of 34 ° C. and an absolute humidity of 22.1 g / kgDA). And a precooler 9B for precooling the outside air OA purified by the filter 9A. 9C is an eliminator equipped on the precooler 9B.
[0020]
In the pretreatment area 4, the introduced outside air OA purified and precooled by the filter 9A and the precooler 9B is passed through the dehumidifying adsorbent layer X of the rotor part in the area passage process as air to be treated. The outside air OA is dehumidified (pre-dehumidified) by moisture adsorption by the dehumidifying adsorbent layer X.
[0021]
Further, in the main processing area 7, the dehumidifying adsorbent layer X (that is, the preprocessing) of the rotor portion in the process of passing the pre-dehumidified outside air OA ′ guided from the preprocessing area 4 through the inter-area air duct 10. The adsorbent layer having a high adsorption capacity before use in the area 4 is ventilated in the direction opposite to the direction of the outside air OA in the pretreatment area 4 so that the outside air OA ′ after the prehumidification is similarly dehumidified. The moisture is adsorbed by the adsorbent layer X for further dehumidification to the required humidity (main dehumidification), and the outside air OA ″ after the main dehumidification is cooled by the aftercooler 11 and then generated as the low-humidity air SA through the air supply path 12 in the dry room 1 To supply.
[0022]
On the other hand, 13 is a regeneration-side outside air introduction path for introducing outside air OA through the filter 13A, and 14 is a regeneration burner for burning the gaseous fuel G using the introduced outside air OA from the regeneration-side outside air introduction path 13 as combustion air, In the regeneration zone 5, the combustion gas HA produced by the regeneration burner 14 is used as a regeneration high-temperature gas, and the dehumidifying adsorbent layer X in the rotor portion in the process of passing through the zone (that is, after being used for main dehumidification and pre-dehumidification) The adsorbed water in the main processing area 7 and the preprocessing area 4 is desorbed from the dehumidifying adsorbent layer X by ventilating the adsorbent layer) in the direction opposite to the direction of the outside air OA in the preprocessing area 4. Then, the dehumidifying adsorbent layer X is regenerated.
[0023]
Further, in the purge zone 6, the dehumidifying adsorbent for the rotor portion that is in the process of passing through the zone using a part of the pre-dehumidified outside air OA ′ branched from the inter-zone air duct 10 to the purge branch channel 16 as the purge gas PA. By scavenging the layer X in the same direction as that of the outside air OA ′ in the main processing area 7, the scavenging (purge) of the combustion gas HA remaining in the dehumidifying adsorbent layer X and the dehumidifying adsorption The agent layer X is cooled, and after the scavenging / cooling process in the purge region 6, the dehumidifying adsorbent layer X after the regeneration in the regeneration region 5 is moved to the main treatment region 7 and the subsequent pretreatment region as the rotor 3 rotates. Shift to the processing area 4 again.
[0024]
The fuel supply passage 14a to the regeneration burner 14 is provided with a breathable fuel adsorbent layer 15 that removes odorous components of the gas fuel G supplied to the regeneration burner 14 by adsorption as fuel purification means. By removing this odorous component, the concentration of the odorous component oxide (especially sulfur oxide) in the combustion gas HA flowing through the dehumidifying adsorbent layer X as a high-temperature gas for regeneration is reduced, and the odor The deterioration of the dehumidifying adsorbent layer X due to the component oxides and the deterioration of various device components around the dehumidifying adsorbent layer X (rotor material and honeycomb material other than the adsorbent layer X) are prevented.
[0025]
As shown in FIG. 3, the fuel adsorbent layer 15 has a packed bed structure in which a gas-permeable container 15a is filled with a granular or fibrous adsorbent 15b (for example, activated carbon, silica gel, zeolite, etc.). The container 15a filled with the agent 15b has a cartridge structure that is detachably attached to a storage portion 14b provided in the middle of the fuel supply path 14a.
[0026]
Reference numeral 17 denotes an exhaust passage for discharging the used combustion gas HA ′ sent from the regeneration zone 5 to the outside. Reference numeral 18 denotes a part of the used combustion gas HA ′ from the exhaust passage 17, and the divided gas HA ″. Is an exhaust-side heat recovery mixing path that mixes with the introduced outside air OA of the regeneration-side outside air introduction path 13, and 19 is a regeneration-side outside air introduction path for the used purge gas PA ′ delivered from the purge zone 6. 13 is a purge-side heat recovery mixing path for mixing with the 13 introduced outside air OA.
[0027]
Reference numeral 20 denotes a processing-side fan interposed in the inter-area air guide passage 10 upstream from the branching point of the purge branching passage 16. The processing-side fan 20 introduces and preliminarily introduces the outside air OA through the outside air introduction passage 8. Ventilation of the outside air OA and OA ′ to the dehumidifying adsorbent layer X in each of the processing area 4 and the main processing area 7 and ventilation of the purge gas PA to the dehumidifying adsorbent layer X in the purge area 6 are performed.
[0028]
Reference numeral 21 denotes a regeneration-side fan interposed in the exhaust passage 17 upstream from the branching point of the exhaust-side heat recovery mixing passage 18, and the dehumidifying adsorbent layer in the regeneration region 5 by the regeneration-side fan 21. Ventilate the combustion gas HA to X.
[0029]
Reference numeral 22 denotes a purge-side damper interposed in the purge branch flow path 16. As described above, the process-side fan 20 is passed through the dehumidifying adsorbent layer X in the main processing area 7 by the outside air OA ′ and dehumidified in the purge area 6. The main processing area 7 is kept at a positive pressure with respect to the adjacent purge area 6 by adjusting the opening degree of the purge side damper 22 in contrast to the ventilation of the purge gas PA to the adsorbent layer X. This reliably prevents gas leakage from the purge area 6 to the main processing area 7 which causes a decrease in dehumidification performance.
[0030]
In addition, the main process area 7 is maintained at a positive pressure with respect to the opposite pre-process area 4 by adopting a format in which the process-side fan 20 is interposed in the inter-area air guide path 10. Gas leakage from the pre-processing area 4 to the main processing area 7 that causes a decrease in the temperature is reliably prevented.
[0031]
Reference numeral 23 denotes a regeneration side damper that is interposed in a combustion gas passage 24 that guides the combustion gas HA of the regeneration burner 14 to the regeneration zone 5, and has a type in which the processing side fan 20 is interposed in the inter-zone air duct 10 as described above. On the other hand, by adjusting the opening of the regeneration-side damper 23 (that is, the damper opening) , the pretreatment area 4 is kept at a positive pressure with respect to the adjacent regeneration area 5, so that the dehumidifying performance can be maintained. Gas leakage from the regeneration zone 5 to the pretreatment zone 4 that causes a decrease is also reliably prevented.
[0032]
[Another embodiment]
Next, another embodiment will be listed.
[0033]
In the above-described embodiment, an example of the all-outside air method in which 100% outside air is passed through the dehumidifying adsorbent layer X in the preprocessing area 4 is shown, but the processing target air in the preprocessing area 4 is limited to 100% outside air. Air that is mixed with a part of the exhaust air from the dry room 1, a part of the air OA ″ after the main dehumidification, or a part of the air OA ′ after the pre-dehumidification is mixed with the outside air OA introduced from the outside. Pre-dehumidification may be performed in the pre-processing area 4.
[0034]
As for the main dehumidification in the main treatment area 7, only the air OA ′ after the pre-dehumidification is replaced with the main dehumidification in the main treatment area 7 as in the above-described embodiment, and the air is removed from the air OA ′ after the pre-dehumidification. You may make it main dehumidify in the main process area 7 the air which mixed a part of exhaust air from the room 1, and a part of air OA "after the main dehumidification.
[0035]
In the above-described embodiment, the example in which the air OA to be dehumidified is dehumidified in two stages in the pre-processing area 4 and the main processing area 7 has been described, but the number of dehumidifying stages for the dehumidifying target air OA may be one stage, There may be three or more stages.
[0036]
The adsorption rotor 3 provided with the dehumidifying adsorbent layer X is not limited to a disk-shaped rotor that allows gas to pass in the direction of the rotor rotation axis P, but may be a cylindrical rotor that allows gas to pass in the rotational radius direction. Moreover, an endless belt-like rotor that allows gas to pass in a direction orthogonal to the belt surface may be used.
[0037]
In the above-described embodiment, the dehumidifying adsorbent layer X is alternately moved over the processing areas 4 and 7 for dehumidifying the air OA and OA ′ and the regeneration area 5 for performing the regeneration process. The present invention can also be applied to a dehumidifier of a type in which the ventilation air to the fixed dehumidifying adsorbent layer X is alternately switched between the dehumidification target air OA and the combustion gas HA as a high-temperature regeneration gas.
[0038]
The purge gas PA is not limited to a part of the pre-dehumidified air OA ′, but a part of the air OA ″ after the main dehumidification and other gases, such as a scavenging / cooling process for the dehumidifying adsorbent layer X after the regeneration. Any gas may be used as long as it can be performed.
[0039]
The use of the dehumidified low-humidity air may be any, and the dehumidifying device according to the present invention can be used for various applications in various fields.
[0040]
In the implementation of the invention according to claim 1, the impure component in the fuel removed by the fuel purifying means is not limited to the odorous component, but if it is an impure component that causes deterioration of the dehumidifying adsorbent layer X, it is attached. Components other than odor components may be targeted for removal.
[0041]
In the implementation of the invention according to claim 1, the fuel of the burner 14 that generates the combustion gas used as the regeneration high-temperature gas is not limited to the gas fuel, and may be a liquid fuel or a solid fuel.
[Brief description of the drawings]
FIG. 1 is a diagram showing the overall configuration of the apparatus. FIG. 2 is a perspective view of an adsorption rotor portion. FIG. 3 is a structural diagram of a fuel adsorbent layer.
3 adsorption rotor
4,7 treatment area
5 regeneration zone 14 burner 14a fuel supply path 15 fuel purification means, fuel adsorbent layer G fuel HA combustion gas, regeneration high temperature gas OA, OA 'air X adsorbent layer for dehumidification

Claims (2)

空気を除湿用吸着剤層への通風により除湿し、この空気除湿に用いた前記除湿用吸着剤層を、その除湿用吸着剤層への再生用高温気体の通風により再生処理して再び前記空気除湿に使用する構成にしてある除湿装置であって、
前記除湿用吸着剤層を配した吸着ロータの回転経路に、前記空気の除湿を行う処理域と前記除湿用吸着剤層の再生処理を行う再生域とをロータ回転方向に並べて配置し、
前記再生域では、前記再生用高温気体としてバーナの燃焼ガスを前記除湿用吸着剤層に通風する構成にし、
前記燃焼ガスを前記再生域に導く燃焼ガス路には、ダンパ開度の調整により再生域に対して前記処理域を陽圧に保つ再生側ダンパを介装するとともに、前記バーナへの供給燃料から前記除湿用吸着剤層の劣化原因となる不純成分を除去する燃料純化手段を設けてある除湿装置。
The air is dehumidified by ventilating the dehumidifying adsorbent layer, and the dehumidifying adsorbent layer used for the air dehumidification is regenerated by ventilating the regeneration high-temperature gas to the dehumidifying adsorbent layer, and then the air is reused. A dehumidifying device configured to be used for dehumidification,
In the rotation path of the adsorption rotor on which the dehumidifying adsorbent layer is arranged, a processing area for dehumidifying the air and a regeneration area for regenerating the dehumidifying adsorbent layer are arranged side by side in the rotor rotation direction,
In the regeneration region, the combustion gas of the burner is vented to the dehumidifying adsorbent layer as the regeneration high-temperature gas,
The combustion gas path for guiding the combustion gas to the regeneration zone is provided with a regeneration-side damper that maintains the processing zone at a positive pressure with respect to the regeneration zone by adjusting the damper opening, and from the fuel supplied to the burner. A dehumidifying device provided with a fuel purifying means for removing impure components that cause deterioration of the dehumidifying adsorbent layer.
ガス燃料の付臭成分を吸着により除去する通気性の燃料用吸着剤層を前記燃料純化手段として前記バーナへのガス燃料供給路に介装してある請求項1記載の除湿装置。  2. A dehumidifying apparatus according to claim 1, wherein an air-permeable fuel adsorbent layer for removing odorous components of the gas fuel by adsorption is interposed in the gas fuel supply path to the burner as the fuel purification means.
JP2001345893A 2001-11-12 2001-11-12 Dehumidifier Expired - Fee Related JP4014393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345893A JP4014393B2 (en) 2001-11-12 2001-11-12 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345893A JP4014393B2 (en) 2001-11-12 2001-11-12 Dehumidifier

Publications (2)

Publication Number Publication Date
JP2003144832A JP2003144832A (en) 2003-05-20
JP4014393B2 true JP4014393B2 (en) 2007-11-28

Family

ID=19159161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345893A Expired - Fee Related JP4014393B2 (en) 2001-11-12 2001-11-12 Dehumidifier

Country Status (1)

Country Link
JP (1) JP4014393B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346707B2 (en) * 2009-06-22 2013-11-20 パナソニック株式会社 Dehumidifier
AU2011268478A1 (en) 2010-06-22 2013-02-07 Bry Air [Asia] Pvt. Ltd. System and method for improving the performance of desiccant dehumidification equipment for low-humidity applications
GB201115100D0 (en) * 2011-09-01 2011-10-19 Eves Jonathan C J A combined boiler dehumidification system

Also Published As

Publication number Publication date
JP2003144832A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US6500236B2 (en) Method for decarbonating waste gas and decarbonating apparatus
JP4334688B2 (en) Clean air manufacturing method and supply system
CN110871014A (en) CO with moving bed structure2Washing device
KR102127842B1 (en) System for removing volatility organic compound
JP3081601B1 (en) Dehumidifier
JP4990443B2 (en) Dehumidifying device and dehumidifying method
JP4014393B2 (en) Dehumidifier
JPH05115736A (en) Dry dehumidifying device
JP7481859B2 (en) Gas Separation and Recovery Equipment
JP2010221140A (en) Adsorption type gas treatment equipment
JP3979824B2 (en) Rotor type dehumidifier
JPH01155934A (en) Method for purifying ventilation gas in road tunnel
JPH11188224A (en) Dry type dehumidifying system
JPH05200233A (en) Dry dehumidifier
JP2021013878A (en) Dehumidification system
JP4250380B2 (en) Gas concentrating device and gas concentrating method
JP2004512208A (en) Method and apparatus for removing harmful impurities from air
JPH0663345A (en) Dry type dehumidifying device
JPH06343818A (en) Dry type dehumidifying device
JP4382341B2 (en) Rotor type dehumidifier
JPH05137942A (en) Deodorizing device
JPH05237342A (en) Purifier of gas
JP2010051877A (en) Apparatus and method for manufacturing oxygen enriched air
JPH0947627A (en) Apparatus for cleaning exhaust gas
JP4236443B2 (en) Clean air generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees