JPH01199621A - Adsorber for gas having very low concentration - Google Patents

Adsorber for gas having very low concentration

Info

Publication number
JPH01199621A
JPH01199621A JP63022632A JP2263288A JPH01199621A JP H01199621 A JPH01199621 A JP H01199621A JP 63022632 A JP63022632 A JP 63022632A JP 2263288 A JP2263288 A JP 2263288A JP H01199621 A JPH01199621 A JP H01199621A
Authority
JP
Japan
Prior art keywords
gas
zone
air
rotor
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63022632A
Other languages
Japanese (ja)
Other versions
JP2673300B2 (en
Inventor
Hiroshi Okano
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP63022632A priority Critical patent/JP2673300B2/en
Priority to SE8900311A priority patent/SE468927B/en
Priority to DE19893902977 priority patent/DE3902977C2/en
Publication of JPH01199621A publication Critical patent/JPH01199621A/en
Application granted granted Critical
Publication of JP2673300B2 publication Critical patent/JP2673300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means

Abstract

PURPOSE:To reduce the number of gas adsorption rotors by forming two or more adsorption zones, one precooling zone and one or more regeneration zones in each of the rotors having small through holes from one end of the cylinder to the other end in accordance with the turning of the rotor. CONSTITUTION:Air TA to be treated is sent by a fan 6 to the first adsorption zone 2 of a cylindrical honeycomb rotor 1 impregnated with LiCl, etc. The sent air is dehumidified, passed through a cooler 10, introduced into the second adsorption zone 3 and dehumidified again. The rotor 1 turns and transfers successively from the adsorption zones 2, 3 to the regeneration zone 5. Part of the dehumidified air passed through the precooling zone 4 is heated with a heater 8 and passed through the regeneration zone 5 to desorb the adsorbed moisture and to regenerate the adsorbent. The rotor 1 in the zone 5 returns to the adsorption zones 2, 3 through the precooling zone 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多数の小透孔を有するロータを湿気その他活性
ガス(以下ガスと呼ぶ)を可逆的に吸収または吸着(以
下収着と呼ぶ)するガス収着剤を含有するシートにより
形成し、該小透孔内に処理気体と脱離用気体とを交互に
通し、ガスを収着により除去された気体特に超低濃度ガ
スを含有する気体たとえば超低露点の空気を得る超低濃
度ガス数百機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a rotor having a large number of small holes to reversibly absorb or adsorb (hereinafter referred to as sorption) moisture and other active gases (hereinafter referred to as gases). It is formed of a sheet containing a sorbent, and a processing gas and a desorption gas are passed through the small holes alternately, and the gas is removed by sorption, especially a gas containing an ultra-low concentration gas, such as an ultra-low concentration gas. It concerns hundreds of ultra-low concentration gas machines that obtain air with a low dew point.

従来の技術 多数の小透孔を有するロータ即ちハニカムロータを湿気
を収着する除湿剤を使用して成形し、該ロータを2個使
用し、被処理気体を1段目のロータに通して除湿した後
冷却して2段目のロータに通して更に除湿し、再生用気
体は2段目のロータの再生ゾーンに通した後加熱して1
段目のロータの再生ゾーンに通し、露点−80℃以下の
超低湿度気体を得る方法は特開昭61−71821号公
報に開示されている。
Conventional technology A rotor with many small perforations, that is, a honeycomb rotor, is molded using a dehumidifier that absorbs moisture, and two such rotors are used, and the gas to be treated is passed through the first rotor to dehumidify it. After that, it is cooled and passed through the second stage rotor for further dehumidification, and the regeneration gas is passed through the second stage rotor's regeneration zone and heated.
A method for obtaining ultra-low humidity gas with a dew point of -80 DEG C. or lower by passing the gas through the regeneration zone of the rotor in each stage is disclosed in Japanese Patent Laid-Open No. 61-71821.

発明が解決しようとする問題点 上記の方法では除湿ロータを2台並列して運転し、これ
に伴なってロータの駆動装置、配管、シール板等も2台
分必要となるため構造が複雑で広い設置面積を要しメン
テナンスも煩雑で製造原価、運転費ともに嵩むのは免れ
得ない。
Problems to be Solved by the Invention In the above method, two dehumidifying rotors are operated in parallel, and the structure is complicated because two rotor drive devices, piping, seal plates, etc. are also required. It requires a large installation area, requires complicated maintenance, and inevitably increases both manufacturing costs and operating costs.

問題点を解決するための手段 本発明は上記の欠点を除去しガス収着剤を含浸しまたは
ガス収着剤が表面にあられれていて、多数の小透孔を有
する如く成形したハニカム状ロータを形成し、このロー
タをその各扇形部分が第1段数着ゾーン、第2段数着ゾ
ーン、予冷ゾーン、脱離ゾーンとして順次作用するよう
ケーシングに設けたセクターによって分離し、1個のロ
ータにより2段階の収着を行なうように構成したもので
ある。収着ゾーンおよび脱離ゾーンは更にその段数を増
加し、ロータの回転方向と逆方向に第1段、第2段、第
3段・・・と区画してもよい。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by providing a honeycomb rotor impregnated with a gas sorbent or having a gas sorbent on its surface and formed to have a large number of small holes. The rotor is separated by sectors provided in the casing so that each sector of the rotor functions sequentially as a first stage loading zone, a second stage loading zone, a precooling zone, and a desorption zone. It is designed to perform stepwise sorption. The number of stages of the sorption zone and desorption zone may be further increased, and the zones may be divided into a first stage, a second stage, a third stage, etc. in the direction opposite to the rotational direction of the rotor.

実施例 以下実施例として不燃紙よりなるハニカム状マトリック
スに通常の湿気吸着性能を持つシリカ・アルミナ・エロ
ゲルと湿度の低い空気に対し湿気吸着性能の極めて高い
合成ゼオライトとを合成結合させたロータ(特願昭62
−145873に開示)を使用した例を図面について説
明する。
Examples Below, as examples, we will introduce a rotor (special) in which silica/alumina/erogel, which has normal moisture adsorption performance, and synthetic zeolite, which has extremely high moisture adsorption performance for low-humidity air, are synthetically bonded to a honeycomb-like matrix made of non-combustible paper. Gansho 62
-145873) will be described with reference to the drawings.

無Ia#a維を主成分とする低密度の紙を成形して片波
成形体を得、この片波成形体を捲回積層して多数の小透
孔が両端面に透通ずるマトリックスを成形し、合成ゼオ
ライト粉末を水ガラス水溶液に分散した分散体を該マト
リックスに含浸し、乾燥後マグネシウム塩水溶液に浸漬
して水ガラスとマグネシウム塩との反応により珪酸マグ
ネシウムのヒドロゲルを生成せしめ、水洗乾燥して合成
ゼオライトと珪酸マグネシウムエロゲルとがマトリック
スに一体的に結合した除湿ロータを得る。この除湿ロー
タで珪酸マグネシウムエロゲルは通常のガス吸着性能を
有するガス吸着剤、合成ゼオライトはガス濃度の小さい
気体に対しガス吸着性能の極めて高いガス吸着剤として
作用する。
A low-density paper mainly composed of Ia-free #a fibers is formed to obtain a single-wave molded body, and this single-wave molded body is wound and laminated to form a matrix in which many small holes pass through both end faces. Then, the matrix was impregnated with a dispersion of synthetic zeolite powder dispersed in an aqueous water glass solution, and after drying, it was immersed in an aqueous magnesium salt solution to generate a hydrogel of magnesium silicate through the reaction between the water glass and the magnesium salt, which was then washed with water and dried. A dehumidifying rotor in which synthetic zeolite and magnesium silicate aerogel are integrally bonded to a matrix is obtained. In this dehumidifying rotor, the magnesium silicate erogel acts as a gas adsorbent with normal gas adsorption performance, and the synthetic zeolite acts as a gas adsorption agent with extremely high gas adsorption performance for gases with low gas concentration.

このロータlの両端面に第2図に示すセクターSを取付
けて第1図に示す如く第1段吸着ゾーン2、第2段吸着
ゾーン3、予冷ゾーン4、第1段脱着ゾーン5、第2段
脱着ゾーン6に分割し、この各ゾーンを処理空気導入用
ファン7、給気用ファン8、再生空気加熱用ヒータ9、
再生空気導入用ファンlO1処理空気冷却用熱交換器1
1と図示の如く配管してなる超低濃度ガス吸着機である
。尚各ゾーンの広さ即ち中心角度の一例を挙げれば第1
段吸着ゾーン 130°、第2段吸着ゾーン 95°、
予冷ゾーン 45′″、第1脱着着ゾーン 45@、第
2脱着着ゾーン 45″″である。
The sectors S shown in FIG. 2 are attached to both end faces of this rotor l, and as shown in FIG. Divided into stage desorption zones 6, each zone is equipped with a fan 7 for introducing processed air, a fan 8 for supplying air, a heater 9 for heating regenerated air,
Regeneration air introduction fan 1O1 Processed air cooling heat exchanger 1
1 is an ultra-low concentration gas adsorption machine with piping as shown in the figure. In addition, to give an example of the width of each zone, that is, the central angle,
Stage adsorption zone 130°, second stage adsorption zone 95°,
They are a pre-cooling zone 45'', a first desorption/desorption zone 45@, and a second desorption/desorption zone 45''.

発明の作用 空気の除湿の過程を例として説明すると、除湿すべき処
理空気はファン7によりロータlの第1段吸着ゾーン2
に入り除湿され、その後好ましくは冷却用熱交換器11
を通し冷却水12で冷却した後筒2股吸着ゾーン3に入
り第2回目の除湿を行なうことにより超低露点の除湿空
気が得られるので、これを給気ファン8により給気SA
として供給する。
To explain the process of dehumidifying the working air of the invention as an example, the treated air to be dehumidified is transferred to the first stage adsorption zone 2 of the rotor l by the fan 7.
and is then dehumidified, preferably in a cooling heat exchanger 11.
After being cooled by the cooling water 12 through the cylinder, the cylinder enters the two-pronged suction zone 3 and performs the second dehumidification process, obtaining dehumidified air with an ultra-low dew point.
Supply as.

ロータの脱4即ち再生の過程を説明すると、予冷空気好
ましくは上記除湿過程により得られた除湿空気SAの一
部をまず予冷ゾーン4に通しロータを予冷した後、再生
空気加熱用ヒータ9で約180℃まで加熱し高温低湿の
再生空気RAとして第1段脱着ゾーン5に通しロータに
吸着した湿分の脱着を行なった後、温度が約120℃程
度まで低下し湿度がやや高くなっているが未だ脱着能力
を残存している上記再生空気RAを第2脱着着ゾーン6
に通し吸着湿分の脱着を行なう。
To explain the process of dehumidifying the rotor, that is, regenerating it, the pre-cooled air, preferably a part of the dehumidified air SA obtained in the dehumidifying process described above, is first passed through the pre-cooling zone 4 to pre-cool the rotor, and then the regenerated air heater 9 is used to heat the rotor. After heating the air to 180°C and passing it through the first stage desorption zone 5 as high-temperature, low-humidity regeneration air RA to desorb the moisture adsorbed on the rotor, the temperature drops to about 120°C and the humidity is slightly high. The regenerated air RA that still has desorption capacity is transferred to the second desorption zone 6.
to desorb the adsorbed moisture.

以上は処理空気および再生空気がロータの各部を通過す
る際にロータ各部と如何に作用するかを辿って来たが、
以下ロータの成る一部が図示矢印方向に1回転する間に
如何に処理空気および再生空気と相互作用を行なうかと
いう観点から説明する。
Above we have traced how the treated air and regeneration air interact with each part of the rotor as they pass through each part.
The following will explain how a portion of the rotor interacts with the process air and the regeneration air during one rotation in the direction of the arrow in the figure.

脱着ゾーン6.5において吸着湿分を脱着され予冷ゾー
ン4において常温または常温より僅かに高い温度の低湿
予冷空気により冷却されたロータ部分はまず第2段吸着
ゾーン3において第1段吸着工程後冷却(例30℃)さ
れた処理空気を主に合成ゼオライトにより更に除湿して
超低露点の空気となして給気し、次に第1段吸着ゾーン
2において処理空気たとえば20℃の外気を主に金属珪
酸塩エロゲルにより除湿する。かくして湿気を吸着しや
や昇温したロータ部分は第2段脱着ゾーン6において約
120”cの再生空気により金属珪酸塩エロゲルを脱着
再生し、次に第1脱着着ゾーン5において約180℃の
再生空気により主に合成ゼオライトを脱着再生し、次に
予冷ゾーン4において予冷空気好ましくは除湿された給
気SAの一部を通して常温または常温近くの温度にまで
冷却し、以上の工程を繰返す。
The rotor part, which has been desorbed from adsorbed moisture in the desorption zone 6.5 and cooled by low-humidity precooled air at room temperature or slightly higher than room temperature in the precooling zone 4, is first cooled in the second stage adsorption zone 3 after the first stage adsorption step. (Example: 30℃) The treated air is further dehumidified mainly using synthetic zeolite to produce ultra-low dew point air, and then in the first stage adsorption zone 2, the treated air, for example, outside air at 20℃, is supplied. Dehumidifies with metal silicate erogel. The rotor portion, which has thus adsorbed moisture and has become slightly heated, desorbs and regenerates the metal silicate aerogel in the second stage desorption zone 6 with regeneration air at approximately 120"C, and then regenerates at approximately 180"C in the first desorption zone 5. The synthetic zeolite is mainly desorbed and regenerated by air, and then cooled to room temperature or near room temperature through precooled air, preferably a part of the dehumidified supply air SA, in precooling zone 4, and the above steps are repeated.

以上本発明の実施例において通常のガス吸着性能を有す
るガス吸着剤として珪酸マグネシウムエロゲル、ガス濃
度の小さい気体に対しガス吸着性能の極めて高いガス吸
着剤として合成ゼオライトを使用し、両ガス吸着剤の組
合せにより空気中の湿気を吸着して超低露点の空気を得
る例を説明したが、通常のガス吸着性能を有するガス吸
着剤として上記珪酸マグネシウムエロゲルの代りにシリ
カエロゲルを用いシリカエロゲルと合成ゼオライトとの
組合せを使用することもできる。またガス吸着剤として
は上記以外にシリカゲル、アルミナゲル、活性炭等があ
り、気体中の吸着除去すべき活性成分としては一酸化炭
素、硫黄酸化物、アンモニア、硫化水素、有機溶剤蒸気
等がある。この吸着除去すべき気体中のガスの種類その
他により1種類のガス吸着剤のみまたは3種類以上のガ
ス吸着剤の組合せを使用することもでき、また吸着ゾー
ンを3段以上に分割し多段階の吸着操作を行なうことも
できる。一方脱着ゾーンは1部のみでもよいが、2部以
上に分割し脱着温度を順次上昇して多段階の脱着をすれ
ば後述の如くエネルギーの節約になる。更に上記のガス
吸着剤に替えてガス吸収剤例えば吸湿用に塩化リチウム
水溶液を含浸乾燥したロータを使用しても全く同様であ
る。
In the above embodiments of the present invention, magnesium silicate Erogel was used as a gas adsorbent with normal gas adsorption performance, and synthetic zeolite was used as a gas adsorption agent with extremely high gas adsorption performance for gases with low gas concentration. We have explained an example of obtaining air with an ultra-low dew point by adsorbing moisture in the air by combining silica aerogel and synthetic zeolite, using silica aerogel instead of the above-mentioned magnesium silicate aerogel as a gas adsorbent with normal gas adsorption performance. It is also possible to use a combination with In addition to the above, gas adsorbents include silica gel, alumina gel, activated carbon, etc., and active components in the gas to be adsorbed and removed include carbon monoxide, sulfur oxides, ammonia, hydrogen sulfide, organic solvent vapor, etc. Depending on the type of gas in the gas to be adsorbed and removed, it is possible to use only one type of gas adsorbent or a combination of three or more types of gas adsorbents, or to divide the adsorption zone into three or more stages and perform a multi-stage process. Adsorption operations can also be performed. On the other hand, the desorption zone may be only one part, but energy can be saved if the desorption zone is divided into two or more parts and desorption is performed in multiple stages by increasing the desorption temperature sequentially, as will be described later. Further, in place of the above-mentioned gas adsorbent, a rotor impregnated with a gas absorbent such as a lithium chloride aqueous solution for moisture absorption and dried may be used in the same manner.

発明の作用 図示の如く上記実施例に従い空気の除湿を行なった場合
の一例を次頁に示す。
An example of the case where air is dehumidified according to the above embodiment is shown on the next page as shown in the diagram.

尚立上り時においては第2脱着着ゾーン6に入る脱着空
気の温度が充分でない場合があるので、該部にヒータ1
3を設けて置くのが望ましく、再生空気の湿度はヒータ
9.13の温度の上下によってコントロールすることが
できる。
At the time of startup, the temperature of the desorption air entering the second desorption/desorption zone 6 may not be sufficient, so a heater 1 is installed in this area.
3 is desirable, and the humidity of the regenerated air can be controlled by raising or lowering the temperature of the heater 9.13.

発明の効果 本発明は上記の如き構成よりなるので、従来の方法の如
く収着用ロータを2台並列し2段階の収着操作をなす必
要なく1台のロータにより駆動装置、ケーシング、シー
ル、配管等を取付けるのみで処理気体中の活性ガスを超
低濃度になるまで除去した気体が得られる。たとえば同
一の湿気吸着剤を使用しロータの細孔径、厚さを同一に
して比較した場合、従来法で露点−80’C以下の超低
露点空気を得るのに5DOIIIm径のロータ2台を要
した除ロ  ロ     ロ  ロ  ロ ヨ1)べ−1−1田 QQ  QQQ へ  の  口  um   の  0口  へ  、
)+!   八  八  八斂〉〉寸″>トさ G嘩嘩、)醪却印 ト  郁  嘔   l   窩  窩  窩へ襲望>
ばば襲 1(−へ  茫  −−へ さ  丘  派  ら  派  派  派湿操作を75
0+nn+径のロータ1台で行なうことができ、構造が
簡単になり従って廉価にでき、かつ動力費も大いに節約
することができ設置面積も少なくてすみメンテナンス費
用も低減しくJる。
Effects of the Invention Since the present invention has the above-described configuration, it is not necessary to arrange two rotors for adsorption in parallel and perform a two-step adsorption operation as in the conventional method, and the drive device, casing, seal, and piping can be performed using one rotor. By simply attaching the gas, you can obtain a gas in which the active gas in the processing gas has been removed to an ultra-low concentration. For example, when comparing the same moisture adsorbent with the same rotor pore diameter and thickness, two rotors with a diameter of 5DOIIIm are required to obtain ultra-low dew point air with a dew point of -80'C or less using the conventional method. 1) Be-1-1 田QQ QQQ の 口 um 0 口 、
)+! 8 8 8 〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉
Baba Attack 1
This can be done with one rotor of 0+nn+ diameter, the structure is simple and therefore the cost is low, and the power cost can be greatly saved, the installation area is small, and the maintenance cost is also reduced.

また上記除湿の例で説明すると、除湿操作においてはロ
ータの温度が高いとその吸湿能力は低下するので、脱着
再生後のロータ部分は予冷ゾーン4においてほぼ常温の
予冷空気好ましくは湿度の極めて低い除湿空気SAの一
部を通し予冷を行なった後除湿捏作を行なう、ここで予
冷空気として外気好ましくは低温低湿の外気を一部入れ
てもよい。
Also, to explain using the above example of dehumidification, in a dehumidifying operation, if the temperature of the rotor is high, its moisture absorption ability decreases, so the rotor part after desorption and regeneration is heated in the precooling zone 4 with precooled air at almost room temperature, preferably with extremely low humidity. After precooling a portion of the air SA, dehumidification is performed. Here, a portion of outside air, preferably low temperature and low humidity outside air, may be introduced as the precooling air.

除湿操作では、先ず第2段除湿ゾーン3において低湿度
の空気即ち第1段除湿ゾーン2において可成りの除湿処
理を受けた空気を超低露点まで除湿した後、その時点で
吸着した僅かの湿気を含んだロータ部分は第1段除湿ゾ
ーン2において処理空気から充分な量の湿気を吸着し得
る。
In the dehumidification operation, first, the low-humidity air, that is, the air that has undergone considerable dehumidification processing in the first-stage dehumidification zone 2, is dehumidified to an ultra-low dew point in the second-stage dehumidification zone 3, and then the small amount of moisture adsorbed at that point is dehumidified. The rotor section containing can adsorb a sufficient amount of moisture from the process air in the first stage dehumidification zone 2.

次に脱着操作においては、まず予冷に使用しその結果昇
温した除湿空気を再生空気加熱用ヒータ9で加熱して再
生空気として使用すれば、外気のみを加熱し再生空気と
して使用する場合に比しその相対湿度が低いので脱着効
果が大きい、脱離即ち再生は1段で行なってもよいが、
これを2段にし上記実施例の如く第2段脱離ゾーン6お
よび第1段脱離ゾーン5を設け2段で脱離再生を行なえ
ば、第1段脱離ゾーン5から排出される可成り高温の再
生廃気を更に第2段脱離ゾーン6において脱離再生に使
用することができ、熱エネルギーの節約となる。また上
記実施例の如く2種類の収着剤を併用する場合には、ま
ずやや低温かつやや高温になったが通常レベルの再生を
行なうには充分な温度および乾燥度を持っている第1段
脱離ゾーン5の再生廃気により比較的低温たとえば 8
0〜110℃で脱離再生し得る収着剤たとえばシリヵア
ルミナエロゲルを第2段脱離ゾーンにおいて再生し、そ
の後高温で相対湿度の低い予冷ゾーン4の排気を使用し
て第1段脱離ゾーン5で脱離再生に高温を要する収着剤
たとえば合成ゼオライトを再生することができる。収着
剤が1種類の場合または再生温度がほぼ同一である2種
類以上の収着剤の併用の場合には再生ゾーンは1部のみ
でもよい。
Next, in the desorption operation, if the dehumidified air that is first used for pre-cooling and then heated as a result is heated by the regeneration air heating heater 9 and used as regeneration air, compared to the case where only outside air is heated and used as regeneration air. Since its relative humidity is low, the desorption effect is large. Desorption, or regeneration, may be performed in one stage, but
If this is made into two stages and the second stage desorption zone 6 and the first stage desorption zone 5 are provided as in the above embodiment and desorption and regeneration is performed in the two stages, a considerable amount of water that is discharged from the first stage desorption zone 5 can be removed. The hot regenerated waste gas can be further used for desorption regeneration in the second stage desorption zone 6, resulting in thermal energy savings. In addition, when two types of sorbents are used together as in the above example, the first stage has a temperature and dryness that are a little low and a little high, but are sufficient for normal level regeneration. The relatively low temperature due to the regenerated waste gas in the desorption zone 5, e.g. 8
A sorbent, such as silica alumina aerogel, which can be desorbed and regenerated at temperatures between 0 and 110°C, is regenerated in the second stage desorption zone and then regenerated in the first stage desorption using the exhaust gas from the pre-cooling zone 4, which has a high temperature and low relative humidity. In the desorption zone 5 it is possible to regenerate sorbents that require high temperatures for desorption regeneration, such as synthetic zeolites. When one type of sorbent is used or when two or more types of sorbents having substantially the same regeneration temperature are used in combination, only one part of the regeneration zone may be used.

尚第1図においては処理空気は下から上へ、再生空気は
上から下へロータ内な逆方向に通すよう図示したが、こ
れは配管スペースの関係で適宜選択し得る。但し廃熱利
用の面から見ると処理空気と再生空気との流れを逆方向
にする方が除湿効率は向上する。
Although FIG. 1 shows that the process air is passed through the rotor from bottom to top and the regeneration air is passed from top to bottom in opposite directions within the rotor, this can be selected as appropriate depending on the piping space. However, from the point of view of waste heat utilization, the dehumidification efficiency will be improved if the treated air and regenerated air flow in opposite directions.

また第1図においてロータlの下方部は珪酸マグネシウ
ムエロゲル即ち通常のガス吸着性能を有し脱着再生温度
の比較的低い吸着剤を主成分とし、上方部は該珪酸マグ
ネシウムエロゲルと合成ゼオライト即ちガス濃度の小さ
い気体に対しガス吸着性能が極めて高く脱着再生温度の
比較的高い吸着剤とを併用して構成すれば、吸着工程に
おいては下方より処理空気を送入すると下方部で珪酸マ
グネシウムエロゲルにより可成りのガスを吸着除去した
後、上方部において主に合成ゼオライトによって残存ガ
スを更に吸着するため、−層空気中のガスを超低濃度に
まで吸着除去することができ、また脱着工程においては
上方より再生空気を導入すると、該再生空気はロータの
小透孔を通過する間に漸次温度が降下するが、上方部に
おいては高温の再生空気により脱着再生温度の比較的高
い合成ゼオライトを再生した後下方部においてやや温度
の低下した再生空気により脱着再生温度の比較的低い珪
酸マグネシウムエロゲルを再生することができ、再生熱
エネルギーを有効に利用し得る。
In addition, in FIG. 1, the lower part of the rotor l is mainly composed of magnesium silicate aerogel, an adsorbent that has normal gas adsorption performance and has a relatively low desorption and regeneration temperature, and the upper part is made of magnesium silicate aerogel and synthetic zeolite, that is, an adsorbent that has a relatively low desorption and regeneration temperature. If it is configured in combination with an adsorbent that has extremely high gas adsorption performance for gases with low gas concentrations and a relatively high desorption and regeneration temperature, magnesium silicate Erogel will be produced in the lower part when treated air is introduced from below in the adsorption process. After a considerable amount of gas is adsorbed and removed, residual gas is further adsorbed mainly by synthetic zeolite in the upper part, so gas in the -layer air can be adsorbed and removed to an ultra-low concentration. When regeneration air is introduced from above, the temperature of the regeneration air gradually decreases as it passes through the small holes in the rotor, but in the upper part, the high temperature regeneration air regenerates synthetic zeolite whose desorption and regeneration temperature is relatively high. After that, the magnesium silicate aerogel, which has a relatively low desorption and regeneration temperature, can be regenerated by the regeneration air whose temperature has been slightly lowered in the lower part, and the regeneration thermal energy can be used effectively.

一般に固体吸着剤による気体の吸着は上記の吸湿の場合
を含め低温になる程吸着反応は進み、高温になる程吸着
し難く脱着反応が進む傾向があるので、水蒸気以外のガ
スの吸着の場合においても各吸着ガスに適する吸着剤ま
たはその組合せを選択することにより全く同一の効果を
発揮し得るものである。
In general, when adsorbing gases using a solid adsorbent, including the case of moisture absorption mentioned above, the lower the temperature, the more the adsorption reaction progresses, and the higher the temperature, the more difficult the adsorption becomes, and the more the desorption reaction tends to progress. The same effect can be achieved by selecting an adsorbent or a combination thereof suitable for each adsorbed gas.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、円筒の一端面より他端面に亘つて多数の小透孔を有
し各小透孔表面にガス収着剤があらわれているガス収着
ロータを、その回転に伴なつてその各部分が順次2部以
上の収着ゾーン、1部の予冷ゾーン、1部以上の脱離ゾ
ーンとして作用するよう構成してなる超低濃度ガス収着
機。 2、ガス収着剤がガス吸着剤である特許請求の範囲第1
項記載の超低濃度ガス収着機。 3、ガス吸着剤として通常のガス吸着性能を有するガス
吸着剤とガス濃度の小さい気体に対しガス吸着性能の極
めて高いガス吸着剤とを併用する特許請求の範囲第2項
記載の超低濃度ガス収着機。 4、通常のガス吸着性能を有するガス吸着剤がシリカエ
ロゲルまたは金属珪酸塩エロゲルであり、ガス濃度の小
さい気体に対しガス吸着性能の極めて高いガス吸着剤が
合成ゼオライトである特許請求の範囲第3項記載の超低
濃度ガス収着機。 5、ガス収着剤がガス吸収剤である特許請求の範囲第1
項記載の超低濃度ガス収着機。 6、ガスが水蒸気でありガス収着機が除湿機である特許
請求の範囲第1項乃至第5項記載の超低濃度ガス収着機
[Claims] 1. A gas sorption rotor having a large number of small through holes extending from one end surface to the other end surface of a cylinder and in which a gas sorbent appears on the surface of each small hole is rotated. An ultra-low concentration gas sorption machine configured such that each of its parts sequentially functions as two or more sorption zones, one part precooling zone, and one or more desorption zones. 2. Claim 1 in which the gas sorbent is a gas adsorbent
Ultra-low concentration gas sorption machine described in Section 1. 3. Ultra-low concentration gas according to claim 2, in which a gas adsorbent having normal gas adsorption performance and a gas adsorbent having extremely high gas adsorption performance for gases with low gas concentration are used in combination. Sorption machine. 4. Claim 3, wherein the gas adsorbent having normal gas adsorption performance is silica aerogel or metal silicate aerogel, and the gas adsorbent having extremely high gas adsorption performance for gases with low gas concentration is synthetic zeolite. Ultra-low concentration gas sorption machine described. 5. Claim 1 in which the gas sorbent is a gas absorbent
Ultra-low concentration gas sorption machine described in Section 1. 6. The ultra-low concentration gas sorption machine according to claims 1 to 5, wherein the gas is water vapor and the gas sorption machine is a dehumidifier.
JP63022632A 1988-02-01 1988-02-01 Low concentration gas sorption machine Expired - Fee Related JP2673300B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63022632A JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine
SE8900311A SE468927B (en) 1988-02-01 1989-01-30 DEVICE FOR SORPTION
DE19893902977 DE3902977C2 (en) 1988-02-01 1989-02-01 Sorption device for sorbing active gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022632A JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine

Publications (2)

Publication Number Publication Date
JPH01199621A true JPH01199621A (en) 1989-08-11
JP2673300B2 JP2673300B2 (en) 1997-11-05

Family

ID=12088204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022632A Expired - Fee Related JP2673300B2 (en) 1988-02-01 1988-02-01 Low concentration gas sorption machine

Country Status (3)

Country Link
JP (1) JP2673300B2 (en)
DE (1) DE3902977C2 (en)
SE (1) SE468927B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775714A (en) * 1993-09-08 1995-03-20 Nichias Corp Organic solvent vapor adsorption apparatus
JPH11128649A (en) * 1997-10-15 1999-05-18 Seibu Giken Co Ltd Gas adsorber
WO2001007841A1 (en) * 1999-07-28 2001-02-01 Daikin Industries, Ltd. Humidifying device
JP2001310110A (en) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd Gas concentration device
JP2003103135A (en) * 2001-09-28 2003-04-08 Takasago Thermal Eng Co Ltd Air filter
KR100451281B1 (en) * 2001-05-28 2004-10-06 주식회사 나노테크닉스 A method of recovering solvent with low boiling point
JP2013188693A (en) * 2012-03-14 2013-09-26 Seibu Giken Co Ltd Glove box
JP2013202595A (en) * 2012-03-29 2013-10-07 Takasago Thermal Eng Co Ltd Adsorbing device
JP2018087679A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Humidifier

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69117471T2 (en) * 1990-12-25 1996-09-12 Seibu Giken Kk Gas adsorption element, its production method and use
US5580369A (en) * 1995-01-30 1996-12-03 Laroche Industries, Inc. Adsorption air conditioning system
US5758508A (en) * 1996-02-05 1998-06-02 Larouche Industries Inc. Method and apparatus for cooling warm moisture-laden air
US5660048A (en) * 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
US5860284A (en) * 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
DE19645823A1 (en) * 1996-11-07 1998-05-14 Behr Gmbh & Co Automotive passenger cabin air cleaner
US5891219A (en) * 1998-01-13 1999-04-06 Durr Environmental, Inc. Two stage rotary concentrator
JP2001205045A (en) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The Method of removing carbon dioxide and carbon dioxide removing apparatus
US6358300B1 (en) * 2000-03-28 2002-03-19 Honeywell Commercial Vehicle Systems Co. Lithium chloride desiccant for trailer air dryer and pressure swing dehydration
JP2002039575A (en) * 2000-07-25 2002-02-06 Daikin Ind Ltd Humidifier free of water supply
KR101481704B1 (en) 2007-09-12 2015-01-12 문터스 코포레이션 Apparatus and method for in-situ high temperature regeneration of a rotor sorption concentrator
BE1018854A3 (en) 2009-08-11 2011-10-04 Atlas Copco Airpower Nv DRYER FOR COMPRESSED GAS AND METHOD THEREFORE APPLIED.
EP2332631B1 (en) * 2009-12-03 2012-11-14 Kaeser Kompressoren GmbH Absorption drying device and absorption drying method
BR112012033067B1 (en) * 2010-06-22 2021-05-25 Bry Air [Asia] Pvt. Ltd system and method for improving the performance of desiccant dehumidification equipment for low humidity applications
BE1022637A9 (en) * 2014-12-16 2016-10-06 Atlas Copco Airpower Nv DRYER FOR COMPRESSED GAS COMPRESSOR INSTALLATION EQUIPPED WITH DRYER AND METHOD FOR DRYING GAS
EP3854475A1 (en) * 2020-01-23 2021-07-28 Molecule RND Limited Improvements related to sorbent media
SE2150531A1 (en) * 2021-04-27 2022-10-28 Munters Europe Ab An air treatment element, an air treatment unit and a method for producing the air treatment element
JP7132475B1 (en) 2021-12-27 2022-09-07 岡野 浩志 Carbon dioxide gas separator/concentrator capable of supplying air conditioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578900U (en) * 1980-06-16 1982-01-18
JPS5741287A (en) * 1980-08-26 1982-03-08 Ishikawajima Harima Heavy Ind Co Ltd Method of preventing bulk cargo in hold from crumbling
JPS5891426U (en) * 1981-12-14 1983-06-21 ダイキン工業株式会社 dehumidifier
JPS6061022A (en) * 1983-09-14 1985-04-08 Seibu Giken:Kk Material for exchanging moisture and its preparation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402717A (en) * 1980-05-22 1983-09-06 Daikin Kogyo Co., Ltd. Apparatus for removing moisture and odors
JPS6062598A (en) * 1983-09-02 1985-04-10 Toho Gas Kk Manufacture of heat exchanging element
DE3528122A1 (en) * 1985-08-06 1987-02-12 Richard Scheuchl PLANT FOR RECOVERING SOLVENTS FROM A PROCESS GAS FLOW

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578900U (en) * 1980-06-16 1982-01-18
JPS5741287A (en) * 1980-08-26 1982-03-08 Ishikawajima Harima Heavy Ind Co Ltd Method of preventing bulk cargo in hold from crumbling
JPS5891426U (en) * 1981-12-14 1983-06-21 ダイキン工業株式会社 dehumidifier
JPS6061022A (en) * 1983-09-14 1985-04-08 Seibu Giken:Kk Material for exchanging moisture and its preparation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775714A (en) * 1993-09-08 1995-03-20 Nichias Corp Organic solvent vapor adsorption apparatus
JPH11128649A (en) * 1997-10-15 1999-05-18 Seibu Giken Co Ltd Gas adsorber
WO2001007841A1 (en) * 1999-07-28 2001-02-01 Daikin Industries, Ltd. Humidifying device
JP2001310110A (en) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd Gas concentration device
KR100451281B1 (en) * 2001-05-28 2004-10-06 주식회사 나노테크닉스 A method of recovering solvent with low boiling point
JP2003103135A (en) * 2001-09-28 2003-04-08 Takasago Thermal Eng Co Ltd Air filter
JP2013188693A (en) * 2012-03-14 2013-09-26 Seibu Giken Co Ltd Glove box
JP2013202595A (en) * 2012-03-29 2013-10-07 Takasago Thermal Eng Co Ltd Adsorbing device
JP2018087679A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Humidifier

Also Published As

Publication number Publication date
DE3902977C2 (en) 1999-07-29
SE468927B (en) 1993-04-19
JP2673300B2 (en) 1997-11-05
SE8900311D0 (en) 1989-01-30
SE8900311L (en) 1989-08-02
DE3902977A1 (en) 1989-08-10

Similar Documents

Publication Publication Date Title
JPH01199621A (en) Adsorber for gas having very low concentration
JP6383467B1 (en) Dehumidifying air conditioner
US5512083A (en) Process and apparatus for dehumidification and VOC odor remediation
KR100266344B1 (en) How to recover volatile organics
JP2001205045A (en) Method of removing carbon dioxide and carbon dioxide removing apparatus
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JPH04171019A (en) Process for removing water content in mixed gas
WO2014103216A1 (en) Dehumidification system
JP2009090979A (en) Small desiccant air conditioner
JP4389343B2 (en) Dehumidifier
JP2002320817A (en) Dehumidifying device and dehumidifying method
JPH11188224A (en) Dry type dehumidifying system
JP2021133323A (en) Gas separation recovery device
JP2681403B2 (en) Gas sorption method and gas sorption device
US20080083336A1 (en) Electrically conductive adsorptive honeycombs for drying of air
JP2009083851A (en) Small desiccant air conditioner
JPS62132523A (en) Method and device for adsorbing and removing gaseous halogenohydrocarbon
JP3560004B2 (en) Method and apparatus for removing water and carbon dioxide
KR20030097426A (en) absoption type air dryer system
JPH0290921A (en) Concentrator for fluorocarbon-containing gas
JP4352139B2 (en) Small desiccant air conditioner
JP4341410B2 (en) Humidity control device
KR100467425B1 (en) absoption type air dryer system
JP2015087070A (en) Dehumidification system
JP2003200016A (en) Element for dehumidification and humidification, and humidifier using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees