JP7481859B2 - Gas Separation and Recovery Equipment - Google Patents

Gas Separation and Recovery Equipment Download PDF

Info

Publication number
JP7481859B2
JP7481859B2 JP2020032596A JP2020032596A JP7481859B2 JP 7481859 B2 JP7481859 B2 JP 7481859B2 JP 2020032596 A JP2020032596 A JP 2020032596A JP 2020032596 A JP2020032596 A JP 2020032596A JP 7481859 B2 JP7481859 B2 JP 7481859B2
Authority
JP
Japan
Prior art keywords
regeneration
gas
zone
adsorption
honeycomb rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032596A
Other languages
Japanese (ja)
Other versions
JP2021133323A (en
Inventor
和行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2020032596A priority Critical patent/JP7481859B2/en
Publication of JP2021133323A publication Critical patent/JP2021133323A/en
Application granted granted Critical
Publication of JP7481859B2 publication Critical patent/JP7481859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、種々のガス成分から構成される処理対象ガスから目的ガスを分離し、回収するために、目的ガスを選択吸着する吸着材が担持された吸着ハニカムロータを用いて温度差により吸脱着することを特徴とするガス分離回収装置において、簡素な構成により、目的ガスを所定の濃度で分離回収できるガス分離回収装置に関するものである。 The present invention relates to a gas separation and recovery device that uses an adsorption honeycomb rotor carrying an adsorbent that selectively adsorbs the target gas to separate and recover the target gas from a gas to be treated that is composed of various gas components, and that adsorbs and desorbs the target gas by temperature difference, and that has a simple configuration and is capable of separating and recovering the target gas at a predetermined concentration.

従来、種々のガス成分から構成される処理対象ガスから目的ガスを分離し、回収する方法として、ゼオライトや活性炭等の吸着材を用いた吸着法が注目されている。吸着法には圧力差を利用して吸脱着を行うプレッシャースイング法(Pressure Swing Adsorption、以下PSA法)と、温度差を利用して吸脱着を行うサーマルスイング法(Thermal Swing Adsorption、以下TSA法)がある。 Conventionally, adsorption methods using adsorbents such as zeolite and activated carbon have attracted attention as a method for separating and recovering a target gas from a gas to be treated, which is composed of various gas components. Adsorption methods include the pressure swing adsorption (PSA) method, which uses a pressure difference to perform adsorption and desorption, and the thermal swing adsorption (TSA) method, which uses a temperature difference to perform adsorption and desorption.

例えば、目的ガスが二酸化炭素の場合、PSA法ではシリカゲルやゼオライト等を充填した除湿用のPSAで-20℃DP(Dew Point、露点温度)程度まで処理した後に、二酸化炭素分離回収用のPSAに導入して二酸化炭素を回収する(非特許文献1)。しかし、圧力差を利用するため圧力容器が必要で、周辺機器として電磁弁やコンプレッサ、真空ポンプ等の精密機械も必要となり、大型化が困難で、消費電力量が多いという問題がある。 For example, when the target gas is carbon dioxide, the PSA method involves treating the gas with a dehumidifying PSA filled with silica gel or zeolite to approximately -20°C DP (Dew Point), and then introducing the gas into a PSA for carbon dioxide separation and capture to capture the carbon dioxide (Non-Patent Document 1). However, a pressure vessel is required to utilize the pressure difference, and peripheral equipment such as solenoid valves, compressors, and vacuum pumps are also required, making it difficult to increase the size and consuming a lot of power.

一方、TSA法は摂氏50℃(以下、温度は全て「摂氏」とする)以下の温度で二酸化炭素を吸着させ、100~300℃前後の温度に加熱して二酸化炭素を脱着させて回収する方法である。TSA法は、PSA法に必要な真空ポンプ等も必要ないため、比較的小型化や低コスト化が達成できる可能性がある。 On the other hand, the TSA method adsorbs carbon dioxide at temperatures below 50 degrees Celsius (hereafter all temperatures are in degrees Celsius), and then heats it to a temperature of around 100-300 degrees Celsius to desorb and recover the carbon dioxide. The TSA method does not require vacuum pumps, which are necessary for the PSA method, so there is the potential for relatively small size and low cost.

TSA法の中でも、回転型吸着ハニカムロータを用いる方法は、表面積が大きく、圧力損失が少なく、軽量でありながら強度が高いため、大型化が容易であることから、近年デシカントロータ除湿機、ロータ式VOC(Volatile Organic Compounds、揮発性有機化合物、以下、VOC)濃縮装置等、大型気体処理装置に採用され普及している。 Among the TSA methods, the method using a rotating adsorption honeycomb rotor has a large surface area, low pressure loss, and is lightweight yet strong, making it easy to scale up. In recent years, this method has been adopted and spread in large-scale gas treatment equipment, such as desiccant rotor dehumidifiers and rotor-type VOC (volatile organic compounds, hereafter referred to as VOC) concentrators.

目的ガスが二酸化炭素の場合において、特許文献1、2には吸着ハニカムロータを用いた二酸化炭素濃縮回収装置が示されている。特許文献1に開示されたものは、ロータの回転方向に沿って吸着ゾーンと、予熱ゾーンと、低濃度ガスパージゾーンと、加熱ガス循環による脱着ゾーンと、高濃度ガスパージゾーンと、予冷ゾーンと、冷却ゾーンを経て再び吸着ゾーンに戻る構成にすることで、二酸化炭素の回収率と回収濃度を同時に高めることができ、少ない消費エネルギーで効率的に二酸化炭素の濃縮を行うことができる、省エネ性の高い二酸化炭素分離回収装置を実現するものである。 When the target gas is carbon dioxide, Patent Documents 1 and 2 show a carbon dioxide concentration and capture device using an adsorption honeycomb rotor. The device disclosed in Patent Document 1 is configured in such a way that, along the direction of rotation of the rotor, there is an adsorption zone, a preheating zone, a low-concentration gas purge zone, a desorption zone using heated gas circulation, a high-concentration gas purge zone, a precooling zone, a cooling zone, and then back to the adsorption zone, thereby simultaneously increasing the carbon dioxide capture rate and capture concentration, and realizing a highly energy-efficient carbon dioxide separation and capture device that can efficiently concentrate carbon dioxide with little energy consumption.

特許文献2に開示されたものは、ロータの回転方向に対し、吸着ゾーン、パージゾーン、再生ゾーン、冷却ゾーンに4分割された二酸化炭素分離回収ロータを用いており、二酸化炭素分離回収ロータの前段に除湿ロータを設けることによって、排ガスから除湿された二酸化炭素濃縮ガスを得ると共に、排ガス中の水溶性ガス(NO、SO等)の影響を受けににくく、省エネ性が高い。 The system disclosed in Patent Document 2 uses a carbon dioxide separation and capture rotor that is divided into four zones in the direction of rotation: an adsorption zone, a purge zone, a regeneration zone, and a cooling zone. By providing a dehumidification rotor in front of the carbon dioxide separation and capture rotor, it is possible to obtain a carbon dioxide-enriched gas that has been dehumidified from the exhaust gas, and it is less susceptible to the effects of water-soluble gases ( NOx , SOx , etc.) in the exhaust gas, resulting in high energy efficiency.

しかしながら、特許文献1や2に記載のものはゾーンを複数分割しているため、配管や周辺機器が多く複雑な構成となり、イニシャルコストが高く、小型化が難しい。さらに、ゼオライト系吸着材を担持した吸着ハニカムロータを用いる場合は、ゼオライトが二酸化炭素よりも水蒸気を優先的に吸着して、二酸化炭素能力が低下することから、予除湿のためのハニカムロータ除湿機による前処理により露点温度を-20~-60℃DP程度に除湿して導入する必要がある。 However, the systems described in Patent Documents 1 and 2 are divided into multiple zones, resulting in a complex configuration with many pipes and peripheral equipment, high initial costs, and difficulty in miniaturization. Furthermore, when using an adsorption honeycomb rotor carrying a zeolite-based adsorbent, the zeolite preferentially adsorbs water vapor over carbon dioxide, reducing the carbon dioxide capacity, and so it is necessary to dehumidify the dew point temperature to about -20 to -60°C DP through pre-treatment using a honeycomb rotor dehumidifier for pre-dehumidification before introduction.

一方、特許文献3のように、アミン系吸収剤を保持させた吸着ハニカムロータを用いたものは、処理入口および再生入口のエンタルピ差によって二酸化炭素を再生する。再生温度は50℃以下と低く省エネであり、再生用空気のエンタルピを高めることが望ましいので、前段の除湿機は不要であるが、再生入口側を加湿して相対湿度を高めるための湿度調整手段が必要となる。 On the other hand, as in Patent Document 3, a device using an adsorption honeycomb rotor holding an amine-based absorbent regenerates carbon dioxide by the enthalpy difference between the treatment inlet and the regeneration inlet. The regeneration temperature is low at 50°C or less, which is energy-efficient, and since it is desirable to increase the enthalpy of the regeneration air, a dehumidifier is not required in the upstream stage, but a humidity adjustment means is required to humidify the regeneration inlet side and increase the relative humidity.

目的ガスが水蒸気やVOC等の場合、それぞれデシカント除湿機やVOC濃縮装置があり、例えば特許文献4や5のようなものが知られている。これらに用いられる吸着ハニカムロータは、通常、ロータの回転方向に吸着ゾーン、再生ゾーン、パージゾーンに分割されており、被処理ガスを吸着ゾーンとパージゾーンに通し、吸着ゾーンを通過したガスは供給先へ供給または排気され、パージゾーンを通過したガスを加熱して再生ゾーンに通し、再生ゾーンを通過したガスを供給先へ供給または排気する構成にしてある。特許文献4のように、濃縮倍率を上げるために再生ゾーンを通過したガスの一部を再び再生入口側へ戻す方法が常套的に用いられる。 When the target gas is water vapor or VOC, there are desiccant dehumidifiers and VOC concentrators, respectively, and examples such as those in Patent Documents 4 and 5 are known. The adsorption honeycomb rotors used in these are usually divided into an adsorption zone, a regeneration zone, and a purge zone in the direction of rotation of the rotor, and the gas to be treated is passed through the adsorption zone and the purge zone, the gas that has passed through the adsorption zone is supplied to the destination or exhausted, the gas that has passed through the purge zone is heated and passed through the regeneration zone, and the gas that has passed through the regeneration zone is supplied to the destination or exhausted. As in Patent Document 4, a method of returning part of the gas that has passed through the regeneration zone to the regeneration inlet side to increase the concentration ratio is commonly used.

特許6498483号公報Patent No. 6498483 特願2018-175486号Patent Application No. 2018-175486 特許5877922号公報Patent Publication No. 5877922 特開2006-187698公報JP 2006-187698 A 特開2011-104542公報JP 2011-104542 A

「高炉ガスからの二酸化炭素回収用PSAシステムの開発CO2分離における操作条件の影響」、化学工学論文集、39巻 2013 5号 p.439-444"Development of a PSA system for carbon dioxide capture from blast furnace gas: Effects of operating conditions on CO2 separation", Chemical Engineering Journal, Vol. 39, No. 5, 2013, pp. 439-444

以上のように、吸着ハニカムロータを用いたガス除去・濃縮回収システムにおいて、ランニングコストを低減するために、特許文献1、2のように処理ゾーンと再生ゾーン以外に複数のゾーンに分割したり、特許文献3のように再生入口の相対湿度を高くするシステムが提案されているが、更なるコストの低減化が求められている。 As described above, in order to reduce running costs in gas removal/concentration/recovery systems using adsorption honeycomb rotors, systems have been proposed that divide the system into multiple zones other than the treatment zone and regeneration zone as in Patent Documents 1 and 2, and systems that increase the relative humidity at the regeneration inlet as in Patent Document 3, but further cost reductions are required.

この実情に鑑み、本発明は、特許文献4、5に記載のような従来の吸着ハニカムロータの構成とは異なり、かつ特許文献1、2に記載のものより簡素な装置構成で、種々のガス成分から構成される処理対象ガスから目的ガスを分離し、回収するため、目的ガスを選択吸着する吸着材が担持された吸着ハニカムロータを用いて温度差により吸脱着することを特徴とするガス分離回収装置を提供することを目的とする。 In view of this situation, the present invention aims to provide a gas separation and recovery device that is characterized by adsorption and desorption due to temperature difference using an adsorption honeycomb rotor carrying an adsorbent that selectively adsorbs the target gas, in order to separate and recover a target gas from a gas to be treated that is composed of various gas components, unlike the configuration of conventional adsorption honeycomb rotors described in Patent Documents 4 and 5 and with a simpler device configuration than those described in Patent Documents 1 and 2.

本発明は、吸着ハニカムロータを有し、前記吸着ハニカムロータを回転方向に、処理ゾーン、プレパージゾーン、再生ゾーンに分割し、前記処理ゾーンに処理対象ガスを通風し、目的ガスをハニカムに吸着させて除去し、前記吸着ハニカムロータの前記再生ゾーンを通過したガスを二路に分岐し、一部を前記プレパージゾーンに送り、前記プレパージゾーンを通過したガスを装置外に排気し、残りの一部を前記吸着ハニカムロータの再生ゾーンに戻して再生循環して目的ガスを濃縮回収することを特徴とする。この時、再生出口の温度は比較的高く、外気を混入せずに吸着ハニカムロータから脱着したガスのみを循環させることで昇温のための加熱エネルギーを抑えることが出来る。また、低温再生可能な吸着材を担持した吸着ハニカムロータを用いれば、再生用送風機による昇温のみで再生用ガスを加熱できるので、再生ヒータ等の加熱手段が不要になり、省エネルギーとなる。 The present invention is characterized in that it has an adsorption honeycomb rotor, which is divided into a treatment zone, a pre-purge zone, and a regeneration zone in the direction of rotation, the gas to be treated is ventilated through the treatment zone, the target gas is adsorbed to the honeycomb and removed, the gas that has passed through the regeneration zone of the adsorption honeycomb rotor is branched into two routes, one part is sent to the pre-purge zone, the gas that has passed through the pre-purge zone is exhausted outside the device, and the remaining part is returned to the regeneration zone of the adsorption honeycomb rotor for regeneration circulation to concentrate and recover the target gas. At this time, the temperature of the regeneration outlet is relatively high, and by circulating only the gas desorbed from the adsorption honeycomb rotor without mixing it with outside air, the heating energy for temperature increase can be reduced. In addition, if an adsorption honeycomb rotor carrying a low-temperature regenerative adsorbent is used, the regeneration gas can be heated only by raising the temperature with the regeneration blower, eliminating the need for heating means such as a regeneration heater, which saves energy.

本発明のガス分離回収装置は前述の如く構成したもので、簡素な装置構成であっても、種々のガス成分から構成される処理対象ガスから目的ガスを分離し、所定の濃度で濃縮回収することができる。 The gas separation and recovery device of the present invention is configured as described above, and even with a simple device configuration, it is possible to separate the target gas from the target gas to be treated, which is composed of various gas components, and concentrate and recover it at a predetermined concentration.

また、低温再生可能な吸着材を担持した吸着ハニカムロータを用いた場合、再生用ガスを昇温する加熱手段として再生用送風機による昇温を利用することで、再生ヒータ等の加熱手段が不要になり、再生エネルギーやランニングコストを低減できる。 In addition, when using an adsorption honeycomb rotor carrying a low-temperature regenerative adsorbent, the heating means for heating the regeneration gas can be increased by using the regeneration blower, eliminating the need for a heating means such as a regeneration heater, thereby reducing regeneration energy and running costs.

図1は本発明のガス分離回収装置の実施例1におけるフロー図である。FIG. 1 is a flow diagram of a gas separation and recovery apparatus according to a first embodiment of the present invention. 図2は本発明のガス分離回収装置の実施例2におけるフロー図である。FIG. 2 is a flow diagram of a gas separation and recovery apparatus according to a second embodiment of the present invention. 図3は本発明にかかるガス分離回収装置において、吸着ハニカムロータとしてアミン担持固体吸着剤を担持したロータを用いた場合の二酸化炭素分離回収試験結果である。FIG. 3 shows the results of a carbon dioxide separation and recovery test in the gas separation and recovery apparatus according to the present invention, in which a rotor carrying an amine-carrying solid adsorbent is used as the adsorption honeycomb rotor.

本発明の吸着ハニカムロータは、セラミック繊維やガラス繊維等の無機繊維紙、PET(ポリエチレンテレフタレート)やPP(ポリプロピレン)等の樹脂製の繊維紙、アルミ等の金属箔、樹脂シート等の不燃性のシートを、コルゲート(波付け)加工し、ロータ状に巻き付けまたは積層加工したもので、シリカゾルやアルミナゾル等の無機系バインダーや酢酸ビニル系やアクリル系等の有機系バインダーを使って、シリカゲルやゼオライト、高分子収着材、活性炭、アミン系吸収剤や炭酸塩系吸収剤を添着した多孔質固体吸着材等、目的ガスに応じた種々の吸着材を担持したロータである。必要に応じて、低温再生可能な吸着材を担持した吸着ハニカムロータとしてもよい。なお、本発明において、「低温再生」とは50℃以下の温度の再生用ガスで再生することとする。 The adsorption honeycomb rotor of the present invention is made by corrugating inorganic fiber paper such as ceramic fiber or glass fiber, resin fiber paper such as PET (polyethylene terephthalate) or PP (polypropylene), metal foil such as aluminum, or non-flammable sheet such as resin sheet, and wrapping or laminating it into a rotor shape. It is a rotor that supports various adsorbents according to the target gas, such as silica gel, zeolite, polymer adsorption material, activated carbon, porous solid adsorbent with amine absorbent or carbonate absorbent, using inorganic binders such as silica sol or alumina sol, or organic binders such as vinyl acetate or acrylic. If necessary, the adsorption honeycomb rotor may support an adsorbent that can be regenerated at low temperature. In the present invention, "low temperature regeneration" means regeneration with a regeneration gas at a temperature of 50°C or less.

本発明のガス分離回収装置において、目的ガスがVOCならば、数百ppmのVOCを数千ppmに濃縮する。目的ガスが水蒸気の場合は、処理対象ガスの水蒸気濃度は数パーセントで、濃縮側である再生出口側の水蒸気濃度も数パーセントオーダーである。二酸化炭素の濃縮は、排ガスから回収であれば、処理対象ガスの二酸化炭素濃度10%前後を濃縮後の濃度数十%にしたり、大気からの濃縮回収であれば、500ppm前後の二酸化炭素を数千ppmに濃縮する。このように、用途に応じて、吸着材の種類を選択し、本発明のガス分離回収装置の最適な運転方法や装置設計を選択する。目的ガスはこれらに限定されるものでなく、吸着材を適宜変更することにより、他の酸性ガスやアルカリ性ガス等にも適用できる。 In the gas separation and recovery device of the present invention, if the target gas is VOC, hundreds of ppm of VOC are concentrated to thousands of ppm. If the target gas is water vapor, the water vapor concentration of the gas to be treated is several percent, and the water vapor concentration at the regeneration outlet side, which is the concentrated side, is also on the order of several percent. When carbon dioxide is concentrated from exhaust gas, the carbon dioxide concentration of the gas to be treated, which is around 10%, is reduced to several tens of percent after concentration, and when carbon dioxide is concentrated and recovered from the atmosphere, carbon dioxide of around 500 ppm is concentrated to several thousands of ppm. In this way, the type of adsorbent is selected according to the application, and the optimal operating method and device design of the gas separation and recovery device of the present invention are selected. The target gas is not limited to these, and by appropriately changing the adsorbent, it can be applied to other acidic gases, alkaline gases, etc.

図1に本発明の実施例1を示す。吸着ハニカムロータ1はロータの回転方向に対し、処理ゾーン2、プレパージゾーン3、再生ゾーン4に分割されており、ギヤードモータ等(図示せず)で矢印の方向に回転し、連続的に処理対象ガスから目的ガスを分離除去し、濃縮回収する。吸着ハニカムロータ1には前述のよう目的ガスに応じた種々の吸着材が担持されている。 Figure 1 shows Example 1 of the present invention. The adsorption honeycomb rotor 1 is divided into a treatment zone 2, a pre-purge zone 3, and a regeneration zone 4 in the direction of rotation of the rotor, and rotates in the direction of the arrow by a geared motor or the like (not shown), continuously separating and removing the target gas from the gas to be treated, and concentrating and recovering it. As mentioned above, the adsorption honeycomb rotor 1 carries various adsorbents according to the target gas.

処理対象ガス(原ガス)はエアフィルターや脱硝装置等の前処理装置(図示せず)を通過し、冷水コイルや直膨コイル等の冷却手段5を通して冷却除湿され、処理ゾーン2に送られる。処理ゾーン2では目的ガスがハニカムに吸着されて分離除去され、ボルテックスブロワ等の処理用送風機7により供給先に供給または排気される。処理ゾーン2を通過するガスはダンパ等の風量調整装置6によってガス流量を調整することができる。 The gas to be treated (raw gas) passes through a pretreatment device (not shown) such as an air filter or a denitrification device, is cooled and dehumidified through cooling means 5 such as a cold water coil or a direct expansion coil, and is sent to treatment zone 2. In treatment zone 2, the target gas is adsorbed onto a honeycomb, separated and removed, and is supplied to the destination or exhausted by a treatment blower 7 such as a vortex blower. The gas flow rate of the gas passing through treatment zone 2 can be adjusted by an air flow adjustment device 6 such as a damper.

再生ゾーン4では、再生用送風機10によって再生循環路を濃縮された目的ガスが循環する。再生用ガスは蒸気コイルやヒータ等の加熱手段8によって加熱されて再生ゾーン4に導入され、ハニカムに吸着した目的ガスが脱着される。再生ゾーン4を出た脱着濃縮された目的ガスは再生循環路を循環することにより、さらに濃度が高まる。再生ゾーン4では、吸着ハニカムロータ1から脱着したガスのみが循環しており、外気の混入が無いので、目的ガスの濃度は高まりやすくなる。再生循環路内のガスは脱着した目的ガスで増量し、増量した容積分が風量調整装置9を通して回収あるいは供給先へ供給、または排気される。また、再生循環ガスの一部はプレパージゾーン3に送られ、排気EAとして装置外へ排出される。プレパージ出口の風量調整装置11により、排出されるガスの流量を調整することができる。プレパージゾーン3は、吸着ハニカムロータ1の回転によってハニカム空隙内の低濃度の目的ガスが処理ゾーン2から再生循環路に流入することを抑制する効果と、吸着ハニカムロータ1のプレヒート効果がある。 In the regeneration zone 4, the concentrated target gas is circulated through the regeneration circuit by the regeneration blower 10. The regeneration gas is heated by a heating means 8 such as a steam coil or heater and introduced into the regeneration zone 4, where the target gas adsorbed on the honeycomb is desorbed. The desorbed and concentrated target gas leaving the regeneration zone 4 is circulated through the regeneration circuit, where it is further concentrated. In the regeneration zone 4, only the gas desorbed from the adsorption honeycomb rotor 1 circulates, and since there is no mixing of outside air, the concentration of the target gas is likely to increase. The gas in the regeneration circuit is increased by the desorbed target gas, and the increased volume is recovered or supplied to the supply destination through the air flow regulator 9, or exhausted. In addition, a portion of the regeneration circulation gas is sent to the pre-purge zone 3 and exhausted outside the device as exhaust EA. The flow rate of the exhausted gas can be adjusted by the air flow regulator 11 at the pre-purge outlet. The pre-purge zone 3 has the effect of preventing low-concentration target gas in the honeycomb voids from flowing from the treatment zone 2 into the regeneration circuit due to the rotation of the adsorption honeycomb rotor 1, and also has the effect of preheating the adsorption honeycomb rotor 1.

目的ガスが所定の回収濃度以上になるまで、風量調整装置9を閉じて再生循環しておき、所定の濃度以上になってから風量調整装置9を開けて濃縮目的ガスを回収あるいは供給先へ供給、または排気するようにしてもよい。 The air flow rate regulator 9 may be closed to allow regeneration and circulation until the target gas reaches a predetermined recovery concentration or higher, at which point the air flow rate regulator 9 may be opened to recover the concentrated target gas, supply it to a destination, or exhaust it.

なお、処理ゾーン2を通過したガスの一部を分岐して、再び処理ゾーンに戻す構成にしてもよい。冷却手段5および加熱手段8には、それぞれヒートポンプの蒸発器(エバポレータ)および凝縮器(コンデンサ)を用いるようにしてもよい。風量調整装置6、9、11は図1に限るものでなく、適宜設けるようにし、増設するようにしてもよい。また、処理用送風機7や再生用送風機10は必要に応じて適切な場所に設けるようにし、増設するように構成してもよい。さらに、濃縮目的ガスの回収位置は図1に限定されるものでなく、再生ゾーン出口すぐや再生ゾーン入口から回収するようにしてもよい。プレパージ出口ガスは通常排気するが、回収率を高めるために回収したり、再び再生循環路に導入するようにしてもよい。 In addition, a part of the gas that has passed through the processing zone 2 may be branched off and returned to the processing zone. The cooling means 5 and heating means 8 may be a heat pump evaporator and condenser, respectively. The air volume adjustment devices 6, 9, and 11 are not limited to those shown in FIG. 1, and may be provided as appropriate or added. The processing blower 7 and regeneration blower 10 may be provided in appropriate locations as necessary, and may be added. Furthermore, the recovery location of the concentrated target gas is not limited to that shown in FIG. 1, and may be recovered immediately at the regeneration zone outlet or from the regeneration zone inlet. The pre-purge outlet gas is usually exhausted, but may be recovered to increase the recovery rate or introduced back into the regeneration circuit.

再生ゾーン4では、吸着ハニカムロータ1から脱着したガスのみが循環しており、外気の混入が無いので、外気混入によるガス温度の低下が無く、加熱エネルギーをより低減できる可能性がある。 In the regeneration zone 4, only the gas desorbed from the adsorption honeycomb rotor 1 circulates, and since there is no outside air mixed in, there is no drop in gas temperature due to outside air mixing in, and it is possible to further reduce heating energy.

図2に本発明の実施例2を示す。図2におけるガスの流れは基本的に図1と同様であるが、加熱手段8が無く、ヒータレスとして構成してあることに特徴がある。すなわち、吸着ハニカムロータ1は再生用送風機10による昇温のみで、再生用ガスを加熱するので、加熱のためのエネルギーが不要となり、省エネルギーかつランニングコストの低減につながる。 Figure 2 shows Example 2 of the present invention. The gas flow in Figure 2 is basically the same as in Figure 1, but it is characterized by the absence of heating means 8 and a heaterless configuration. In other words, the adsorption honeycomb rotor 1 heats the regeneration gas only by raising the temperature with the regeneration blower 10, so energy for heating is not required, leading to energy savings and reduced running costs.

吸着ハニカムロータ1には50℃以下の低温で目的ガスを脱着する低温再生可能な吸着材が担持されている。例えば、目的ガスが二酸化炭素の場合、アミン担持固体吸着材等が挙げられる。 The adsorption honeycomb rotor 1 is supported with a low-temperature regenerative adsorbent that desorbs the target gas at a low temperature of 50°C or less. For example, if the target gas is carbon dioxide, an amine-supported solid adsorbent can be used.

特許文献4、5に記載のように、通常、吸着ハニカムロータを用いる装置は、再生出口側に再生用送風機を設けてある。これは、再生入口側には加熱手段として再生ヒータ等を設けることも理由の一つであるが、処理ゾーン出口ガスを供給先へ供給する用途の場合、処理入口・処理出口に対して、再生入口・再生出口が負圧となり、再生側から処理側へ脱着した目的ガスのリーク量が低減するので、処理出口側における目的ガスの除去効率が良くなるためである。 As described in Patent Documents 4 and 5, devices using adsorption honeycomb rotors are usually provided with a regeneration blower on the regeneration outlet side. One reason for this is that a regeneration heater or the like is provided as a heating means on the regeneration inlet side, but also because, in applications where the treatment zone outlet gas is to be supplied to a supply destination, the regeneration inlet and regeneration outlet are under negative pressure relative to the treatment inlet and treatment outlet, reducing the amount of leakage of the target gas desorbed from the regeneration side to the treatment side, improving the efficiency of target gas removal on the treatment outlet side.

一方、本発明に係る実施例2の再生用送風機10は再生入口側、すなわち再生ゾーン4の入口すぐ手前に配置してある。再生出口ガスを回収又は供給先へ供給する用途の場合、再生入口・再生出口に対して、処理入口・処理出口が負圧になり、処理側から再生側へ目的ガス濃度の低い処理側のガスのリーク量が低減するため、濃縮性能が向上する。しかし、そのように圧力を制御しても、処理側からの持ち込みがあるため濃縮性能が落ちる可能性がある。そこで、ロータ回転方向に沿って、処理ゾーン2と再生ゾーン4の間にプレパージゾーン3を設けることで、処理側・再生側間のリークを低減するようにしてある。 On the other hand, the regeneration blower 10 in the second embodiment of the present invention is placed on the regeneration inlet side, that is, just before the inlet of the regeneration zone 4. In the case of applications in which the regeneration outlet gas is recovered or supplied to a destination, the processing inlet and processing outlet are under negative pressure relative to the regeneration inlet and regeneration outlet, and the amount of gas leaking from the processing side, which has a low target gas concentration, to the regeneration side is reduced, improving the concentration performance. However, even if the pressure is controlled in this way, there is a possibility that the concentration performance will decrease due to carry-over from the processing side. Therefore, a pre-purge zone 3 is provided between the processing zone 2 and the regeneration zone 4 along the rotor rotation direction to reduce leakage between the processing side and the regeneration side.

送風機による昇温は送風機の種類によって異なる。プラグファンやターボファン等の遠心送風機であれば3℃程度であるが、高静圧を発生することができる送風機(例えばボルテックスブロワのような渦流送風機)であれば、10℃以上昇温する。再生ゾーン4では、吸着ハニカムロータ1から脱着したガスのみが循環しており、外気の混入が無いので、外気混入によるガス温度の低下が無く、加熱エネルギーをより低減することができる。実施例2における発明では、加熱手段が不要であるヒータレスとして構成することで、再生ヒータや熱交換器が不要であり、装置を小型化できるので、イニシャルコストの低減や装置サイズのコンパクトな設計にもつながる。 The temperature rise caused by the blower varies depending on the type of blower. For centrifugal blowers such as plug fans and turbo fans, the temperature rise is about 3°C, but for blowers that can generate high static pressure (for example, vortex blowers such as vortex blowers), the temperature rise is 10°C or more. In the regeneration zone 4, only the gas desorbed from the adsorption honeycomb rotor 1 circulates, and there is no mixing of outside air, so there is no drop in gas temperature due to mixing of outside air, and heating energy can be further reduced. In the invention in Example 2, by configuring it as a heaterless system that does not require heating means, a regeneration heater or heat exchanger is not required and the device can be made smaller, which leads to reduced initial costs and a compact design of the device size.

目的ガスが二酸化炭素の場合、吸着ハニカムロータ1にはアミン担持固体吸着材を担持したロータを用いると、水蒸気の介在によって二酸化炭素の吸着性能は大きく低下しないので、前段に除湿装置が無くとも二酸化炭素を吸着・濃縮することができる。また、低温で再生することにより、熱による性能劣化が低減され、吸着ハニカムロータの長寿命化につながる効果がある。さらに、アミンの分解等による、アミン臭等の吸着ハニカムロータからの臭気発生の抑制も可能となる。同時に水分の吸脱着も行われるので、脱着側で水分が濃縮され、特許文献3のように湿度調整手段がなくとも循環ガスの湿度が増加するため、再生入口側のエンタルピを高めることが出来る。このため、二酸化炭素の濃縮濃度が高まりやすい装置構成となっている。 When the target gas is carbon dioxide, if a rotor carrying an amine-supported solid adsorbent is used for the adsorption honeycomb rotor 1, the carbon dioxide adsorption performance is not significantly reduced by the presence of water vapor, so carbon dioxide can be adsorbed and concentrated even without a dehumidifier in the upstream stage. In addition, regeneration at low temperatures reduces performance degradation due to heat, which has the effect of extending the life of the adsorption honeycomb rotor. Furthermore, it is possible to suppress the generation of odors from the adsorption honeycomb rotor, such as amine odors, due to the decomposition of amines. At the same time, moisture is adsorbed and desorbed, so moisture is concentrated on the desorption side, and the humidity of the circulating gas increases even without a humidity adjustment means as in Patent Document 3, so the enthalpy on the regeneration inlet side can be increased. This results in an equipment configuration that is easy to increase the concentration of concentrated carbon dioxide.

なお、処理ゾーン2を通過したガスの一部を分岐して、再び処理ゾーンに戻す構成にしてもよい。風量調整装置6、9、11は図2に限るものでなく、適宜設けるようにし、増設するようにしてもよい。また、処理用送風機7や再生用送風機10は必要に応じて適切な場所に設けるようにし、増設するように構成してもよい。さらに、濃縮目的ガスの回収位置は図2に限定されるものでなく、再生ゾーン出口すぐや再生ゾーン入口から回収するようにしてもよい。プレパージ出口ガスは通常排気するが、回収率を高めるために回収したり、再び再生循環路に導入するようにしてもよい。 A portion of the gas that has passed through the treatment zone 2 may be branched off and returned to the treatment zone. The air flow rate regulators 6, 9, and 11 are not limited to those shown in FIG. 2, and may be provided as appropriate, or additional units may be installed. The treatment blower 7 and regeneration blower 10 may be provided in appropriate locations as necessary, and additional units may be installed. Furthermore, the location where the concentrated target gas is recovered is not limited to that shown in FIG. 2, and it may be recovered immediately at the regeneration zone outlet or from the regeneration zone inlet. The pre-purge outlet gas is usually exhausted, but it may be recovered to increase the recovery rate, or it may be introduced back into the regeneration circuit.

図3は本発明にかかるガス分離回収装置において、吸着ハニカムロータとしてアミン担持固体吸着剤を担持したロータを用いた場合の二酸化炭素分離回収試験結果である。処理入口における温度は12℃、二酸化炭素濃度は10%、再生入口温度は45℃に設定した。風量調整装置9により回収流量を変えることにより、回収二酸化炭素濃度は20~30%と変化した。 Figure 3 shows the results of a carbon dioxide separation and recovery test when a rotor carrying an amine-supported solid adsorbent was used as the adsorption honeycomb rotor in the gas separation and recovery device of the present invention. The temperature at the treatment inlet was set to 12°C, the carbon dioxide concentration to 10%, and the regeneration inlet temperature to 45°C. By changing the recovery flow rate with the air flow rate adjustment device 9, the recovered carbon dioxide concentration was changed to 20-30%.

試験結果より試算した二酸化炭素分離回収エネルギーは1.5GJ/t-COであった。他の二酸化炭素分離回収における従来方式と比較すると、アミン液吸収法では2~3GJ/t-CO、特許文献2にかかる二酸化炭素分離回収装置では4GJ/t-COであり、本発明のガス分離回収装置による方法は省エネルギーでランニングコストが低減できる可能性がある。 The carbon dioxide separation and capture energy calculated from the test results was 1.5 GJ/t-CO 2. In comparison with other conventional methods for carbon dioxide separation and capture, the amine liquid absorption method requires 2 to 3 GJ/t-CO 2 , and the carbon dioxide separation and capture apparatus according to Patent Document 2 requires 4 GJ/t-CO 2 , so the method using the gas separation and capture apparatus of the present invention is energy-efficient and has the potential to reduce running costs.

なお、図3は試験結果の一例であり、本発明のガス分離回収装置は、吸着ハニカムロータの吸着材の種類や担持量、処理対象ガス中の目的ガス濃度、再生温度、回収流量などの種々の条件によって、任意に目的ガス回収濃度や回収率を変えることができる。 Note that Figure 3 is an example of a test result, and the gas separation and recovery device of the present invention can arbitrarily change the target gas recovery concentration and recovery rate depending on various conditions such as the type and amount of adsorbent in the adsorption honeycomb rotor, the target gas concentration in the gas to be treated, the regeneration temperature, and the recovery flow rate.

本発明のガス分離回収装置によれば、従来より簡素な装置構成で、処理対象ガスから目的ガスを分離除去し、所定の濃度で濃縮回収することができるので、装置を小型化でき、イニシャルコストの低減にもつながる。また、再生循環路には脱着したガスのみが循環しており、外気の混入が無く、外気混入による温度低下がないため、ランニングコストを低減できる可能性がある。さらに、低温再生可能な吸着材を担持した吸着ハニカムロータを用いれば、再生用送風機による昇温のみで再生用ガスを加熱できるので、再生ヒータ等の加熱手段が不要になり、省エネルギーとなる。 The gas separation and recovery device of the present invention can separate and remove the target gas from the gas to be treated and concentrate and recover it at a specified concentration with a simpler device configuration than conventional devices, which allows the device to be made more compact and reduces initial costs. In addition, since only the desorbed gas circulates in the regeneration circuit, there is no mixing of outside air and no temperature drop due to mixing of outside air, there is a possibility that running costs can be reduced. Furthermore, if an adsorption honeycomb rotor carrying an adsorbent that can be regenerated at low temperatures is used, the regeneration gas can be heated only by raising the temperature with the regeneration blower, eliminating the need for heating means such as a regeneration heater, resulting in energy savings.

1 吸着ハニカムロータ
2 処理ゾーン
3 プレパージゾーン
4 再生ゾーン
5 冷却手段
6、9、11 風量調整装置
7 処理用送風機
8 加熱手段
10 再生用送風機
REFERENCE SIGNS LIST 1 Adsorption honeycomb rotor 2 Treatment zone 3 Pre-purge zone 4 Regeneration zone 5 Cooling means 6, 9, 11 Air flow regulator 7 Treatment blower 8 Heating means 10 Regeneration blower

Claims (6)

吸着ハニカムロータを有し、前記吸着ハニカムロータを回転方向に、処理ゾーン、プレパージゾーン、再生ゾーンに分割し、前記処理ゾーンに処理対象ガスを通風し、目的ガスをハニカムに吸着させて除去し、前記吸着ハニカムロータの前記再生ゾーンを通過したガスを二路に分岐し、一部を前記プレパージゾーンに送り、前記プレパージゾーンを通過したガスを装置外に排気し、残りの一部を前記吸着ハニカムロータの再生ゾーンに戻して再生循環して脱着した目的ガスで増量した容積分を回収することを特徴とするガス分離回収装置。 A gas separation and recovery apparatus having an adsorption honeycomb rotor, the adsorption honeycomb rotor being divided in the direction of rotation into a treatment zone, a pre-purge zone, and a regeneration zone, a gas to be treated is passed through the treatment zone, and a target gas is adsorbed into the honeycomb and removed, the gas that has passed through the regeneration zone of the adsorption honeycomb rotor is branched into two routes, a portion of which is sent to the pre-purge zone, the gas that has passed through the pre-purge zone is exhausted to the outside of the apparatus, and the remaining portion is returned to the regeneration zone of the adsorption honeycomb rotor for regeneration and circulation , and the increased volume of the desorbed target gas is recovered. 前記吸着ハニカムロータは50℃以下の温度で低温再生可能な吸着材を担持したものであって、前記吸着ハニカムロータの前記再生ゾーンの前に再生用送風機を設け、再生用ガスの加熱には前記再生用送風機による昇温を利用したことを特徴とする請求項1に記載のガス分離回収装置。 The gas separation and recovery device described in claim 1, characterized in that the adsorption honeycomb rotor supports an adsorbent material that can be regenerated at low temperatures at temperatures below 50°C , a regeneration blower is provided in front of the regeneration zone of the adsorption honeycomb rotor, and the regeneration gas is heated by utilizing the temperature increase caused by the regeneration blower. 前記吸着ハニカムロータの前記再生ゾーンの前に再生用ガスの加熱手段としてさらに再生ヒータを設けたことを特徴とする請求項1または2いずれか一項に記載のガス分離回収装置。 The gas separation and recovery device according to any one of claims 1 and 2, characterized in that a regeneration heater is further provided in front of the regeneration zone of the adsorption honeycomb rotor as a means for heating the regeneration gas. 前記吸着ハニカムロータの前記処理ゾーンの前に冷却手段を設けたことを特徴とする請求項1から3のいずれか一項に記載のガス分離回収装置。 A gas separation and recovery device according to any one of claims 1 to 3, characterized in that a cooling means is provided before the treatment zone of the adsorption honeycomb rotor. 請求項4に記載の前記冷却手段は冷水コイルまたは直膨コイルのいずれか一方または両方を用いたことを特徴とするガス分離回収装置。 5. The gas separation and recovery apparatus according to claim 4, wherein said cooling means comprises either a cold water coil or a direct expansion coil, or both. 前記ハニカムロータの前記再生ゾーンの前に再生用ガスの加熱手段としてさらに再生ヒータを設け、前記冷却手段にヒートポンプの蒸発器を用い、前記再生ヒータにヒートポンプの凝縮器を用いたことを特徴とする請求項4に記載のガス分離回収装置。 The gas separation and recovery apparatus according to claim 4, characterized in that a regeneration heater is further provided in front of the regeneration zone of the honeycomb rotor as a heating means for the regeneration gas, a heat pump evaporator is used as the cooling means, and a heat pump condenser is used as the regeneration heater.
JP2020032596A 2020-02-28 2020-02-28 Gas Separation and Recovery Equipment Active JP7481859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032596A JP7481859B2 (en) 2020-02-28 2020-02-28 Gas Separation and Recovery Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032596A JP7481859B2 (en) 2020-02-28 2020-02-28 Gas Separation and Recovery Equipment

Publications (2)

Publication Number Publication Date
JP2021133323A JP2021133323A (en) 2021-09-13
JP7481859B2 true JP7481859B2 (en) 2024-05-13

Family

ID=77660024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032596A Active JP7481859B2 (en) 2020-02-28 2020-02-28 Gas Separation and Recovery Equipment

Country Status (1)

Country Link
JP (1) JP7481859B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023167260A1 (en) * 2022-03-04 2023-09-07
WO2023234216A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc adsorption rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164182A (en) 2003-12-05 2005-06-23 Shizuoka Seiki Co Ltd Dehumidifier
WO2006051800A1 (en) 2004-11-09 2006-05-18 Matsushita Electric Industrial Co., Ltd. Dehumidifier
JP2006187698A (en) 2005-01-04 2006-07-20 Seibu Giken Co Ltd Organic solvent gas treatment device
JP2007187386A (en) 2006-01-13 2007-07-26 Hitachi Plant Technologies Ltd Dehumidification air conditioning system
WO2019069607A1 (en) 2017-10-05 2019-04-11 株式会社西部技研 Carbon dioxide concentration device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618609B2 (en) * 1990-03-06 1994-03-16 公害健康被害補償予防協会 Ventilation gas purification equipment for road tunnels, etc.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164182A (en) 2003-12-05 2005-06-23 Shizuoka Seiki Co Ltd Dehumidifier
WO2006051800A1 (en) 2004-11-09 2006-05-18 Matsushita Electric Industrial Co., Ltd. Dehumidifier
JP2006187698A (en) 2005-01-04 2006-07-20 Seibu Giken Co Ltd Organic solvent gas treatment device
JP2007187386A (en) 2006-01-13 2007-07-26 Hitachi Plant Technologies Ltd Dehumidification air conditioning system
WO2019069607A1 (en) 2017-10-05 2019-04-11 株式会社西部技研 Carbon dioxide concentration device

Also Published As

Publication number Publication date
JP2021133323A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6383467B1 (en) Dehumidifying air conditioner
CN110290850B (en) Gas recovery and concentration device
US6500236B2 (en) Method for decarbonating waste gas and decarbonating apparatus
EP2433699B1 (en) Method for treating fluid and apparatus for treating fluid
JP7112081B2 (en) Carbon dioxide separation and recovery equipment
JP7481859B2 (en) Gas Separation and Recovery Equipment
JP4990443B2 (en) Dehumidifying device and dehumidifying method
JP4979522B2 (en) Organic solvent gas processing equipment
JP5686311B2 (en) Gas removal system
JP2009226319A (en) Gas concentration apparatus
JP2012011343A (en) Apparatus for generating low dew point air
JPH08141353A (en) Dehumidifier
JP4523146B2 (en) Organic solvent vapor processing equipment
JP2013132582A (en) Organic solvent-containing gas treatment system
JP5956216B2 (en) Adsorption processing equipment
WO2024072225A1 (en) A method and system for removing co 2 from a gas
JP2001149732A (en) Gas adsorption device
JPH0290921A (en) Concentrator for fluorocarbon-containing gas
JP7455566B2 (en) Gas removal concentrator
JP7132475B1 (en) Carbon dioxide gas separator/concentrator capable of supplying air conditioning
JP2005161128A (en) Organic gas treatment device
JP5823334B2 (en) Adsorption system
US20240350963A1 (en) Gas sorption system
JP2013184086A (en) Adsorption type dehumidifier
JPH11309330A (en) Gas concentration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7481859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150