JP3979824B2 - Rotor type dehumidifier - Google Patents

Rotor type dehumidifier Download PDF

Info

Publication number
JP3979824B2
JP3979824B2 JP2001345892A JP2001345892A JP3979824B2 JP 3979824 B2 JP3979824 B2 JP 3979824B2 JP 2001345892 A JP2001345892 A JP 2001345892A JP 2001345892 A JP2001345892 A JP 2001345892A JP 3979824 B2 JP3979824 B2 JP 3979824B2
Authority
JP
Japan
Prior art keywords
adsorbent layer
air
area
rotor
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001345892A
Other languages
Japanese (ja)
Other versions
JP2003144831A (en
Inventor
彰久 永廣
直人 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2001345892A priority Critical patent/JP3979824B2/en
Publication of JP2003144831A publication Critical patent/JP2003144831A/en
Application granted granted Critical
Publication of JP3979824B2 publication Critical patent/JP3979824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1052Rotary wheel comprising a non-axial air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments

Description

【0001】
【発明の属する技術分野】
本発明は、空気中水分の存在を嫌う物品の製造施設や環境試験室などにおいて、低湿度環境(すなわち、低露点環境)を形成するのに用いるロータ式除湿装置に関し、
詳しくは、図4,図5に示す如く、吸着剤層Xをロータ回転方向に連続的に配置した吸着ロータ3の回転経路に、空気OAを域内通過過程にあるロータ部分の吸着剤層Xに通風してその空気OAを予除湿する予処理域4と、再生用高温気体HAを域内通過過程にあるロータ部分の吸着剤層Xに通風してその吸着剤層Xを再生する再生域5と、パージ用気体PAを域内通過過程にあるロータ部分の吸着剤層Xに通風してその吸着剤層Xをパージするパージ域と、前記予処理域4を通過した予除湿後の空気OA′を域内通過過程にあるロータ部分の吸着剤層Xに通風してその予除湿後の空気OA′を主除湿する主処理域7とを、その順にロータ回転方向に並べて配置してあるロータ式除湿装置に関する。
【0002】
【従来の技術】
従来、この種のロータ式除湿装置では、同図4,図5に示す如く、吸着ロータ3の回転経路に上記の予処理域4、再生域5、パージ域6、主処理域7をその順にロータ回転方向に並べて配置する構成において、予処理域4での吸着剤層Xに対する空気OAの通風向きと、主処理域4での吸着剤層Xに対する空気OA′の通風向きとを同じ向きにしており、換言すれば、予処理域4と主処理域7との夫々において吸着剤層Xの同じ側の面が空気OA,OA′の入口面となる装置構成になっていた(特開平6−343819号公報、特開2000−240979号公報参照)。
【0003】
【発明が解決しようとする課題】
しかし、上記の従来装置では、予処理域4を通過した予除湿後の空気OA′を主処理域7に導くのに、図4,図5に示す如く吸着ロータ3を跨ぐ状態の域間導風路10を形成しなければならず、この為、装置構造が複雑になって装置が大型になるとともに装置コストも高く付く問題があった。
【0004】
この実情に鑑み、本発明の主たる課題は、合理的な改良により上記問題を効果的に解消する点にある。
【0005】
【課題を解決するための手段】
〔1〕請求項1に係る発明はロータ式除湿装置に係り、その特徴は、
吸着剤層をロータ回転方向に連続的に配置した吸着ロータの回転経路に、
空気を域内通過過程にあるロータ部分の吸着剤層に通風してその空気を予除湿する予処理域と、
再生用高温気体を域内通過過程にあるロータ部分の吸着剤層に通風してその吸着剤層を再生する再生域と、
パージ用気体を域内通過過程にあるロータ部分の吸着剤層に通風してその吸着剤層をパージするパージ域と、
前記予処理域を通過した予除湿後の空気を域内通過過程にあるロータ部分の吸着剤層に通風してその予除湿後の空気を主除湿する主処理域とを、
その順にロータ回転方向に並べて配置する構成において、
前記予処理域での吸着剤層に対する空気の通風向きと、前記主処理域での吸着剤層に対する空気の通風向きとを互いに逆向きにしてある点にある。
【0006】
つまり、この構成によれば(図1,図2参照)、予処理域4を通過した予除湿後の空気OA′を主処理域7に導くのに、そのための域間導風路として、吸着ロータ3を跨ぐことなく単に予除湿後の空気OA′を変向させるだけの簡略で短尺な域間導風路10を形成するだけで済み、これにより、先述の従来装置に比べ装置構造を簡略にすることができて装置を効果的に小型化することができ、また、装置コストも低減することができる。
【0007】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記予処理域での吸着剤層に対する空気の通風向きと、前記再生域での吸着剤層に対する再生用高温気体の通風向きとを互いに逆向きにしてある点にある。
【0008】
つまり(同図1,図2参照)、空気通風状態にある吸着剤層Xは空気OA,OA′の入口側にある部分の方が出口側にある部分に比べ吸着が早く進んで含水率が高くなるが、予処理域4で予除湿した後の低湿の空気OA′を除湿する主処理域7に比べ、高湿の空気OAを除湿する予処理域4の方が域全体としての除湿量(換言すれば吸着量)は大きいことから、吸着剤層Xに対する空気OA,OA′の通風向きを予処理域4と主処理域7とで互いに逆向きにする請求項1に係る発明の構成では、主処理域7と予処理域4とを経て再生域5に入る吸着剤層Xは、予処理域4で空気OAの入口側となった部分の方が出口側となった部分よりも吸着が進んで含水率が高くなる。
【0009】
一方、再生域5にある吸着剤層Xについては、再生用高温気体HAの入口側にある部分の方が出口側にある部分よりも再生用高温気体HAからの熱付与による昇温が早くて高温になる。
【0010】
したがって、上記の如く予処理域4での吸着剤層Xに対する空気OAの通風向きと再生域5での吸着剤層Xに対する再生用高温気体HAの通風向きとを互いに逆向きにして、予処理域4で空気OAの出口側となった吸着剤層部分(すなわち、含水率が低くて吸着水分の脱着に高温を要する部分)を再生域5で再生用高温気体HAの入口側に位置させるようにすれば、逆の場合に比べ、吸着剤層Xにおける含水率の分布に対し温度分布を適合させた状態(略言すれば、高温の無駄使いを回避した状態)で、再生域5の全体としての脱着性能をより高く確保することができ、その分、主処理域7及び予処理域4での吸着性能も高めることができ、これにより、吸着剤層Xに対する空気OA,OA′の通風向きを予処理域4と主処理域7とで互いに逆向きにする構成にしながらも、高い除湿性能を得ることができる。
【0011】
〔3〕請求項3に係る発明は、請求項2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記パージ域での吸着剤層に対するパージ用気体の通風向きと、前記主処理域での吸着剤層に対する空気の通風向きとを同じ向きにしてある点にある。
【0012】
つまり(同図1,図2参照)、再生域5で高温となった吸着剤層Xはパージ域6でパージ用気体PAの通風により急速に冷却されるが、この際、吸着剤層Xはパージ用気体PAの入口側にある部分の方が出口側にある部分よりも降温が早いため、パージ域6を経て主処理域7に入る吸着剤層Xはパージ域6でパージ用気体PAの入口側となった部分の方が出口側となった部分よりも低温になる。
【0013】
一方、吸着は発熱反応であるため主処理域7にある吸着剤層Xは昇温するが、発生熱による通過空気OA′の漸次昇温のため、吸着剤層Xの昇温巾は空気OA′の出口側にある部分の方が入口側にある部分よりも大きくなる。
【0014】
これらのことから、パージ域6での吸着剤層Xに対するパージ用気体PAの通風向きと主処理域7での吸着剤層Xに対する空気OA′の通風向きとを互いに逆向きにした場合では、パージ域6でパージ用気体PAの入口側となった吸着剤層部分(すなわち、低温で吸着効率の高い部分)が主処理域7で空気OA′の出口側に位置することで高温になって、その部分の高い吸着効率が損なわれてしまうのに対し、上記の如くパージ域6での吸着剤層Xに対するパージ用気体PAの通風向きと主処理域7での吸着剤層Xに対する空気OA′の通風向きとを同じ向きにすれば、吸着効率の高い吸着剤層部分(パージ域6でパージ用気体PAの入口側となった部分)が主処理域7で高温になるのを抑止することができて、その部分の高い吸着効率を効果的に維持することができ、これにより、主処理域7の全体としての吸着性能を一層高く確保して除湿性能を一層効果的に高めることができる。
【0015】
【発明の実施の形態】
図1において、1は空気中水分の存在を嫌う物品(例えば電子部品、薬剤、フィルム等)の製造作業を行なう低湿化対象域としてのドライルームであり、このドライルーム1へは、吸着ロータ使用の除湿装置2により生成した極低湿の空気SA(例えば、露点温度−35℃の空気)を供給し、この低湿空気SAの供給によりドライルーム1を所要の低湿雰囲気に維持する。
【0016】
除湿装置2の吸着ロータ3は、シリカゲル、ゼオライト、活性炭などの吸着剤を用いた通気性の吸着剤層Xをロータ構成材としてロータ回転方向に連続的に配置したものであり、本実施形態では図2に示す如く、ロータ回転軸芯Pの方向に気体通過させる円盤状の吸着ロータ3を用いている。
【0017】
また、吸着ロータ3の回転経路は、ロータ回転方向において予処理域4、再生域5、パージ域6、主処理域7の四域に区画してあり、これら四域4〜7を上記の記載順にロータ回転方向に並べた配置にすることで、吸着ロータ3の回転に伴い、ロータ各部を予処理域4、再生域5、パージ域6、主処理域7の順に移行させる。
【0018】
8は外部から外気OAを導入する外気導入路であり、この外気導入路8には、導入外気OA(例えば、乾球温度34℃,絶対湿度22.1g/kgDAの空気)を浄化するフィルタ9A、及び、そのフィルタ9Aにより浄化した外気OAを予冷するプレクーラ9Bを装備してある。9Cはプレクーラ9Bに装備のエリミネータである。
【0019】
そして、前記予処理域4では、これらフィルタ9A及びプレクーラ9Bにより浄化・予冷処理した導入外気OAを処理対象空気として域内通過過程にあるロータ部分の吸着剤層Xに通風することで、その外気OAを吸着剤層Xによる水分吸着により除湿(予除湿)する。
【0020】
また、前記主処理域7では、域間導風路10を通じて予処理域4から導かれる予除湿後の外気OA′を域内通過過程にあるロータ部分の吸着剤層X(すなわち、予処理域4での使用前の吸着能力が高い吸着剤層)に対し、予処理域4での外気OAの通風向きとは逆向きに通風することで、その予除湿後の外気OA′を同じく吸着剤層Xによる水分吸着により所要湿度までさらに除湿(主除湿)し、この主除湿後の外気OA″をアフタークーラ11により冷却した上で生成低湿空気SAとして給気路12を通じてドライルーム1に供給する。
【0021】
一方、13は再生用の外気OAを導入する再生用外気導入路であり、この再生用外気導入路13には、導入した再生用外気OAを浄化するフィルタ14、及び、そのフィルタ14により浄化した再生用外気OAを所定温度まで加熱して再生用高温気体HAを生成する再生用加熱器15を装備してある。
【0022】
そして、前記再生域5では、再生用加熱器15で生成した再生用高温気体HAを域内通過過程にあるロータ部分の吸着剤層X(すなわち、主除湿及び予除湿に用いた後の吸着剤層)に対し、予処理域4での外気OAの通風向きとは逆向きに通風することで、主処理域7及び予処理域4での吸着水分を吸着剤層Xから脱着させて、その吸着剤層Xを再生する。
【0023】
また、パージ域6では、前記域間導風路10からパージ用分流路16へ分流した一部の予除湿後外気OA′をパージ用気体PAとして域内通過過程にあるロータ部分の吸着剤層Xに対し、主処理域7での外気OA′の通風向きと同じ向きに通風することで、その吸着剤層X中に残る再生用高温気体HAの掃気(パージ)、及び、吸着剤層Xの冷却を行ない、このパージ域6での掃気・冷却処理を経て、再生域5での再生後の吸着剤層Xをロータ3の回転に伴い主処理域7及びそれに続く予処理域4へ再び移行させる。
【0024】
17は再生域5から送出される使用済みの再生用高温気体HA′を外部へ排出する排気路、18はこの排気路17から使用済み再生用高温気体HA′の一部を分流して、その分流気体HA″を再生用外気導入路13の再生用外気OAに混合する排気側の熱回収用混合路であり、また、19はパージ域6から送出される使用済みのパージ用気体PA′を再生用外気導入路13の再生用外気OAに混合するパージ側の熱回収用混合路である。
【0025】
20はパージ用分流路16の分岐箇所よりも上流側で域間導風路10に介装した処理側ファンであり、この処理側ファン20により、外気導入路8を通じての外気OAの導入、予処理域4及び主処理域7の夫々での吸着剤層Xに対する外気OA,OA′の通風、並びに、パージ域6での吸着剤層Xに対するパージ用気体PAの通風を行なう。
【0026】
また、21は排気側の熱回収用混合路18の分岐箇所よりも上流側で排気路17に介装した再生側ファンであり、この再生側ファン21により、再生用外気導入路13を通じての再生用外気OAの導入、及び、再生域5での吸着剤層Xに対する再生用高温気体HAの通風を行なう。
【0027】
22はパージ用分流路16に介装したパージ側ダンパであり、上記の如く処理側ファン20を主処理域7での吸着剤層Xに対する外気OA′の通風とパージ域6での吸着剤層Xに対するパージ用気体PAの通風とに兼用することに対し、このパージ側ダンパ22の開度を調整することで主処理域7を隣のパージ域6に対して陽圧に保ち、これにより、除湿性能の低下原因となるパージ域6から主処理域7への気体漏洩を確実に防止する。
【0028】
なお、処理側ファン20を域間導風路10に介装する形式を採ることで、主処理域7は反対隣の予処理域4に対しても陽圧に維持され、これにより、除湿性能の低下原因となる予処理域4から主処理域7への気体漏洩も確実に防止される。
【0029】
23は再生用加熱器15で生成した再生用高温気体HAを再生域5に導く再生用導風路24に介装した再生側ダンパであり、上記の如く処理側ファン20を域間導風路10に介装する形式を採ることに対し、この再生側ダンパ23の開度を調整することで予処理域4を隣の再生域5に対して陽圧に保ち、これにより、やはり除湿性能の低下原因となる再生域5から予処理域4への気体漏洩も確実に防止する。
【0030】
〔別実施形態〕
次に別実施形態を列記する。
【0031】
前述の実施形態では、ロータ回転軸芯Pの方向に気体通過させる円盤状の吸着ロータを用いる例を示したが、図3に示す如く、回転半径方向に気体通過させる円筒状の吸着ロータ3を用いるロータ式除湿装置において、予処理域4での吸着剤層Xに対する空気OAの通風向きと主処理域7での吸着剤層Xに対する空気OA′の通風向きとを互いに逆向きにする請求項1に係る発明の構成(すなわち、予処理域4と主処理域7との夫々において吸着剤層Xの同じ側の面が空気OA,OA′の入口面となる構成)を採るようにしてもよい。
【0032】
また、このように円筒状の吸着ロータ3を用いるロータ式除湿装置で請求項1に係る発明の構成を採用したものに対し、同図3に示す如く、予処理域4での吸着剤層Xに対する空気OAの通風向きと再生域5での吸着剤層Xに対する再生用高温気体HAの通風向きとを互いに逆向きにする請求項2に係る発明の構成や、パージ域6での吸着剤層Xに対するパージ用気体PAの通風向きと主処理域7での吸着剤層Xに対する空気OA′の通風向きとを同じ向きにする請求項3に係る発明の構成を採用するようにしてもよい。
【0033】
そしてまた、吸着ロータ3は円盤状ロータや円筒状ロータに限られるものではなく、帯面に対し直交する方向に気体通過させる無端帯状のロータであってもよく、この無端帯状の吸着ロータを用いるロータ式除湿装置において請求項1〜3に係る発明の構成を採用するようにしてもよい。
【0034】
再生用高温気体HAは、高温空気、高温水蒸気、燃焼ガスなど、吸着剤層Xから吸着水分を脱着させ得るものであれば、どのような高温気体であってもよく、また、パージ用気体PAについても、予除湿後の空気OA′の一部に限らず、主除湿後の空気OA″の一部やその他の気体など、再生後の吸着剤層Xに対する掃気・冷却処理を行ない得るものであれば、どのような気体であってもよい。
【0035】
前述の実施形態では、予処理域4において吸着剤層Xに100%外気を通風する全外気方式の例を示したが、予処理域4での処理対象空気は100%外気に限られるものでなく、外部からの導入外気OAに対しドライルーム1からの排気空気の一部や主除湿後の空気OA″の一部あるいは予除湿後の空気OA′の一部を混合した空気などを予処理域4において予除湿するようにしてもよい。
【0036】
また、主処理域7での主除湿についても、前述の実施形態の如く予除湿後の空気OA′のみを主処理域7で主除湿するのに代え、予除湿後の空気OA′に対しドライルーム1からの排気空気の一部や主除湿後の空気OA″の一部を混合した空気を主処理域7において主除湿するようにしてもよい。
【0037】
主除湿後の低湿空気OA″の用途、ならびに、主除湿後の低湿空気OA″を供給する低湿化対象域1の用途は、どのようなものであってもよく、本発明によるロータ式除湿装置は各種分野において種々の用途に使用できる。
【図面の簡単な説明】
【図1】装置の全体構成を示す図
【図2】吸着ロータ部分の斜視図
【図3】別実施形態を示す吸着ロータ部分の斜視図
【図4】従来装置の全体構成を示す図
【図5】従来装置における吸着ロータ部分の斜視図
【符号の説明】
3 吸着ロータ
4 予処理域
5 再生域
6 パージ域
7 主処理域
HA 再生用高温気体
OA 空気
OA′ 予除湿後の空気
PA パージ用気体
X 吸着剤層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor type dehumidifier used to form a low humidity environment (that is, a low dew point environment) in a manufacturing facility or an environmental test room of an article that dislikes the presence of moisture in the air,
Specifically, as shown in FIG. 4 and FIG. 5, the adsorbent layer X is arranged on the rotation path of the adsorbing rotor 3 continuously arranged in the rotor rotation direction, and the air OA is applied to the adsorbent layer X in the rotor portion in the region passing process. A pretreatment area 4 for pre-dehumidifying the air OA by ventilating, and a regeneration area 5 for regenerating the adsorbent layer X by ventilating the regeneration high temperature gas HA through the adsorbent layer X of the rotor portion in the process of passing through the area. The purge gas PA is passed through the adsorbent layer X of the rotor in the process of passing through the region to purge the adsorbent layer X, and the pre-humidified air OA ′ that has passed through the pretreatment region 4 A rotor type dehumidifying device in which a main processing region 7 for ventilating the adsorbent layer X of the rotor portion in the process of passing through the region and mainly dehumidifying the air OA ′ after the pre-dehumidification is arranged in that order in the rotor rotation direction. About.
[0002]
[Prior art]
Conventionally, in this type of rotor type dehumidifier, as shown in FIGS. 4 and 5, the pretreatment area 4, the regeneration area 5, the purge area 6, and the main treatment area 7 are arranged in this order on the rotation path of the adsorption rotor 3. In the configuration in which the rotors are arranged side by side in the rotation direction, the air OA ventilation direction with respect to the adsorbent layer X in the pretreatment area 4 and the air OA ′ ventilation direction with respect to the adsorbent layer X in the main treatment area 4 are the same direction. In other words, in the pre-processing area 4 and the main processing area 7, the same side surface of the adsorbent layer X is an apparatus configuration in which the inlet surfaces of the air OA and OA ′ are used (Japanese Patent Application Laid-Open No. Hei 6). No. 343819, JP 2000-240979).
[0003]
[Problems to be solved by the invention]
However, in the conventional apparatus described above, the pre-dehumidified air OA ′ that has passed through the pretreatment area 4 is guided to the main treatment area 7. The air passage 10 has to be formed, which causes a problem that the structure of the apparatus becomes complicated, the apparatus becomes large, and the apparatus cost increases.
[0004]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by rational improvement.
[0005]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a rotor-type dehumidifier, and its features are as follows:
In the rotation path of the adsorption rotor in which the adsorbent layer is continuously arranged in the rotor rotation direction,
A pre-treatment area in which air is pre-dehumidified by passing air through the adsorbent layer of the rotor part that is passing through the area;
A regeneration zone for regenerating the adsorbent layer by passing the high temperature gas for regeneration through the adsorbent layer of the rotor part in the process of passing through the region;
A purge zone for purging the adsorbent layer by passing the purge gas through the adsorbent layer of the rotor part in the process of passing through the zone;
A main treatment area for mainly dehumidifying the air after pre-dehumidification by passing the air after pre-dehumidification that has passed through the pre-treatment area through the adsorbent layer of the rotor part in the process of passing through the area;
In the configuration arranged in that order in the rotor rotation direction,
The air ventilation direction with respect to the adsorbent layer in the pretreatment area and the air ventilation direction with respect to the adsorbent layer in the main treatment area are opposite to each other.
[0006]
That is, according to this configuration (see FIGS. 1 and 2), the pre-dehumidified air OA ′ that has passed through the pretreatment area 4 is guided to the main treatment area 7 as an inter-area air duct for that purpose. It is only necessary to form a simple and short inter-zone air duct 10 that simply redirects the pre-dehumidified air OA 'without straddling the rotor 3, thereby simplifying the device structure compared to the above-described conventional device. Therefore, the apparatus can be effectively downsized, and the apparatus cost can be reduced.
[0007]
[2] The invention according to claim 2 specifies a preferred embodiment for carrying out the invention according to claim 1, and its features are as follows:
The ventilation direction of air to the adsorbent layer in the pretreatment area and the ventilation direction of the high temperature gas for regeneration to the adsorbent layer in the regeneration area are opposite to each other.
[0008]
In other words (see FIGS. 1 and 2), in the adsorbent layer X in the air ventilation state, the portion on the inlet side of the air OA, OA ′ is adsorbed faster than the portion on the outlet side, and the moisture content is increased. The amount of dehumidification in the pretreatment area 4 for dehumidifying the high-humidity air OA is higher than that in the main treatment area 7 for dehumidifying the low-humidity air OA ′ after predehumidification in the pretreatment area 4. (In other words, since the amount of adsorption) is large, the airflow directions of the air OA and OA ′ with respect to the adsorbent layer X are reversed in the pretreatment area 4 and the main treatment area 7. Then, the adsorbent layer X that enters the regeneration zone 5 through the main treatment zone 7 and the pretreatment zone 4 has a portion that becomes the inlet side of the air OA in the pretreatment zone 4 rather than a portion that becomes the outlet side. Adsorption proceeds and the water content increases.
[0009]
On the other hand, as for the adsorbent layer X in the regeneration zone 5, the temperature rise due to the heat application from the regeneration high temperature gas HA is faster in the portion on the inlet side of the regeneration high temperature gas HA than in the portion on the outlet side. It becomes hot.
[0010]
Therefore, as described above, the pre-treatment is performed by reversing the direction of air OA flowing through the adsorbent layer X in the pre-treatment area 4 and the direction of air flow of the regeneration high-temperature gas HA through the adsorbent layer X in the regeneration area 5. The adsorbent layer portion that is the outlet side of the air OA in the region 4 (that is, the portion that has a low moisture content and requires a high temperature for desorption of adsorbed moisture) is positioned in the regeneration region 5 on the inlet side of the regenerating hot gas HA. In this case, compared with the reverse case, the entire regeneration zone 5 is obtained in a state in which the temperature distribution is adapted to the moisture content distribution in the adsorbent layer X (in short, avoiding high temperature waste). As a result, the adsorption performance in the main treatment area 7 and the pretreatment area 4 can be improved. As a result, the air OA and OA ′ can pass through the adsorbent layer X. The wind direction is different between the pre-processing area 4 and the main processing area 7. While the configuration in which the orientation, it is possible to obtain a high dehumidification performance.
[0011]
[3] The invention according to claim 3 specifies a preferred embodiment for carrying out the invention according to claim 2 , and its features are:
In the purge region, the purge gas is directed to the adsorbent layer in the same direction as the air is directed to the adsorbent layer in the main processing region.
[0012]
That is, (see FIG. 1 and FIG. 2), the adsorbent layer X that has become high in the regeneration zone 5 is rapidly cooled by the purge gas PA in the purge zone 6, but at this time, the adsorbent layer X is Since the temperature at the inlet side of the purge gas PA is lower than the temperature at the outlet side, the adsorbent layer X entering the main processing zone 7 via the purge zone 6 is removed from the purge gas PA in the purge zone 6. The part on the entrance side is cooler than the part on the exit side.
[0013]
On the other hand, since the adsorption is an exothermic reaction, the temperature of the adsorbent layer X in the main processing area 7 is increased. However, the temperature increase range of the adsorbent layer X is the air OA because of the gradual temperature increase of the passing air OA ′ due to the generated heat. The portion on the outlet side of ′ is larger than the portion on the inlet side.
[0014]
From these facts, in the case where the ventilation direction of the purge gas PA with respect to the adsorbent layer X in the purge area 6 and the ventilation direction of the air OA ′ with respect to the adsorbent layer X in the main processing area 7 are opposite to each other, The adsorbent layer portion that is the inlet side of the purge gas PA in the purge region 6 (that is, the portion having a low adsorption efficiency at a low temperature) is located at the outlet side of the air OA ′ in the main processing region 7 and becomes high temperature. However, the high adsorption efficiency of the portion is impaired, as described above, the direction of ventilation of the purge gas PA with respect to the adsorbent layer X in the purge region 6 and the air OA with respect to the adsorbent layer X in the main processing region 7. If the ventilation direction of ′ is made the same direction, the adsorbent layer portion having high adsorption efficiency (the portion that becomes the inlet side of the purge gas PA in the purge region 6) is prevented from becoming high in the main processing region 7. And the high adsorption efficiency of the part is effective. Can be maintained to thereby, the dehumidification performance can be more effectively enhanced by ensuring even higher adsorption performance of the whole of the main treatment zone 7.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, reference numeral 1 denotes a dry room as a low humidity target area for manufacturing an article that dislikes the presence of moisture in the air (for example, electronic parts, drugs, films, etc.). The extremely low humidity air SA (for example, air having a dew point temperature of −35 ° C.) generated by the dehumidifying device 2 is supplied, and the dry room 1 is maintained in a required low humidity atmosphere by supplying the low humidity air SA.
[0016]
The adsorption rotor 3 of the dehumidifying device 2 is one in which a breathable adsorbent layer X using an adsorbent such as silica gel, zeolite, activated carbon or the like is continuously arranged in the rotor rotation direction as a rotor constituent material. As shown in FIG. 2, a disk-like adsorption rotor 3 that allows gas to pass in the direction of the rotor rotation axis P is used.
[0017]
Further, the rotation path of the adsorption rotor 3 is divided into four regions of a pretreatment region 4, a regeneration region 5, a purge region 6, and a main treatment region 7 in the rotor rotation direction, and these four regions 4 to 7 are described above. By arranging them in order in the rotor rotation direction, each part of the rotor is shifted in the order of the preprocessing area 4, the regeneration area 5, the purge area 6, and the main processing area 7 as the suction rotor 3 rotates.
[0018]
Reference numeral 8 denotes an outside air introduction path for introducing outside air OA from the outside. The outside air introduction path 8 has a filter 9A for purifying the introduced outside air OA (for example, air having a dry bulb temperature of 34 ° C. and an absolute humidity of 22.1 g / kgDA). And a precooler 9B for precooling the outside air OA purified by the filter 9A. 9C is an eliminator equipped on the precooler 9B.
[0019]
In the pretreatment area 4, the outside air OA purified and precooled by the filter 9 A and the precooler 9 B is passed through the adsorbent layer X of the rotor portion that is passing through the area as the treatment target air. Is dehumidified by moisture adsorption by the adsorbent layer X (pre-dehumidification).
[0020]
Further, in the main processing area 7, the adsorbent layer X (that is, the preprocessing area 4) of the rotor portion that is in the process of passing the pre-dehumidified outside air OA ′ guided from the preprocessing area 4 through the inter-area air duct 10. The adsorbent layer having a high adsorbing capacity before use in the pretreatment area 4 is ventilated in the direction opposite to the direction of the external air OA in the pretreatment area 4, so that the external air OA ′ after the pre-dehumidification is also used as the adsorbent layer. The moisture is further dehumidified (mainly dehumidified) by moisture adsorption by X, and the outside air OA ″ after the main dehumidification is cooled by the aftercooler 11 and then supplied to the dry room 1 through the air supply path 12 as generated low-humidity air SA.
[0021]
On the other hand, 13 is a regeneration outside air introduction path for introducing the regeneration outside air OA. The regeneration outside air introduction path 13 is purified by the filter 14 for purifying the introduced regeneration outside air OA and the filter 14. A regeneration heater 15 that heats the regeneration outside air OA to a predetermined temperature to generate a regeneration high temperature gas HA is provided.
[0022]
In the regeneration zone 5, the regeneration hot gas HA generated by the regeneration heater 15 is in the process of passing through the region of the rotor portion of the adsorbent layer X (that is, the adsorbent layer after being used for main dehumidification and pre-dehumidification). ), The adsorbed moisture in the main processing area 7 and the preprocessing area 4 is desorbed from the adsorbent layer X by passing in the direction opposite to the direction of the outside air OA in the preprocessing area 4, and the adsorption is performed. The agent layer X is regenerated.
[0023]
Further, in the purge zone 6, the adsorbent layer X of the rotor portion that is in the process of passing through the zone, with a part of the pre-dehumidified outside air OA 'diverted from the inter-zone air duct 10 to the purge branch channel 16 as the purge gas PA. On the other hand, by venting in the same direction as that of the outside air OA ′ in the main processing area 7, scavenging (purge) of the regeneration high-temperature gas HA remaining in the adsorbent layer X, and the adsorbent layer X Cooling is performed, and after the scavenging / cooling process in the purge area 6, the adsorbent layer X after regeneration in the regeneration area 5 is transferred again to the main processing area 7 and the subsequent preprocessing area 4 as the rotor 3 rotates. Let
[0024]
Reference numeral 17 denotes an exhaust passage for discharging the used regeneration high temperature gas HA ′ sent from the regeneration zone 5 to the outside, and reference numeral 18 divides a part of the used regeneration high temperature gas HA ′ from the exhaust passage 17. An exhaust-side heat recovery mixing path for mixing the shunt gas HA ″ with the regeneration outside air OA in the regeneration outside air introduction path 13, and 19 is a used purge gas PA ′ sent from the purge zone 6. This is a purge-side heat recovery mixing path that mixes with the regeneration outside air OA in the regeneration outside air introduction path 13.
[0025]
Reference numeral 20 denotes a processing-side fan interposed in the inter-area air guide passage 10 upstream from the branching point of the purge branching passage 16. The processing-side fan 20 introduces and preliminarily introduces the outside air OA through the outside air introduction passage 8. Ventilation of the outside air OA and OA ′ to the adsorbent layer X in each of the processing area 4 and the main processing area 7 and ventilation of the purge gas PA to the adsorbent layer X in the purge area 6 are performed.
[0026]
Reference numeral 21 denotes a regeneration-side fan interposed in the exhaust passage 17 upstream from the branching point of the exhaust-side heat recovery mixing passage 18. The regeneration-side fan 21 regenerates through the regeneration outside air introduction passage 13. The outside air OA for introduction is introduced, and the regeneration high temperature gas HA is passed through the adsorbent layer X in the regeneration zone 5.
[0027]
Reference numeral 22 denotes a purge-side damper interposed in the purge branch flow path 16. As described above, the processing-side fan 20 is passed through the adsorbent layer X in the main processing area 7 through the outside air OA ′ and the adsorbent layer in the purge area 6. In contrast to the use of the purge gas PA with respect to X, by adjusting the opening of the purge-side damper 22, the main processing region 7 is kept at a positive pressure with respect to the adjacent purge region 6, Gas leakage from the purge area 6 to the main processing area 7 that causes a decrease in the dehumidifying performance is reliably prevented.
[0028]
In addition, the main process area 7 is maintained at a positive pressure with respect to the opposite pre-process area 4 by adopting a format in which the process-side fan 20 is interposed in the inter-area air guide path 10. Gas leakage from the pre-processing area 4 to the main processing area 7 that causes a decrease in the temperature is reliably prevented.
[0029]
Reference numeral 23 denotes a regeneration-side damper that is interposed in a regeneration air duct 24 that guides the regeneration high-temperature gas HA generated by the regeneration heater 15 to the regeneration area 5. As described above, the processing-side fan 20 is connected to the inter-area air duct. 10, the pre-treatment area 4 is kept at a positive pressure with respect to the adjacent regeneration area 5 by adjusting the opening of the regeneration-side damper 23, so that the dehumidifying performance is also maintained. Gas leakage from the regeneration zone 5 to the pretreatment zone 4 that causes a decrease is also reliably prevented.
[0030]
[Another embodiment]
Next, another embodiment will be listed.
[0031]
In the above-described embodiment, an example of using a disk-like adsorption rotor that allows gas to pass in the direction of the rotor rotation axis P has been shown. However, as shown in FIG. In the rotor type dehumidifier used, the ventilation direction of the air OA with respect to the adsorbent layer X in the pretreatment area 4 and the ventilation direction of the air OA 'with respect to the adsorbent layer X in the main treatment area 7 are opposite to each other. 1 (that is, a configuration in which the surface on the same side of the adsorbent layer X serves as the inlet surface of the air OA, OA ′ in each of the preprocessing region 4 and the main processing region 7). Good.
[0032]
Further, in contrast to the rotor type dehumidifier using the cylindrical adsorption rotor 3 adopting the configuration of the invention according to claim 1, as shown in FIG. 3, the adsorbent layer X in the pretreatment area 4 is used. 3. The configuration of the invention according to claim 2 wherein the direction of air OA to the air and the direction of high temperature gas HA for regeneration to the adsorbent layer X in the regeneration region 5 are opposite to each other, and the adsorbent layer in the purge region 6 The configuration of the invention according to claim 3 may be adopted in which the ventilation direction of the purge gas PA with respect to X and the ventilation direction of the air OA ′ with respect to the adsorbent layer X in the main processing region 7 are the same.
[0033]
Further, the suction rotor 3 is not limited to a disk-like rotor or a cylindrical rotor, and may be an endless belt-like rotor that allows gas to pass in a direction orthogonal to the belt surface, and this endless belt-like suction rotor is used. You may make it employ | adopt the structure of the invention which concerns on Claims 1-3 in a rotor type dehumidifier.
[0034]
The regeneration high-temperature gas HA may be any high-temperature gas as long as it can desorb adsorbed moisture from the adsorbent layer X, such as high-temperature air, high-temperature steam, and combustion gas. In addition, not only a part of the air OA ′ after the pre-dehumidification but also a part of the air OA ″ after the main dehumidification and other gases can be subjected to the scavenging / cooling process for the adsorbent layer X after the regeneration. Any gas may be used as long as it is present.
[0035]
In the above-described embodiment, an example of the all-outside air method in which 100% outside air is passed through the adsorbent layer X in the preprocessing area 4 has been described, but the processing target air in the preprocessing area 4 is limited to 100% outside air. In addition, pre-treatment of externally introduced outside air OA with a mixture of a part of the exhaust air from the dry room 1, a part of the air OA ″ after the main dehumidification, or a part of the air OA ′ after the pre-dehumidification You may make it pre-humidify in the area | region 4. FIG.
[0036]
As for the main dehumidification in the main treatment area 7, only the air OA ′ after the pre-dehumidification is replaced with the main dehumidification in the main treatment area 7 as in the above-described embodiment, and the air is removed from the air OA ′ after the pre-dehumidification. You may make it main dehumidify in the main process area 7 the air which mixed a part of exhaust air from the room 1, and a part of air OA "after the main dehumidification.
[0037]
The use of the low-humidity air OA ″ after the main dehumidification and the use of the low-humidity target area 1 that supplies the low-humidity air OA ″ after the main dehumidification may be any, and the rotor type dehumidification device according to the present invention. Can be used for various applications in various fields.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of the apparatus. FIG. 2 is a perspective view of an adsorption rotor portion. FIG. 3 is a perspective view of an adsorption rotor portion showing another embodiment. 5] Perspective view of the suction rotor part in the conventional device [Explanation of symbols]
3 Adsorption rotor 4 Pretreatment area 5 Regeneration area 6 Purge area 7 Main treatment area HA High temperature gas for regeneration OA Air OA ′ Pre-humidified air PA Purge gas X Adsorbent layer

Claims (3)

吸着剤層をロータ回転方向に連続的に配置した吸着ロータの回転経路に、
空気を域内通過過程にあるロータ部分の吸着剤層に通風してその空気を予除湿する予処理域と、
再生用高温気体を域内通過過程にあるロータ部分の吸着剤層に通風してその吸着剤層を再生する再生域と、
パージ用気体を域内通過過程にあるロータ部分の吸着剤層に通風してその吸着剤層をパージするパージ域と、
前記予処理域を通過した予除湿後の空気を域内通過過程にあるロータ部分の吸着剤層に通風してその予除湿後の空気を主除湿する主処理域とを、
その順にロータ回転方向に並べて配置してあるロータ式除湿装置であって、
前記予処理域での吸着剤層に対する空気の通風向きと、前記主処理域での吸着剤層に対する空気の通風向きとを互いに逆向きにしてあるロータ式除湿装置。
In the rotation path of the adsorption rotor in which the adsorbent layer is continuously arranged in the rotor rotation direction,
A pre-treatment area in which air is pre-dehumidified by passing air through the adsorbent layer of the rotor part in the process of passing through the area;
A regeneration zone for regenerating the adsorbent layer by passing the high temperature gas for regeneration through the adsorbent layer of the rotor part in the process of passing through the region;
A purge zone for purging the adsorbent layer by passing the purge gas through the adsorbent layer of the rotor part in the process of passing through the zone;
A main treatment area for mainly dehumidifying the air after pre-dehumidification by passing the air after pre-dehumidification that has passed through the pre-treatment area through the adsorbent layer of the rotor part in the process of passing through the area;
A rotor type dehumidifier arranged in the rotor rotation direction in that order,
The rotor type dehumidifier which makes the ventilation direction of the air with respect to the adsorbent layer in the said pre-processing area, and the ventilation direction of the air with respect to the adsorbent layer in the said main processing area reverse.
前記予処理域での吸着剤層に対する空気の通風向きと、前記再生域での吸着剤層に対する再生用高温気体の通風向きとを互いに逆向きにしてある請求項1記載のロータ式除湿装置。  The rotor type dehumidifier according to claim 1, wherein the direction of ventilation of air to the adsorbent layer in the pretreatment area and the direction of ventilation of the regeneration high-temperature gas to the adsorbent layer in the regeneration area are opposite to each other. 前記パージ域での吸着剤層に対するパージ用気体の通風向きと、前記主処理域での吸着剤層に対する空気の通風向きとを同じ向きにしてある請求項2記載のロータ式除湿装置。The rotor type dehumidifier according to claim 2 , wherein the direction of ventilation of the purge gas with respect to the adsorbent layer in the purge zone is the same as the direction of ventilation of air with respect to the adsorbent layer in the main processing zone.
JP2001345892A 2001-11-12 2001-11-12 Rotor type dehumidifier Expired - Fee Related JP3979824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345892A JP3979824B2 (en) 2001-11-12 2001-11-12 Rotor type dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345892A JP3979824B2 (en) 2001-11-12 2001-11-12 Rotor type dehumidifier

Publications (2)

Publication Number Publication Date
JP2003144831A JP2003144831A (en) 2003-05-20
JP3979824B2 true JP3979824B2 (en) 2007-09-19

Family

ID=19159160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345892A Expired - Fee Related JP3979824B2 (en) 2001-11-12 2001-11-12 Rotor type dehumidifier

Country Status (1)

Country Link
JP (1) JP3979824B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514624B2 (en) * 2005-02-28 2010-07-28 株式会社西部技研 Air conditioner for vehicles
JP5405801B2 (en) * 2008-11-07 2014-02-05 ヤンマー株式会社 Desiccant air conditioner
CA2803473C (en) * 2010-06-22 2018-02-06 Bry-Air (Asia) Pvt. Ltd. System and method for improving the performance of desiccant dehumidification equipment for low-humidity applications
JP5717000B2 (en) * 2011-09-14 2015-05-13 株式会社大気社 Local dehumidification system

Also Published As

Publication number Publication date
JP2003144831A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JP4334688B2 (en) Clean air manufacturing method and supply system
JP3762138B2 (en) Dry dehumidification system
JP2659652B2 (en) Dry dehumidifier
JP3081601B1 (en) Dehumidifier
JPH06343819A (en) Dry type dehumidifying device
JP4990443B2 (en) Dehumidifying device and dehumidifying method
JPH0824816B2 (en) Dry dehumidifier
JP3979824B2 (en) Rotor type dehumidifier
JP3483752B2 (en) Dry dehumidification system
JP2731499B2 (en) Dry dehumidifier
JPH05200233A (en) Dry dehumidifier
JPH08141353A (en) Dehumidifier
JP3485161B2 (en) Dehumidification system
JP4014393B2 (en) Dehumidifier
JP5686311B2 (en) Gas removal system
JP5956216B2 (en) Adsorption processing equipment
JPH06343818A (en) Dry type dehumidifying device
JPH1085546A (en) Low dew point air supply system
JP4382341B2 (en) Rotor type dehumidifier
JP4523146B2 (en) Organic solvent vapor processing equipment
JP2001205037A (en) Dry type dehumidification apparatus
JPH06343817A (en) Dry type dehumidifying device
JP6839235B2 (en) Dehumidification system
JPH06320A (en) Dry dehumidifier
KR100535878B1 (en) System And Method For Supplying The Clean Air Using The Moisture Reducing System With Drying-type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Ref document number: 3979824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees