JPH06166589A - Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center - Google Patents

Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center

Info

Publication number
JPH06166589A
JPH06166589A JP4461592A JP4461592A JPH06166589A JP H06166589 A JPH06166589 A JP H06166589A JP 4461592 A JP4461592 A JP 4461592A JP 4461592 A JP4461592 A JP 4461592A JP H06166589 A JPH06166589 A JP H06166589A
Authority
JP
Japan
Prior art keywords
crystal
crucible
center
single crystal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4461592A
Other languages
Japanese (ja)
Inventor
Hisao Esaka
江阪久雄
Hiroyuki Morimoto
森元博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Elex Co Ltd filed Critical Nippon Steel Corp
Priority to JP4461592A priority Critical patent/JPH06166589A/en
Publication of JPH06166589A publication Critical patent/JPH06166589A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent deformation of crystal and polycrystallization by pulling up single crystal from melt, obtaining the minimum value and the maximum value of a distance from the axial center of seed crystal to the outer peripheral part of single crystal and adjusting deviation between the revolution center of a crucible and a thermal center based a K value obtained from the minimum value and the maximum value. CONSTITUTION:Seed crystal 2 is immersed in the central part of melt, the revolution of the seed crystal 2 is stopped and rotation of a crucible is stopped or the revolving speed is made <=0.5r.p.m. to pull up single crystal 1. Then, the maximum value 4 and the minimum value 3 of a distance from the axial center of the seed crystal 2 to the outer peripheral part of the single crystal 1 are obtained. The minimum value 3 is divided by the maximum value 4 to obtain a K value. Deviation between the revolution center of the crucible and a thermal center is adjusted in such a way that the K value is >=0.8 to control a furnace for pulling up single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶を製造する炉に
おいて、熱的対称性を簡便に評価し、回転中心と熱的中
心とのズレを簡便に検出する方法およびズレを調整する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily evaluating a thermal symmetry in a furnace for producing a single crystal, and for easily detecting a deviation between a rotation center and a thermal center and a method for adjusting the deviation. It is about.

【0002】[0002]

【従来の技術】単結晶引上げ炉の機械的軸対称性を評価
するには例えば特開平02−120602に開示されて
いるように、引上げ炉の芯だし方法等がある。しかし、
これは温度の低い場合には適用できるが、検出器等の使
用条件などから温度が高くなる引上げ条件に近い状態で
は技術的に適用は不可能である。したがって、この手法
によって室温近傍で機械的な軸対称性を確保することが
できても、高温となる単結晶引上げ状態での機械的軸対
称性を確保することはできない。これは一般に温度が高
くなると、単結晶引上げ炉に用いる部材が熱により膨張
し、歪みが生ずるために、機械的軸対称性がくずれるた
めである。また、仮に温度の高い状態で機械的な軸対称
性が保たれているようでも、例えば発熱するヒーターが
軸対称でない場合には温度分布が軸対称からずれるため
に熱的な芯がずれ、安定して結晶を引き上げることが困
難となる。この様な状況下で結晶引上げを行なうと、引
き上げる結晶に歪みが生じ、いわゆる変形あるいはスネ
ークを引き起こし、多結晶化を起こす場合があり、単結
晶製品の収率が低下するなどの問題点がある。熱的な対
称性を崩す要因としてはヒーター、るつぼの非軸対称性
(例えば厚みの変化)、炭素などで製作した断熱部材の
非軸対称性、ガスの流れの非軸対称性等が挙げられる。
しかし、これらの因子の軸対称性に関する炉の状況の管
理方法は従来技術では全く見当たらない。
2. Description of the Related Art In order to evaluate the mechanical axial symmetry of a single crystal pulling furnace, there is a pulling furnace centering method as disclosed in, for example, Japanese Patent Application Laid-Open No. 02-120602. But,
This can be applied when the temperature is low, but technically it cannot be applied under a condition close to the pulling condition where the temperature becomes high due to the usage conditions of the detector and the like. Therefore, even if mechanical axial symmetry can be secured near room temperature by this method, it is not possible to secure mechanical axial symmetry in a single crystal pulled state where the temperature is high. This is because, generally, when the temperature rises, the member used for the single crystal pulling furnace expands due to heat and distortion occurs, so that the mechanical axial symmetry collapses. Even if the mechanical axial symmetry is maintained even when the temperature is high, for example, if the heater that generates heat is not axially symmetric, the temperature distribution deviates from the axial symmetry, and the thermal core shifts Then, it becomes difficult to pull up the crystal. When the crystal is pulled up under such a condition, distortion occurs in the pulled crystal, so-called deformation or snake may be caused, and polycrystallization may occur, which causes a problem that the yield of the single crystal product decreases. . Factors that destroy the thermal symmetry include the non-axisymmetry of the heater and the crucible (for example, the change in thickness), the non-axisymmetry of the heat insulating member made of carbon, etc., and the non-axisymmetricity of the gas flow. .
However, no method of controlling the state of the furnace with respect to the axial symmetry of these factors is found in the prior art.

【0003】一方、るつぼ内融液の温度分布を直接測定
する方法として、熱電対を融液内に浸漬する方法、融液
表面から放出される赤外線を分析し、二次元的な表面温
度分布を測定する方法などがある。熱電対を用いる場合
には、少なくとも4本程度の熱電対が必要となるが、そ
の取付けに非常に時間がかかり、簡便には測定できな
い。さらに、熱電対を保護するための石英管等を用いる
がこのために温度測定精度が低下する。また、複数の熱
電対を用いる場合にはそれぞれの熱電対の精度が既知で
あることが必須であるが、140℃近傍での測定精度は
一般的には±10℃程度である。注意深く熱電対の校正
を行なった場合でも±5℃程度である。また、二次元的
な表面温度分布を測定することは可能であるが、やはり
この場合にも測定精度がなく、通常の測定機器では14
00℃近傍で、±20℃の精度である。いずれの測定に
ついても、単結晶の変形あるいはスネークなどの原因と
なると考えられ、ここで問題となる±0.1℃の精度は
全く保証できない。したがって、融液の温度を直接測定
する方法によっても単結晶引上げ炉の熱的な軸対称性に
関して管理することはできない。
On the other hand, as a method for directly measuring the temperature distribution of the melt in the crucible, a method of immersing a thermocouple in the melt, infrared rays emitted from the surface of the melt are analyzed, and a two-dimensional surface temperature distribution is obtained. There is a method to measure. When a thermocouple is used, at least about four thermocouples are required, but it takes a very long time to attach the thermocouple, and the measurement cannot be performed easily. Further, a quartz tube or the like for protecting the thermocouple is used, but this lowers the temperature measurement accuracy. Further, when using a plurality of thermocouples, it is essential that the accuracy of each thermocouple is known, but the measurement accuracy at around 140 ° C is generally about ± 10 ° C. Even if the thermocouple is carefully calibrated, it is about ± 5 ° C. In addition, it is possible to measure the two-dimensional surface temperature distribution, but in this case as well, there is no measurement accuracy, and with ordinary measurement equipment,
The accuracy is ± 20 ° C near 00 ° C. Any of the measurements is considered to cause deformation or snake of the single crystal, and the accuracy of ± 0.1 ° C., which is a problem here, cannot be guaranteed at all. Therefore, the thermal axial symmetry of the single crystal pulling furnace cannot be controlled even by the method of directly measuring the temperature of the melt.

【0004】[0004]

【発明が解決しようとする課題】本発明は簡便に単結晶
引上げ炉の総合的な芯だしを目的とし、特に測定するの
が困難な熱的な軸対称性を評価し、回転中心と熱的中心
のズレを検知する方法に関するものである。
SUMMARY OF THE INVENTION The present invention is aimed at simply and comprehensively centering a single crystal pulling furnace, and in particular, it evaluates the thermal axial symmetry that is difficult to measure, and evaluates the rotation center and the thermal center. The present invention relates to a method for detecting a center shift.

【0005】[0005]

【課題を解決するための手段および作用】通常の単結晶
引上げは、回転するるつぼ内に保持した融液に種結晶を
浸漬し、種結晶をるつぼの回転とは逆方向に回転させな
がら行なわれる。シリコン単結晶引上げの場合、るつぼ
あるいは結晶の回転速度は条件により異なるが、るつぼ
の回転速度は1〜20r.p.m.結晶の回転速度は5
〜50r.p.m.が一般的である。ここで、本発明を
手順に従って詳細に説明する。通常の単結晶引上げと同
様に種結晶を融液の中央部、すなわち引上げ炉の回転中
心、に浸漬する。るつぼ回転を工業的に静止あるいは所
定の値とし、融液温度を結晶引上げに適した値とした
後、種結晶の径を細くする操作を行なう。この操作は主
として種結晶の引上げ速度を大きくすることで行なう
が、融液温度の変更を併用してもかまわない。ここでる
つぼの回転速度、結晶の条件は以下のようにする。るつ
ぼは工業的に静止あるいはるつぼ回転速度は0.5r.
p.m.以下とし、種結晶は工業的に静止させる。るつ
ぼの回転速度をこの範囲に限定するのは、るつぼの回転
速度が限定範囲を超えると、炉の構造あるいは状況によ
って印加される不均一な温度分布が緩和されてしまい、
熱的中心が回転中心とほとんど一致してしまうためであ
る。このため、的確な単結晶引上げ炉の熱的な軸対称性
に関して管理することができなくなる。
[Means and Actions for Solving the Problems] The normal pulling of a single crystal is carried out by immersing the seed crystal in a melt held in a rotating crucible and rotating the seed crystal in the direction opposite to the rotation of the crucible. . In the case of pulling a silicon single crystal, the rotation speed of the crucible or the crystal varies depending on the conditions, but the rotation speed of the crucible is 1 to 20 r.p.m. p. m. Crystal rotation speed is 5
~ 50r. p. m. Is common. The present invention will now be described in detail according to the procedure. The seed crystal is immersed in the center of the melt, that is, at the center of rotation of the pulling furnace, as in the normal pulling of a single crystal. The crucible rotation is industrially stopped or set to a predetermined value, the melt temperature is set to a value suitable for pulling up the crystal, and then the diameter of the seed crystal is reduced. This operation is mainly performed by increasing the pulling rate of the seed crystal, but the melt temperature may be changed together. The rotation speed of the crucible and the crystal conditions are as follows. The crucible is industrially stationary or the crucible rotation speed is 0.5 r.
p. m. Below, the seed crystal is industrially stationary. Limiting the rotation speed of the crucible to this range is that if the rotation speed of the crucible exceeds the limited range, the uneven temperature distribution applied depending on the furnace structure or situation is relaxed,
This is because the thermal center almost coincides with the center of rotation. For this reason, it becomes impossible to control the thermal axial symmetry of the single crystal pulling furnace.

【0006】つぎに結晶径を広げる工程に入る。ここで
は引上げを比較的遅い速度で一定としてもよいし、変化
させても良い。理想的には引上げ速度を一定とし、融液
温度を徐々に下げるのが望ましい。広げた結晶の外径が
例えば100mm程度の所定の値となれば、引上げ速度
を急激に大きくして結晶を融液から引き上げる。これを
取り出し、その形状の均一性を調べ、軸対称性を判断す
る。なお広げる結晶の外径は、その結晶が回収できるの
であれば良く、特に限定はない。種結晶を融液に浸漬さ
せてから結晶を取り出すまでの所要時間は2〜3時間で
ある。
Next, the step of expanding the crystal diameter is started. Here, pulling may be constant at a relatively slow speed or may be changed. Ideally, it is desirable to keep the pulling rate constant and gradually lower the melt temperature. When the outer diameter of the expanded crystal reaches a predetermined value of, for example, about 100 mm, the pulling speed is rapidly increased to pull up the crystal from the melt. This is taken out, the uniformity of the shape is examined, and the axial symmetry is judged. The outer diameter of the crystal to be expanded is not particularly limited as long as the crystal can be recovered. The time required from the immersion of the seed crystal in the melt to the removal of the crystal is 2 to 3 hours.

【0007】軸対称性は以下のように定義する。すなわ
ち、図1に示すように、シリコン結晶1を上方から見た
とき、種結晶2を原点として結晶の外周部までの距離を
計測する。その距離の最大値(距離4)で最小値(距離
3)を除した値を指標K(K値)として用いる。この値
が1に近ければ近いほど結晶が真円に近く、引上げ炉の
熱的な軸対称性が保たれていることを示す。現実にはK
値が0.8以上であれば単結晶引上げ炉として使用でき
る。
The axial symmetry is defined as follows. That is, as shown in FIG. 1, when the silicon crystal 1 is viewed from above, the distance from the seed crystal 2 to the outer periphery of the crystal is measured with the seed crystal 2 as the origin. A value obtained by dividing the minimum value (distance 3) by the maximum value (distance 4) of the distance is used as the index K (K value). The closer this value is to 1, the closer the crystal is to a perfect circle, indicating that the thermal axial symmetry of the pulling furnace is maintained. K in reality
If the value is 0.8 or more, it can be used as a single crystal pulling furnace.

【0008】新規に炉の構成部材を組んだ場合、本発明
により、回転中心と熱的中心のズレを検知することか
ら、熱的軸対称性が確保されているかどうかを評価する
ことができる。また、定期的にこの手法によりズレを計
測、ヒーターをはじめとする炉構成部材の劣化程度を把
握し、管理することが可能となる。例えばK値が0.8
よりも小さくなることがあれば構成部材の点検を行な
い、調整を行なう。K値が0.8よりも小さいまま結晶
育成を行なうと、安定して結晶を引き上げることが困難
となり、引き上げる結晶に歪みが生じ、いわゆる変形あ
るいはスネークを引き起こす。また、極度の場合には多
結晶化がおこり、単結晶製品の収率が低下するなどの問
題点が生ずる。
In the case where a new furnace component is assembled, the present invention detects the deviation between the rotational center and the thermal center, so that it is possible to evaluate whether or not the thermal axial symmetry is secured. Further, it becomes possible to measure the deviation regularly by this method and to grasp and manage the degree of deterioration of the furnace constituent members such as the heater. For example, K value is 0.8
If it is smaller than the above, check the components and make adjustments. If the crystal is grown while the K value is smaller than 0.8, it becomes difficult to stably pull up the crystal, and the pulled crystal is distorted to cause so-called deformation or snake. Further, in the extreme case, polycrystallization occurs, which causes a problem that the yield of a single crystal product decreases.

【0009】[0009]

【実施例】【Example】

実施例−1 16インチるつぼを用いた引上げができる炉の構成部材
を新規に組み上げた時に本発明方法により熱的軸対称性
を測定した。溶解量を40kgとし、るつぼの回転速度
を0.5r.p.m.、結晶は静止させて評価した。本
文中に述べた方法で軸対称性を定量化し、K値を求めた
ところ、0.91であり、熱的軸対称性の良好なことが
確認された。そこで、るつぼ回転が2r.p.m.以下
で用いる低酸素濃度用の結晶引上げ炉として供すること
にした。10チャージ毎(約400時間毎)に上記と同
一条件による計測を行ない、熱的軸対称性を評価し、K
値を求めたところ、10チャージ後には0.90、20
チャージ後には0.88であり、初期の値と比較して大
きな変化がなかった。30チャージ後に測定すると0.
85となっており、低るつぼ回転で使用すると結晶変形
が大きくなり、多結晶化する確率が高くなると判断され
た。このため、るつぼ回転を5〜15r.p.m.で使
用する中〜高酸素濃度用引上げ炉として使用した。計4
0チャージ目では0.82でありさらに使用が可能であ
ったため、50チャージまで寿命を延ばした。50チャ
ージ後は指数が0.75となっており、これ以上の使用
は不可能と判断し、新品の構成部材と交換した。これに
より、結晶変形および多結晶化に伴う単結晶の収率の低
下を未然に防止することができるようになった。これは
低酸素濃度の引上げ炉でみた場合、単結晶歩留りで5ポ
イント以上の向上に相当する。また、炉の構成部材とし
ての使い分けが可能となったことから、構成部材の全体
としての寿命を10%以上延ばすことが可能となった。
Example-1 Thermal axisymmetry was measured by the method of the present invention when a new furnace component was assembled which could be pulled up using a 16 inch crucible. The melting amount was 40 kg, and the rotation speed of the crucible was 0.5 r.p.m. p. m. The crystals were allowed to stand still and evaluated. When the axial symmetry was quantified by the method described in the text and the K value was calculated, it was 0.91, and it was confirmed that the thermal axial symmetry was good. Therefore, the crucible rotation is 2r. p. m. We decided to use it as a crystal pulling furnace for low oxygen concentration used below. Measurement is performed under the same conditions as above every 10 charges (approximately every 400 hours) to evaluate the thermal axial symmetry, and K
When the value was calculated, 0.90, 20 after 10 charges
It was 0.88 after charging, which was not much different from the initial value. It is 0 when measured after 30 charges.
It was determined to be 85, and when it was used in a low crucible rotation, crystal deformation was increased and the probability of polycrystallization was increased. For this reason, the crucible rotation is set to 5 to 15 r. p. m. It was used as a pulling furnace for medium to high oxygen concentrations used in. Total 4
It was 0.82 at the 0th charge and could be used further, so the life was extended to 50th charge. After 50 charges, the index was 0.75, and it was judged that further use was impossible, and the components were replaced with new ones. This makes it possible to prevent a decrease in the yield of a single crystal due to crystal deformation and polycrystallization. This corresponds to an improvement of 5 points or more in the single crystal yield when viewed in a low oxygen concentration pulling furnace. Further, since it is possible to properly use the constituent members of the furnace, it is possible to extend the life of the constituent members as a whole by 10% or more.

【0010】実施例−2 18インチるつぼを用いた引上げができる炉の構成部材
を新規に製作した際、本発明方法により熱的軸対称性を
測定した。溶解量を50kgとし、るつぼ、結晶を共に
静止させて評価した。K値を求めたところ、0.65で
あり片方にのみ大きく成長する傾向がみられた。結晶の
より大きく成長した部分を詳細に調査したところ、ヒー
ターの内部に異常が見られ、発熱特性が軸対称からずれ
ていることがわかった。ヒーターを新品と交換したとこ
ろK値は0.94となり、熱的軸対称性が良好となっ
た。これにより、不良な炉の構成部材の改善ができ、単
結晶歩留りの向上を図ることができた。
Example 2 When a furnace component capable of pulling up using an 18 inch crucible was newly manufactured, thermal axisymmetry was measured by the method of the present invention. The dissolution amount was set to 50 kg, and the crucible and the crystal were both kept stationary for evaluation. When the K value was calculated, it was 0.65, and there was a tendency that only one side grew greatly. A closer examination of the larger grown portion of the crystal revealed an anomaly inside the heater, indicating that the heating characteristics deviated from axial symmetry. When the heater was replaced with a new one, the K value was 0.94, and the thermal axial symmetry was good. As a result, defective furnace components could be improved, and the single crystal yield could be improved.

【0011】実施例−3 実施例−3以降、比較例も含めて、表1を用いて説明す
る。16インチるつぼを用いた引上げができる炉を用
い、溶解量は40kgで同一とした。熱的な軸対称性は
比較的不良であり、結晶変形が非常に起こりやすい炉条
件で、るつぼの回転速度、種結晶の回転速度を種々変更
し、熱的軸対称性を評価した。実施例3〜6ではるつぼ
の回転速度、種結晶の回転速度共に限定範囲に入ってい
る。結晶径を拡げる際の引上げ速度を測定中に変更した
実施例−3、拡げた結晶の径を約150mmまで大きく
した実施例−4、逆に拡げた結晶の径を約50mmと小
さくした実施例−5、ヒーター温度を階段的に10℃下
げた実施例−6、いずれもK値は表1に示した通り0.
8以下の数値を示しており、不良な炉であることが示さ
れており、正しい判定ができる。これに対し、比較例−
7ではるつぼの回転速度が0.8r.p.m.であり限
定範囲を超えている。また、比較例−8ではるつぼの回
転速度は限定範囲内にあるが、種結晶の回転速度が0.
5r.p.m.であり、限定範囲を超えている。さら
に、比較例−9ではるつぼの回転速度が限定範囲を超え
ている。比較例−7〜9に示した通り、いずれもK値は
0.8以上を示しており、良好な炉の状況であると判断
される。しかし、前述した通り、測定を行った炉は非常
に対称性が悪く、結晶変形が起こりやすい炉である。し
たがって、比較例に示した方法では正しい判定ができな
いと結論できる。
Example-3 Example-3 and later, including a comparative example, will be described with reference to Table 1. A furnace capable of pulling up using a 16-inch crucible was used, and the melting amount was the same at 40 kg. The thermal axial symmetry was relatively poor, and the thermal axial symmetry was evaluated by changing the rotation speed of the crucible and the rotation speed of the seed crystal under various furnace conditions where crystal deformation was very likely to occur. In Examples 3 to 6, both the rotation speed of the crucible and the rotation speed of the seed crystal are within the limited range. Example-3 in which the pulling rate at the time of expanding the crystal diameter was changed during measurement, Example-4 in which the expanded crystal diameter was increased to about 150 mm, and conversely Example in which the expanded crystal diameter was reduced to about 50 mm. -5, Example 6 in which the heater temperature was lowered stepwise by 10 ° C., and the K value was 0.
A numerical value of 8 or less is shown, which indicates that the furnace is defective and a correct judgment can be made. On the other hand, Comparative Example-
7, the crucible rotation speed was 0.8 r. p. m. Is beyond the limited range. In Comparative Example-8, the rotation speed of the crucible was within the limited range, but the rotation speed of the seed crystal was 0.
5r. p. m. And is beyond the limited range. Further, in Comparative Example-9, the rotation speed of the crucible exceeds the limited range. As shown in Comparative Examples-7 to 9, the K value was 0.8 or more in all, and it is judged that the condition of the furnace is good. However, as described above, the furnace in which the measurement is performed has very poor symmetry, and crystal deformation easily occurs. Therefore, it can be concluded that the method shown in the comparative example cannot make a correct determination.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】炉の構成部材を本発明方法により管理す
ることが可能となったため、結晶変形および多結晶化に
伴う単結晶の収率の低下を未然に防止できる。また、構
成部材の劣化を定量的に評価できるため、構成部材の使
い分けが可能となり、全体としての構成部材の寿命を延
ばすことが可能となる。また、熱的軸対称性を簡便に測
定できることが特徴であり、通常操業に先立ち軸対称性
を確認することが可能となる。
Since the constituent members of the furnace can be controlled by the method of the present invention, it is possible to prevent the decrease in the yield of the single crystal due to the crystal deformation and polycrystallization. Further, since the deterioration of the constituent members can be quantitatively evaluated, the constituent members can be properly used and the life of the constituent members as a whole can be extended. Further, the thermal axisymmetry can be easily measured, and the axisymmetry can be confirmed prior to the normal operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】軸対称性の定量化方法を示す図。FIG. 1 is a diagram showing a method for quantifying axial symmetry.

【符号の説明】[Explanation of symbols]

1…シリコン結晶 2…種結晶 3…種結晶の中心から外周までの距離(最小値) 4…種結晶の中心から外周までの距離(最大値) 1 ... Silicon crystal 2 ... Seed crystal 3 ... Distance from center of seed crystal to outer circumference (minimum value) 4 ... Distance from center of seed crystal to outer circumference (maximum value)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 種結晶の回転を工業的に静止し、るつぼ
の回転を工業的に静止もしくはるつぼの回転速度を0.
5r.p.m.以下にし、前記種結晶を融液に接触させ
て直径を太らせながら結晶を引上げて、前記種結晶の軸
芯から前記単結晶の外周までの距離の最大値と最小値を
求め、前記最小値を最大値で除したK値によって、前記
るつぼの回転中心と前記るつぼの熱的中心のズレを検知
することを特徴とする単結晶引上げ炉の回転中心と熱的
中心のズレの検知方法。
1. The rotation of a seed crystal is stopped industrially, the rotation of a crucible is stopped industrially, or the rotation speed of the crucible is set to 0.
5r. p. m. Below, by pulling the crystal while contacting the seed crystal to the melt to increase the diameter, obtain the maximum and minimum values of the distance from the axis of the seed crystal to the outer periphery of the single crystal, the minimum value A deviation between the rotational center of the crucible and the thermal center of the crucible is detected by a K value obtained by dividing the rotational center of the crucible and the thermal center of the crucible by a K value.
【請求項2】 請求項1記載のK値を0.8以上になる
ように、単結晶引上げ炉を調整することを特徴とする、
単結晶引上げ炉の回転中心と熱的中心のズレの調整方
法。
2. The single crystal pulling furnace is adjusted so that the K value according to claim 1 is 0.8 or more.
A method for adjusting the deviation between the rotation center and the thermal center of the single crystal pulling furnace.
JP4461592A 1992-03-02 1992-03-02 Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center Withdrawn JPH06166589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4461592A JPH06166589A (en) 1992-03-02 1992-03-02 Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4461592A JPH06166589A (en) 1992-03-02 1992-03-02 Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center

Publications (1)

Publication Number Publication Date
JPH06166589A true JPH06166589A (en) 1994-06-14

Family

ID=12696350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4461592A Withdrawn JPH06166589A (en) 1992-03-02 1992-03-02 Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center

Country Status (1)

Country Link
JP (1) JPH06166589A (en)

Similar Documents

Publication Publication Date Title
US8968468B2 (en) Method of controlling single crystal diameter
JP2826589B2 (en) Single crystal silicon growing method
JP3596257B2 (en) Manufacturing method of silicon single crystal wafer
JP4808917B2 (en) Method for producing single crystal composed of silicon doped with readily volatile impurities, single crystal of this kind and semiconductor wafer produced therefrom
US7195669B2 (en) Method of producing silicon monocrystal
JPH092891A (en) Production of silicon single crystal having uniform crystal defect and apparatus therefor
US7431764B2 (en) Method for pulling up single crystal
US8764900B2 (en) Apparatus and method for producing single crystals
US7582160B2 (en) Silicone single crystal production process
JPH024556B2 (en)
JPH11199386A (en) Production of silicon single crystal and silicon single crystal wafer
JPH10152389A (en) Apparatus for producing semiconductor single crystal and production of same single crystal
CN113282878A (en) Method for determining seeding temperature of single crystal furnace and method for preparing monocrystalline silicon by Czochralski method
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JPH06166589A (en) Method for detecting and adjusting deviation between revolution center of furnace for pulling up single crystal and thermal center
US10066313B2 (en) Method of producing single crystal
JP2880092B2 (en) Single crystal manufacturing method
KR101546680B1 (en) Temperature correction control system of growing apparatus for silicon single crystal and manufacturing method for the same
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
JP2001146496A (en) Single crystal pulling method
JP6547677B2 (en) Method of determining the solid-liquid interface height between single crystal and raw material melt and method of manufacturing single crystal
JPH09263485A (en) Method for controlling pulling of single crystal, production of single crystal and apparatus therefor
JP4407539B2 (en) Method for simulating pulling speed of single crystal ingot
JP2001220285A (en) Method for determining temperature gradient for silicon single crystal, thermosensor and method for growing silicon single crystal using the same
JPH01126295A (en) Apparatus for producing single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518