JP4627943B2 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
JP4627943B2
JP4627943B2 JP2001302290A JP2001302290A JP4627943B2 JP 4627943 B2 JP4627943 B2 JP 4627943B2 JP 2001302290 A JP2001302290 A JP 2001302290A JP 2001302290 A JP2001302290 A JP 2001302290A JP 4627943 B2 JP4627943 B2 JP 4627943B2
Authority
JP
Japan
Prior art keywords
air
region
regeneration
temperature
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302290A
Other languages
Japanese (ja)
Other versions
JP2003103135A (en
Inventor
富夫 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2001302290A priority Critical patent/JP4627943B2/en
Publication of JP2003103135A publication Critical patent/JP2003103135A/en
Application granted granted Critical
Publication of JP4627943B2 publication Critical patent/JP4627943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は空気浄化装置に関し、さらには空気中の有機汚染物質が除去された清浄空気を製造すると共に、除去した有機汚染物質を分解して無害化する空気浄化装置に関する。
【0002】
【従来の技術】
空気浄化装置としては、従来より回転ロータ式吸着濃縮装置が知られている。この空気浄化装置は、例えば有機汚染物質を吸着する吸着性及び通気性を有する回転ロータと、被処理空気を回転ロータに通すための吸着領域と、吸着領域にて被処理空気を通した回転ロータを回転ロータから有機汚染物質が放出される温度以上に加熱して回転ロータの吸着力を再生する再生領域と、再生領域にて加熱された回転ロータを冷却する冷却領域とを有し、回転ロータが吸着領域、再生領域、及び冷却領域の各領域を移動することにより被処理空気を連続して浄化するものである。この空気浄化装置では、吸着領域にて回転ロータに吸着された有機汚染物質は、再生領域における加熱によって回転ロータから放出される。回転ロータから放出された有機汚染物質は、一般に燃焼装置によって燃焼され、あるいは触媒の存在下で分解される。
【0003】
前述した空気浄化装置は、一般に再生用の加熱空気を製造するための加熱手段と、前記燃焼装置とを個別に有しており、このような空気浄化装置としては、例えば特開平10−146514号公報に記載されている排ガス処理装置が挙げられる。前記公報には、熱交換器を用いて燃焼装置の燃焼熱を回収して再生用空気の加熱に利用する構成や、燃焼装置の排気の一部を再生領域に循環させる構成等が記載されており、このような構成によれば、被処理空気の浄化に伴い発生する熱を有効に活用する上で有利である。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来の空気浄化装置は、再生時における回転ロータの温度変化が急激であったり、燃焼装置で発生した熱の熱交換時における空気の温度差が大きく、熱力学的観点からエントロピーの増大が大きいものであり、空気の浄化に際して熱エネルギーが仕事をする能力を有効に活用し、ランニングコストを低減する上で検討の余地が残されている。
【0005】
本発明は前記事項に鑑みなされたものであり、被処理空気の浄化に係るエントロピーの増大を抑制し、エネルギーロスの少ない空気浄化装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、吸着部材の吸着力を再生するために加熱した空気の熱を再生前の吸着部材の昇温に利用することにより、加熱手段で発生した熱を有効利用すると共に、吸着部材等における熱交換時に急激な温度変化を抑制する空気浄化装置を提供する。
【0007】
すなわち本発明の空気浄化装置は、有機汚染物質を吸着する吸着性及び通気性を有する吸着部材と、被処理空気を吸着部材に通すための吸着領域と、吸着領域にて被処理空気を通した吸着部材を昇温するための昇温領域と、昇温領域にて昇温された吸着部材を吸着部材から有機汚染物質が放出される温度以上に加熱して吸着部材の吸着力を再生するための再生領域と、再生領域にて加熱された吸着部材を冷却するための冷却領域とを有し、吸着部材が吸着領域、昇温領域、再生領域、及び冷却領域の各領域を移動することにより被処理空気を連続して浄化する空気浄化装置であって、吸着領域に被処理空気を通す浄化用通気路と、冷却領域、昇温領域、及び再生領域をこの順に接続し、冷却領域に空気を通し、冷却領域を通った空気を昇温領域に通し、昇温領域を通った空気を再生領域に通す再生用通気路と、昇温領域と再生領域とを結ぶ再生用通気路の空気を吸着部材から有機汚染物質が放出される温度以上に加熱する加熱手段と、冷却領域を通過し昇温領域を通過する前の空気と再生領域を通過した後の空気との間で熱交換を行う第一の熱交換器とを有する。
【0008】
前記構成によれば、吸着時から再生時にかけて吸着部材の急激な温度変化が抑制され、吸着部材と空気との広義な対向流熱交換によって、エントロピーの増大が抑制される。また再生用通気路の空気は、冷却領域において再生後の吸着部材から熱を回収し、さらに昇温領域通過前には、再生後の加熱空気の熱を前記第一の熱交換器により回収し、これらの回収熱によって吸着部材を昇温領域にて昇温させることから、発生させた熱を回収することによる熱の有効利用と、吸着部材の再生に伴うエントロピーの増大が抑制される。したがって被処理空気の浄化に係るエントロピーの増大を抑制し、エネルギーロスを少なくすることが可能となる。
【0009】
なお前記第一の熱交換器は、再生領域を通過した空気と昇温領域を通過する前の空気との間で熱交換を行うものであれば特に限定されず、具体的には、冷却領域を通過する前の空気、及び冷却領域を通過し昇温領域を通過する前の空気、のいずれか一方又は両方と、再生領域を通過した空気との間で熱交換を行うものであれば良いが、温度差のより小さな空気の間で熱交換を行うことがエントロピー増大を抑制する上で好ましいことから、再生領域を通過した後の空気と、冷却領域を通過し昇温領域を通過する前の空気との間で熱交換を行うものであることが好ましい。
【0010】
また前記各領域は、導入される任意の空気と吸着部材との接触が行われる領域であれば良く、このような領域は、例えば吸着部材が移動自在な状態で吸着部材の全部又は一部を覆うケーシングと、このケーシングに形成される複数の通気口と、この通気口に対応してケーシング内において吸着部材とケーシングとの間の空間を仕切る仕切り板とによって構成することが可能である。
【0011】
本発明では、再生用通気路等の通気路の構成、及びこれと熱交換器との組み合わせによって、エントロピー増大の抑制及びエネルギーロスの低減においてより一層有効な構成を実現することが可能である。なお、本発明に用いられる熱交換器については、温度差の小さい空気の間で熱交換を行うように適宜配置することが好ましい。
【0012】
まず前記再生用通気路は、再生領域を通過した空気を、昇温領域と加熱手段とを結ぶ再生用通気路に導入する通気路であると、昇温領域を通過して熱を放出した空気と、再生領域を通過した空気とが加熱手段による加熱前に混合され、加熱手段に導入される前の空気の温度がより高められ、加熱前後の空気の温度差をより小さくすることができ、エントロピーの増大を抑制し、エネルギーロスを少なくする上でより好ましい。
【0013】
また本発明の空気浄化装置は、加熱手段と再生領域とを結ぶ再生用通気路に接続され加熱手段によって加熱された空気を外部に排出する排出用通気路と、加熱手段によって加熱される前の再生用通気路の空気と排出用通気路の空気との間で熱交換を行う第二の熱交換器とを有することが、加熱前の空気の温度を高くし、あるいは再生用通気路の空気の温度を適切に調整する上でより好ましい。
【0014】
なお前記第二の熱交換器は、前記排出用通気路中の空気と加熱手段で加熱される前の空気との間で熱交換を行うものであれば特に限定されず、具体的には、冷却領域を通過する前の空気、冷却領域を通過し昇温領域を通過する前の空気、及び昇温領域を通過し加熱手段で加熱される前の空気のいずれか一つ又は二つ以上と熱交換を行うものであれば良い。
【0015】
また本発明の空気浄化装置は、昇温領域を通過し加熱手段で加熱される前の再生用通気路の空気と、加熱手段によって加熱され再生領域を通過する前の再生用通気路の空気との間で熱交換を行う第三の熱交換器を有すると、加熱前後の空気の温度差をより小さくすることができ、エントロピーの増大を抑制し、エネルギーロスを少なくする上でより好ましい。
【0016】
なお前記第三の熱交換器は、加熱における直前直後の空気の間で熱交換を行うものであることが好ましく、具体的には、昇温領域を通過し加熱手段で加熱される前の空気と、加熱手段で加熱され再生領域を通過する前の空気や、前記第二の熱交換器を通過する前の前記排出用通気路の空気、との間で熱交換を行うことが好ましい。
【0017】
また再生用通気路は、前記昇温領域及び冷却領域のそれぞれにおいて、通気路中の空気を吸着部材に複数回通過させる通気路であると、冷却領域における吸着部材からの熱回収や、昇温領域における吸着部材への加熱効率を向上させる上でより好ましい。
【0018】
本発明では、従来より知られている種々の加熱手段を用いることができるが、燃焼装置と、この燃焼装置の周囲に設けられ有機汚染物質を分解するための触媒金属を含有する通気体と、燃焼装置及び通気体を内部に収納する燃焼室とを有する燃焼式ヒータであると、空気の加熱と、有機汚染物質の分解とを単一の加熱手段で行うことが可能となり、装置の省力化運転や小型化等の観点からより好ましい。
【0019】
また前記第三の熱交換器を設ける場合では、加熱手段による加熱前の空気の温度をより高温に制御することが可能であり、また加熱直後の空気は系内において最も高温であることから、第三の熱交換器と加熱手段との間の再生用通気路に、有機汚染物質を分解するための触媒を有すると、有機汚染物質の分解や無害化を促進させる上でより好ましい。
【0020】
前記燃焼装置は、少なくとも前記触媒の存在化で有機汚染物質を燃焼させることができ、かつ加熱空気を生成するのに十分な熱量を発生するものであれば特に限定されず、このような燃焼装置としては、例えばガスバーナや、灯油バーナ等の液体燃料バーナ、ニクロム線を有する電気ヒータ等が挙げられる。
【0021】
前記通気体は、プラチナやパラジウム等の触媒金属を含み、前記燃焼装置によって加熱された状態の空気が通気自在なものであれば特に限定されず、格子体や網目体等、種々の構成が挙げられるが、加熱空気と密な接触性が得られるものが好ましい。また通気体は前記燃焼室中に一体又は二体以上収納しても良い。また通気体は触媒金属によって構成されていなくても良く、例えば触媒金属を表面に担持するものであっても良い。
【0022】
前記触媒は、空気中の有機汚染物質を分解するためのものであれば良く、使用条件に応じて適当なものを用いることが好ましい。本発明では、比較的高温の環境下で使用することが好ましいことから、耐熱性及び活性に優れたプラチナやパラジウム等の触媒金属を使用することが好ましい。なお再生用通気路中に設けられる触媒には、前述した通気体を用いても良いし、又は触媒を表面に担持する粒子であっても良い。前記粒子は通気路に充てんすることにより再生用通気路中に設けることができる。
【0023】
また本発明では、空気浄化装置の処理風量や、有機汚染物質の種類等に応じて種々の形態の吸着部材を用いることができる。
【0024】
本発明で用いられる吸着部材は、少なくとも有機汚染物質を吸着する吸着性及び通気性を有する部材であり、前記吸着領域、昇温領域、再生領域、及び冷却領域の各領域を移動するものであれば良い。このような吸着部材としては、例えば無端ベルト状、円柱状、環状等の吸着部材が装置の小型化等の観点から好ましくは挙げられる。このような形状の吸着部材は、プーリの回転又は吸着部材自体の回転によって各領域を移動させることが可能である。
【0025】
また吸着部材は、空気中の有機汚染物質を吸着するための吸着成分を少なくとも表面に有するものであれば良く、吸着形態については特に限定されないが、物理吸着によって有機汚染物質を吸着するものであることが、耐久性や繰り返し使用における吸着効率低下を抑制する観点から好ましい。このような吸着部材としては、例えばハニカム構造等の多孔質体に形成されたセラミック焼結体、又はこのような多孔質体の表面に吸着成分が担持されたもの等を好ましくは例示することができる。
【0026】
また吸着部材は、吸着成分を含む多孔質体を成形することによって吸着部材全体が形成されていても良いが、吸着成分を含む板状多孔質部材を適当な枠体で支持することで形成しても良い。このような構成であると、種々の形態の吸着部材を形成するのに好適であり、空気浄化装置の処理風量能力や有機汚染物質の種類等に応じて適当な吸着部材を構成する上で好ましい。
【0027】
本発明に用いられる吸着部材としては、例えば環状の板状部材であり、内周側の枠体と、外周側の枠体と、これらの枠体によって平面状に支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられる吸着部材が挙げられる。このような構成によれば、処理風量能力が比較的小さな空気浄化装置に適用する上で好ましい。
【0028】
また本発明に用いられる吸着部材としては、例えば、環状の部材であり、内周側の枠体と、外周側の枠体と、これらの枠体によって吸着部材の端面に対して斜めに支持、例えば吸着部材の一端側から見たときに吸着部材の円周方向に沿って山と谷が連続して形成されるように支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられる吸着部材が挙げられる。
【0029】
このような構成によれば、吸着部材全体における板状吸着材の表面積がより大きくなり、処理風量能力が比較的大きな空気浄化装置に適用する上で好ましい。またこのような構成では、板状吸着材を支持し、かつ板状吸着材に導入される空気を分配するために、前記両枠体間に掛け渡される支持部材を設けることがより好ましい。
【0030】
また本発明では、有機汚染物質の種類に応じて、二種以上の吸着材を併用しても良い。このような吸着材としては、例えば低沸点の有機汚染物質を吸着するための吸着材としての活性炭等が挙げられる。二種以上の吸着材を併用する場合では、吸着材の物性に応じて適当に配置することが好ましい。
【0031】
このような吸着部材としては、例えば二層構造の部材であり、再生領域を通過する空気の流れ方向において、上流側に設けられる上流側吸着材と、下流側に設けられる下流側吸着材とを有し、この下流側吸着材が活性炭を含む吸着材である吸着部材が挙げられる。このような多層構造の吸着部材では、上流側から下流側に向けて、耐温性の高い吸着材を積層することが、吸着材への熱的影響を低減する上で好ましい。例えば、前述したセラミック系の吸着材と活性炭とを併用する場合では、活性炭を高温再生気流に対して下流側吸着材とする。
【0032】
本発明の空気浄化装置では、前述した各種手段や部材の他にも、通気路中の空気を送風する送風手段や、通気路中の空気の送風量を制御する送風量制御手段や、吸着部材の移動速度を制御する変速機や、空気浄化装置の運転状況を監視するための各種検出手段等、種々の手段等を適宜設けることが可能である。これらの手段を適宜設けることにより、空気浄化装置のさらなる好適な運転が可能となる。
【0033】
【発明の実施の形態】
以下に本発明の空気浄化装置における一実施の形態を説明する。
本実施の形態における空気浄化装置は、図1に示すように、少なくとも有機汚染物質を吸着する吸着性及び通気性を有する吸着部材1と、被処理空気を通す浄化用通気路2と、再生用通気路3とを有する。なお本実施の形態では、便宜上、図1における吸着部材1の下側を「一端側」、吸着部材1の上側を「他端側」として説明する。また本実施の形態では、説明にあたって「上流側」及び「下流側」との用語を用いるが、これらは再生用通気路3における空気の流れ方向、又は吸着部材1の移動方向(それぞれ図1に矢印にて示す)を基準とする。
【0034】
吸着部材1は環状の板状部材であり回転自在に設けられている、吸着部材1は、図示しないケーシングに収納されている。このケーシングは、ラビリンスパッキンを有する仕切り板によって吸着領域4、昇温領域5、再生領域6、及び冷却領域7の各領域を形成し、吸着部材1は回転によって各領域を移動するように構成されている。浄化用通気路2は吸着領域4と接続されている。再生用通気路3は、まず冷却領域7に接続され、次いで冷却領域7と昇温領域5を接続し、次いで昇温領域5と燃焼式ヒータ11を接続し、次いで燃焼用ヒータ11と再生領域6を接続している。
【0035】
冷却領域7よりも上流側の再生用通気路3には、送風機f1と、後述する排出用通気路中の空気と冷却領域7よりも上流側の空気との間で熱交換を行う熱交換器h1と、熱交換器h1の上流側及び下流側の再生用通気路3同士を接続するバイパス通気路8と、冷却領域7よりも上流側でバイパス通気路8よりも下流側の空気の温度を検出する温度計9とが設けられている。バイパス通気路8には自動弁10が設けられている。自動弁10は、温度計9と接続されており、温度計9の検出結果に基づいて開度を調整するものである。
【0036】
冷却領域7では、前記仕切り板と再生用通気路3によって蛇行形状の通気路が形成されており、再生用通気路3によって導入される空気が、冷却領域7において吸着部材1の一端側から他端側へ吸着部材1を複数回(本実施形態では三回)通過するように構成されている。冷却領域7よりも下流側で昇温領域5よりも上流側の再生用通気路3には、後述する再生後の空気と冷却後の空気との間で熱交換を行う熱交換器h2が設けられている。また昇温領域5では、冷却領域7と同様に、前記仕切り板と再生用通気路3によって蛇行形状の通気路が形成されており、再生用通気路3によって導入される空気が、昇温領域5において吸着部材1の他端側から一端側へ吸着部材1を複数回(本実施形態では三回)通過するように構成されている。
【0037】
昇温領域5よりも下流側で燃焼式ヒータ11よりも上流側の再生用通気路3には、後述する排出用通気路の空気と再生用通気路3の空気との間で熱交換を行う熱交換器h3と、送風機f2と、加熱後再生前の加熱空気と再生用通気路3の空気との間で熱交換を行う熱交換器h4及びh5と、それぞれの熱交換器のすぐ下流側にあって有機汚染物質を分解するための触媒c1及びc2とが設けられている。
【0038】
燃焼式ヒータ11は、バーナ11aと、このバーナ11aを収容する副燃焼室11bと、副燃焼室11bを囲むメッシュ状の通気体11c〜11eと、これらを収納する燃焼室11fとを有する。通気体11c〜11eは2mm角程度の目の粗さであり触媒金属であるプラチナで形成されている。通気体11cは通気体11dに囲まれ、通気体11dは通気体11eに囲まれるように設けられている。
【0039】
燃焼式ヒータ11よりも下流側で再生領域6よりも上流側の再生用通気路3には、有機汚染物質を分解するための触媒c3と、熱交換器h5及びh4とが設けられている。また熱交換器h4よりも下流側で再生領域6よりも上流側の再生用通気路3からは排出用通気路12が分岐し、延出している。なお排出用通気路12は、熱交換器h3及びh2を経て通気路中の空気を外部に排出する通気路である。
【0040】
再生領域6では、再生用通気路3は、再生領域6に導入した加熱空気が吸着部材1の他端側から一端側へ吸着部材1を通過する通気路を形成している。再生領域6よりも下流側の再生用通気路3は、熱交換器h2を経て、熱交換器h3よりも下流側で送風機f2よりも上流側の再生用通気路3に接続している。
【0041】
吸着部材1は、図2に示すように、複数のローラによって水平方向に支持されており、減速装置13を介してモータ14の動力が伝達されるように構成されている。吸着部材1は、図4に示す通気自在な多孔質吸着材を、図3に示すように、内周側の枠体1aと外周側の枠体1bとによって平面状に支持することによって形成されており、外周側の枠体1bの全周に設けられた噛合部によって減速装置13と接続されている。なお吸着部材1は、鉛直方向に、すなわち回転軸が水平方向に延出するように、支持されていても良いし、形状についても円盤状であっても良い。
【0042】
なお、図4に示す多孔質吸着材は、特開平11−19436号公報、特開平11−70313号公報、特開平11−333226号公報に開示されているようなセラミックケミカルフィルタであり、セラミックペーパ等の無機鉱物製セラミックによってハニカム構造体等の支持体を適当な形状に成形し、その表面にゼオライト、アルミノケイ酸塩鉱物、アルミノケイ酸亜鉛鉱物アルカリ塩、無機酸塩、及び金属酸化物等から選ばれる無機材料を添着し焼成したものである。
【0043】
次に、有機汚染物質を含む工場排出ガスを被処理空気とする場合を例に、前述した空気浄化装置における作用を説明する。
【0044】
まず被処理空気の浄化について説明すると、浄化用通気路2から吸着領域4へ工場排出ガスが送られる。吸着領域4に送られた工場排出ガス中の有機汚染物質は吸着部材1によって吸着され、工場排出ガスは、吸着部材1を通過することによって浄化される。吸着領域4を通過して浄化されたガスは、大気中に放出される。
【0045】
一方で有機汚染物質を吸着した吸着部材1は、吸着領域4を通過し昇温領域5に至る。ここで吸着部材1は、再生用通気路3の空気によって三回にわたり昇温される。昇温領域5では、冷却領域7で吸着部材1から回収された熱、及び熱交換器h2によって再生後の空気から回収された熱によって吸着部材1を昇温することから、吸着部材1は、吸着部材1が再生領域6で加熱されたときの温度未満に昇温される。なお再生用通気路3における空気の流れと熱回収等については後に詳しく説明する。
【0046】
昇温領域5で昇温した吸着部材1は、昇温領域5を通過し再生領域6に至る。ここで吸着部材1は、加熱空気(約200℃)によって加熱され、吸着した有機汚染物質を加熱空気に放出する。再生領域6では、燃焼式ヒータ11によって加熱され、熱交換器h5及びh4で熱放出して温度が調整された空気によって、吸着部材1から対象となる全ての有機汚染物質が放出される温度以上に加熱される。
【0047】
再生領域6で加熱された吸着部材1は、再生領域6を通過し冷却領域7に至る。ここで吸着部材1は、熱交換器h1、及びバイパス通気路8、温度計9、自動弁10によって温度が調整された空気によって三回にわたり冷却される。
【0048】
冷却領域7で冷却された吸着部材1は、冷却領域7を通過して再び吸着領域4に至る。前述した工程を繰り返すことにより工場排出ガスが連続して浄化される。
【0049】
次に再生用通気路3における空気の流れについて説明する。
まず、再生用通気路3の起端である外気取り入れ口から外気が導入される。ここで導入される空気は外気に限定されず、また空調機によって予め調整された空気であっても良い。
【0050】
再生用通気路3に導入された空気は、自動弁10の開度に応じて熱交換器h1とバイパス通気路8とに分配される。このときの分配条件は、温度計9によって検出される空気の温度であり、冷却領域7上流側の空気が所定の温度(例えば25℃)になるように自動弁10の開度が制御される。導入された空気の温度が低い場合は熱交換器h1への通気量が増加し、導入された空気の温度が高い場合はバイパス通気路8への通気量が増加する。
【0051】
再生用通気路3の空気は、冷却領域7においてまず吸着部材1を一回通過し、吸着部材1との間で熱交換を行い、吸着部材1を冷却し、また吸着部材1によって例えば60℃に加熱される。この加熱された空気は、冷却領域7において、一回目の通過位置よりも吸着部材1の回転方向の上流側でさらに吸着部材1を通過し、冷却領域7において、二回目の通過位置よりも吸着部材1の回転方向のさらに上流側で吸着部材1を通過する。このように冷却領域7においては、再生用通気路3の空気が吸着部材1の温度の低い部分から順に吸着部材1を三回通過し、冷却領域7通過後の再生用通気路3の空気は130℃まで加熱され、一方で、再生領域6で再生(加熱)された吸着部材1は三段階で常温(例えば30℃前後)まで冷却される。
【0052】
冷却領域7を通過した再生用通気路3の空気は、熱交換器h2において熱交換によりさらに加熱され、この状態(例えば160℃)で昇温領域5に導入される。
【0053】
再生用通気路3の空気は、昇温領域5においてまず吸着部材1を一回通過し、吸着部材1との間で熱交換を行い、吸着部材1を昇温し、また吸着部材1によって例えば130℃に冷却される。この冷却された空気は、昇温領域5において、一回目の通過位置よりも吸着部材1の回転方向の上流側でさらに吸着部材1を通過し、昇温領域5において、二回目の通過位置よりも吸着部材1の回転方向のさらに上流側で吸着部材1を通過する。このように昇温領域5においては、再生用通気路3の空気が吸着部材1の温度の高い部分から順に吸着部材1を三回通過し、昇温領域通過後の再生用通気路3の空気は約60℃まで冷却され、一方で、吸着領域4で有機汚染物質を吸着した吸着部材1は所定の温度まで三段階で昇温される。
【0054】
昇温領域5を通過した再生用通気路3の空気は、熱交換器h3において熱交換により加熱(180℃)され、送風機f2を通り(165℃)、熱交換器h4において熱交換により加熱(350℃)され、触媒c1を通り、熱交換器h5において熱交換により加熱(550℃)され、触媒c2を通り、燃焼式ヒータ11に送られる。
【0055】
燃焼式ヒータ11に送られた空気は、バーナ11aによってさらに加熱(600℃)され、触媒c3を通過し、熱交換器h5を通過(400℃)し、熱交換器h4を通過(200℃)する。熱交換器h4を通過した空気は、一部(例えば半分)は排出用通気路12に送られ、一部は再生領域6へ送られる。排出用通気路12に送られた空気は、熱交換器h3において、昇温領域5通過後の空気との間で熱交換を行い、昇温領域5を通過し燃焼式ヒータ11で加熱される前の空気を加熱する。熱交換器3を通過した空気は、及び熱交換器h1を通り、外部に排出される。
【0056】
一方で熱交換器h4から再生領域6に送られた再生用通気路3の加熱空気は、再生領域6において吸着部材1を通過し、吸着部材1を加熱し、吸着部材1が吸着した有機汚染物質を吸着部材1から放出させる。再生領域6を通過した再生用通気路3の空気(180℃)は、有機汚染物質を含んだ状態で熱交換器h2を通過(150℃)し、昇温領域5を通過する前の空気に熱を放出する。熱交換器h2を通過した空気は、熱交換器h3にて加熱空気から熱を回収した昇温後の空気と合流して送風機f2を通る。
【0057】
有機汚染物質を含む空気は、熱交換器h4で加熱され、その後触媒c1を通過し、次いで熱交換器h5で加熱され、その後触媒c2を通過し、燃焼式ヒータ11に送られる。触媒c1及びc2の通過時に、空気中の有機汚染物質の一部が、有機汚染物質の種類と通過時の空気の温度とに応じて分解される。
【0058】
燃焼式ヒータ11では、有機汚染物質を含む空気は、まず副燃焼室11aに導入され、高温に加熱された後に、触媒金属を含む通気体11c〜11eを順次通過する。これに伴い空気中の有機汚染物質は分解される。
【0059】
燃焼式ヒータ11を通った加熱空気は、高温状態を保ったまま触媒c3に導入される。燃焼式ヒータ11を通った空気中に有機汚染物質が残存している場合では、空気中の有機汚染物質は触媒c3によってさらに分解され、再生領域6において吸着部材1から放出された有機汚染物質はほぼ分解される。
【0060】
再生に使用された加熱空気は、前述したように排出用通気路12と再生領域6とに分配され、一部は排出され、一部は吸着部材1の再生に用いられる。
【0061】
本実施の形態における吸着部材1の温度変化を図5に示す。図5において波線は吸着部材の温度を示し、実線は吸着部材1を通る空気の温度を示す。図5から、吸着領域4と再生領域6との間における温度変化は滑らかなものであることがわかる。
【0062】
ここで吸着部材1の再生に関する熱収支について説明すると、吸着部材1の再生に要する加熱は、燃焼式ヒータ11によってのみ行われている。すなわち、再生領域6での吸着部材1の加熱における熱源は燃焼式ヒータ11のみである。
【0063】
一方、冷却領域7では、再生用通気路3の空気が、再生により加熱された吸着部材1から熱を回収している。冷却後の空気は吸着部材1から回収した熱を有した状態で、熱交換器h2において再生後の空気の熱を吸収し、この空気が昇温領域5の昇温に利用されている。すなわち再生に利用した熱は冷却領域7及び熱交換器h2によって回収され、この回収された熱のみによって昇温領域5が昇温される。
【0064】
また冷却領域7では、所定温度の空気を再生領域6から離れた部分から再生領域6に近い部分へと段階的に通過させ、昇温領域5では、熱回収した空気を再生領域6に近い部分から離れた部分へ段階的に通過させており、熱の回収時において、熱を回収する側と熱が回収される側(例えば空気と空気や、吸着部材1と空気など)との温度差はより小さくなっている。
【0065】
また、燃焼式ヒータ11前後における再生用通気路3の空気の熱収支について説明すると、熱交換器h4及びh5では、加熱直後の空気から加熱直前の空気に熱が回収されており、加熱前後における空気の温度差はより小さくなっている。また、加熱直前において熱を回収した空気は触媒を通過するように構成されており、加熱直前において回収された熱は、各触媒における有機汚染物質の分解に利用されている。
【0066】
また、排出用通気路12の空気と再生用通気路3の空気との間における熱収支について説明すると、排出用通気路12では、熱交換器h1及びh3によって、燃焼式ヒータ11で発生した熱が再生用通気路3の空気の加熱に利用されている。
【0067】
本実施の形態における空気浄化装置は、吸着部材1、吸着領域4、昇温領域5、再生領域6、及び冷却領域7を有し、かつ冷却領域7、熱交換器h2、昇温領域5、燃焼式ヒータ11、再生領域6、及び熱交換器h2をこれらの順で通る再生用通気路3を有することから、冷却領域7では吸着部材1から、熱交換器h2では再生領域通過後の加熱空気から、それぞれ再生利用後の熱を回収し、この回収熱を熱源として吸着部材1における再生前の昇温が行われるので、吸着部材1の昇温と再生領域6の温度確保に要するエネルギーを節約することができる。
【0068】
また本実施の形態における空気浄化装置は、昇温領域5を有することから、吸着領域4から再生領域6への加熱による温度変化がより滑らかであり、エントロピーの増大をより抑制することができ、エネルギーロスをより小さくすることができる。
【0069】
また本実施の形態における空気浄化装置は、再生領域6よりも下流側の再生用通気路3が、昇温領域5と燃焼式ヒータ11とを接続する再生用通気路3に接続されていることから、昇温領域5で熱を放出した空気と、再生領域6を通過した加熱空気とが混合した状態で燃焼式ヒータ11に送られ、加熱前の空気の温度をより高めることで再生後の熱を有効利用することができる。
【0070】
また本実施の形態における空気浄化装置は、加熱後の空気が通る排気用通気路12、熱交換器h3及び熱交換器h1を有することから、加熱空気と昇温後の空気との間で熱交換が行われ、この熱交換後の加熱空気と冷却前の空気との間で熱交換を行うことができ、昇温前の空気の温度をより高めることで加熱前後における空気の温度差をより小さくし、また前記熱交換後の空気がもつ熱を、冷却前における再生用通気路3の空気の温度制御に利用しており、燃焼式ヒータ11で発生した熱を有効に利用することができる。
【0071】
また本実施の形態における空気浄化装置は、熱交換器h4及び熱交換器h5を有することから、燃焼式ヒータ11の直前直後の空気の間で熱交換が行われ、燃焼式ヒータ11での加熱による急激な温度変化を抑制することができ、また再生に適した温度の加熱空気を再生領域6に送ることができる。
【0072】
また本実施の形態における空気浄化装置は、再生用通気路3から導入された空気が、昇温領域5では他端側から一端側に向けて吸着部材1を三回通過し、一方で冷却領域7では一端側から他端側に向けて吸着部材1を三回通過することから、吸着領域5及び冷却領域7において、吸着部材1及びこれを通過する空気の急激な温度変化をより抑制することができる。
【0073】
また本実施の形態における空気浄化装置は、副燃焼室11bを、触媒金属を含んだ金網である通気体で囲ったことから、単一の加熱手段のみを用いて、加熱空気の生成と、有機汚染物質の分解とを行うことができる。
【0074】
また本実施の形態における空気浄化装置は、燃焼式ヒータ11前後の再生用通気路3に触媒c1〜c3を有することから、空気中の有機汚染物質の分解をより促進させることができる。
【0075】
また本実施の形態における空気浄化装置は、バイパス通気路8、温度計9、及び自動弁10を有することから、冷却前の再生用通気路3における空気の温度を適切に制御することができる。
【0076】
また本実施の形態における空気浄化装置は、セラミックを含む無機系の吸着部材1を用いることから、耐温性が高く、再生温度を高くすることができ、また温度の高い状態でも長期にわたって安定して使用することができる。
【0077】
なお吸着部材1は、前述したように板状の吸着材を枠体で支持することにより環状の板状吸着部材として構成されており、簡易な構成で高い性能を示す。このような平板状の吸着部材1は、再生用通気路3に導入される外気導入量に比べて例えば10倍程度の被処理空気を処理することができるが、より多くの被処理空気を処理する場合では、図6〜図9に示す吸着部材21を用いることが好ましい。この吸着部材21は、図6に示すように、前述した吸着部材1と同様に取り付けることができ、また吸着部材1と同様に鉛直方向に支持することもできる。
【0078】
吸着部材21は環状の部材であり、内周側の枠体21aと、外周側の枠体21bと、図9に示す多孔質の板状吸着材と、枠体21a及び21bの間に掛け渡される板状の支持部材21c、21dとを有する。支持部材21cは、他端側における板状吸着材の近接部で前記枠体間に掛け渡されており、支持部材21dは、一端側における板状吸着材の近接部で前記枠体間に掛け渡されている。
【0079】
板状吸着材は図7及び図8に示すように、吸着部材の端面に対して斜めの向きに、かつ支持部材21c及び21dにて隣り合う板状部材の一縁部が近接するように支持され、一端側から見たときに吸着材表面が連続する山と谷を形成している。板状吸着材は、形状が異なる以外は、吸着部材1で使用したものと同じものを使用することができる。なお、図8中の21eはケーシングの隔壁を示している。
【0080】
吸着部材21は、一端側から見たときに吸着材表面が山と谷を形成する構成であることから、吸着材の表面積、すなわち被処理空気の通気可能領域がより大きくなるので、処理風量のより大きな場合に用いるのに適している。
【0081】
なお、本発明の空気浄化装置では、吸着部材と、吸着部材を通過する空気との間で、時間当たりの熱容量を近い値にしておくと、吸着部材、及び前記空気のそれぞれにおける温度変化も近い値を示し、吸着領域等の各部における出入り口温度を制御する上で好ましい。よって吸着部材の移動速度や処理風量、及び外気の取入量は、吸着部材とこれを通過する空気との熱容量を検討することによって決定することが、本発明の空気浄化装置における熱効率の観点から好ましい。
【0082】
また、本発明に用いられる吸着部材は、有機汚染物質の種類に応じて、二種類以上の吸着材を用いて構成しても良く、このような一例としては、図10に示す吸着部材31が挙げられる。この吸着部材31は、セラミック系吸着材層32と、活性炭吸着材層33とを有する。セラミック系吸着材層は、吸着部材1及び21で用いられる吸着材と同じものである。活性炭吸着材層33は、セラミック系の支持体(例えばセラミックペーパによるハニカム構造体等)の表面に活性炭が担持されたものである。
【0083】
これらの層を形成するにあたっては、例えばそれぞれの吸着材層を接着して支持しても良いし、セラミック系支持体の断面において一端側には無機系の吸着成分を添着し、他端側には活性炭を担持させても良い。また三種類以上の吸着材を用いる三層以上の吸着部材も本発明では使用することができる。
【0084】
吸着部材31を図10に示す状態で本実施の形態における空気浄化装置に適用すると、再生領域6や昇温領域5のように、吸着部材を加熱する空気は、吸着部材31の他端側、すなわちセラミック系吸着材層32側から吸着部材を通過し、冷却領域7や吸着領域4のように、吸着部材を冷却する空気、あるいはほぼ等温の空気は、吸着部材31の一端側、すなわち活性炭吸着材層33側から吸着部材を通過する。
【0085】
すなわち、再生用通気路3の空気の温度が吸着部材31の温度よりも高い場合では、導入される空気の熱がセラミック吸着材層32でまず吸収され、再生用通気路3の空気の温度が吸着部材31の温度よりも低い場合では、活性炭吸着材層33の熱が導入される空気によってまず回収(冷却)されることから、高温条件下における活性炭の損傷を抑制することができる。
【0086】
このように、二層以上の吸着材層を有する吸着部材では、耐熱性の強弱によって吸着部材への空気の導入方向を決めることが、吸着材への熱的影響を抑え、長期にわたって安定した浄化を行う上で好ましい。
【0087】
【発明の効果】
本発明の空気浄化装置は、有機汚染物質を吸着する吸着性及び通気性を有する吸着部材と、被処理空気を吸着部材に通すための吸着領域と、吸着領域にて被処理空気を通した吸着部材を昇温するための昇温領域と、昇温領域にて昇温された吸着部材を吸着部材から有機汚染物質が放出される温度以上に加熱して吸着部材の吸着力を再生するための再生領域と、再生領域にて加熱された吸着部材を冷却するための冷却領域と、を有し、吸着部材が吸着領域、昇温領域、再生領域、及び冷却領域の各領域を移動することにより被処理空気を連続して浄化する空気浄化装置であって、吸着領域に被処理空気を通す浄化用通気路と、冷却領域、昇温領域、及び再生領域をこの順に接続し、冷却領域に空気を通し、冷却領域を通った空気を昇温領域に通し、昇温領域を通った空気を再生領域に通す再生用通気路と、昇温領域と再生領域とを結ぶ再生用通気路の空気を吸着部材から有機汚染物質が放出される温度以上に加熱する加熱手段と、冷却領域を通過し昇温領域を通過する前の空気と再生領域を通過した後の空気との間で熱交換を行う第一の熱交換器とを有することから、被処理空気の浄化に係るエントロピーの増大を抑制し、エネルギーロスの少ない空気浄化装置を提供することができる。
【0088】
また本発明では、再生用通気路は、再生領域を通過した空気を、昇温領域と加熱手段とを結ぶ再生用通気路に導入する通気路であると、再生後の加熱空気の熱を有効に活用する上でより一層効果的である。
【0089】
また本発明の空気浄化装置は、加熱手段と再生領域とを結ぶ再生用通気路に接続され加熱手段によって加熱された空気を外部に排出する排出用通気路と、加熱手段によって加熱される前の再生用通気路の空気と排出用通気路の空気との間で熱交換を行う第二の熱交換器とを有すると、加熱空気の熱を有効に利用し、再生用通気路の空気の温度を制御する上でより一層効果的である。
【0090】
また本発明の空気浄化装置は、昇温領域を通過し加熱手段によって加熱される前の再生用通気路の空気と、加熱手段によって加熱され再生領域を通過する前の再生用通気路の空気との間で熱交換を行う第三の熱交換器を有すると、加熱直前の空気の温度を高め、加熱前後の空気の温度差を小さくする上でより一層効果的である。
【0091】
また本発明では、再生用通気路は、昇温領域及び冷却領域のそれぞれにおいて、通気路中の空気を吸着部材に複数回通過させる通気路であると、昇温領域及び冷却領域のそれぞれにおける急激な温度変化を抑制し、かつ効率の良い熱回収及び昇温を行う上でより一層効果的である。
【0092】
また本発明では、加熱手段は、燃焼装置と、燃焼装置の周囲に設けられ有機汚染物質を分解するための触媒金属を含有する通気体と、燃焼装置及び通気体を内部に収納する燃焼室とを有する燃焼式ヒータであると、一体の加熱手段で加熱空気の生成と有機汚染物質の分解とを行うことができ、省エネルギー化及び装置の小型化の観点からより一層効果的である。
【0093】
また本発明の空気浄化装置は、第三の熱交換器と加熱手段との間の再生用通気路に、有機汚染物質を分解するための触媒を有すると、吸着部材から放出された有機汚染物質の分解を促進させる上でより一層効果的である。
【0094】
また本発明では、吸着部材は、環状の板状部材であり、内周側の枠体と、外周側の枠体と、枠体によって平面状に支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられると、簡易な構成で高性能の空気浄化装置を構築する上でより一層効果的である。
【0095】
また本発明では、吸着部材は、環状の部材であり、内周側の枠体と、外周側の枠体と、枠体によって吸着部材の端面に対して斜めに支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられると、被処理空気の処理風量を大きくする上でより一層効果的である。
【0096】
また本発明では、吸着部材は、二層構造の部材であり、再生領域を通過する空気の流れ方向において、上流側に設けられる上流側吸着材と、下流側に設けられる下流側吸着材とを有し、この下流側吸着材が活性炭を含む吸着材であると、物性の異なる複数種の有機汚染物質を吸着、分解する上でより一層効果的である。
【図面の簡単な説明】
【図1】本発明の一実施の形態である空気浄化装置の全体構成を示す概略構成図である。
【図2】図1に示される吸着部材1を示す図である。
【図3】図1に示される吸着部材1の要部を拡大して示す要部拡大断面図である。
【図4】図1に示される吸着部材1に用いられる板状吸着材を示す図である。
【図5】本実施の形態における吸着部材1及び吸着部材1を通過する空気の温度変化を示す図である。
【図6】本発明に用いられる吸着部材の他の実施の形態を示す図である。
【図7】図6に示される吸着部材21の要部を拡大して示す要部拡大断面図である。
【図8】図7におけるイ−イ線に沿って切断した状態の吸着部材を示す断面図である。
【図9】図6に示される吸着部材21で用いられる板状吸着材を示す図である。
【図10】本発明に用いられる吸着部材の他の実施の形態を示す図である。
【符号の説明】
1、21、31 吸着部材
1a、1b、21a、21b 枠体
2 浄化用通気路
3 再生用通気路
4 吸着領域
5 昇温領域
6 再生領域
7 冷却領域
8 バイパス通気路
9 温度計
10 自動弁
11 燃焼式ヒータ
11a バーナ
11b 副燃焼室
11c〜11e 通気体
11f 燃焼室
12 排出用通気路
13 減速装置
14 モータ
21c、21d 支持部材
21e ケーシングの隔壁
32 セラミック系吸着材層
33 活性炭吸着材層
c1〜c3 触媒
f1〜f3 送風機
h1〜h5 熱交換器
[0001]
[Technical field to which the invention belongs]
The present invention relates to an air purification device, and more particularly to an air purification device that produces clean air from which organic pollutants in the air have been removed and detoxifies the removed organic pollutants.
[0002]
[Prior art]
As an air purification device, a rotary rotor type adsorption concentrating device is conventionally known. This air purification apparatus includes, for example, a rotating rotor having adsorbability and air permeability that adsorbs organic pollutants, an adsorption region for passing the air to be processed through the rotating rotor, and a rotating rotor that passes the air to be processed in the adsorption region A regenerative region that regenerates the adsorption power of the rotary rotor by heating above the temperature at which organic contaminants are released from the revolving rotor, and a cooling region that cools the revolving rotor heated in the regenerative region, The air to be treated is continuously purified by moving through the adsorption region, the regeneration region, and the cooling region. In this air purification device, organic contaminants adsorbed on the rotary rotor in the adsorption region are released from the rotary rotor by heating in the regeneration region. Organic pollutants released from the rotating rotor are generally burned by a combustion device or decomposed in the presence of a catalyst.
[0003]
The above-described air purifier generally has a heating means for producing heated air for regeneration and the combustion device individually. As such an air purifier, for example, Japanese Patent Laid-Open No. 10-146514. An exhaust gas treatment device described in the publication can be cited. The publication describes a configuration in which combustion heat of the combustion device is recovered using a heat exchanger and used for heating the regeneration air, a configuration in which a part of the exhaust gas of the combustion device is circulated in the regeneration region, and the like. Such a configuration is advantageous in effectively utilizing the heat generated with the purification of the air to be treated.
[0004]
[Problems to be solved by the invention]
However, the above-described conventional air purification device has a rapid temperature change of the rotating rotor during regeneration or a large temperature difference of air during heat exchange of heat generated by the combustion device, which is entropy from a thermodynamic point of view. The increase is large, and there is still room for study in reducing the running cost by effectively utilizing the ability of thermal energy to work during air purification.
[0005]
This invention is made | formed in view of the said matter, and makes it a subject to suppress the increase in entropy which concerns on purification | cleaning of to-be-processed air, and to provide an air purification apparatus with few energy losses.
[0006]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention uses the heat of air heated to regenerate the adsorption force of the adsorption member to increase the temperature of the adsorption member before regeneration, thereby generating heat generated by the heating means. And an air purification device that suppresses a rapid temperature change during heat exchange in an adsorbing member or the like.
[0007]
That is, the air purification device of the present invention has an adsorbing member that adsorbs organic pollutants and an air permeability, an adsorbing region for passing the air to be treated through the adsorbing member, and the air to be treated in the adsorbing region. To regenerate the adsorption force of the adsorption member by heating the adsorption member heated to the temperature of the adsorption member, and heating the adsorption member heated in the temperature rise region to a temperature higher than the temperature at which the organic contaminant is released from the adsorption member And a cooling region for cooling the adsorption member heated in the regeneration region, and the adsorption member moves through the adsorption region, the temperature rising region, the regeneration region, and the cooling region. An air purification device for continuously purifying the air to be treated, wherein a purification air passage for passing the air to be treated through the adsorption region, a cooling region, a temperature raising region, and a regeneration region are connected in this order, and the air is disposed in the cooling region. Through the cooling area The air in the regeneration air passage that passes the air that has passed through the temperature rising region to the regeneration region and the air in the regeneration air passage that connects the temperature rising region and the regeneration region to a temperature higher than the temperature at which the organic pollutant is released from the adsorbing member. Heating means for heating, and a first heat exchanger for exchanging heat between the air before passing through the cooling region and passing through the temperature rising region and the air after passing through the regeneration region.
[0008]
According to the said structure, the rapid temperature change of an adsorption | suction member is suppressed from the time of adsorption | suction to the time of reproduction | regeneration, and increase of entropy is suppressed by the broad countercurrent heat exchange with an adsorption | suction member and air. In addition, the air in the regeneration ventilation path recovers heat from the regenerated adsorbing member in the cooling region, and further recovers the heat of the regenerated heated air by the first heat exchanger before passing through the temperature rising region. Since the temperature of the adsorption member is raised in the temperature increase region by the recovered heat, the effective use of heat by collecting the generated heat and the increase in entropy associated with the regeneration of the adsorption member are suppressed. Therefore, it is possible to suppress an increase in entropy related to the purification of the air to be treated and reduce energy loss.
[0009]
The first heat exchanger is not particularly limited as long as it performs heat exchange between the air that has passed through the regeneration region and the air that has not passed through the temperature rising region, and specifically, the cooling region. As long as heat exchange is performed between one or both of air before passing through the cooling region and air before passing through the cooling region and before passing through the temperature rising region, and air that has passed through the regeneration region However, since it is preferable to perform heat exchange between air having a smaller temperature difference in order to suppress an increase in entropy, the air after passing through the regeneration region and before passing through the cooling region and the temperature rising region. It is preferable to perform heat exchange with the air.
[0010]
Further, each of the regions may be a region where contact between any air to be introduced and the adsorbing member is performed, and for example, such an area may include all or part of the adsorbing member in a state where the adsorbing member is movable. The covering casing, a plurality of vent holes formed in the casing, and a partition plate that partitions the space between the adsorption member and the casing in the casing corresponding to the vent holes.
[0011]
In the present invention, a configuration that is more effective in suppressing entropy increase and reducing energy loss can be realized by the configuration of the ventilation channel such as the regeneration ventilation channel and the combination of this with the heat exchanger. In addition, about the heat exchanger used for this invention, it is preferable to arrange | position suitably so that heat exchange may be performed between air with a small temperature difference.
[0012]
First, the regeneration air passage is an air passage that introduces the air that has passed through the regeneration region into the regeneration air passage that connects the temperature rising region and the heating means. And the air that has passed through the regeneration region is mixed before heating by the heating means, the temperature of the air before being introduced into the heating means is further increased, and the temperature difference between the air before and after heating can be further reduced, It is more preferable in suppressing increase of entropy and reducing energy loss.
[0013]
Further, the air purification apparatus of the present invention is connected to a regeneration air passage connecting the heating means and the regeneration region, and discharges air passages for discharging the air heated by the heating means to the outside, and before being heated by the heating means. Having a second heat exchanger for exchanging heat between the air in the regeneration vent and the air in the discharge vent increases the temperature of the air before heating, or the air in the regeneration vent It is more preferable to appropriately adjust the temperature of
[0014]
The second heat exchanger is not particularly limited as long as it performs heat exchange between the air in the exhaust vent and the air before being heated by the heating means. Specifically, One or more of air before passing through the cooling region, air before passing through the cooling region and passing through the temperature rising region, and air before passing through the temperature rising region and being heated by the heating means Any heat exchanger may be used.
[0015]
Further, the air purification device of the present invention includes the air in the regeneration air passage before passing through the temperature raising region and being heated by the heating means, and the air in the regeneration air passage before being heated by the heating means and passing through the regeneration region. Having a third heat exchanger that exchanges heat between the two can more effectively reduce the temperature difference between the air before and after heating, suppress entropy increase, and reduce energy loss.
[0016]
The third heat exchanger preferably exchanges heat between the air immediately before and after heating. Specifically, the air before passing through the temperature raising region and being heated by the heating means. It is preferable that heat exchange is performed between the air heated by the heating means and before passing through the regeneration region, and the air in the exhaust air passage before passing through the second heat exchanger.
[0017]
In addition, in each of the temperature raising region and the cooling region, the regeneration air passage is an air passage that allows the air in the air passage to pass through the adsorption member a plurality of times. This is more preferable in improving the heating efficiency of the adsorption member in the region.
[0018]
In the present invention, conventionally known various heating means can be used, but a combustion apparatus, a ventilation body provided around the combustion apparatus and containing a catalytic metal for decomposing organic pollutants, If the combustion heater has a combustion chamber and a combustion chamber that houses the ventilation body, it is possible to perform heating of the air and decomposition of the organic pollutants with a single heating means, thus saving labor of the device. It is more preferable from the viewpoints of driving and downsizing.
[0019]
In the case of providing the third heat exchanger, it is possible to control the temperature of the air before heating by the heating means to a higher temperature, and the air immediately after the heating is the highest temperature in the system, It is more preferable to have a catalyst for decomposing organic pollutants in the regeneration air passage between the third heat exchanger and the heating means in order to promote the decomposition and detoxification of the organic pollutants.
[0020]
The combustion apparatus is not particularly limited as long as it can burn organic pollutants at least in the presence of the catalyst and generates a sufficient amount of heat to generate heated air. Such a combustion apparatus Examples thereof include a gas fuel burner, a liquid fuel burner such as a kerosene burner, and an electric heater having a nichrome wire.
[0021]
The aeration body is not particularly limited as long as it contains a catalytic metal such as platinum or palladium and air in a state heated by the combustion device can be freely ventilated, and various configurations such as a lattice body and a mesh body can be cited. However, it is preferable to have close contact with heated air. Further, the ventilation body may be accommodated in the combustion chamber as a single body or two or more bodies. Further, the ventilation body does not have to be made of a catalyst metal, and for example, may support the catalyst metal on the surface.
[0022]
The catalyst may be any one that decomposes organic pollutants in the air, and it is preferable to use an appropriate catalyst according to the use conditions. In the present invention, it is preferable to use a catalytic metal such as platinum or palladium having excellent heat resistance and activity because it is preferably used in a relatively high temperature environment. As the catalyst provided in the regeneration ventilation path, the above-described ventilation body may be used, or particles carrying the catalyst on the surface may be used. The said particle | grain can be provided in the ventilation path for reproduction | regeneration by filling the ventilation path.
[0023]
Further, in the present invention, various forms of adsorbing members can be used according to the amount of processing air of the air purification device, the type of organic pollutant, and the like.
[0024]
The adsorbing member used in the present invention is an adsorbing and breathable member that adsorbs at least organic pollutants, and moves in each of the adsorbing region, the temperature raising region, the regeneration region, and the cooling region. It ’s fine. As such an adsorbing member, for example, an adsorbing member having an endless belt shape, a columnar shape, an annular shape or the like is preferably used from the viewpoint of miniaturization of the apparatus. The suction member having such a shape can be moved in each region by the rotation of the pulley or the rotation of the suction member itself.
[0025]
The adsorbing member only needs to have an adsorbing component for adsorbing organic pollutants in the air at least on the surface, and the adsorbing form is not particularly limited, but adsorbs organic pollutants by physical adsorption. It is preferable from the viewpoint of suppressing the decrease in adsorption efficiency in durability and repeated use. As such an adsorbing member, for example, a ceramic sintered body formed in a porous body such as a honeycomb structure, or a member in which an adsorbing component is supported on the surface of such a porous body is preferably exemplified. it can.
[0026]
The adsorbing member may be formed as a whole by forming a porous body containing an adsorbing component, but is formed by supporting a plate-like porous member containing an adsorbing component with an appropriate frame. May be. Such a configuration is suitable for forming various forms of adsorbing members, and is preferable for configuring an appropriate adsorbing member according to the processing air volume capacity of the air purification device, the type of organic contaminants, and the like. .
[0027]
The adsorbing member used in the present invention is, for example, an annular plate-like member, and is an inner peripheral frame, an outer peripheral frame, and a porous plate that is supported in a planar shape by these frames. An adsorbing member that has an adsorbent and is provided so as to be rotatable about the central axis of the ring as a rotation axis. Such a configuration is preferable when applied to an air purifier having a relatively small processing air flow capacity.
[0028]
Further, as the adsorbing member used in the present invention, for example, an annular member, an inner peripheral side frame, an outer peripheral side frame, and these frames are supported obliquely with respect to the end surface of the adsorbing member. For example, a porous plate-like adsorbent supported so that peaks and valleys are continuously formed along the circumferential direction of the adsorbing member when viewed from one end side of the adsorbing member, and the center of the ring An adsorbing member that is rotatably provided with an axis as a rotation axis can be used.
[0029]
According to such a configuration, the surface area of the plate-like adsorbent in the entire adsorbing member is increased, which is preferable when applied to an air purifier having a relatively large processing air flow capacity. Moreover, in such a structure, in order to support the plate-like adsorbent and distribute the air introduced into the plate-like adsorbent, it is more preferable to provide a support member that spans between the two frame bodies.
[0030]
In the present invention, two or more adsorbents may be used in combination depending on the type of organic pollutant. Examples of such an adsorbent include activated carbon as an adsorbent for adsorbing low-boiling organic pollutants. In the case where two or more kinds of adsorbents are used in combination, it is preferable to arrange them appropriately in accordance with the physical properties of the adsorbent.
[0031]
As such an adsorbing member, for example, a member having a two-layer structure, an upstream adsorbing material provided on the upstream side and a downstream adsorbing material provided on the downstream side in the flow direction of the air passing through the regeneration region. And an adsorbing member in which the downstream adsorbent is an adsorbent containing activated carbon. In the adsorption member having such a multilayer structure, it is preferable to stack an adsorbent having high temperature resistance from the upstream side toward the downstream side in order to reduce the thermal influence on the adsorbent. For example, when the ceramic adsorbent described above and activated carbon are used in combination, the activated carbon is used as the downstream adsorbent with respect to the high-temperature regeneration airflow.
[0032]
In the air purification apparatus of the present invention, in addition to the various means and members described above, a blowing means for blowing air in the ventilation path, a blowing amount control means for controlling the blowing amount of air in the ventilation path, and an adsorption member It is possible to appropriately provide various means such as a transmission for controlling the moving speed of the air and various detection means for monitoring the operation status of the air purification device. By appropriately providing these means, the air purifier can be further suitably operated.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the air purification device of the present invention will be described.
As shown in FIG. 1, the air purifying apparatus in the present embodiment includes an adsorbing member 1 having at least an adsorbing property and an air permeability for adsorbing organic pollutants, a purifying air passage 2 through which air to be treated passes, and a regenerating device. And an air passage 3. In the present embodiment, for convenience, the lower side of the adsorption member 1 in FIG. 1 will be described as “one end side”, and the upper side of the adsorption member 1 will be described as “the other end side”. In this embodiment, the terms “upstream side” and “downstream side” are used in the description. These are the air flow direction in the regeneration air passage 3 or the moving direction of the adsorption member 1 (each in FIG. 1). (Indicated by an arrow).
[0034]
The adsorbing member 1 is an annular plate-like member that is rotatably provided. The adsorbing member 1 is housed in a casing (not shown). This casing forms each region of the adsorption region 4, the temperature rising region 5, the regeneration region 6, and the cooling region 7 by a partition plate having a labyrinth packing, and the adsorption member 1 is configured to move in each region by rotation. ing. The purification air passage 2 is connected to the adsorption region 4. The regeneration air passage 3 is first connected to the cooling region 7, then connected to the cooling region 7 and the temperature raising region 5, then connected to the temperature rising region 5 and the combustion heater 11, and then to the combustion heater 11 and the regeneration region. 6 is connected.
[0035]
A heat exchanger that exchanges heat between the blower f1 and the air in the discharge air passage to be described later and the air upstream of the cooling region 7 is provided in the regeneration air passage 3 upstream of the cooling region 7. h 1, the bypass air passage 8 connecting the upstream and downstream regeneration air passages 3 of the heat exchanger h 1, and the temperature of the air upstream of the cooling region 7 and downstream of the bypass air passage 8. A thermometer 9 for detection is provided. An automatic valve 10 is provided in the bypass air passage 8. The automatic valve 10 is connected to the thermometer 9 and adjusts the opening degree based on the detection result of the thermometer 9.
[0036]
In the cooling region 7, a meandering air passage is formed by the partition plate and the regeneration air passage 3, and air introduced by the regeneration air passage 3 is transferred from the one end side of the adsorption member 1 to the other in the cooling region 7. The suction member 1 is configured to pass through the end side a plurality of times (three times in the present embodiment). The regeneration air passage 3 downstream of the cooling region 7 and upstream of the temperature raising region 5 is provided with a heat exchanger h2 for exchanging heat between air after regeneration and air after cooling, which will be described later. It has been. In the temperature raising region 5, like the cooling region 7, a meandering air passage is formed by the partition plate and the regeneration air passage 3, and the air introduced by the regeneration air passage 3 is supplied to the temperature raising region 5. 5, the suction member 1 is configured to pass through the suction member 1 a plurality of times (three times in the present embodiment) from the other end side to the one end side.
[0037]
In the regeneration air passage 3 downstream of the temperature raising region 5 and upstream of the combustion heater 11, heat exchange is performed between air in a discharge air passage and air in the regeneration air passage 3, which will be described later. A heat exchanger h3, a blower f2, heat exchangers h4 and h5 for exchanging heat between the heated air after regeneration and the air in the regeneration air passage 3, and immediately downstream of the respective heat exchangers And catalysts c1 and c2 for decomposing organic pollutants.
[0038]
The combustion heater 11 includes a burner 11a, a sub-combustion chamber 11b that accommodates the burner 11a, mesh-shaped ventilation bodies 11c to 11e that surround the sub-combustion chamber 11b, and a combustion chamber 11f that accommodates these. The ventilation bodies 11c to 11e have a coarseness of about 2 mm square and are made of platinum which is a catalyst metal. The ventilation body 11c is surrounded by the ventilation body 11d, and the ventilation body 11d is provided so as to be surrounded by the ventilation body 11e.
[0039]
A regeneration passage 3 downstream of the combustion heater 11 and upstream of the regeneration region 6 is provided with a catalyst c3 for decomposing organic pollutants and heat exchangers h5 and h4. Further, a discharge air passage 12 is branched and extended from the regeneration air passage 3 downstream of the heat exchanger h4 and upstream of the regeneration region 6. The exhaust air passage 12 is an air passage that exhausts air in the air passage to the outside through the heat exchangers h3 and h2.
[0040]
In the regeneration region 6, the regeneration air passage 3 forms an air passage through which the heated air introduced into the regeneration region 6 passes through the adsorption member 1 from the other end side to the one end side of the adsorption member 1. The regeneration air passage 3 downstream of the regeneration region 6 is connected to the regeneration air passage 3 downstream of the heat exchanger h3 and upstream of the fan f2 via the heat exchanger h2.
[0041]
As shown in FIG. 2, the suction member 1 is supported in the horizontal direction by a plurality of rollers, and is configured such that the power of the motor 14 is transmitted via the speed reducer 13. The adsorbing member 1 is formed by supporting the air-permeable porous adsorbent shown in FIG. 4 in a planar manner by an inner peripheral frame 1a and an outer peripheral frame 1b as shown in FIG. And is connected to the speed reducer 13 by meshing portions provided on the entire circumference of the outer peripheral side frame 1b. The adsorbing member 1 may be supported so that the rotation axis extends in the horizontal direction, and the shape may be a disk shape.
[0042]
The porous adsorbent shown in FIG. 4 is a ceramic chemical filter as disclosed in JP-A-11-19436, JP-A-11-70313, and JP-A-11-333226. By inorganic mineral ceramics such as Honeycomb A support such as a structure is formed into an appropriate shape, and an inorganic material selected from zeolite, aluminosilicate mineral, zinc aluminosilicate mineral alkali salt, inorganic acid salt, and metal oxide is attached to the surface and fired. Is.
[0043]
Next, the operation of the above-described air purification apparatus will be described by taking as an example the case where factory exhaust gas containing organic pollutants is treated air.
[0044]
First, the purification of the air to be treated will be described. Factory exhaust gas is sent from the purification air passage 2 to the adsorption region 4. Organic pollutants in the factory exhaust gas sent to the adsorption region 4 are adsorbed by the adsorption member 1, and the factory exhaust gas is purified by passing through the adsorption member 1. The gas purified after passing through the adsorption region 4 is released into the atmosphere.
[0045]
On the other hand, the adsorbing member 1 that adsorbs organic contaminants passes through the adsorption region 4 and reaches the temperature raising region 5. Here, the temperature of the adsorption member 1 is increased three times by the air in the regeneration air passage 3. In the temperature raising region 5, the temperature of the adsorption member 1 is increased by the heat recovered from the adsorption member 1 in the cooling region 7 and the heat recovered from the regenerated air by the heat exchanger h <b> 2. The temperature of the adsorbing member 1 is raised to less than the temperature when it is heated in the regeneration region 6. The air flow and heat recovery in the regeneration vent 3 will be described in detail later.
[0046]
The adsorption member 1 heated in the temperature rising region 5 passes through the temperature rising region 5 and reaches the regeneration region 6. Here, the adsorbing member 1 is heated by heated air (about 200 ° C.), and the adsorbed organic pollutant is released to the heated air. In the regeneration region 6, the air heated by the combustion heater 11 and released from the heat exchangers h <b> 5 and h <b> 4 and adjusted in temperature is heated above the temperature at which all target organic pollutants are released from the adsorption member 1. To be heated.
[0047]
The adsorption member 1 heated in the regeneration region 6 passes through the regeneration region 6 and reaches the cooling region 7. Here, the adsorbing member 1 is cooled three times by the air whose temperature is adjusted by the heat exchanger h1, the bypass air passage 8, the thermometer 9, and the automatic valve 10.
[0048]
The suction member 1 cooled in the cooling region 7 passes through the cooling region 7 and reaches the suction region 4 again. The factory exhaust gas is continuously purified by repeating the above-described steps.
[0049]
Next, the air flow in the regeneration vent 3 will be described.
First, outside air is introduced from the outside air intake port that is the starting end of the regeneration air passage 3. The air introduced here is not limited to the outside air, and may be air adjusted in advance by an air conditioner.
[0050]
The air introduced into the regeneration air passage 3 is distributed to the heat exchanger h <b> 1 and the bypass air passage 8 according to the opening degree of the automatic valve 10. The distribution condition at this time is the temperature of the air detected by the thermometer 9, and the opening degree of the automatic valve 10 is controlled so that the air upstream of the cooling region 7 has a predetermined temperature (for example, 25 ° C.). . When the temperature of the introduced air is low, the amount of ventilation to the heat exchanger h1 is increased, and when the temperature of the introduced air is high, the amount of ventilation to the bypass ventilation path 8 is increased.
[0051]
The air in the regeneration air passage 3 first passes through the adsorption member 1 once in the cooling region 7, exchanges heat with the adsorption member 1, cools the adsorption member 1, and cools the adsorption member 1 to, for example, 60 ° C. To be heated. The heated air further passes through the adsorbing member 1 in the cooling region 7 on the upstream side in the rotation direction of the adsorbing member 1 from the first passing position, and is adsorbed in the cooling region 7 from the second passing position. The adsorbing member 1 is passed further upstream in the rotation direction of the member 1. Thus, in the cooling region 7, the air in the regeneration air passage 3 passes through the adsorption member 1 three times in order from the part where the temperature of the adsorption member 1 is low, and the air in the regeneration air passage 3 after passing through the cooling region 7 is The adsorption member 1 heated to 130 ° C. and regenerated (heated) in the regeneration region 6 is cooled to room temperature (for example, around 30 ° C.) in three stages.
[0052]
The air in the regeneration air passage 3 that has passed through the cooling region 7 is further heated by heat exchange in the heat exchanger h2, and is introduced into the temperature raising region 5 in this state (for example, 160 ° C.).
[0053]
The air in the regeneration ventilation path 3 first passes through the adsorption member 1 once in the temperature raising region 5, exchanges heat with the adsorption member 1, raises the temperature of the adsorption member 1, Cool to 130 ° C. The cooled air further passes through the adsorbing member 1 in the temperature rising region 5 on the upstream side in the rotation direction of the adsorbing member 1 from the first passing position, and in the temperature rising region 5 from the second passing position. Passes through the suction member 1 further upstream in the rotation direction of the suction member 1. As described above, in the temperature rising region 5, the air in the regeneration air passage 3 passes through the adsorption member 1 three times in order from the part where the temperature of the adsorption member 1 is high, and the air in the regeneration air passage 3 after passing through the temperature rising region Is cooled to about 60 ° C., while the adsorbing member 1 having adsorbed organic contaminants in the adsorption region 4 is heated to a predetermined temperature in three stages.
[0054]
The air in the regeneration air passage 3 that has passed through the temperature raising region 5 is heated by heat exchange (180 ° C.) in the heat exchanger h3, passes through the blower f2 (165 ° C.), and is heated by heat exchange in the heat exchanger h4 ( 350 ° C.), passes through the catalyst c1, is heated by heat exchange (550 ° C.) in the heat exchanger h5, passes through the catalyst c2, and is sent to the combustion heater 11.
[0055]
The air sent to the combustion heater 11 is further heated (600 ° C.) by the burner 11a, passes through the catalyst c3, passes through the heat exchanger h5 (400 ° C.), and passes through the heat exchanger h4 (200 ° C.). To do. Part (for example, half) of the air that has passed through the heat exchanger h <b> 4 is sent to the exhaust air passage 12, and part is sent to the regeneration region 6. The air sent to the exhaust air passage 12 exchanges heat with the air that has passed through the temperature rising region 5 in the heat exchanger h3, passes through the temperature rising region 5, and is heated by the combustion heater 11. Heat the previous air. The air that has passed through the heat exchanger 3 passes through the heat exchanger h1 and is discharged to the outside.
[0056]
On the other hand, the heated air in the regeneration air passage 3 sent from the heat exchanger h4 to the regeneration region 6 passes through the adsorption member 1 in the regeneration region 6, heats the adsorption member 1, and organic contamination that the adsorption member 1 adsorbs. The substance is released from the adsorbing member 1. The air (180 ° C.) of the regeneration ventilation passage 3 that has passed through the regeneration region 6 passes through the heat exchanger h2 (150 ° C.) in a state containing organic pollutants, and becomes the air before passing through the temperature raising region 5. Release heat. The air that has passed through the heat exchanger h2 merges with the heated air that has recovered heat from the heated air in the heat exchanger h3, and passes through the blower f2.
[0057]
The air containing the organic pollutant is heated by the heat exchanger h <b> 4, then passes through the catalyst c <b> 1, then heated by the heat exchanger h <b> 5, and then passes through the catalyst c <b> 2 and sent to the combustion heater 11. When the catalysts c1 and c2 pass, some of the organic pollutants in the air are decomposed according to the type of the organic pollutants and the temperature of the air when passing.
[0058]
In the combustion heater 11, the air containing organic pollutants is first introduced into the sub-combustion chamber 11a and heated to a high temperature, and then sequentially passes through the vents 11c to 11e containing the catalyst metal. Along with this, organic pollutants in the air are decomposed.
[0059]
The heated air that has passed through the combustion heater 11 is introduced into the catalyst c3 while maintaining a high temperature state. When organic pollutants remain in the air passing through the combustion heater 11, the organic pollutants in the air are further decomposed by the catalyst c3, and the organic pollutants released from the adsorbing member 1 in the regeneration region 6 are Almost decomposed.
[0060]
The heated air used for the regeneration is distributed to the exhaust air passage 12 and the regeneration region 6 as described above, a part of which is discharged, and a part of which is used for the regeneration of the adsorption member 1.
[0061]
FIG. 5 shows a temperature change of the adsorption member 1 in the present embodiment. In FIG. 5, the wavy line indicates the temperature of the adsorption member, and the solid line indicates the temperature of the air passing through the adsorption member 1. FIG. 5 shows that the temperature change between the adsorption region 4 and the regeneration region 6 is smooth.
[0062]
Here, the heat balance relating to the regeneration of the adsorption member 1 will be described. The heating required for the regeneration of the adsorption member 1 is performed only by the combustion heater 11. That is, the combustion source 11 is the only heat source for heating the adsorption member 1 in the regeneration region 6.
[0063]
On the other hand, in the cooling region 7, the air in the regeneration ventilation path 3 recovers heat from the adsorption member 1 heated by regeneration. The cooled air has the heat recovered from the adsorbing member 1 and absorbs the heat of the regenerated air in the heat exchanger h <b> 2, and this air is used to raise the temperature of the temperature raising region 5. That is, the heat used for the regeneration is recovered by the cooling region 7 and the heat exchanger h2, and the temperature raising region 5 is heated only by the recovered heat.
[0064]
Further, in the cooling region 7, air at a predetermined temperature is passed stepwise from a portion away from the regeneration region 6 to a portion close to the regeneration region 6. The temperature difference between the heat collecting side and the heat collecting side (for example, air and air, adsorption member 1 and air, etc.) It is getting smaller.
[0065]
Further, the heat balance of the air in the regeneration air passage 3 before and after the combustion heater 11 will be described. In the heat exchangers h4 and h5, heat is recovered from the air immediately after heating to the air immediately before heating. The temperature difference of air is smaller. Further, the air that has recovered the heat immediately before the heating is configured to pass through the catalyst, and the heat recovered immediately before the heating is used for the decomposition of the organic pollutants in each catalyst.
[0066]
The heat balance between the air in the exhaust vent 12 and the air in the regeneration vent 3 will be described. In the exhaust vent 12, heat generated by the combustion heater 11 by the heat exchangers h1 and h3. Is used to heat the air in the regeneration ventilation path 3.
[0067]
The air purification apparatus in the present embodiment has an adsorption member 1, an adsorption region 4, a temperature raising region 5, a regeneration region 6, and a cooling region 7, and includes a cooling region 7, a heat exchanger h2, a temperature raising region 5, Since the regenerative air passage 3 that passes through the combustion heater 11, the regeneration region 6, and the heat exchanger h2 in this order is provided, the cooling region 7 is heated from the adsorption member 1, and the heat exchanger h2 is heated after passing the regeneration region. Since the heat after regeneration is recovered from the air, and the temperature of the adsorption member 1 is increased before the regeneration using the recovered heat as a heat source, the energy required for increasing the temperature of the adsorption member 1 and securing the temperature of the regeneration region 6 is obtained. Can be saved.
[0068]
Moreover, since the air purification apparatus in this Embodiment has the temperature rising area | region 5, the temperature change by the heating from the adsorption | suction area | region 4 to the reproduction | regeneration area | region 6 is smoother, and can suppress the increase in entropy more, Energy loss can be further reduced.
[0069]
Further, in the air purifying apparatus in the present embodiment, the regeneration air passage 3 on the downstream side of the regeneration region 6 is connected to the regeneration air passage 3 that connects the temperature raising region 5 and the combustion heater 11. Then, the air that has released heat in the temperature raising region 5 and the heated air that has passed through the regeneration region 6 are sent to the combustion heater 11 in a mixed state, and the temperature of the air before heating is further increased to increase the temperature after regeneration. Heat can be used effectively.
[0070]
In addition, the air purification apparatus in the present embodiment includes the exhaust air passage 12, the heat exchanger h3, and the heat exchanger h1 through which the heated air passes, so that heat is generated between the heated air and the heated air. Heat exchange can be performed between the heated air after the heat exchange and the air before cooling, and the temperature difference between the air before and after the heating can be further increased by increasing the temperature of the air before the temperature rise. The heat of the air after the heat exchange is reduced and used for temperature control of the air in the regeneration vent 3 before cooling, and the heat generated by the combustion heater 11 can be used effectively. .
[0071]
Moreover, since the air purification apparatus in this Embodiment has the heat exchanger h4 and the heat exchanger h5, heat exchange is performed between the air immediately before and after the combustion type heater 11, and the heating by the combustion type heater 11 is carried out. Can be suppressed, and heated air having a temperature suitable for regeneration can be sent to the regeneration region 6.
[0072]
In the air purifying apparatus according to the present embodiment, the air introduced from the regeneration ventilation path 3 passes through the adsorption member 1 three times from the other end side to the one end side in the temperature raising region 5, while the cooling region 7, the adsorbing member 1 passes through the adsorbing member 1 three times from the one end side to the other end side, and therefore, in the adsorbing region 5 and the cooling region 7, the rapid temperature change of the adsorbing member 1 and the air passing therethrough is further suppressed. Can do.
[0073]
Moreover, since the air purification apparatus in this Embodiment enclosed the auxiliary | assistant combustion chamber 11b with the ventilation body which is the metal mesh containing a catalyst metal, generation | occurrence | production of heating air, and organically using only a single heating means. The pollutants can be decomposed.
[0074]
Moreover, since the air purification apparatus in this Embodiment has the catalysts c1-c3 in the ventilation path 3 before and behind the combustion type heater 11, it can further promote decomposition | disassembly of the organic pollutant in air.
[0075]
Moreover, since the air purification apparatus in this Embodiment has the bypass ventilation path 8, the thermometer 9, and the automatic valve 10, it can control appropriately the temperature of the air in the regeneration ventilation path 3 before cooling.
[0076]
Moreover, since the air purification apparatus in this Embodiment uses the inorganic type adsorption member 1 containing a ceramic, it has high temperature resistance, can raise regeneration temperature, and is stable over a long period of time also in a high temperature state. Can be used.
[0077]
The adsorbing member 1 is configured as an annular plate-shaped adsorbing member by supporting a plate-shaped adsorbing material with a frame as described above, and exhibits high performance with a simple configuration. Such a flat adsorption member 1 can process air to be treated, for example, about 10 times as much as the amount of outside air introduced into the regeneration air passage 3, but it can process more air to be treated. In that case, it is preferable to use the adsorbing member 21 shown in FIGS. As shown in FIG. 6, the adsorption member 21 can be attached in the same manner as the adsorption member 1 described above, and can be supported in the vertical direction in the same manner as the adsorption member 1.
[0078]
The adsorbing member 21 is an annular member, and is spanned between the inner peripheral frame 21a, the outer peripheral frame 21b, the porous plate-shaped adsorbent shown in FIG. 9, and the frames 21a and 21b. Plate-like support members 21c and 21d. The support member 21c is spanned between the frame bodies at a proximity portion of the plate-like adsorbent on the other end side, and the support member 21d is spanned between the frame bodies at a proximity portion of the plate-like adsorbent material on the one end side. Has been passed.
[0079]
As shown in FIGS. 7 and 8, the plate-like adsorbent is supported in an oblique direction with respect to the end surface of the adsorbing member and so that one edge of the adjoining plate-like member is close by the supporting members 21c and 21d. Then, when viewed from one end side, the adsorbent surface forms continuous peaks and valleys. The same thing as what was used with the adsorption member 1 can be used for a plate-shaped adsorption material except a different shape. In addition, 21e in FIG. 8 has shown the partition of the casing.
[0080]
Since the adsorbing member 21 has a configuration in which the adsorbent surface forms peaks and valleys when viewed from one end side, the surface area of the adsorbing material, that is, the area where the air to be treated can be vented becomes larger. Suitable for use in larger cases.
[0081]
In the air purification apparatus of the present invention, if the heat capacity per hour is set to a close value between the adsorbing member and the air passing through the adsorbing member, the temperature change in each of the adsorbing member and the air is also close. This value is preferable in controlling the entrance / exit temperature in each part such as the adsorption region. Therefore, from the viewpoint of thermal efficiency in the air purification apparatus of the present invention, the moving speed of the adsorbing member, the processing air volume, and the intake amount of outside air are determined by examining the heat capacity of the adsorbing member and the air passing through the adsorbing member. preferable.
[0082]
Further, the adsorbing member used in the present invention may be constituted by using two or more kinds of adsorbing materials according to the type of organic pollutant. As an example, the adsorbing member 31 shown in FIG. Can be mentioned. The adsorbing member 31 includes a ceramic adsorbent layer 32 and an activated carbon adsorbent layer 33. The ceramic-based adsorbent layer is the same as the adsorbent used in the adsorbing members 1 and 21. The activated carbon adsorbent layer 33 is made of a ceramic support (for example, ceramic paper). Honeycomb Activated carbon is supported on the surface of the structure or the like.
[0083]
In forming these layers, for example, the respective adsorbent layers may be bonded and supported, or an inorganic adsorbing component is attached to one end side in the cross section of the ceramic support, and the other end side is supported. May support activated carbon. Also, three or more layers of adsorbing members using three or more kinds of adsorbents can be used in the present invention.
[0084]
When the adsorbing member 31 is applied to the air purification apparatus in the present embodiment in the state shown in FIG. 10, the air that heats the adsorbing member, like the regeneration region 6 and the temperature raising region 5, That is, air that passes through the adsorbing member from the ceramic adsorbent layer 32 side and cools the adsorbing member as in the cooling region 7 or the adsorbing region 4 or substantially isothermal air is adsorbed on one end of the adsorbing member 31, that is, activated carbon adsorption. The adsorbing member passes from the material layer 33 side.
[0085]
That is, when the temperature of the air in the regeneration vent 3 is higher than the temperature of the adsorption member 31, the heat of the introduced air is first absorbed by the ceramic adsorbent layer 32, and the temperature of the air in the regeneration vent 3 is When the temperature is lower than the temperature of the adsorbing member 31, since the heat of the activated carbon adsorbent layer 33 is first recovered (cooled) by the introduced air, the activated carbon can be prevented from being damaged under high temperature conditions.
[0086]
In this way, in an adsorbing member having two or more adsorbent layers, determining the direction of air introduction into the adsorbing member depending on the strength of heat resistance suppresses the thermal effect on the adsorbent and provides stable purification over a long period of time. It is preferable when performing.
[0087]
【The invention's effect】
The air purifying apparatus of the present invention includes an adsorbing member having adsorbability and air permeability for adsorbing organic pollutants, an adsorbing region for passing the air to be treated through the adsorbing member, and an adsorption through the air to be treated in the adsorbing region A temperature rising region for raising the temperature of the member, and an adsorption member heated in the temperature rising region to be heated to a temperature higher than the temperature at which the organic pollutant is released from the adsorption member to regenerate the adsorption force of the adsorption member. A regeneration region and a cooling region for cooling the adsorption member heated in the regeneration region, and the adsorption member moves through the adsorption region, the temperature rising region, the regeneration region, and the cooling region. An air purification device for continuously purifying the air to be treated, wherein a purification air passage for passing the air to be treated through the adsorption region, a cooling region, a temperature raising region, and a regeneration region are connected in this order, and the air is disposed in the cooling region. And pass the air that has passed through the cooling zone to the heating zone. The air in the regeneration air passage that passes the air passing through the temperature raising region to the regeneration region and the air in the regeneration air passage connecting the temperature rising region and the regeneration region are heated to a temperature higher than the temperature at which the organic pollutant is released from the adsorbing member. Since it has a heating means and a first heat exchanger that performs heat exchange between the air that has passed through the cooling region and passed through the temperature rising region and the air that has passed through the regeneration region, the air to be treated An increase in entropy associated with purification of the air can be suppressed, and an air purification device with less energy loss can be provided.
[0088]
Further, in the present invention, the regeneration air passage is an air passage that introduces the air that has passed through the regeneration region into the regeneration air passage that connects the temperature rising region and the heating means. It is even more effective in using it.
[0089]
Further, the air purification apparatus of the present invention is connected to a regeneration air passage connecting the heating means and the regeneration region, and discharges air passages for discharging the air heated by the heating means to the outside, and before being heated by the heating means. Having a second heat exchanger that exchanges heat between the air in the regeneration vent and the air in the exhaust vent, the temperature of the air in the regeneration vent is effectively utilized by utilizing the heat of the heated air. It is much more effective in controlling.
[0090]
Further, the air purifying apparatus of the present invention includes the air in the regeneration air passage before passing through the temperature raising region and being heated by the heating means, and the air in the regeneration air passage before being heated by the heating means and passing through the regeneration region. Having a third heat exchanger that exchanges heat between the two is more effective in increasing the temperature of the air immediately before heating and reducing the temperature difference between the air before and after heating.
[0091]
Further, in the present invention, the regeneration ventilation path is a ventilation path that allows the air in the ventilation path to pass through the adsorption member a plurality of times in each of the temperature rising area and the cooling area. It is even more effective in suppressing a significant temperature change and performing efficient heat recovery and temperature rise.
[0092]
In the present invention, the heating means includes a combustion device, a ventilation body that is provided around the combustion device and contains a catalytic metal for decomposing organic pollutants, and a combustion chamber that houses the combustion device and the ventilation body. The combustion heater having the above can generate heated air and decompose organic pollutants with an integral heating means, and is more effective in terms of energy saving and downsizing of the apparatus.
[0093]
Further, the air purification apparatus of the present invention has an organic pollutant released from the adsorbing member when the regeneration air passage between the third heat exchanger and the heating means has a catalyst for decomposing the organic pollutant. It is even more effective in promoting the decomposition of.
[0094]
In the present invention, the adsorbing member is an annular plate-like member, and includes an inner peripheral side frame, an outer peripheral side frame, and a porous plate-like adsorbent supported in a planar shape by the frame. It is more effective in constructing a high-performance air purification device with a simple configuration if it is provided so as to be rotatable about the center axis of the ring.
[0095]
In the present invention, the adsorbing member is an annular member, and is an inner peripheral frame, an outer peripheral frame, and a porous plate that is supported by the frame obliquely with respect to the end surface of the adsorbing member. It is more effective to increase the processing air volume of the air to be processed if it has an adsorbent and is provided so as to be rotatable about the central axis of the ring.
[0096]
In the present invention, the adsorbing member is a member having a two-layer structure, and an upstream adsorbing material provided on the upstream side and a downstream adsorbing material provided on the downstream side in the flow direction of the air passing through the regeneration region. If the downstream adsorbent is an adsorbent containing activated carbon, it is more effective in adsorbing and decomposing a plurality of types of organic pollutants having different physical properties.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an overall configuration of an air purifying apparatus according to an embodiment of the present invention.
FIG. 2 is a view showing an adsorption member 1 shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a main part showing an enlarged main part of the adsorption member 1 shown in FIG. 1;
4 is a view showing a plate-like adsorbent used in the adsorbing member 1 shown in FIG. 1. FIG.
FIG. 5 is a diagram showing the temperature change of the adsorbing member 1 and the air passing through the adsorbing member 1 in the present embodiment.
FIG. 6 is a view showing another embodiment of the adsorbing member used in the present invention.
7 is an enlarged cross-sectional view of a main part showing an enlarged main part of the adsorption member 21 shown in FIG.
8 is a cross-sectional view showing the suction member in a state cut along the line II in FIG.
9 is a diagram showing a plate-like adsorbent used in the adsorbing member 21 shown in FIG. 6. FIG.
FIG. 10 is a view showing another embodiment of the adsorbing member used in the present invention.
[Explanation of symbols]
1, 21, 31 Adsorption member
1a, 1b, 21a, 21b Frame
2 Ventilation path for purification
3 Regeneration vent
4 adsorption area
5 Temperature rise area
6 Playback area
7 Cooling area
8 Bypass air passage
9 Thermometer
10 Automatic valve
11 Combustion heater
11a burner
11b Subcombustion chamber
11c-11e Ventilation body
11f Combustion chamber
12 Discharge air passage
13 Reduction gear
14 Motor
21c, 21d Support member
21e Casing bulkhead
32 Ceramic-based adsorbent layer
33 Activated carbon adsorbent layer
c1 to c3 catalyst
f1-f3 blower
h1-h5 heat exchanger

Claims (10)

有機汚染物質を吸着する吸着性及び通気性を有する吸着部材と、
被処理空気を前記吸着部材に通すための吸着領域と、
前記吸着領域にて被処理空気を通した前記吸着部材を昇温するための昇温領域と、
前記昇温領域にて昇温された前記吸着部材を吸着部材から有機汚染物質が放出される温度以上に加熱して吸着部材の吸着力を再生するための再生領域と、
前記再生領域にて加熱された前記吸着部材を冷却するための冷却領域と、を有し、前記吸着部材が前記吸着領域、昇温領域、再生領域、及び冷却領域の各領域を移動することにより被処理空気を連続して浄化する空気浄化装置であって、
前記吸着領域に被処理空気を通す浄化用通気路と、
前記冷却領域、昇温領域、及び再生領域をこの順に接続し、冷却領域に空気を通し、冷却領域を通った空気を昇温領域に通し、昇温領域を通った空気を再生領域に通す再生用通気路と、
前記昇温領域と前記再生領域とを結ぶ再生用通気路の空気を前記吸着部材から有機汚染物質が放出される温度以上に加熱する加熱手段と、
前記冷却領域を通過し前記昇温領域を通過する前の空気と前記再生領域を通過した後の空気との間で熱交換を行う第一の熱交換器と、を有する空気浄化装置。
An adsorbing member having adsorbability and breathability for adsorbing organic pollutants;
An adsorption region for passing the air to be treated through the adsorption member;
A temperature raising region for raising the temperature of the adsorption member through which the air to be treated is passed in the adsorption region;
A regeneration region for regenerating the adsorption force of the adsorption member by heating the adsorption member heated in the temperature elevation region to a temperature higher than the temperature at which organic contaminants are released from the adsorption member;
A cooling area for cooling the adsorption member heated in the regeneration area, and the adsorption member moves through the adsorption area, the temperature raising area, the regeneration area, and the cooling area. An air purification device for continuously purifying air to be treated,
A purification vent for passing the air to be treated to the adsorption region;
The cooling region, the temperature rising region, and the regeneration region are connected in this order, air is passed through the cooling region, air passing through the cooling region is passed through the temperature rising region, and air passing through the temperature rising region is passed through the regeneration region. For airway,
Heating means for heating the air in the regeneration ventilation path connecting the temperature raising region and the regeneration region to a temperature equal to or higher than the temperature at which organic contaminants are released from the adsorption member;
An air purification apparatus comprising: a first heat exchanger that exchanges heat between air that has passed through the cooling region and has not yet passed through the temperature raising region, and air that has passed through the regeneration region.
前記再生用通気路は、前記再生領域を通過した空気を、前記昇温領域と前記加熱手段とを結ぶ再生用通気路に導入する通気路であることを特徴とする請求項1に記載の空気浄化装置。2. The air according to claim 1, wherein the regeneration air passage is an air passage that introduces air that has passed through the regeneration region into a regeneration air passage that connects the temperature rising region and the heating unit. Purification equipment. 前記加熱手段と前記再生領域とを結ぶ再生用通気路に接続され加熱手段によって加熱された空気を外部に排出する排出用通気路と、前記加熱手段によって加熱される前の再生用通気路の空気と前記排出用通気路の空気との間で熱交換を行う第二の熱交換器とを有することを特徴とする請求項1又は2に記載の空気浄化装置。A discharge air passage connected to a regeneration air passage connecting the heating means and the regeneration region to discharge the air heated by the heating means to the outside, and air in the regeneration air passage before being heated by the heating means The air purifier according to claim 1, further comprising: a second heat exchanger that exchanges heat between the air and the air in the exhaust ventilation path. 前記昇温領域を通過し前記加熱手段によって加熱される前の再生用通気路の空気と、加熱手段によって加熱され前記再生領域を通過する前の再生用通気路の空気との間で熱交換を行う第三の熱交換器を有することを特徴とする請求項1乃至3のいずれか一項に記載の空気浄化装置。Heat exchange is performed between the air in the regeneration vent passage that has passed through the temperature raising region and before being heated by the heating means, and the air in the regeneration vent passage that has been heated by the heating means and has not passed through the regeneration region. It has a 3rd heat exchanger to perform, The air purification apparatus as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記再生用通気路は、前記昇温領域及び前記冷却領域のそれぞれにおいて、通気路中の空気を前記吸着部材に複数回通過させる通気路であることを特徴とする請求項1乃至4のいずれか一項に記載の空気浄化装置。5. The regeneration air passage is an air passage that allows air in the air passage to pass through the adsorption member a plurality of times in each of the temperature raising region and the cooling region. The air purifier according to one item. 前記加熱手段は、燃焼装置と、前記燃焼装置の周囲に設けられ前記有機汚染物質を分解するための触媒金属を含有する通気体と、前記燃焼装置及び通気体を内部に収納する燃焼室とを有する燃焼式ヒータであることを特徴とする請求項1乃至5のいずれか一項に記載の空気浄化装置。The heating means includes a combustion device, a ventilation body that is provided around the combustion device and contains a catalytic metal for decomposing the organic pollutant, and a combustion chamber that houses the combustion device and the ventilation body. The air purifier according to any one of claims 1 to 5, wherein the air purifier is a combustion type heater. 前記第三の熱交換器と前記加熱手段との間の再生用通気路に、前記有機汚染物質を分解するための触媒を有することを特徴とする請求項4に記載の空気浄化装置。The air purification apparatus according to claim 4, wherein a catalyst for decomposing the organic pollutant is provided in a regeneration air passage between the third heat exchanger and the heating means. 前記吸着部材は、環状の板状部材であり、内周側の枠体と、外周側の枠体と、前記枠体によって平面状に支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられることを特徴とする請求項1に記載の空気浄化装置。The adsorbing member is an annular plate-like member, and has an inner peripheral side frame, an outer peripheral side frame, and a porous plate-like adsorbent supported in a planar shape by the frame, The air purification apparatus according to claim 1, wherein the air purification apparatus is rotatably provided with a central axis of the ring as a rotation axis. 前記吸着部材は、環状の部材であり、内周側の枠体と、外周側の枠体と、前記枠体によって吸着部材の端面に対して斜めに支持される多孔質の板状吸着材とを有し、環の中心軸を回転軸として回転自在に設けられることを特徴とする請求項1に記載の空気浄化装置。The adsorbing member is an annular member, and includes an inner peripheral frame, an outer peripheral frame, and a porous plate-shaped adsorbent that is supported by the frame obliquely with respect to the end surface of the adsorbing member. The air purification device according to claim 1, wherein the air purification device is provided so as to be rotatable about a central axis of the ring as a rotation axis. 前記吸着部材は、二層構造の部材であり、再生領域を通過する空気の流れ方向において、上流側に設けられる上流側吸着材と、下流側に設けられる下流側吸着材とを有し、この下流側吸着材が活性炭を含む吸着材であることを特徴とする請求項1に記載の空気浄化装置。The adsorbing member is a two-layered member, and has an upstream adsorbing material provided on the upstream side and a downstream adsorbing material provided on the downstream side in the flow direction of the air passing through the regeneration region. The air purification apparatus according to claim 1, wherein the downstream side adsorbent is an adsorbent containing activated carbon.
JP2001302290A 2001-09-28 2001-09-28 Air purification device Expired - Fee Related JP4627943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302290A JP4627943B2 (en) 2001-09-28 2001-09-28 Air purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302290A JP4627943B2 (en) 2001-09-28 2001-09-28 Air purification device

Publications (2)

Publication Number Publication Date
JP2003103135A JP2003103135A (en) 2003-04-08
JP4627943B2 true JP4627943B2 (en) 2011-02-09

Family

ID=19122557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302290A Expired - Fee Related JP4627943B2 (en) 2001-09-28 2001-09-28 Air purification device

Country Status (1)

Country Link
JP (1) JP4627943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888353B2 (en) * 2017-03-17 2021-06-16 株式会社富士通ゼネラル Suction unit and air purifier
CN111365790A (en) * 2020-04-03 2020-07-03 北京中科智慧医院管理有限公司 Novel electrostatic adsorption type air purification equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186822A (en) * 2000-12-21 2002-07-02 Daikin Ind Ltd Adsorbing and desorbing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673300B2 (en) * 1988-02-01 1997-11-05 株式会社西部技研 Low concentration gas sorption machine
JPH05123529A (en) * 1991-11-08 1993-05-21 Mitsubishi Heavy Ind Ltd Catalytic combustion device for solvent-containing gas
JP3531187B2 (en) * 1993-09-24 2004-05-24 ダイキン工業株式会社 Deodorizing device and deodorizing method
DE19716877C1 (en) * 1997-04-22 1998-12-10 Schedler Johannes Thermally-efficient incinerator plant for cost-effective destruction of volatile organic compounds contaminating air

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186822A (en) * 2000-12-21 2002-07-02 Daikin Ind Ltd Adsorbing and desorbing apparatus

Also Published As

Publication number Publication date
JP2003103135A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
KR100956356B1 (en) The system of treating odor and hazardrous gas with rotary regenerative heat exchanger and its apparatus
KR101143278B1 (en) Air cleaner having regenerative filter, and method for regenerative of air cleaner filter
US6294000B1 (en) Rotary concentrator and method of processing adsorbable pollutants
CN210125274U (en) Molecular sieve rotating wheel module for waste gas purification equipment and integrated waste gas purification equipment
JP5881872B1 (en) Decomposing apparatus and operating method thereof
JP2008086942A (en) Apparatus and method for cleaning air
US6193504B1 (en) Portable rotary catalytic oxidizer systems
JP4627943B2 (en) Air purification device
CN210674789U (en) Organic waste gas honeycomb zeolite adsorption concentration catalytic purification device
JP2002186822A (en) Adsorbing and desorbing apparatus
JP2000217897A (en) Air purifying material and air purifying device using same
JPH05237342A (en) Purifier of gas
JPH1024215A (en) Waste gas purifier
JPH10290923A (en) Air cleaner
CN110960972A (en) Environment-friendly exhaust treatment device
JP2001070732A (en) Air cleaning apparatus, air cleaner and air conditioner
JPH11155937A (en) Air cleaning device
CN210278693U (en) Active carbon waste gas treatment device
CN216418840U (en) Purification system suitable for printing industry process waste gas
JP2002011087A (en) Air purifying device
JP2019100625A (en) Exhaust gas treatment system
JP2001259007A (en) Air cleaning device
JP2002085934A (en) Adsorption and desorption apparatus
CN208771123U (en) A kind of industrial waste gas processing equipment using absorption and catalytic way
JP2001137325A (en) Air cleaner and air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees