JPH0226616A - Device for purifying ventilation gas for road tunnel - Google Patents

Device for purifying ventilation gas for road tunnel

Info

Publication number
JPH0226616A
JPH0226616A JP63175870A JP17587088A JPH0226616A JP H0226616 A JPH0226616 A JP H0226616A JP 63175870 A JP63175870 A JP 63175870A JP 17587088 A JP17587088 A JP 17587088A JP H0226616 A JPH0226616 A JP H0226616A
Authority
JP
Japan
Prior art keywords
gas
nox
regeneration
adsorbent
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63175870A
Other languages
Japanese (ja)
Other versions
JPH0578369B2 (en
Inventor
Takanobu Watanabe
渡辺 高延
Masayoshi Ichiki
正義 市来
Shigenori Onizuka
鬼塚 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP63175870A priority Critical patent/JPH0226616A/en
Publication of JPH0226616A publication Critical patent/JPH0226616A/en
Publication of JPH0578369B2 publication Critical patent/JPH0578369B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To effect denitrification efficiently by circulating regeneration gases containing NH3 through a NOX adsorbent regeneration zone, withdrawing a part thereof to vent it to atmosphere through a denitrification reactor, while ventilation gases containing NOX are dehumidified before the NOX is absorbed. CONSTITUTION:After ventilation gases containing NOX are sent to a dehumidifying device 1 to be dehumidified, they are led to a NOX adsorption device 2, where the NOX is adsorbed and removed to make the gases harmless. Using the ventilation gases thus made harmless, the dehumidifying agents of the dehumidifying device 1 are regenerated. On the other hand, NOX adsorbents are regenerated by the use of gases for regeneration into which NH3 has been injected from a NH3 supply device 3, wherein said gases are used by circulating them by means of a blower 4, while a part thereof is withdrawn through a withdraw line to be vented to atmosphere after being passed through a denitrification reactor 5.

Description

【発明の詳細な説明】 産業上の利用分野 各種道路トンネルすなわち山岳トンネル、海底トンネル
、地下道路、シェルタ−付道路等において、長大で自動
車交通量の多いところには、通行者の健康保護や視程の
改善を目的として相当量の換気を行なう必要がある。ま
た、比較的単距離のトンネルでも都市部あるいはその近
郊では、トンネルの出入口部に集中する一酸化炭素(C
O) 、窒素酸化物(NOx)等による大気汚染を防止
する方法として、トンネル内の空気を吸引排気(拡散)
する方法がとられている。
[Detailed Description of the Invention] Industrial Application Fields Various road tunnels, such as mountain tunnels, undersea tunnels, underground roads, roads with shelters, etc., are long and have a large volume of automobile traffic, and are used to protect the health of passersby and improve visibility. It is necessary to provide a considerable amount of ventilation to improve the In addition, even if the tunnel is relatively short, in urban areas or its suburbs, carbon monoxide (C
O) As a method to prevent air pollution caused by nitrogen oxides (NOx), etc., the air inside the tunnel is sucked and exhausted (diffusion).
A method is being adopted to do so.

しかながら、換気ガスをそのまま周囲に放散するのでは
地域的な環境改善には役立たず、特に自動車排ガスによ
る汚染が平面的に拡がっている都市部あるいはその近郊
では、高度の汚染地域を拡大させることになりかねない
。既設道路の公害対策として、トンネル化、シェルタ−
設置等を′図る場合も、前述の事情は全く同じである。
However, simply dispersing ventilation gas directly into the surrounding area will not help improve the local environment, and it may lead to the expansion of highly contaminated areas, especially in urban areas or their suburbs where pollution from automobile exhaust gas is spread over a flat area. It could become. Tunnels and shelters are used to prevent pollution from existing roads.
The above-mentioned circumstances are exactly the same in the case of installation, etc.

本発明は、このような各種道路トンネルの換気ガス中に
含有される低能度の窒素酸化物を効率よく除去し、無害
化する浄化装置に関するものである。
The present invention relates to a purification device that efficiently removes low-grade nitrogen oxides contained in ventilation gas from various road tunnels and renders them harmless.

従来の技術 一般に吸着装置の型式としては、大別して固定法方式と
移動床方式がある。
BACKGROUND OF THE INVENTION In general, adsorption apparatus types can be broadly classified into fixed type and moving bed type.

固定床方式では、吸着装置を複数基並列に設置し、吸着
剤が対象物質を所定量吸着し、吸着装置出口の対象物質
の濃度が限度に達した時点で装置を切り換え、吸着剤の
脱離再生を行なう。
In the fixed bed method, multiple adsorption devices are installed in parallel, the adsorbent adsorbs a predetermined amount of the target substance, and when the concentration of the target substance at the outlet of the adsorption device reaches the limit, the device is switched and the adsorbent is desorbed. Perform playback.

大量のガスを取扱う場合、ガス流通抵抗の関係で吸着剤
充填量が低く抑えられるので、装置の切り換え頻度が高
くなる。したがって、脱離再生に必要な時間にもよるが
、吸着装置の並列設置基数が多くなり、設備全体の規模
が非常に大きくなる。
When handling a large amount of gas, the adsorbent filling amount is kept low due to gas flow resistance, which increases the frequency of equipment switching. Therefore, depending on the time required for desorption and regeneration, the number of adsorption devices installed in parallel increases, and the scale of the entire facility becomes extremely large.

他方、移動床方式では、一般に吸着剤をガスと向流接触
させ、対象物質を多量に吸着した吸着剤を順次抜き出し
脱離再生する一方、新品又は脱離再生を行なった吸着剤
を順次充填する。
On the other hand, in the moving bed method, the adsorbent is generally brought into countercurrent contact with the gas, and the adsorbents that have adsorbed a large amount of the target substance are sequentially extracted and desorbed and regenerated, while new or desorbed and regenerated adsorbents are sequentially filled. .

したがって、吸着装置の連続運転が可能で、装置の切り
換えが不要なため、固定床方式と比べ設備規模が小さく
てすむ。
Therefore, the adsorption device can be operated continuously and there is no need to change the device, so the scale of the equipment can be smaller compared to the fixed bed method.

従来法として、(財)工業開発研究所が燃焼排ガス中の
NOx除去システムとして提案している移動床方式のN
Ox吸着装置の一例(特殊な吸着酸化触媒を使用する新
脱硝システムの開発に関する研究、(財)工業開発研究
所、昭和53年5月)を第4図に示す。
As a conventional method, the moving bed method proposed by the Institute of Industrial Development as a system for removing NOx from combustion exhaust gas is used.
An example of an Ox adsorption device (Research on the development of a new denitrification system using a special adsorption oxidation catalyst, Institute of Industrial Development, May 1978) is shown in Figure 4.

なお、この提案の装置は、NOx濃度が100pp−以
上である燃焼排ガスを対象としたもので、NOx濃度5
 ppm程度の道路トンネル換気ガスの処理とは、対象
を全く異にするため、これをこのまま適用するわけには
いかないが、基本的にはこのシステムが参考となる。
Note that this proposed device is intended for combustion exhaust gas with a NOx concentration of 100 pp- or more.
Since the target is completely different from the treatment of road tunnel ventilation gas of about ppm level, it cannot be applied as is, but basically this system can be used as a reference.

以下、第4図を基に上記NOx除去システムの説明をす
る。
The above NOx removal system will be explained below based on FIG. 4.

脱湿塔上部の脱湿部に脱湿剤としてシリカゲルを充填し
、ライン (41)から導入される排ガス(NOx+空
気十H20)中の水分をこれに吸着させる。吸湿した脱
湿剤は自重で下方へ移動し、再生部に入る。
The dehumidifying section at the top of the dehumidifying tower is filled with silica gel as a dehumidifying agent, and the water in the exhaust gas (NOx + air + H20) introduced from line (41) is adsorbed by it. The desiccant that has absorbed moisture moves downward under its own weight and enters the regeneration section.

再生部では、ライン(43)により導入される再生用乾
燥ガス(吸着部の出口ガスを利用する)と上記脱湿剤を
接触させ、吸着した水分を脱湿剤から脱離する。こうし
て脱湿剤は再生され、乾燥ガスと共に吹き上げられ、脱
湿塔上部へ再び循環する。
In the regeneration section, the desiccant is brought into contact with the regeneration drying gas (using the outlet gas of the adsorption section) introduced through the line (43), and the adsorbed moisture is desorbed from the desiccant. The dehumidifying agent is thus regenerated, blown up together with the drying gas, and circulated again to the upper part of the dehumidifying tower.

このように脱湿剤シリカゲルは吸着、脱離、再生を繰り
返し、系内を循環している。ライン(41)から導入さ
れる排ガスは脱・湿され、吸着塔上部の吸着部へ行く。
In this way, the desiccant silica gel repeats adsorption, desorption, and regeneration, and circulates within the system. The exhaust gas introduced from the line (41) is dehumidified and dehumidified and goes to the adsorption section at the top of the adsorption tower.

ライン(43)からの再生用乾燥ガスは脱湿塔の再生部
で水分を得、浄化ガス(空気+H20)として大気中へ
放出される。
The dry gas for regeneration from the line (43) obtains moisture in the regeneration section of the dehumidification tower and is released into the atmosphere as purified gas (air + H20).

一方、吸着塔上部の吸着部にはNOx吸着剤を充填し、
脱湿塔からの乾燥排ガス(空気+N0x)中のNOxを
これに吸着させる。NOxを吸着した吸着剤は自重で下
方へ移動し、脱離・再生部へ入る。脱離・再生部では、
吸着剤はヒーター(46)により400℃に加熱され、
後述する乾燥追出しガスと接触し、吸着しているNOx
を脱離することにより再生され、乾燥空気と共に吹き上
げられ、吸着塔上部へ再び循環される。
On the other hand, the adsorption section at the top of the adsorption tower is filled with NOx adsorbent,
NOx in the dry exhaust gas (air + NOx) from the dehumidification tower is adsorbed by this. The adsorbent that has adsorbed NOx moves downward under its own weight and enters the desorption/regeneration section. In the detachment/regeneration department,
The adsorbent is heated to 400°C by a heater (46),
NOx that comes into contact with and is adsorbed by the dry expelled gas described below
is regenerated by desorption, blown up together with dry air, and circulated again to the upper part of the adsorption tower.

ライン(44)から導入される乾燥追出しガスは、吸着
部の出口ガスの一部を利用したものであって、脱離・再
生部で吸着剤よりNOxを脱離させ、ライン(45)か
ら脱離ガスとして系外に取り出される。ライン(42)
から導入される乾燥排ガス(NOx+空気)は吸着部で
脱硝され、浄化脱湿空気となり、大部分はライン(43
)により脱湿剤再生用乾燥ガスとして脱湿塔の再生部に
導入され、残部は乾燥追出しガスとして吸着塔の脱離・
再生部へ導入される。
The dry expelled gas introduced from the line (44) uses a part of the outlet gas of the adsorption section, and NOx is desorbed from the adsorbent in the desorption/regeneration section, and NOx is desorbed from the line (45). It is taken out of the system as a released gas. Line (42)
Dry exhaust gas (NOx + air) introduced from the line (43
) is introduced into the regeneration section of the dehumidification tower as dry gas for regenerating the desiccant agent, and the remainder is used as dry expelled gas for desorption and desorption of the adsorption tower.
Introduced to the reproduction department.

ライン(45)から系外に取り出される脱離ガスには、
吸着剤より脱離したNOxが含まれるため、この脱離ガ
ス中のNOxをアルカリ水溶液等に吸収させる方法(湿
式吸収法)により、NOxを除去することが提案されて
いる。しかしながら、この湿式吸収法ではNOxが硝酸
塩や亜硝酸塩として吸収液に蓄積されるので、吸収液の
管理、後処理(廃液処理)等が必要であり、プロセスが
複雑となり、処理コストが高くなる。
The desorption gas taken out of the system from the line (45) includes:
Since the gas contains NOx desorbed from the adsorbent, it has been proposed to remove NOx by a method of absorbing the NOx in the desorbed gas into an alkaline aqueous solution or the like (wet absorption method). However, in this wet absorption method, NOx is accumulated in the absorption liquid as nitrates and nitrites, so management of the absorption liquid, post-treatment (waste liquid treatment), etc. are required, which complicates the process and increases processing costs.

本出願人らは、この脱離ガスを無害化して大気放出する
方法として、NOxを吸着した吸着剤をNH3を含む空
気で処理し再生する方法をすでに提案している(」特願
昭62−313777号参照)。この方法は、NOxの
脱離にNH3によるNOxの選択還元反応(脱硝反応)
を利用することにより、吸着剤に吸着したN。
The present applicants have already proposed a method for regenerating the adsorbent that has adsorbed NOx by treating it with air containing NH3 as a method for making this desorbed gas harmless and releasing it into the atmosphere. 313777). This method uses a selective reduction reaction (denitrification reaction) of NOx using NH3 to remove NOx.
N adsorbed on the adsorbent.

Xを無害なN2とN20にして脱離させて吸着剤を再生
するものである。また、NOxを吸着した吸着剤を昇温
のみにより脱離・再生させるには、前述のように400
℃まで吸着剤を加熱しなければならないが、NOx吸着
剤として脱硝触媒機能を有する銅塩を担持したゼオライ
トを用いると、吸着剤をNH3を含む空気(再生ガス)
と100〜300℃の低温で接触させることにより、こ
れを再生することができる(特願昭63−133446
号参照)。
The adsorbent is regenerated by desorbing X into harmless N2 and N20. In addition, in order to desorb and regenerate the adsorbent that has adsorbed NOx only by increasing the temperature, it is necessary to
The adsorbent must be heated to ℃, but if zeolite supporting a copper salt that has a denitrification catalytic function is used as the NOx adsorbent, the adsorbent can be heated to air containing NH3 (regeneration gas).
This can be regenerated by bringing it into contact with the liquid at a low temperature of 100 to 300°C (Japanese Patent Application No. 133446/1989).
(see issue).

発明が解決しようとする問題点 ところで、上記の如く、NOx吸着剤の再生に用いる再
生用ガスにNH3を注入する方法では、脱離ガスに、N
Ox吸着剤から脱離したNOxのうちNH3と反応しな
かった未反応NOXや過剰NH3が含まれる可能性があ
る。脱離ガスにNH3の過剰分が含まれないようにする
には、再生用ガスに注入するNH3の量を正確に制御す
る必要がある。逆に、注入するNH3量が不足すると、
NOx吸着剤の再生が不十分なものになるので、NOx
吸着剤の脱離・再生部の運転が極めて難しいものとなる
Problems to be Solved by the Invention By the way, as mentioned above, in the method of injecting NH3 into the regeneration gas used for regenerating the NOx adsorbent, N
There is a possibility that unreacted NOx that did not react with NH3 and excess NH3 are included in the NOx desorbed from the Ox adsorbent. In order to prevent excess NH3 from being contained in the desorption gas, it is necessary to accurately control the amount of NH3 injected into the regeneration gas. Conversely, if the amount of NH3 injected is insufficient,
Since the regeneration of the NOx adsorbent becomes insufficient, NOx
The operation of the adsorbent desorption/regeneration section becomes extremely difficult.

また、NOx吸着剤の再生を完全にするために、再生用
ガスへの注入NH3量を過剰ぎみにする場合には、脱離
ガスにNH3の過剰分が含まれるので、このガスをさら
に別の脱硝反応器に導き、NOxとNH3の脱硝反応あ
るいはNH3の酸化分解反応により無害化する必要があ
る。
In addition, in order to completely regenerate the NOx adsorbent, if the amount of NH3 injected into the regeneration gas is too large, the desorption gas will contain an excess of NH3, so this gas may be further It is necessary to introduce it into a denitrification reactor and make it harmless by a denitrification reaction between NOx and NH3 or an oxidative decomposition reaction of NH3.

しかし、再生用ガスを循環使用しない場合は、再生用ガ
スを循環使用して一部を抜き出す場合と比べ、処理する
ガス量が多く、上記脱硝反応器の規模が大きくなるうら
みがある。
However, when the regeneration gas is not recycled, the amount of gas to be processed is larger than when the regeneration gas is recycled and a portion is extracted, and the scale of the denitrification reactor is likely to increase.

上述した(財)工業開発研究所のNoxllA着システ
ムに用いられている移動床式方式の脱湿・NOx吸着装
置では、大量のガスを扱う場合、ガスの流通抵抗を低く
するために流路断面積を大きくする必要がある。一方、
吸着効率を高めるためには流路断面方向に均一に吸着剤
粒子を抜き出し、充填する必要があるが、このことは非
常に困難である。また、吸着剤の移動に重力を利用し、
吸着塔の下部から上部へ乾燥空気と共に吹き上げる方法
では、吸着剤自身の摩耗、割れ、粉化が問題となる。さ
らに、塔やリフトバイブ内面の摩耗も問題となる上に、
塔の構造が複雑となり、装置の運転も容易でない。
In the moving bed type dehumidification/NOx adsorption equipment used in the NoxllA deposition system of the Industrial Development Institute mentioned above, when handling a large amount of gas, the flow path must be cut off to lower the gas flow resistance. It is necessary to increase the area. on the other hand,
In order to increase adsorption efficiency, it is necessary to extract and fill adsorbent particles uniformly in the cross-sectional direction of the channel, but this is extremely difficult. In addition, gravity is used to move the adsorbent,
In the method of blowing dry air from the bottom of the adsorption tower to the top, problems arise such as wear, cracking, and powdering of the adsorbent itself. Furthermore, wear on the inner surface of the tower and lift vibe is a problem, and
The structure of the tower is complicated and the operation of the equipment is not easy.

問題点を解決するための手段 本発明による道路トンネル換気ガスの浄化装置は、NO
x含有換気ガスを脱湿しかつ浄化後の換気ガスにより脱
湿剤を再生する吸着式脱湿装置と、脱湿後の換気ガスを
脱硝するNOx吸着装置とを備えた道路トンネル換気ガ
スの浄化装置において、NOx吸着剤の再生ゾーンを通
して、NH3を含む再生用ガスの大部分を循環させるガ
ス循環ラインと、同循環ラインから再生用ガスの一部を
抜き出し、脱硝反応器を通した後、大気へ放出するガス
抜き出しラインとを設けたことを特徴とする。
Means for Solving the Problems The road tunnel ventilation gas purification device according to the present invention has NO.
Road tunnel ventilation gas purification equipped with an adsorption dehumidifier that dehumidifies x-containing ventilation gas and regenerates a dehumidifier using the purified ventilation gas, and a NOx adsorption device that denitrates the dehumidified ventilation gas In the equipment, there is a gas circulation line that circulates most of the regeneration gas containing NH3 through the regeneration zone of the NOx adsorbent, and a part of the regeneration gas is extracted from the same circulation line and passed through the denitrification reactor, and then released into the atmosphere. It is characterized by being provided with a gas extraction line for releasing gas to.

吸着式脱湿装置およびNOx吸着装置としては、脱湿剤
およびNOx吸着剤をガス流れに対し直角方向に移動さ
せる回転式吸着装置を用いるのが好ましい。この装置に
よって脱湿剤およびNOx吸着剤の抜き出し、再生、充
填を連続的に行なうことができる。
As the adsorption type dehumidification device and the NOx adsorption device, it is preferable to use a rotary adsorption device in which the dehumidifier and the NOx adsorbent are moved in a direction perpendicular to the gas flow. This device allows continuous extraction, regeneration, and filling of the desiccant and NOx adsorbent.

脱湿剤としては、好ましくはハニカム構造のシリカゲル
を使用する。
As a desiccant agent, preferably honeycomb structured silica gel is used.

NOx吸着剤としては、好ましくは、ハニカム構造の・
ゼオライトに銅塩を担持したものを使用する。
As the NOx adsorbent, it is preferable to use a honeycomb structure.
Use zeolite with copper salt supported on it.

実  施  例 本発明を適用した浄化装置の一例を第1図の全体フロー
により説明する。
EXAMPLE An example of a purification apparatus to which the present invention is applied will be explained with reference to the overall flowchart of FIG.

NOxを含有する換気ガスを脱湿装置(1)に導き、脱
湿剤により換気ガス中の水分を吸着除去して、乾燥した
換気ガスを得る。ついでこのガスをNOx吸着装置(2
)へ導き、NOxを吸着除去し無害化する。
The ventilation gas containing NOx is led to a dehumidifier (1), and moisture in the ventilation gas is adsorbed and removed by a dehumidifier to obtain dry ventilation gas. This gas is then passed through a NOx adsorption device (2
) to adsorb and remove NOx, making it harmless.

この無害化かつ乾燥した換気ガスにより脱湿装置(1)
の脱湿剤を再生する。一方、NOx吸着装置(2)でN
Oxを吸着した吸着剤を、NH3を含む再生用ガスによ
り再生する。
Dehumidifier (1) uses this harmless and dry ventilation gas.
Regenerate the dehumidifier. On the other hand, the NOx adsorption device (2)
The adsorbent that has adsorbed Ox is regenerated with a regeneration gas containing NH3.

本発明の最大の特徴は、NOx吸着剤の再生に、NH3
供給装置(3)からNH3を注入した再生用ガスの大部
分を、ガス循環ラインに設けられたブロアー(4)で循
環使用すると共に、再生用ガスの一部をガス抜き出しラ
インによってパージガスとして抜き出し、このパージガ
スを脱硝反応器(5)を通した後、大気放出するところ
にある。
The greatest feature of the present invention is that NH3
Most of the regeneration gas into which NH3 is injected from the supply device (3) is circulated and used by the blower (4) provided in the gas circulation line, and a part of the regeneration gas is extracted as purge gas through the gas extraction line. This purge gas is passed through a denitrification reactor (5) and then released into the atmosphere.

NOx吸着剤をNH,を含むガスで再生する場合、吸着
剤中の吸着NOxとNH3を効率よく反応させるため、
再生前に吸着剤と再生用循環ガスを加熱器(8)で適当
な温度(100〜300℃)に加熱することが好ましい
。また、再生用ガスを循環使用することは省エネルギー
の観点から好ましい。さらに、過剰のNH,を含む再生
用ガスの循環によって、吸着剤中の吸着NOxをより完
全に還元除去でき、吸着剤のより完全な再生が達成され
る。
When regenerating a NOx adsorbent with a gas containing NH, in order to efficiently react the adsorbed NOx and NH3 in the adsorbent,
It is preferable to heat the adsorbent and the recycling gas for regeneration to an appropriate temperature (100 to 300°C) using a heater (8) before regeneration. Further, it is preferable to recycle the regeneration gas from the viewpoint of energy saving. Furthermore, by circulating the regeneration gas containing excess NH, adsorbed NOx in the adsorbent can be more completely reduced and removed, and more complete regeneration of the adsorbent can be achieved.

従来法によるNOx吸着剤の再生では、低能度のNH3
を正確に再生用ガス中に混入分散させ、しかもその量は
吸着剤中の吸着NOxに対応した量、すなわち還元除去
に必要かつ十分な量でなければならない。この量は吸着
剤中の吸着NOx量を正確に計測した上でないと制御不
可能であるが、固体である吸着剤中のNOxを連続的に
計測することは実際問題として不可能であるみしたがっ
て従来法によるNOx吸着剤の再生は、現実的には過剰
NH3のリーク、または注入N・H3量不足による不完
全な吸着剤の再生のいずれかの結果になる可能性が大き
い。
When regenerating NOx adsorbents using conventional methods, low-efficiency NH3
must be accurately mixed and dispersed in the regeneration gas, and the amount must correspond to the amount of NOx adsorbed in the adsorbent, that is, an amount necessary and sufficient for reduction and removal. This amount cannot be controlled unless the amount of NOx adsorbed in the adsorbent is accurately measured, but as a practical matter it is impossible to continuously measure NOx in the solid adsorbent. In reality, regeneration of the NOx adsorbent by conventional methods is highly likely to result in either leakage of excess NH3 or incomplete regeneration of the adsorbent due to insufficient amount of injected N·H3.

それに対し、本発明による装置は、NOx吸着剤の再生
ゾーンに過剰なNH3を存在せしめることができ、その
結果同再生ゾーンへの十分な量のNH,の供給により、
NOx吸着剤の完全な再生が可能となり、NH3注大の
精密な制御も必要でないことを特徴とする真に実用的で
経済的な装置である。
In contrast, the device according to the invention allows an excess of NH3 to be present in the regeneration zone of the NOx adsorbent, so that by supplying a sufficient amount of NH to the same regeneration zone,
This is a truly practical and economical device that enables complete regeneration of the NOx adsorbent and does not require precise control of NH3 injection.

再生用循環ガスの一部はパージガスとして抜き出される
が、このパージガス中に含まれる過剰なNH,ないしは
吸着剤から未反応のまま脱離してくるNOxは、加熱器
(7)の後流に設置される脱硝反応器(5)によって無
害化される。
A part of the circulating gas for regeneration is extracted as purge gas, but excess NH contained in this purge gas or NOx released unreacted from the adsorbent is removed by a gas generator installed downstream of the heater (7). It is rendered harmless by the denitration reactor (5).

脱硝反応器(5)で処理されるパージガス量は非常に少
ないため、脱硝反応器(5)は小型なものでよく、パー
ジガスは効果的かつ安価に無害化される。
Since the amount of purge gas treated in the denitrification reactor (5) is very small, the denitrification reactor (5) may be small-sized, and the purge gas can be effectively and inexpensively rendered harmless.

なお、再生用ガスを循環し、その一部をパージガスとし
て抜き出すことは、後に述べるように、回転式吸着装置
を採用するためにも必要なことである。
Note that circulating the regeneration gas and extracting a portion of it as purge gas is also necessary in order to employ a rotary adsorption device, as will be described later.

ところで、第1図のフローシートにおいて、NOx吸着
除去後の換気ガスに再生用循環ガスがリークすると、設
備の浄化率が低下する。60%以上の浄化率を目標とす
る場合、上記再生用循環ガスの浄化換気ガスへのリーク
は大きな問題となる。
By the way, in the flow sheet of FIG. 1, if the regeneration circulation gas leaks into the ventilation gas after NOx adsorption and removal, the purification rate of the equipment will decrease. When aiming at a purification rate of 60% or more, leakage of the regeneration circulation gas to the purification ventilation gas becomes a major problem.

NOx吸着装置(2)は回転式吸着装置である。The NOx adsorption device (2) is a rotary adsorption device.

この装置では、NOx吸着剤ブロック(吸着剤ローター
)と、換気ガスや再生用ガスノズルの間に摺動部が存在
し、ここを完全にシールすることは困難である。そこで
、前記ガスリークによる浄化率の低下防止のため、再生
部(冷却、再生、予熱)の操作圧力をNOx吸着部より
低くする必要がある。この場合NOx吸着部から再生部
へガスがリークする。このリーク分に相当するガスは、
再生用ガスの循環ラインから抜き出す必要がある。また
、NOx吸着剤はN。
In this device, there is a sliding part between the NOx adsorbent block (adsorbent rotor) and the ventilation gas or regeneration gas nozzle, and it is difficult to completely seal this part. Therefore, in order to prevent the purification rate from decreasing due to the gas leak, the operating pressure of the regeneration section (cooling, regeneration, preheating) needs to be lower than that of the NOx adsorption section. In this case, gas leaks from the NOx adsorption section to the regeneration section. The gas equivalent to this leak is
It is necessary to extract it from the regeneration gas circulation line. In addition, the NOx adsorbent is N.

Xと同時に、少量の湿分を吸着し、これが再生部で脱離
し、再生用循環ガス中に蓄積される。
At the same time as X, a small amount of moisture is adsorbed, which is desorbed in the regeneration section and accumulated in the regeneration circulating gas.

再生用循環ガス中の湿分を所定濃度に抑えるには、ガス
循環ラインに所定量の乾燥空気を供給し、かつ湿分を含
む循環ガスを同ラインから抜き出す必要がある。
In order to suppress the moisture content in the recycling gas for regeneration to a predetermined concentration, it is necessary to supply a predetermined amount of dry air to the gas circulation line and to extract the circulating gas containing moisture from the line.

すなわち、本発明になる装置では、回転式N0x吸着装
置(2)の上記摺動部からのリークガスを、再生用循環
ガスへの乾燥空気の主な供給源とする配慮がなされてい
る。
That is, in the device according to the present invention, consideration is given to using the leak gas from the sliding portion of the rotary NOx adsorption device (2) as the main source of supply of dry air to the regeneration circulating gas.

次に、脱湿および脱硝の吸着装置として、回転式吸着装
置を用いた浄化装置について説明する。
Next, a purification device using a rotary adsorption device as an adsorption device for dehumidification and denitrification will be described.

(財)工業開発研究所により提案された方法で採用され
た吸着装置は、第4図を基に上述した如く、移動床方式
のうち、脱湿剤およびNOx吸着剤を塔内の上部から下
部へ自重で移動させながらガスと向流接触させて、吸着
、脱離・再生を行なわせ、再生後の脱湿剤およびNOx
吸着剤を乾燥空気と共に吹き上げて、塔上部へ循環させ
るものである。この装置では、脱湿剤およびNOx吸着
剤の摩耗、粉化に加えて、塔やリフトバイブ内面の摩耗
が問題となる。脱湿剤およびNOx吸着剤の摩耗、粉化
はこれらの寿命(使用可能な期間)を短かくし、その更
新量が増えるだけでなく、移動床内のガス流通抵抗(圧
損)を増加させる。また、塔やソフトバイブ内面には高
価な耐摩耗材料を使用しなければならない。さらに、塔
の構造が複雑であり、装置の運転も容易でない点を考慮
すると、この装置は実用的な装置にはなり得ないもので
ある。
The adsorption device adopted in the method proposed by the Industrial Development Research Institute uses a moving bed method, as described above based on Figure 4, to move the dehumidifier and NOx adsorbent from the upper part of the tower to the lower part. The dehumidifier and NOx are transferred under their own weight and brought into countercurrent contact with the gas for adsorption, desorption, and regeneration.
The adsorbent is blown up together with dry air and circulated to the top of the tower. In this device, in addition to abrasion and powdering of the dehumidifier and NOx adsorbent, abrasion of the inner surface of the tower and lift vibe is a problem. Wear and pulverization of the dehumidifier and NOx adsorbent not only shorten their service life (usable period) and increase the amount of renewal thereof, but also increase gas flow resistance (pressure drop) within the moving bed. Additionally, expensive wear-resistant materials must be used for the inner surface of the tower and soft vibrator. Furthermore, considering that the structure of the tower is complicated and the operation of the device is not easy, this device cannot be used as a practical device.

これに対し、この実施例では、脱湿剤およびNOx吸着
剤をガス流れに対して直角方向に移動させることにより
、これらの抜き出し、再生、充填を連続的に行なえる回
転式吸着装置が使用されている。この装置は、従来法の
上記装置と同等の性能をより簡単な方式により達成しよ
うとするもので、ガス流通抵抗が少なく、装置の構造が
簡単であるため、真に実用的な装置である。
In contrast, in this embodiment, a rotary adsorption device is used that can continuously extract, regenerate, and fill the dehumidifier and NOx adsorbent by moving them in a direction perpendicular to the gas flow. ing. This device attempts to achieve the same performance as the conventional device described above using a simpler method, and is a truly practical device because of its low gas flow resistance and simple structure.

まず、第2図を参照して、回転式脱湿装置の一例につい
て説明する。本発明の浄化装置で用いる脱湿装置(1)
は、浄化すべき換気ガスを脱湿処理し、脱硝後の無害化
された乾燥ガスにより脱湿剤を再生する。すなわち、浄
化すべき換気ガスとほぼ同じガス量の再生用乾燥ガスを
用いて脱湿剤を再生する。そのために、シリカゲルを脱
湿剤(水分吸着剤)とする板状吸着剤を適当なスペーサ
ーを介して重ねたり、平板と波板吸着剤を交互に重ねた
り、一体型のハニカム構造体とした脱湿ローターを用い
、ローター内を2分割するようなガス流路を作る。そし
てこの一方に浄化すべき換気ガスを流し、他方に再生用
乾燥ガスを流し、ローターを回転させる。
First, an example of a rotary dehumidifier will be described with reference to FIG. 2. Dehumidification device (1) used in the purification device of the present invention
The system dehumidifies the ventilation gas to be purified, and regenerates the dehumidifier using the denitrified dry gas. That is, the desiccant is regenerated using the drying gas for regeneration which is approximately the same amount as the ventilation gas to be purified. For this purpose, plate-shaped adsorbents using silica gel as a desiccant agent (moisture adsorbent) are layered with appropriate spacers interposed, flat plates and corrugated plate adsorbents are stacked alternately, or an integrated honeycomb structure is used for dehumidification. Using a wet rotor, create a gas flow path that divides the inside of the rotor into two. Ventilation gas to be purified is then flowed through one of these, dry gas for regeneration is flowed through the other, and the rotor is rotated.

これによって、連続的な脱湿処理ができる。This allows continuous dehumidification treatment.

次に、第3図を参照して、回転式NOx吸着装置の一例
について説明する。本発明の浄化装置で用いるNOx吸
着装置(2)は、脱湿した換気ガス中のNOxを吸着除
去し、無害化した乾燥換気ガスを得ると同時に、NH3
を含む再生用循環ガスによりNOx吸着剤を再生するも
のである。そのために、ゼオライトに銅塩を担持した吸
着剤から成る板状吸着剤を適当なスペーサーを介して重
ねたり、平板と波板吸着剤を交互に重ねたり、一体型の
ハニカム構造体とした脱NOxローターを用い、ロータ
ー内を4つに分割するようなガス流路を作る。そして脱
湿後の浄化すべき換気ガスを吸着ゾーンに流し、NH3
を含む再生用循環ガスを冷却ゾーン、再生ゾーン、予熱
ゾーンの順に流し、ローターを回転させる。これによっ
て、連続的なNOxの吸着除去ができる。
Next, an example of a rotary NOx adsorption device will be described with reference to FIG. The NOx adsorption device (2) used in the purification device of the present invention adsorbs and removes NOx in dehumidified ventilation gas, obtains harmless dry ventilation gas, and at the same time
The NOx adsorbent is regenerated using a regeneration circulating gas containing the following. To this end, we have stacked plate-like adsorbents made of zeolite with copper salts supported on them with appropriate spacers in between, alternately stacked flat and corrugated adsorbents, and integrated honeycomb structures to remove NOx. Using a rotor, create a gas flow path that divides the inside of the rotor into four. Then, the ventilation gas to be purified after dehumidification is passed through the adsorption zone, and the NH3
The regeneration circulating gas containing the gas is passed through the cooling zone, regeneration zone, and preheating zone in this order, and the rotor is rotated. This allows continuous adsorption and removal of NOx.

発明の効果 本発明の換気ガス浄化装置によれば、NOx吸着剤の再
生ゾーンを通して、NH3を含む再生用ガスの大部分を
循環させるガス循環ラインと、同循環ラインから再生用
ガスの一部を抜き出し、脱硝反応器を通した後、大気へ
放出するガス抜き出しラインとが設けられているので、
NOx吸着剤の再生ゾーンに過剰なNH3を存在せしめ
ることができ、その結果同再生ゾーンへの十分な量のN
H3の供給により、NOx吸着剤の完全な再生が可能と
なり、NH3注入の精密な制御も必要でない。
Effects of the Invention According to the ventilation gas purification device of the present invention, there is a gas circulation line that circulates most of the regeneration gas containing NH3 through the NOx adsorbent regeneration zone, and a gas circulation line that circulates a part of the regeneration gas from the same circulation line. A gas extraction line is installed to extract the gas, pass it through the denitrification reactor, and then release it to the atmosphere.
Excess NH3 can be present in the regeneration zone of the NOx adsorbent, resulting in a sufficient amount of N to the regeneration zone.
The supply of H3 allows complete regeneration of the NOx adsorbent and also does not require precise control of NH3 injection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すフローシート、第2図は
回転式脱湿装置を示す斜視図、第3図は回転式NOx吸
着装置を示す斜視図、第4図は従来のNOxOx除去法
を示すフローシートである。 以上
Figure 1 is a flow sheet showing an embodiment of the present invention, Figure 2 is a perspective view of a rotary dehumidifier, Figure 3 is a perspective view of a rotary NOx adsorption device, and Figure 4 is a conventional NOx removal system. This is a flow sheet showing the law. that's all

Claims (1)

【特許請求の範囲】[Claims] NOx含有換気ガスを脱湿しかつ浄化後の換気ガスによ
り脱湿剤を再生する吸着式脱湿装置と、脱湿後の換気ガ
スを脱硝するNOx吸着装置とを備えた道路トンネル換
気ガスの浄化装置において、NOx吸着剤の再生ゾーン
を通して、NH_3を含む再生用ガスの大部分を循環さ
せるガス循環ラインと、同循環ラインから再生用ガスの
一部を抜き出し、脱硝反応器を通した後、大気へ放出す
るガス抜き出しラインとを設けたことを特徴とする装置
Road tunnel ventilation gas purification comprising an adsorption dehumidifier that dehumidifies NOx-containing ventilation gas and regenerates a dehumidifier using the purified ventilation gas, and a NOx adsorption device that denitrates the dehumidified ventilation gas. In the equipment, there is a gas circulation line that circulates most of the regeneration gas containing NH_3 through the regeneration zone of the NOx adsorbent, and a part of the regeneration gas is extracted from the same circulation line, passed through the denitrification reactor, and then released into the atmosphere. A device characterized in that it is provided with a gas extraction line for releasing gas to.
JP63175870A 1988-07-14 1988-07-14 Device for purifying ventilation gas for road tunnel Granted JPH0226616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175870A JPH0226616A (en) 1988-07-14 1988-07-14 Device for purifying ventilation gas for road tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175870A JPH0226616A (en) 1988-07-14 1988-07-14 Device for purifying ventilation gas for road tunnel

Publications (2)

Publication Number Publication Date
JPH0226616A true JPH0226616A (en) 1990-01-29
JPH0578369B2 JPH0578369B2 (en) 1993-10-28

Family

ID=16003648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175870A Granted JPH0226616A (en) 1988-07-14 1988-07-14 Device for purifying ventilation gas for road tunnel

Country Status (1)

Country Link
JP (1) JPH0226616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258324A (en) * 1990-03-06 1991-11-18 Kogai Kenko Higai Hoshiyou Yobou Kyokai Device for cleaning ventilating gas of road tunnel or the like
WO1998044237A1 (en) * 1997-03-28 1998-10-08 Vanco Dimitrov System for absorption of the exhaust gases in a tunnel for road traffic
JP2004290903A (en) * 2003-03-28 2004-10-21 Nishimatsu Constr Co Ltd Apparatus and method for removing nitrogen oxide
JP2006021101A (en) * 2004-07-07 2006-01-26 Japan Pionics Co Ltd Gas treating method and gas treatment apparatus
CN110159334A (en) * 2019-06-17 2019-08-23 西南交通大学 Tunnel front waste air recycling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258324A (en) * 1990-03-06 1991-11-18 Kogai Kenko Higai Hoshiyou Yobou Kyokai Device for cleaning ventilating gas of road tunnel or the like
WO1998044237A1 (en) * 1997-03-28 1998-10-08 Vanco Dimitrov System for absorption of the exhaust gases in a tunnel for road traffic
JP2004290903A (en) * 2003-03-28 2004-10-21 Nishimatsu Constr Co Ltd Apparatus and method for removing nitrogen oxide
JP4614629B2 (en) * 2003-03-28 2011-01-19 西松建設株式会社 Nitrogen oxide removal equipment
JP2006021101A (en) * 2004-07-07 2006-01-26 Japan Pionics Co Ltd Gas treating method and gas treatment apparatus
JP4722420B2 (en) * 2004-07-07 2011-07-13 日本パイオニクス株式会社 Gas processing method
CN110159334A (en) * 2019-06-17 2019-08-23 西南交通大学 Tunnel front waste air recycling device
CN110159334B (en) * 2019-06-17 2024-03-22 西南交通大学 Tunnel working face dirty wind cyclic utilization device

Also Published As

Publication number Publication date
JPH0578369B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
US5158582A (en) Method of removing NOx by adsorption, NOx adsorbent and apparatus for purifying NOx-containing gas
JP2557307B2 (en) NOx adsorption removal method
KR0137606B1 (en) Nox absorption and removal apparatus
JP2673300B2 (en) Low concentration gas sorption machine
CN106345226B (en) Rotary desulfurization and denitrification reactor and system
CN102266702A (en) Method for capturing ammonia in industrial waste gas and equipment and application thereof
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JPH01155934A (en) Method for purifying ventilation gas in road tunnel
KR100941399B1 (en) Apparatus and method for processing exhaust gas
JPH0226616A (en) Device for purifying ventilation gas for road tunnel
JPH03258324A (en) Device for cleaning ventilating gas of road tunnel or the like
GB2267047A (en) Purifying NOx-containing gas
RU2274485C2 (en) Method of cleaning air to remove carbon monoxide and filter module for removing carbon monoxide from air
JP2007000733A (en) Treatment method and treatment apparatus of gas
JPH05237342A (en) Purifier of gas
JP3197072B2 (en) Regeneration method of ammonia adsorbent
JPH05337333A (en) Simultaneous removal of low-concentration nox and sox
JP3014725B2 (en) Exhaust gas purification method and apparatus
JP2743044B2 (en) Simultaneous adsorption removal agent for low concentration NOx and SOx, and method for simultaneous removal of these
JPH0616813B2 (en) Ventilation gas purification method in road tunnel
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JPH04250822A (en) Removing method for nitrogen oxides
JPH05253445A (en) Method for adsorption removing low concentration nitrogen oxide
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JP4565857B2 (en) Nitrogen oxide removing method and nitrogen oxide removing apparatus