JP2673300B2 - Low concentration gas sorption machine - Google Patents

Low concentration gas sorption machine

Info

Publication number
JP2673300B2
JP2673300B2 JP63022632A JP2263288A JP2673300B2 JP 2673300 B2 JP2673300 B2 JP 2673300B2 JP 63022632 A JP63022632 A JP 63022632A JP 2263288 A JP2263288 A JP 2263288A JP 2673300 B2 JP2673300 B2 JP 2673300B2
Authority
JP
Japan
Prior art keywords
gas
zone
air
low
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63022632A
Other languages
Japanese (ja)
Other versions
JPH01199621A (en
Inventor
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP63022632A priority Critical patent/JP2673300B2/en
Priority to SE8900311A priority patent/SE468927B/en
Priority to DE19893902977 priority patent/DE3902977C2/en
Publication of JPH01199621A publication Critical patent/JPH01199621A/en
Application granted granted Critical
Publication of JP2673300B2 publication Critical patent/JP2673300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多数の小透孔を有するロータを湿気その他活
性ガス(以下ガスと呼ぶ)を可逆的に吸収また吸着(以
下収着と呼ぶ)するガス収着剤を含有するシートにより
形成し、該小透孔内に処理気体と再生用気体とを交互に
通し、ガスを収着により除去された気体たとえば乾燥空
気を得る低濃度ガス収着機に関するものである。
TECHNICAL FIELD The present invention relates to a gas which reversibly absorbs or adsorbs moisture (hereinafter referred to as gas) or other active gas (hereinafter referred to as gas) in a rotor having a large number of small through holes. A low-concentration gas sorption machine which is formed of a sheet containing a sorbent, and through which a processing gas and a regeneration gas are alternately passed through the small through-holes to obtain a gas removed by sorption, for example, dry air It is a thing.

従来の技術 多数の小透孔を有するロータ即ちハニカムロータを湿
気を可逆的に収着する吸湿剤を使用して成形し、該ロー
タを2個使用し、被処理気体を1段目のロータに通して
除湿した後冷却して2段目のロータに通して更に除湿
し、再生用気体は2段目のロータの再生ゾーンに通した
後加熱して1段目のロータの再生ゾーンに通し、露点−
80℃以下の超低湿度気体を得る方法は特開昭61-71821号
公報に開示されている。
2. Description of the Related Art A rotor having a large number of small through holes, that is, a honeycomb rotor is formed by using a hygroscopic agent that reversibly adsorbs moisture, two rotors are used, and a gas to be treated is used as a first stage rotor. After passing through dehumidification, it is cooled and then passed through the second stage rotor to be further dehumidified, and the regeneration gas is passed through the regeneration zone of the second stage rotor and then heated and passed through the regeneration zone of the first stage rotor. Dew point-
A method for obtaining an ultra-low humidity gas at 80 ° C. or lower is disclosed in JP-A-61-71821.

発明が解決しようとする問題点 上記の方法では除湿ロータを2台並列して運転し、こ
れに伴なつてロータの駆動装置、配管、シール板等も2
台分必要となるため構造が複雑で広い設置面積を要しメ
ンテナンスも煩雑で製造原価、運転費ともに嵩むのは免
れ得ない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the above method, two dehumidifying rotors are operated in parallel, and along with this, rotor drive devices, pipes, seal plates, etc.
Since it is necessary for a vehicle, the structure is complicated, a large installation area is required, maintenance is complicated, and manufacturing costs and operating costs are inevitable.

問題点を解決するための手段 本発明は上記の欠点を除去しガス収着剤を含浸しまた
はガス収着剤が表面にあらわれていて、円筒の一端面よ
り他端面に亘つて多数の小透孔を有する如く成形したハ
ニカム状ロータを形成し、このロータをその各扇形部分
が第1段収着ゾーン、第2段収着ゾーン、予冷ゾーン、
再生ゾーンとして順次作用するようケーシングに設けた
セクターによつて分離し、前記2部の収着ゾーンが直列
のガス含有気体の流通路を形成するよう構成し、1個の
ロータにより2段階の収着を行なうように構成したもの
である。収着ゾーンおよび再生ゾーンは更にその段数を
増加し、ロータの回転方向と逆方向に第1段、第2段、
第3段…と区画してもよい。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks and impregnates with a gas sorbent or has a gas sorbent exposed on the surface thereof. A honeycomb rotor formed so as to have holes is formed, and each fan-shaped portion of the rotor has a first stage sorption zone, a second stage sorption zone, a precooling zone,
The two sorption zones are separated by a sector provided in the casing so as to sequentially act as a regeneration zone, and the sorption zones of the two parts form a flow passage for the gas-containing gas in series. It is configured to wear clothes. The number of stages of the sorption zone and the regeneration zone is further increased, and the first stage, the second stage,
It may be divided into the third stage.

実施例1 クラフト紙を成形して多数の小透孔が両端面に透通し
た円筒状のハニカム構造体を得、その重量に対し約8重
量%の塩化リチウムを含浸した除湿機用素子を用意す
る。
Example 1 A kraft paper was molded to obtain a cylindrical honeycomb structure having a large number of small through holes penetrating both end surfaces, and a dehumidifier element impregnated with about 8% by weight of lithium chloride was prepared. To do.

このロータ即ち素子1の両端面にセクターを取付けて
第1図に示す如く第1段吸収ゾーン2、第2段吸収ゾー
ン3、予冷ゾーン4、再生ゾーン5に区分し、この各ゾ
ーンを処理空気導入用フアン6、給気用フアン7、再生
空気加熱用ヒータ8、再生空気導入用フアン9、処理空
気冷却器10と図示の如く配管してなる低濃度ガス吸収機
である。尚各ゾーンの広さ即ち中心角度の一例を挙げれ
ば第1段吸収ゾーン120・、第2段吸収ゾーン120・、予
冷ゾーン30・、再生ゾーン90・である。
Sectors are attached to both end surfaces of this rotor or element 1 to divide into first stage absorption zone 2, second stage absorption zone 3, precooling zone 4 and regeneration zone 5 as shown in FIG. A low-concentration gas absorber which is connected with an introduction fan 6, an air supply fan 7, a heater 8 for heating the regenerated air, a fan 9 for introducing the regenerated air, and a treatment air cooler 10 as shown in the drawing. An example of the width of each zone, that is, the central angle is the first-stage absorption zone 120, the second-stage absorption zone 120, the pre-cooling zone 30, and the regeneration zone 90.

実施例2 無機繊維を主成分とする低密度の紙を成形して多数の
小透孔が両端面に透通した円筒状のハニカム構造体を
得、これにゼオライト等吸湿剤粉末が均一に分散した珪
酸マグネシウムエロゲルが一体的に強固に定着した除湿
ロータを得る。この除湿ロータで珪酸マグネシウムエロ
ゲルは通常のガス吸着性能を有するガス吸着剤、ゼオラ
イト等の粉末は含有ガス濃度の小さい気体に対してガス
吸着性能の極めて高いガス吸着剤として作用する。
Example 2 A low-density paper containing inorganic fibers as a main component was molded to obtain a cylindrical honeycomb structure having a large number of small through holes penetrating both end surfaces thereof, and a hygroscopic powder such as zeolite was uniformly dispersed in the honeycomb structure. A dehumidifying rotor in which the magnesium silicate aerogel formed is firmly fixed integrally is obtained. In this dehumidifying rotor, magnesium silicate aerogel acts as a gas adsorbent having a normal gas adsorbing ability, and powder such as zeolite acts as a gas adsorbent having an extremely high gas adsorbing ability with respect to a gas having a low gas concentration.

このロータ1の両端面に第3図に示すセクターSを取
付けて第2図に示す如く第1段吸着ゾーン2、第2段吸
着ゾーン3、予冷ゾーン4、第1段再生ゾーン5、第2
段再生ゾーン11に区分し、この各ゾーンを処理空気導入
用フアン6、給気用フアン7、再生空気加熱用ヒータ8,
12、再生空気導入用フアン9、処理空気冷却器10と図示
の如く配管してなる低濃度ガス吸着機である。尚各ゾー
ンの広さ即ち中心角度の一例を挙げれば第1段吸着ゾー
ン120・、第2段吸着ゾーン120・、予冷ゾーン40・、第
1段再生ゾーン40・、第2段再生ゾーン40・である。
Sectors S shown in FIG. 3 are attached to both end faces of the rotor 1, and as shown in FIG. 2, a first stage adsorption zone 2, a second stage adsorption zone 3, a precooling zone 4, a first stage regeneration zone 5, a second stage
It is divided into a step-regeneration zone 11, and each of these zones is provided with a treated air introduction fan 6, an air supply fan 7, a regeneration air heating heater 8,
12, a low-concentration gas adsorber in which a fan 9 for introducing regenerated air and a treatment air cooler 10 are connected as shown in the drawing. Incidentally, as an example of the width of each zone, that is, the central angle, the first stage adsorption zone 120, the second stage adsorption zone 120, the precooling zone 40, the first stage regeneration zone 40, the second stage regeneration zone 40, Is.

実施例3 無機繊維を主成分とする低密度の紙を成形して多数の
小透孔が両端面に透通した円筒形のハニカム状マトリッ
クスを得、このマトリックスを第5図のa,bに示す如く
2部分に区分し、無機繊維のマトリックスを核としてa
部は合成ゼオライトが分散した珪酸マグネシウムのエロ
ゲル、b部は珪酸マグネシウムエロゲルが一体的に形成
された除湿ロータを得る。
Example 3 A low-density paper containing inorganic fibers as a main component was molded to obtain a cylindrical honeycomb matrix having a large number of small through holes penetrating both end surfaces, and this matrix is shown in a and b of FIG. As shown, it is divided into two parts, with the matrix of inorganic fiber as the core
A part is a dehumidifying rotor in which a synthetic zeolite is dispersed in magnesium silicate erogel, and a part b is a magnesium silicate erogel integrally formed.

このロータ1の両端面に第3図に示すセクターSを取
付けて第4図に示す如く第1段吸着ゾーン2、第2段吸
着ゾーン3、予冷ゾーン4、第1段再生ゾーン5、第2
段再生ゾーン11に区分し、この各ゾーンを処理空気導入
用フアン6、給気用フアン7、再生空気加熱用ヒータ8,
12、再生空気導入用フアン9、処理空気冷却器10と図示
の如く配管してなる低濃度ガス吸着機である。各ゾーン
の広さは実施例2の場合とほぼ同一である。
Sectors S shown in FIG. 3 are attached to both end faces of the rotor 1, and as shown in FIG. 4, a first stage adsorption zone 2, a second stage adsorption zone 3, a precooling zone 4, a first stage regeneration zone 5, a second stage
It is divided into a step-regeneration zone 11, and each of these zones is provided with a treated air introduction fan 6, an air supply fan 7, a regeneration air heating heater 8,
12, a low-concentration gas adsorber in which a fan 9 for introducing regenerated air and a treatment air cooler 10 are connected as shown in the drawing. The size of each zone is almost the same as that of the second embodiment.

発明の作用 空気の除湿の過程を実施例1の場合について説明する
と、除湿すべき処理空気TAはフアン6によりロータ1の
第1段収着ゾーン2に入り除湿され、その後好ましくは
処理空気を冷却器10に通し冷却水13で冷却した後第2段
収着ゾーン3に導き第2回目の除湿を行なうことにより
低露点の除湿空気が得られるので、これを給気フアン7
により給気SAとして供給する。
Operation of the Invention The process of dehumidifying air will be described with reference to the case of the first embodiment. The treated air TA to be dehumidified is dehumidified by the fan 6 into the first stage sorption zone 2 of the rotor 1, and then preferably the treated air is cooled. After passing through the vessel 10 and cooling with the cooling water 13, it is led to the second-stage sorption zone 3 to carry out the second dehumidification to obtain dehumidified air with a low dew point.
Is supplied as air supply SA.

ロータの水分離脱即ち再生の過程を説明すると、予冷
空気PA好ましくは上記除湿過程により得られた除湿空気
SAの一部を予冷ゾーン4に通しロータを予冷した後、再
生空気加熱用ヒータ8で加熱し高温低湿の再生空気RAと
して再生ゾーン5に通しロータに収着された湿分を離脱
し再生する。
Explaining the process of water removal or regeneration of the rotor, precooled air PA, preferably dehumidified air obtained by the above dehumidification process.
After a portion of SA is passed through the pre-cooling zone 4 to pre-cool the rotor, it is heated by the heater 8 for heating the regenerated air and is passed through the regeneration zone 5 as regenerated air RA of high temperature and low humidity to remove the moisture adsorbed on the rotor and regenerate it. .

実施例2および実施例3の場合即ち再生ゾーンが第1
段再生ゾーン5と第2段再生ゾーン11とに区分されてい
る場合には予冷空気PA好ましくは上記除湿過程により得
られた除湿空気SAの一部をまず予冷ゾーン4に通しロー
タを予冷した後、再生空気加熱用ヒータ8で約180℃ま
で加熱し高温低湿の再生空気RA1として第1段再生ゾー
ン5に通しロータに収着した湿分の離脱を行なつた後、
温度が約100℃以下まで低下し湿度が高くなつているが
未だ再生能力を残存している上記再生空気RA2を第2段
再生ゾーン11に通し収着湿分を追出す。この場合再生空
気を再生空気加熱用ヒータ12で再加熱して再生能率を向
上することもできる。即ち再生空気RA1,RA2の相対湿度
をヒータ8,12の温度の上下によつてコントロールするこ
とができる。
In the case of the second and third embodiments, that is, the reproduction zone is the first.
When divided into the stage regeneration zone 5 and the second stage regeneration zone 11, precooled air PA, preferably part of the dehumidified air SA obtained by the above dehumidification process is first passed through the precooling zone 4 to precool the rotor. After being heated up to about 180 ° C. by the heater 8 for heating the regenerated air and passed through the first-stage regeneration zone 5 as the regenerated air RA 1 of high temperature and low humidity, the moisture adsorbed on the rotor is removed,
The sorption moisture is expelled by passing the regenerated air RA 2 whose temperature has dropped to about 100 ° C. or lower and the humidity is high, but still having the regenerating ability, through the second stage regeneration zone 11. In this case, the regeneration air can be reheated by the regeneration air heating heater 12 to improve the regeneration efficiency. That is, the relative humidity of the regenerated air RA 1 , RA 2 can be controlled by increasing or decreasing the temperature of the heaters 8, 12.

以上は処理空気および再生空気がロータの各部を通過
する際にロータ各部と如何に作用するかを辿つてきた
が、以下ロータの或る一部が図示矢印方向に1回転する
間に如何に処理空気および再生空気と相互作用を行なう
かという観点から実施例3即ち第4図の例について説明
する。
The above has traced how the treated air and the regenerated air interact with the rotor parts when passing through the rotor parts. In the following, it will be described how a certain part of the rotor makes one rotation in the direction of the arrow in the drawing. The third embodiment, that is, the example of FIG. 4 will be described from the viewpoint of interaction with air and regeneration air.

再生ゾーン11,5において吸着湿分を脱着され予冷ゾー
ン4において常温または常温より僅かに高い温度の低温
予冷空気により冷却されたロータ部分はまず第2段吸着
ゾーン3において第1段吸着工程後冷却(例30℃)され
た処理空気を主にゼオライト即ち吸着性能の極めて高い
吸湿剤により更に除湿して超低露点の空気となして給気
し、次に第1段吸着ゾーン2において処理空気たとえば
温度20℃の外気を主に金属珪酸塩エロゲルにより除湿す
る。かくして湿気を吸着しやや昇温したロータ部分は第
2段再生ゾーン11において約120℃の再生空気RA2により
金属珪酸塩エロゲルを脱着再生し、次に第1段再生ゾー
ン5において約180℃の再生空気RA1によりゼオライト即
ち再生温度の高い吸湿剤を脱着再生し、次に予冷ゾーン
4において予冷空気好ましくは除湿された給気SAの一部
を通して常温または常温近くの温度にまで冷却し、以上
の工程を繰返す。
The rotor portion desorbed the adsorbed moisture in the regeneration zones 11 and 5 and cooled in the precooling zone 4 by the low temperature precooled air at room temperature or slightly higher than room temperature is first cooled in the second stage adsorption zone 3 after the first stage adsorption step. The treated air (Example 30 ° C.) is further dehumidified mainly by zeolite, that is, a hygroscopic agent having an extremely high adsorption performance to be air having an ultralow dew point, and then the treated air is treated in the first-stage adsorption zone 2 such as The outside air at a temperature of 20 ° C is dehumidified mainly by the metal silicate aerogel. Thus, the rotor portion which has adsorbed moisture and has a slightly elevated temperature regenerates the metal silicate aerogel by desorption and regeneration with the regeneration air RA 2 at about 120 ° C in the second stage regeneration zone 11, and then at about 180 ° C in the first stage regeneration zone 5. Zeolite, that is, a hygroscopic agent having a high regeneration temperature is desorbed and regenerated by the regenerated air RA 1 , and then cooled in the precooling zone 4 to room temperature or a temperature close to room temperature through a part of precooled air, preferably dehumidified air supply SA, Repeat the process of.

以上実施例2および実施例3において通常のガス吸着
性能を有するガス吸着剤として珪酸マグネシウムエロゲ
ル、含有ガス濃度の小さい気体に対してガス吸着性能の
極めて高いガス吸着剤としてゼオライト、アルミナゲル
等を使用し、両ガス吸着剤の組合せにより空気中の湿気
を吸着して超低露点の空気を得る例を説明したが、通常
のガス吸着性能を有するガス吸着剤として上記珪酸マグ
ネシウムエロゲルの代りに珪酸アルミニウムエロゲル、
シリカエロゲル等を用い、これとゼオライト、アルミナ
ゲル等との組合せを使用することもできる。またガス吸
着剤としてゼオライト、アルミナゲルの代りに活性炭、
活性白土等を用い、このような固体吸着剤とアルミニウ
ム、マグネシウム、カルシウム等の珪酸塩のエロゲルと
を組合わせてもよい。更にシリカゲル、アルミナゲルそ
の他上記の固体吸着剤を単独で使用してもよい。
In Examples 2 and 3 above, magnesium silicate aerogel is used as a gas adsorbent having ordinary gas adsorption performance, and zeolite, alumina gel, etc. is used as a gas adsorbent having an extremely high gas adsorption performance with respect to a gas containing a small concentration of gas. Using the combination of both gas adsorbents, explained an example of obtaining air with an ultra-low dew point by adsorbing moisture in the air, but instead of the magnesium silicate aerogel as a gas adsorbent having normal gas adsorption performance Aluminum silicate aerogel,
It is also possible to use silica erogel or the like and use a combination of this with zeolite, alumina gel or the like. Zeolite as a gas adsorbent, activated carbon instead of alumina gel,
Activated clay or the like may be used and such a solid adsorbent may be combined with an erogel of a silicate such as aluminum, magnesium or calcium. Further, silica gel, alumina gel and other solid adsorbents described above may be used alone.

一方、不活性気体としては上述の空気以外に窒素、ア
ルゴン等があり、不活性気体中に含有される除去すべき
活性ガスとしては上述の水蒸気以外に一酸化炭素、硫黄
酸化物、アンモニア、硫化水素、有機溶剤蒸気、その他
種々の臭気物質等がある。この収着除去すべき不活性気
体中の活性ガスの種類その他により1種類のガス収着剤
のみまたは3種類以上のガス収着剤の組合せを使用する
こともでき、また収着ゾーンを3段以上に区分し多段階
の収着操作を行なうこともできる。一方再生ゾーンは1
部のみでもよいが、2部以上に区分し再生温度を順次上
昇して多段階の再生をすれば後述の如くエネルギーの節
約になる。
On the other hand, as the inert gas, there are nitrogen, argon, etc. in addition to the above-mentioned air, and as the active gas to be removed contained in the inert gas, carbon monoxide, sulfur oxides, ammonia, sulfide other than the above-mentioned water vapor. There are hydrogen, organic solvent vapor, and various other odorous substances. It is possible to use only one type of gas sorbent or a combination of three or more types of gas sorbents depending on the type of the active gas in the inert gas to be sorbed and removed, and the sorption zone in three stages. It is also possible to perform a multi-stage sorption operation by classifying the above. On the other hand, the playback zone is 1
Although only one part may be used, energy can be saved as will be described later if it is divided into two or more parts and the regeneration temperature is sequentially increased to perform multi-stage regeneration.

上記実施例3において 紙:シリカ、アルミナ系のセラミツクス繊維に少量の有
機質合成繊維を加え見掛け比重0.3〜0.45,厚さ0.15〜0.
25mmに抄造した紙 コルゲート:3.2mmピツチ×1.8mm波高 除湿ロータ幅:400mm 除湿ロータ直径:320mmφ 処理空気の第1段吸着ゾーン入口における温度 15℃ 処理空気の第2段吸着ゾーン入口における温度 11℃ 再生空気の第1段、第2段再生ゾーン入口における温度
150℃ 処理空気の風速 1.5m/sec. 再生空気の風速 1.5m/sec. 除湿ロータの回転速度 3.5回転/時 の条件で空気の除湿を行なつた場合のデータを第6図に
示す。図中横軸は第1段吸着ゾーン入口における処理空
気TAの絶対湿度[g/kg]、縦軸は第2段吸着ゾーン出口
における給気SAの露点[℃]および温度[℃]を示す。
またそのデータの一例を次頁に示す。
In Example 3 above, a small amount of organic synthetic fiber was added to the paper: silica / alumina-based ceramic fiber, and the apparent specific gravity was 0.3 to 0.45, and the thickness was 0.15 to 0.
Paper made into 25 mm corrugated: 3.2 mm pitch x 1.8 mm wave height Dehumidifying rotor width: 400 mm Dehumidifying rotor diameter: 320 mmφ Temperature of treated air at inlet of 1st stage adsorption zone 15 ° C Temperature of treated air at inlet of 2nd stage adsorption zone 11 ° C Temperature of the regenerated air at the inlet of the first and second regeneration zones
150 ℃ Air velocity of treated air 1.5m / sec. Wind velocity of regenerated air 1.5m / sec. Dehumidifying rotor rotation speed Data of dehumidifying air at 3.5 rpm is shown in Fig. 6. In the figure, the horizontal axis represents the absolute humidity [g / kg] of the treated air TA at the inlet of the first-stage adsorption zone, and the vertical axis represents the dew point [° C] and the temperature [° C] of the supply air SA at the outlet of the second-stage adsorption zone.
An example of the data is shown on the next page.

発明の効果 本発明は上記の如き構成よりなるので、従来の方法の
如く収着用ロータを2台並列し2段階の収着操作をなす
必要なく1台のロータにより駆動装置、ケーシング、シ
ール、配管等を取付けるのみで、処理気体中の活性ガス
を所要の低濃度になるまで収着除去した気体が得られ
る。たとえば同一の吸湿剤を使用しロータの細孔径、厚
さ、処理空気と再生空気の単位時間当り風量を同一にし
て比較した場合、従来法で露点−80℃以下の超低露点空
気を得るのに500mm径のロータ2台を要した除湿操作を7
50mm径のロータ1台で行なうことができ、構造が簡単に
なり従つて廉価にでき、かつ動力費も大いに節約するこ
とができ設置面積も少なくてすみメンテナンス費用も低
減し得る。
EFFECTS OF THE INVENTION Since the present invention has the above-described configuration, it is not necessary to arrange two sorption rotors in parallel as in the conventional method to perform a two-step sorption operation, and a drive device, a casing, a seal, and a piping It is possible to obtain a gas in which the active gas in the process gas is sorbed and removed until the required low concentration is obtained by simply installing the above. For example, when the same moisture absorbent is used and the rotor pore size and thickness, and the air volume per unit time of the treated air and the regenerated air are the same, a conventional method yields an ultra-low dew point of -80 ° C or less. Dehumidification operation that requires two 500mm diameter rotors
It can be performed with one rotor having a diameter of 50 mm, the structure is simple and accordingly the cost can be reduced, and the power cost can be greatly saved, the installation area can be reduced, and the maintenance cost can be reduced.

また上記除湿の例で説明すると、除湿操作においては
ロータの温度が高いとその吸湿能力は低下するので、脱
着再生後のロータ部分は予冷ゾーン4においてほぼ常温
の予冷空気PA好ましくは湿度の極めて低い除湿空気SAの
一部を通し予冷を行なつた後除湿操作を行なう。ここで
予冷空気PAとして外気好ましくは低温低湿の外気を一部
入れてもよい。
In the dehumidification operation, when the temperature of the rotor is high in the dehumidification operation, the moisture absorption capacity of the rotor decreases. Therefore, the rotor portion after desorption / regeneration is precooled in the precooling zone 4 at a pre-cooled air PA, preferably an extremely low humidity. A part of the dehumidified air SA is pre-cooled and then dehumidified. Here, as the pre-cooled air PA, outside air, preferably outside air of low temperature and low humidity, may be partly added.

除湿操作では、先ず第2段除湿ゾーン3において低湿
度の空気即ち第1段除湿ゾーン2において可成りの除湿
処理を受けた空気を所要の低露点まで除湿した後、その
時点で収着した僅かの湿気を含んだロータ部分は第1段
除湿ゾーン2において処理空気から充分な量の湿気を収
着し得る。
In the dehumidification operation, first, low-humidity air in the second-stage dehumidification zone 3, that is, air that has undergone a considerable dehumidification treatment in the first-stage dehumidification zone 2 is dehumidified to the required low dew point, and then the sorbed amount at that time is slightly reduced. Of the moist rotor portion may sorb a sufficient amount of moisture from the process air in the first stage dehumidification zone 2.

次に再生操作においては、先ず予冷に使用しその結果
昇温した除湿空気を再生空気加熱用ヒータ8で加熱して
再生空気RAとして使用すれば、外気のみを加熱し再生空
気として使用する場合に比しその相対湿度が低いので再
生効果が大きい。再生は実施例1で示したように1段で
行なつてもよいが、これを2段にし上記実施例2,3の如
く第2段再生ゾーン11および第1段再生ゾーン5を設け
2段で脱離再生を行なえば、第1段再生ゾーン5から排
出される可成り高温の再生排気を更に第2段再生ゾーン
11において再生に使用することができ、熱エネルギーの
節約となる。また上記実施例2の如く2種類の収着剤を
併用する場合には、まずやや低温かつやや高湿になつた
が通常のレベルの再生を行なうには充分な温度および乾
燥度を持つている第1段再生ゾーンの再生排気により比
較的低温たとえば80〜110℃で脱離再生し得る収着剤た
とえば珪酸マグネシウムエロゲルを第2段再生ゾーン11
において再生し、その後高温で相対湿度の低い予冷ゾー
ン4の排気を使用して第1段再生ゾーン5で再生に高温
を要する収着剤たとえばゼオライトを主に再生すること
ができる。収着剤が1種類の場合または再生温度がほぼ
同一である2種類以上の収着剤の併用の場合は実施例1
(第1図)に示す如く再生ゾーンを1部のみにしてもよ
い。
Next, in the regenerating operation, if the dehumidified air that has been used for pre-cooling and the temperature of which has been raised as a result is heated by the regeneration air heating heater 8 and used as the regeneration air RA, only the outside air is heated and used as the regeneration air. In comparison, its relative humidity is low, so the regeneration effect is great. Regeneration may be performed in one stage as shown in Example 1, but this is changed to two stages, and as in Examples 2 and 3, the second stage reproduction zone 11 and the first stage reproduction zone 5 are provided to provide two stages. If the desorption regeneration is carried out in the second stage regeneration zone, the considerably high temperature regeneration exhaust gas discharged from the first stage regeneration zone 5 is further discharged.
It can be used for regeneration in 11, saving heat energy. Further, when two kinds of sorbents are used in combination as in Example 2 above, the temperature is slightly low and the humidity is high at first, but the temperature and the dryness are sufficient for normal level regeneration. A sorbent, such as magnesium silicate aerogel, which can be desorbed and regenerated at a relatively low temperature, for example, 80 to 110 ° C. by the regeneration exhaust of the first stage regeneration zone, is used in the second stage regeneration zone 11
In the first stage regeneration zone 5, sorbents such as zeolites, which require high temperatures for regeneration, can be regenerated primarily using the exhaust from the precooling zone 4 at high temperature and low relative humidity. Example 1 in the case of one sorbent or in the case of the combined use of two or more sorbents having almost the same regeneration temperature
As shown in FIG. 1, the reproduction zone may be limited to one copy.

尚実施例1,3(第1図、第4図)においては処理空気
は下から上へ、再生空気は上から下へロータ内を逆方向
に通すよう図示したが、これは配管スペースの関係で適
宜選択し得る。但し廃熱利用の面から見ると処理空気と
再生空気との流れを逆方向にする方が除湿効率は向上す
る。
In the first and third embodiments (Figs. 1 and 4), the processing air is shown to flow from the bottom to the top, and the regeneration air is shown to flow from the top to the bottom in the rotor in the reverse direction. Can be selected as appropriate. However, in terms of utilization of waste heat, dehumidification efficiency is improved when the flows of the treated air and the regenerated air are reversed.

更に再生空気のロータ内における流れについて見ると
第7図に5と示した線の如く再生ゾーン通過中に再生空
気の温度は可成り低下し、出口近くになると再生能力が
急激に弱くなる。従つて第2図に示す如く再生ゾーンを
第1段再生ゾーン5と第2段再生ゾーン11とに2分し、
両再生ゾーンにおける再生空気の流れを逆方向にする
と、夫々のゾーンにおける再生空気の温度降下は第7図
の実線5(RA1)、一点鎖線11(RA2)の如くなり、両者
の加熱効果を合わせると入口(出口)から出口(入口)
に至るまで極端に低下することなく、全体にわたつてほ
ぼ均一に充分に再生が行なわれる。
Further, looking at the flow of the regenerated air in the rotor, the temperature of the regenerated air is considerably lowered while passing through the regeneration zone as indicated by the line 5 in FIG. 7, and the regeneration capacity is rapidly weakened near the outlet. Therefore, as shown in FIG. 2, the reproduction zone is divided into a first-stage reproduction zone 5 and a second-stage reproduction zone 11,
When the flow of the regenerated air in both regeneration zones is reversed, the temperature drop of the regenerated air in each zone becomes as shown by the solid line 5 (RA 1 ) and the chain line 11 (RA 2 ) in Fig. 7, which shows the heating effect of both. When combined, the entrance (exit) to the exit (entrance)
Playback is performed substantially uniformly throughout the entire area without extremely decreasing until the end.

収着工程においてはたとえば1種類の収着剤を使用し
て比較的湿度の高い空気を除湿しようとする場合には、
第1段収着ゾーン2の断面積を広く第2段収着ゾーン3
の断面積を狭く形成し、まず処理空気を第1段収着ゾー
ン2に低速で通してほぼ湿気を収着した後、低湿度にな
った処理空気を第2段収着ゾーン3に高速で通し処理空
気中に残存している僅かの湿気を収着することにより、
冷却器10を使用することなく乾燥空気を効率的に得るこ
とができる。
In the sorption process, for example, when one type of sorbent is used to dehumidify relatively humid air,
The cross-sectional area of the first-stage sorption zone 2 is wide, and the second-stage sorption zone 3
The cross-sectional area of the first stage is narrowed, and the treated air is first passed through the first-stage sorption zone 2 at a low speed to absorb almost all the moisture, and then the treated air with low humidity is fed into the second-stage sorption zone 3 at a high speed. By sorbing a small amount of moisture remaining in the through-process air,
Dry air can be efficiently obtained without using the cooler 10.

また実施例3(第4〜5図)で述べたようにロータ1
の下方部は珪酸マグネシウムエロゲル即ち通常の除湿性
能を有し脱着再生温度の比較的低い吸着剤を主成分と
し、上方部は該珪酸マグネシウムエロゲルとゼオライト
等湿気の少ない空気に対し吸湿性能が極めて高く脱着再
生温度の比較的高い吸湿剤とを併用して構成する場合に
は、除湿工程においては下方より処理空気を送入すると
下方部で珪酸マグネシウムエロゲルにより可成りの湿気
を吸着除去した後、上方部において主にゼオライト等に
よって残存水蒸気をさらに吸着するため、一層空気中の
湿気を超低露点にまで吸着除去することができ、また脱
着工程においては上方より再生空気を導入すると、該再
生空気はロータの小透孔を通過する間に漸次温度が降下
するが、上方部においては高温の再生空気により脱着再
生温度の比較的高いゼオライト等を再生した後下方部に
おいてやや温度の低下した再生空気により脱着再生温度
の比較的低い珪酸マグネシウムエロゲルを再生すること
ができ、再生熱エネルギーを有効に利用し得る。
Further, as described in the third embodiment (FIGS. 4 to 5), the rotor 1
The lower part of the main component is a magnesium silicate aerogel, that is, an adsorbent having a normal dehumidifying performance and a relatively low desorption / regeneration temperature, and the upper part has a hygroscopic performance with respect to the air having a low humidity such as the magnesium silicate aerogel and zeolite. When it is used in combination with a hygroscopic agent that has an extremely high desorption / regeneration temperature and a relatively high temperature, when the treated air is fed from below in the dehumidification process, considerable moisture is adsorbed and removed by magnesium silicate aerogel in the lower part. After that, since the residual water vapor is further adsorbed mainly by zeolite or the like in the upper part, it is possible to further adsorb and remove the moisture in the air to an ultra-low dew point, and in the desorption process, when regenerated air is introduced from above, The temperature of the regeneration air gradually drops while passing through the small through holes of the rotor, but the desorption regeneration temperature is relatively high in the upper part due to the high temperature regeneration air. Zeolite or the like can be played slightly temperature decreased relatively low magnesium silicate erotic gel desorption regeneration temperature by regeneration air of the lower portion after playing, it can effectively utilize the regenerative heat energy.

一般に固体収着剤によるガスの収着は上記の除湿の場
合を含め低温になる程収着率は高くなり、高温になる程
収着し難く脱離反応が進む傾向があるので、水蒸気以外
のガスの収着の場合においても各収着ガスに適する収着
剤またはその組合せを選択することにより全く同一の効
果を発揮し得るものである。
In general, gas sorption by solid sorbents, including the case of dehumidification, becomes higher as the temperature becomes lower, and the higher the temperature becomes, the more difficult the sorption becomes and the desorption reaction tends to proceed. In the case of gas sorption, the same effect can be exhibited by selecting a sorbent or a combination thereof suitable for each sorption gas.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の低濃度ガス収着機の一例を示す説明
図、第2図および第4図は本発明の低濃度ガス収着機の
他の例を示す説明図、第3図は第2図および第4図の低
濃度ガス収着機に使用するセクターSの斜視図、第5図
は第4図中のロータ1の説明図、第6図は実施例3の除
湿機の除湿性能を示すグラフ、第7図は再生ゾーンにお
ける再生空気の温度分布を示すグラフである。 第1図乃至第4図中、1は低濃度ガス収着ロータ、2は
第1段収着ゾーン、3は第2段収着ゾーン、4は予冷ゾ
ーン、5,11は再生ゾーン、6,7,9はフアン、8,12は再生
空気加熱用ヒータを示す。
FIG. 1 is an explanatory view showing an example of the low-concentration gas sorption machine of the present invention, FIGS. 2 and 4 are explanatory views showing other examples of the low-concentration gas sorption machine of the present invention, and FIG. 2 and 4 are perspective views of the sector S used in the low concentration gas sorber, FIG. 5 is an explanatory view of the rotor 1 in FIG. 4, and FIG. 6 is dehumidification of the dehumidifier of the third embodiment. FIG. 7 is a graph showing the performance, and FIG. 7 is a graph showing the temperature distribution of the regeneration air in the regeneration zone. 1 to 4, 1 is a low-concentration gas sorption rotor, 2 is a first-stage sorption zone, 3 is a second-stage sorption zone, 4 is a pre-cooling zone, 5 and 11 are regeneration zones, 6, Reference numerals 7 and 9 are fans, and 8 and 12 are heaters for heating regenerated air.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒の一端面より他端面に亘つて多数の小
透孔を有し各小透孔表面にガス収着剤があらわれている
ガス収着ロータを、その回転に伴なつてその各部分が順
次2部以上の収着ゾーン、1部の予冷ゾーン、1部以上
の再生ゾーンとして作用するよう構成するとともに、前
記2部以上の収着ゾーンが直列のガス含有気体の流通路
を形成するよう構成してなる低濃度ガス収着機。
1. A gas sorption rotor having a large number of small through holes extending from one end surface to the other end surface of a cylinder and having a gas sorbent on the surface of each of the small through holes. Each part is configured so as to sequentially act as a sorption zone of 2 or more parts, a precooling zone of 1 part, a regeneration zone of 1 part or more, and the sorption zones of 2 or more parts form a series of gas-containing gas flow passages. A low concentration gas sorber configured to form.
【請求項2】ガスが水蒸気でありガス収着機が除湿機で
ある特許請求の範囲第1項記載の低濃度ガス収着機。
2. The low-concentration gas sorber according to claim 1, wherein the gas is water vapor and the gas sorber is a dehumidifier.
【請求項3】ガス収着剤がガス吸収剤である特許請求の
範囲第1項または第2項記載の低濃度ガス収着機。
3. The low-concentration gas sorber according to claim 1 or 2, wherein the gas sorbent is a gas sorbent.
【請求項4】ガス収着剤がガス吸着剤である特許請求の
範囲第1項または第2項記載の低濃度ガス収着機。
4. The low-concentration gas sorber according to claim 1 or 2, wherein the gas sorbent is a gas adsorbent.
【請求項5】ガス吸着剤として通常のガス吸着性能を有
するガス吸着剤と含有ガス濃度の小さい気体に対しガス
吸着性能の極めて高いガス吸着剤とを併用する特許請求
の範囲第4項記載の低濃度ガス収着機。
5. A gas adsorbent having a normal gas adsorbing performance as a gas adsorbent and a gas adsorbent having an extremely high gas adsorbing performance for a gas having a low concentration of contained gas are used together. Low concentration gas sorption machine.
【請求項6】通常のガス吸着性能を有するガス吸着剤が
シリカエロゲルまたは金属珪酸塩エロゲルであり、含有
ガス濃度の小さい気体に対してガス吸着性能の極めて高
いガス吸着剤がゼオライトである特許請求の範囲第5項
記載の低濃度ガス収着機。
6. A gas adsorbent having ordinary gas adsorbing performance is silica erogel or a metal silicate erogel, and a gas adsorbent having extremely high gas adsorbing performance for a gas having a low gas concentration is zeolite. Low-concentration gas sorption machine according to claim 5.
JP63022632A 1988-02-01 1988-02-01 Low concentration gas sorption machine Expired - Fee Related JP2673300B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63022632A JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine
SE8900311A SE468927B (en) 1988-02-01 1989-01-30 DEVICE FOR SORPTION
DE19893902977 DE3902977C2 (en) 1988-02-01 1989-02-01 Sorption device for sorbing active gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022632A JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine

Publications (2)

Publication Number Publication Date
JPH01199621A JPH01199621A (en) 1989-08-11
JP2673300B2 true JP2673300B2 (en) 1997-11-05

Family

ID=12088204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022632A Expired - Fee Related JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine

Country Status (3)

Country Link
JP (1) JP2673300B2 (en)
DE (1) DE3902977C2 (en)
SE (1) SE468927B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230165346A (en) 2021-12-27 2023-12-05 히로시 오카노 Carbon dioxide gas separation and concentration device capable of air supply

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69117471T2 (en) * 1990-12-25 1996-09-12 Seibu Giken Kk Gas adsorption element, its production method and use
JP2750996B2 (en) * 1993-09-08 1998-05-18 ニチアス株式会社 Organic solvent vapor adsorption device
US5580369A (en) * 1995-01-30 1996-12-03 Laroche Industries, Inc. Adsorption air conditioning system
US5758508A (en) * 1996-02-05 1998-06-02 Larouche Industries Inc. Method and apparatus for cooling warm moisture-laden air
US5660048A (en) * 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
US5860284A (en) * 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
DE19645823A1 (en) * 1996-11-07 1998-05-14 Behr Gmbh & Co Automotive passenger cabin air cleaner
JP3594463B2 (en) * 1997-10-15 2004-12-02 株式会社西部技研 Gas adsorption device
US5891219A (en) * 1998-01-13 1999-04-06 Durr Environmental, Inc. Two stage rotary concentrator
JP3430993B2 (en) * 1999-07-28 2003-07-28 ダイキン工業株式会社 Humidifier
JP2001205045A (en) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The Method of removing carbon dioxide and carbon dioxide removing apparatus
US6358300B1 (en) * 2000-03-28 2002-03-19 Honeywell Commercial Vehicle Systems Co. Lithium chloride desiccant for trailer air dryer and pressure swing dehydration
JP2001310110A (en) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd Gas concentration device
JP2002039575A (en) * 2000-07-25 2002-02-06 Daikin Ind Ltd Humidifier free of water supply
KR100451281B1 (en) * 2001-05-28 2004-10-06 주식회사 나노테크닉스 A method of recovering solvent with low boiling point
JP4627943B2 (en) * 2001-09-28 2011-02-09 高砂熱学工業株式会社 Air purification device
WO2009036247A1 (en) * 2007-09-12 2009-03-19 Munters Corporation Apparatus and method for in-situ high temperature regeneration of a rotor sorption concentrator
BE1018854A3 (en) 2009-08-11 2011-10-04 Atlas Copco Airpower Nv DRYER FOR COMPRESSED GAS AND METHOD THEREFORE APPLIED.
EP2332631B1 (en) * 2009-12-03 2012-11-14 Kaeser Kompressoren GmbH Absorption drying device and absorption drying method
EP2585196B1 (en) * 2010-06-22 2017-11-08 Bry-Air (Asia) Pvt. Ltd. System and method for improving the performance of desiccant dehumidification equipment for low-humidity applications
JP5698172B2 (en) * 2012-03-14 2015-04-08 株式会社西部技研 Glove box
JP5956216B2 (en) * 2012-03-29 2016-07-27 高砂熱学工業株式会社 Adsorption processing equipment
BE1022637A9 (en) * 2014-12-16 2016-10-06 Atlas Copco Airpower Nv DRYER FOR COMPRESSED GAS COMPRESSOR INSTALLATION EQUIPPED WITH DRYER AND METHOD FOR DRYING GAS
JP6888283B2 (en) * 2016-11-30 2021-06-16 ダイキン工業株式会社 Humidifier
EP3854475A1 (en) * 2020-01-23 2021-07-28 Molecule RND Limited Improvements related to sorbent media
SE2150531A1 (en) * 2021-04-27 2022-10-28 Munters Europe Ab An air treatment element, an air treatment unit and a method for producing the air treatment element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402717A (en) * 1980-05-22 1983-09-06 Daikin Kogyo Co., Ltd. Apparatus for removing moisture and odors
JPS6111360Y2 (en) * 1980-06-16 1986-04-10
JPS5741287A (en) * 1980-08-26 1982-03-08 Ishikawajima Harima Heavy Ind Co Ltd Method of preventing bulk cargo in hold from crumbling
JPS5891426U (en) * 1981-12-14 1983-06-21 ダイキン工業株式会社 dehumidifier
JPS6062598A (en) * 1983-09-02 1985-04-10 Toho Gas Kk Manufacture of heat exchanging element
JPH0716576B2 (en) * 1983-09-14 1995-03-01 株式会社西部技研 Moisture or total heat exchanger material and its manufacturing method
DE3528122A1 (en) * 1985-08-06 1987-02-12 Richard Scheuchl PLANT FOR RECOVERING SOLVENTS FROM A PROCESS GAS FLOW

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230165346A (en) 2021-12-27 2023-12-05 히로시 오카노 Carbon dioxide gas separation and concentration device capable of air supply

Also Published As

Publication number Publication date
JPH01199621A (en) 1989-08-11
SE8900311L (en) 1989-08-02
DE3902977A1 (en) 1989-08-10
SE8900311D0 (en) 1989-01-30
SE468927B (en) 1993-04-19
DE3902977C2 (en) 1999-07-29

Similar Documents

Publication Publication Date Title
JP2673300B2 (en) Low concentration gas sorption machine
US7166149B2 (en) Adsorption process for continuous purification of high value gas feeds
US5860284A (en) Thermally regenerated desiccant air conditioner with indirect evaporative cooler
US5512083A (en) Process and apparatus for dehumidification and VOC odor remediation
KR100266344B1 (en) How to recover volatile organics
AU604314B2 (en) High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
EP0803685B1 (en) Process and apparatus for dehumidification and VOC odour remediation
US5338450A (en) Spiral-wound adsorber module
WO2005097298A1 (en) Rotary adsorbent contactors for drying, purification and separation of gases
KR20180083403A (en) Heat recovery adsorber as building ventilation system
JP6086441B2 (en) System and method for improving the performance of desiccant dehumidifiers for low humidity applications
JPH04171019A (en) Process for removing water content in mixed gas
CN110871014A (en) CO with moving bed structure2Washing device
US7326277B1 (en) Brake air drying using low pressure desiccant wheel
JP5026345B2 (en) Adsorbent system and method for regenerating the system
JP2012166128A5 (en)
JP4990443B2 (en) Dehumidifying device and dehumidifying method
JP3483752B2 (en) Dry dehumidification system
JPS63240921A (en) Dry-type dehumidifying material and dry-type dehumidifying device
Shen et al. Cosorption characteristics of solid adsorbents
US20080083336A1 (en) Electrically conductive adsorptive honeycombs for drying of air
JP3560004B2 (en) Method and apparatus for removing water and carbon dioxide
JPH0618609B2 (en) Ventilation gas purification equipment for road tunnels, etc.
JP2004209420A (en) Dehumidification element and dehumidification apparatus
JP2681403B2 (en) Gas sorption method and gas sorption device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees