JPH0616557B2 - Method for manufacturing insulated gate field effect semiconductor device - Google Patents

Method for manufacturing insulated gate field effect semiconductor device

Info

Publication number
JPH0616557B2
JPH0616557B2 JP61005260A JP526086A JPH0616557B2 JP H0616557 B2 JPH0616557 B2 JP H0616557B2 JP 61005260 A JP61005260 A JP 61005260A JP 526086 A JP526086 A JP 526086A JP H0616557 B2 JPH0616557 B2 JP H0616557B2
Authority
JP
Japan
Prior art keywords
region
gate electrode
drain
conductivity type
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61005260A
Other languages
Japanese (ja)
Other versions
JPS62163373A (en
Inventor
眞澄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TEKISASU INSUTSURUMENTSU KK
Original Assignee
NIPPON TEKISASU INSUTSURUMENTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TEKISASU INSUTSURUMENTSU KK filed Critical NIPPON TEKISASU INSUTSURUMENTSU KK
Priority to JP61005260A priority Critical patent/JPH0616557B2/en
Publication of JPS62163373A publication Critical patent/JPS62163373A/en
Publication of JPH0616557B2 publication Critical patent/JPH0616557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は絶縁ゲート型電界効果半導体装置の製造方法に
関し、例えばMOSFET(Metal Oxide Semiconducto
r Field Effect Transistor)の製造方法に関するもの
である。
Detailed Description of the Invention a. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an insulated gate field effect semiconductor device, for example, a MOSFET (Metal Oxide Semiconducto).
r Field Effect Transistor) manufacturing method.

ロ.従来技術 従来、MOSFETにおいて、ゲートとドレイン部分で
破壊が生じることはよく知られている。例えば、ドレイ
ン側に電圧を加えてゆくと、ドレインとゲートの部分で
アバランシェ破壊が生じ、これが高耐圧用トランジスタ
等にとって大きな弱点である。
B. 2. Description of the Related Art Conventionally, it is well known that breakdown occurs in the gate and drain portions of MOSFET. For example, when a voltage is applied to the drain side, avalanche breakdown occurs in the drain and gate portions, which is a major weak point for high breakdown voltage transistors and the like.

この対策として、第7図〜第9図に示す構造が知られて
いる。第7図はいわゆるLDD(Lightly Doped Drai
n)構造のMOSFETであって、N+型ドレイン領域1
及びソース領域6に接してゲート電極2下に少し食い込
んだ低濃度N型半導体領域3、7を形成することによ
って、ゲートによるドレイン近傍での電界集中を緩和し
ている。第8図はオフセット構造を示し、N型半導体
領域3を形成すると共にゲート電極2をオフセットして
電界集中を少なくしている。第9図はGGO(Graded G
ate Oxide)構造を示し、フィールド酸化膜4下にN
型半導体領域3を形成する一方、ゲート電極2を同酸化
膜4上に延設している。なお、図中の5はP型半導体基
板、6はN型ソース領域、8はゲート酸化膜、9はS
iO膜、10はソース電極、11はドレイン電極であ
る。
As measures against this, the structures shown in FIGS. 7 to 9 are known. Figure 7 shows the so-called LDD (Lightly Doped Drai).
n) structure MOSFET, N + type drain region 1
By forming the low concentration N type semiconductor regions 3 and 7 which are in contact with the source region 6 and slightly under the gate electrode 2, the electric field concentration due to the gate in the vicinity of the drain is relaxed. FIG. 8 shows an offset structure in which the N type semiconductor region 3 is formed and the gate electrode 2 is offset to reduce the electric field concentration. Figure 9 shows GGO (Graded G)
ate Oxide) structure, and N under the field oxide film 4.
While forming the type semiconductor region 3, the gate electrode 2 is extended on the oxide film 4. In the figure, 5 is a P-type semiconductor substrate, 6 is an N + -type source region, 8 is a gate oxide film, and 9 is S.
The iO 2 film, 10 is a source electrode, and 11 is a drain electrode.

ところで、これらの各構造のMOSFETはいずれも、
次の如き欠点がある。
By the way, the MOSFETs of each of these structures are
It has the following drawbacks.

(1).低濃度、例えば1014/cm3オーダーの領域3が存在
するために、トランジスタの利得(gm)が低下する。
(1). Due to the presence of the region 3 having a low concentration, for example, on the order of 10 14 / cm 3 , the gain (gm) of the transistor is lowered.

(2).長時間使用すると、低濃度領域3上に反転層が生
じ、このためにやはり利得低下が生じ易くなる。
(2). When used for a long time, an inversion layer is formed on the low-concentration region 3, which also tends to cause a decrease in gain.

(3).低濃度領域3はソース及びドレイン領域とは別の
イオン注入工程を経て形成する必要があるので、製造工
程が増えてしまう。
(3). Since the low-concentration region 3 needs to be formed through an ion implantation process different from the source and drain regions, the number of manufacturing processes increases.

ハ.発明の目的 本発明の目的は、電界集中の緩和によって効果的に破壊
を防止でき、かつ高利得、高信頼性で製造容易な絶縁ゲ
ート型電界効果半導体装置の製造方法を提供することに
ある。
C. It is an object of the present invention to provide a method for manufacturing an insulated gate field effect semiconductor device, which can effectively prevent breakdown by relaxing electric field concentration, and has high gain, high reliability, and easy manufacturing.

ニ.発明の構成 すなわち、本発明は、第1導電型の半導体基板の表面に
絶縁膜を形成する工程と、前記絶縁膜上に導電膜を形成
する工程と、前記導電膜に対しフォトリソグラフィー及
びエッチング処理を施して孔を備えるゲート電極を形成
する工程と、前記ゲート電極をマスクとして第2導電型
の不純物を照射し、前記ゲート電極が存在しない領域下
の前記半導体基板表面に前記第2導電型の不純物を打ち
込んで、前記ゲート電極の外側に位置する所定の前記半
導体基板表面に第2導電型のソース及びドレイン領域を
それぞれ形成するとともに前記ゲート電極の孔と対向す
る前記半導体基板表面に第2導電型の島状領域を形成す
る工程とを有する絶縁ゲート型電界効果半導体装置の製
造方法に係るものである。
D. Configuration of the Invention That is, the present invention provides a step of forming an insulating film on the surface of a first conductivity type semiconductor substrate, a step of forming a conductive film on the insulating film, and a photolithography and etching treatment for the conductive film. To form a gate electrode having a hole, and irradiating the second conductivity type impurity with the gate electrode as a mask to expose the semiconductor substrate surface under the region where the gate electrode does not exist to the second conductivity type. Impurities are implanted to form source and drain regions of the second conductivity type on the surface of the predetermined semiconductor substrate located outside the gate electrode, and the second conductivity is formed on the surface of the semiconductor substrate facing the holes of the gate electrode. A method of manufacturing an insulated gate field effect semiconductor device having a step of forming a mold island region.

ホ.実施例 以下に、本発明の実施例を第1図〜第6図について詳細
に説明する。但し、第7図〜第9図と共通する部分に
は、共通符号を付してその説明を省略する。
E. Embodiments Embodiments of the present invention will be described in detail below with reference to FIGS. However, parts common to those in FIGS. 7 to 9 are designated by common reference numerals, and description thereof will be omitted.

第1図及び第2図は、第1の実施例によるMOSFET
を示すものである。
1 and 2 show a MOSFET according to the first embodiment.
Is shown.

このトランジスタによれば、ソース領域6とドレイン領
域1との間のチャネル領域12に、両領域6及び1と同
一導電型であってそれら各領域から分離された島状(こ
こでは小円形の浮き島状で電気的にはフローティング状
態)の高濃度N型半導体領域13が多数個形成されて
いる。これらの島状領域13は夫々、ソース領域6及び
ドレイン領域1とほぼ同じ不純物濃度(例えば1016〜10
18/cm3)を有しており、後述するイオン注入によって
セルフアラインに拡散形成されたものである。これに対
応して、ポリシリコンゲート電極22は多数の小孔14
が上記島状領域13と一対一に形成されている。また、
ドレイン領域1にコンタクトされた電極11は、上記各
島状領域13を全面的に覆う如くにチャネル領域12上
にまで延設されている。
According to this transistor, in the channel region 12 between the source region 6 and the drain region 1, island-shaped regions (here, small circular floating islands) of the same conductivity type as those of the regions 6 and 1 are separated from each other. A large number of high-concentration N + type semiconductor regions 13 that are electrically floating) are formed. Each of these island regions 13 has almost the same impurity concentration (for example, 10 16 to 10 16) as the source region 6 and the drain region 1.
18 / cm 3 ) and is self-aligned and diffused by the ion implantation described later. Correspondingly, the polysilicon gate electrode 22 has a large number of small holes 14
Are formed in one-to-one correspondence with the island regions 13. Also,
The electrode 11 in contact with the drain region 1 is extended to above the channel region 12 so as to cover the island regions 13 entirely.

上記のように、島状(フローティング状態の浮き島状)
領域13を形成すれば、動作時に、ゲート及びドレイン
の部分で破壊(アバランシェ破壊)が発生する電圧より
低い電圧値でドレイン領域1と島状領域13との間に第
2図に破線15で示すように空乏層が生じ、パンチスル
ー現象が起る。このパンチスルーが生じるように予めド
レイン領域1と島状領域13との距離を設定している。
この結果、上記空乏層15によってゲート22による電
界の集中が効果的に緩和され、ドレイ破壊電圧が平滑
(plane)な電圧値まで高められる。例えば、従来の構
造ではドレイン破壊が18〜20Vで生じていたが、本実施
例の構造によってドレイン破壊電圧を80〜100Vに高め
ることが可能である。
As described above, islands (floating islands in a floating state)
If the region 13 is formed, it is indicated by a broken line 15 in FIG. 2 between the drain region 1 and the island region 13 at a voltage value lower than the voltage at which breakdown (avalanche breakdown) occurs in the gate and drain portions during operation. As described above, a depletion layer is generated and a punch through phenomenon occurs. The distance between the drain region 1 and the island region 13 is set in advance so that this punch-through occurs.
As a result, the depletion layer 15 effectively relaxes the concentration of the electric field by the gate 22, and the drain breakdown voltage is increased to a smooth voltage value. For example, the drain breakdown occurs at 18 to 20 V in the conventional structure, but the drain breakdown voltage can be increased to 80 to 100 V by the structure of this embodiment.

しかも、上記島状領域13は高不純物濃度を有している
ので、トランジスタとしての動作時に従来の如き利得低
下や反転層の発生が生じ難く、信頼性の良いデバイスを
提供できる。このMOSFETが導通(オン)状態のと
き、島状領域13は低抵抗として働くので、同じチャネ
ル長を有するMOSFETと比較して実効チャネル長は
短くなり、このため大きな利得が得られる。
Moreover, since the island-shaped region 13 has a high impurity concentration, it is possible to provide a highly reliable device in which the decrease in gain and the generation of the inversion layer as in the conventional case are unlikely to occur when operating as a transistor. When the MOSFET is in the conductive (ON) state, the island-shaped region 13 functions as a low resistance, so that the effective channel length is shorter than that of the MOSFET having the same channel length, and thus a large gain is obtained.

また、ドレイン破壊は、基板5の不純物濃度とドレイン
領域1の拡散深さとによってコントロールでき、一般に
その拡散深さを大きくすること及び基板濃度を低くする
ことによって耐圧を高め、ドレイン破壊を生じ難くする
ことができる。
Further, the drain breakdown can be controlled by the impurity concentration of the substrate 5 and the diffusion depth of the drain region 1. Generally, by increasing the diffusion depth and decreasing the substrate concentration, the breakdown voltage is increased and the drain breakdown is less likely to occur. be able to.

また、本実施例では、ドレイン電極11をチャネル領域
12上に延設せしめ、同領域上を覆っているので、この
延設部分11aによって更にゲート電極による電界集中
を緩和し、耐圧を向上させることができる。
Further, in this embodiment, since the drain electrode 11 is extended on the channel region 12 and covers the same, the extended portion 11a can further alleviate the electric field concentration by the gate electrode and improve the breakdown voltage. You can

本実施例によるMOSFETは、破壊の生じ難い構造で
あってドレイン側に加わる電圧によるゲート破壊(又は
ゲートによるドレイン近傍での電界集中)を少なくでき
るので、こうしたゲート破壊或いはホットエレクトロン
の発生を嫌う例えば高耐圧、高電圧用トランジスタ、シ
ョートチャネルトランジスタや、ダイナミックRAM
(random access memory)及びスタティックRAMの周
辺回路用のトランジスタ等として好適である。
The MOSFET according to the present embodiment has a structure in which breakdown is unlikely to occur, and gate breakdown due to a voltage applied to the drain side (or electric field concentration near the drain due to the gate) can be reduced. High breakdown voltage, high voltage transistor, short channel transistor, dynamic RAM
It is suitable as a (random access memory) and a transistor for peripheral circuits of static RAM.

次に、本実施例によるMOSFETの製造方法の主たる
過程を第3図で説明する。
Next, the main steps of the method for manufacturing the MOSFET according to this embodiment will be described with reference to FIG.

まず第3A図のように、P型シリコン基板5の一主面
に、公知の熱酸化技術及び化学的気相成長(CVD)技
術によってSiO膜8、不純物ドープド低抵抗ポリシ
リコン膜22を形成する。
First, as shown in FIG. 3A, a SiO 2 film 8 and an impurity-doped low resistance polysilicon film 22 are formed on one main surface of a P-type silicon substrate 5 by a known thermal oxidation technique and chemical vapor deposition (CVD) technique. To do.

次いで第3B図のように、フォトリソグラフィー及びエ
ッチングによってポリシリコン膜22をゲート電極形状
に加工すると同時に、上記した多数の小孔14も形成す
る。
Next, as shown in FIG. 3B, the polysilicon film 22 is processed into a gate electrode shape by photolithography and etching, and at the same time, a large number of the small holes 14 are formed.

次いで第3C図のように、イオン注入によってN型不純
物、例えば砒素イオン16を照射し、ポリシリコン膜2
2の存在しない領域下の基板表面に打ち込み、N型の
ソース領域6、ドレイン領域1、島状領域13を夫々セ
ルフアラインに形成する。
Next, as shown in FIG. 3C, an N-type impurity, for example, arsenic ion 16 is irradiated by ion implantation to form a polysilicon film 2
By implanting into the surface of the substrate below the region where 2 does not exist, the N + type source region 6, the drain region 1 and the island region 13 are formed in self-alignment.

従って、このMOSFETは、従来のプロセスを変更す
ることなく製造できるので、極めて都合がよい。なお、
第3C図の工程で、打ち込みイオンのドーズ量又は濃度
を変えれば、上述した空乏層15(第2図参照)の伸び
方を変化させ、耐圧をコントロールできる。このために
は、ソース及びドレイン領域とは別に、島状領域13を
形成するためのイオン注入を行ってもよい。
Therefore, this MOSFET is extremely convenient because it can be manufactured without changing the conventional process. In addition,
By changing the dose amount or concentration of the implanted ions in the step of FIG. 3C, it is possible to change the extension of the depletion layer 15 (see FIG. 2) and control the breakdown voltage. For this purpose, ion implantation for forming the island-shaped regions 13 may be performed separately from the source and drain regions.

第4図及び第5図は、本発明の他の実施例を示すもので
ある。
4 and 5 show another embodiment of the present invention.

これらの例では、島状領域13の個数及び形状(パター
ン)を変え、第4図ではソース及びドレイン領域側にの
み夫々1列形成し、また第5図では島状領域13を夫々
連続層として形成している。このように構成しても、上
述した実施例と同様の作用効果が得られる。
In these examples, the number and shape (pattern) of the island regions 13 are changed, one row is formed only on the source and drain region sides in FIG. 4, and the island regions 13 are formed as continuous layers in FIG. Is forming. Even with this configuration, the same operational effects as those of the above-described embodiment can be obtained.

第6図は、更に他の実施例を示すものである。FIG. 6 shows still another embodiment.

この例によれば、島状領域13は上述の例(第2図)と
同様の個数及びパターンに形成されているが、ゲート電
極22は上述した小孔14がなく、連続層として形成さ
れている。従って、ゲート電極22を上述の例のように
加工する必要はないが、製造プロセスを部分的に変更す
ることを要する。例えば、島状領域13をまず拡散形成
(このときソース及びドレイン領域も同時に拡散形成し
てよい。)した後、ポリシリコンゲート22をゲート電
極形状に加工する。
According to this example, the island regions 13 are formed in the same number and pattern as in the above example (FIG. 2), but the gate electrode 22 is formed as a continuous layer without the small holes 14 described above. There is. Therefore, it is not necessary to process the gate electrode 22 as in the above example, but it is necessary to partially change the manufacturing process. For example, the island-shaped region 13 is first diffused (at this time, the source and drain regions may be simultaneously diffused), and then the polysilicon gate 22 is processed into a gate electrode shape.

以上、本発明を例示したが、上述の実施例は本発明の技
術的思想に基づいて種々変更が可能である。
Although the present invention has been illustrated above, the above-described embodiment can be variously modified based on the technical idea of the present invention.

例えば、上述の島状領域13の形状、パターン、配列は
様々に変更してよい。また、電気的にフローティング状
態にする以外に、第5図に破線17で示す如くに延長
し、両島状領域を一体にして共通に一定の電圧を印加し
てもよい。例えば、基板に対して逆バイアスの電圧を印
加すれば、上述した空乏層15の伸びを更にコントロー
ルでき一層の高耐圧下を期待できる。第4図及び第5図
の如き例においては、島状領域13はドレイン側にのみ
形成してもよい(ソース側には必ずしも形成しなくてよ
い)。なお、上述の各領域の導電型を変換することがで
きる。
For example, the shape, pattern, and arrangement of the island regions 13 described above may be variously changed. In addition to the electrically floating state, it may be extended as shown by the broken line 17 in FIG. 5 so that both island regions are integrated and a constant voltage is commonly applied. For example, if a reverse bias voltage is applied to the substrate, the extension of the depletion layer 15 described above can be further controlled, and a higher breakdown voltage can be expected. In the example shown in FIGS. 4 and 5, the island region 13 may be formed only on the drain side (not necessarily on the source side). The conductivity type of each area described above can be changed.

ヘ.発明の作用効果 本発明の絶縁ゲート型電界効果半導体装置の製造方法に
おいては、上述の如く、ソース領域、、ドレイン領域及
び島状領域をそれぞれセルフアラインに形成できるの
で、島状領域を形成しない従来のこの種半導体装置製造
方法のプロセスを変更することなく本発明の絶縁ゲート
型電界効果半導体装置を製造することができる。
F. Advantageous Effects of the Invention In the method for manufacturing an insulated gate field effect semiconductor device of the present invention, since the source region, the drain region and the island region can be formed in self-alignment as described above, the conventional island-shaped region is not formed. The insulated gate field effect semiconductor device of the present invention can be manufactured without changing the process of this type of semiconductor device manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第6図は本発明の実施例を示すものであって、 第1図はMOSFETの要部平面図、 第2図は第1図II−II線に対応する断面図、 第3A図、第3B図及び、第3C図はMOSFETの製
造方法の主たる過程を順に示す各断面図、 第4図、第5図は他の例によるMOSFETの要部平面
図、 第6図は更に他の例によるMOFETの断面図 である。 第7図、第8図及び第9図は従来のMOSFETの各断
面図である。 なお、図面に示す符号において、 1……ドレイン領域 6……ソース領域 10、11……電極 11a……電極延設部 12……チャネル領域 13……島状領域 14……小孔 15……空乏層 16……不純物イオン 22……ゲート電極 である。
1 to 6 show an embodiment of the present invention. FIG. 1 is a plan view of a main part of a MOSFET, FIG. 2 is a sectional view corresponding to line II-II in FIG. 1, and FIG. FIGS. 3B and 3C are cross-sectional views showing the main steps of the method for manufacturing a MOSFET in order, FIGS. 4 and 5 are plan views of a main part of a MOSFET according to another example, and FIG. 3 is a sectional view of a MOFET according to the example of FIG. FIG. 7, FIG. 8 and FIG. 9 are cross-sectional views of a conventional MOSFET. In the reference numerals shown in the drawings, 1 ... Drain region 6 ... Source region 10, 11 ... Electrode 11a ... Electrode extended portion 12 ... Channel region 13 ... Island region 14 ... Small hole 15 ... Depletion layer 16 ... Impurity ion 22 ... Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板の表面に絶縁膜を
形成する工程と、 前記絶縁膜上に導電膜を形成する工程と、 前記導電膜に対してフォトリソグラフィー及びエッチン
グ処理を施して孔を備えるゲート電極を形成する工程
と、 前記ゲート電極をマスクとして第2導電型の不純物を照
射し、前記ゲート電極が存在しない領域下の前記半導体
基板表面に前記第2導電型の不純物を打ち込んで、前記
ゲート電極の外側に位置する所定の前記半導体基板表面
に第2導電型のソース及びドレイン領域をそれぞれ形成
するとともに前記ゲート電極の孔と対向する前記半導体
基板表面に第2導電型の島状領域を形成する工程と、 を有する絶縁ゲート型電界効果半導体装置の製造方法。
1. A step of forming an insulating film on the surface of a semiconductor substrate of the first conductivity type, a step of forming a conductive film on the insulating film, and a photolithography and etching process for the conductive film. Forming a gate electrode having a hole, and irradiating with a second conductivity type impurity by using the gate electrode as a mask, and implanting the second conductivity type impurity on a surface of the semiconductor substrate below a region where the gate electrode does not exist. A second conductivity type source and drain region is formed on a predetermined semiconductor substrate surface outside the gate electrode, and a second conductivity type island is formed on the semiconductor substrate surface facing the hole of the gate electrode. Forming a gate region, and a method for manufacturing an insulated gate field effect semiconductor device, comprising:
JP61005260A 1986-01-14 1986-01-14 Method for manufacturing insulated gate field effect semiconductor device Expired - Lifetime JPH0616557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005260A JPH0616557B2 (en) 1986-01-14 1986-01-14 Method for manufacturing insulated gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005260A JPH0616557B2 (en) 1986-01-14 1986-01-14 Method for manufacturing insulated gate field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS62163373A JPS62163373A (en) 1987-07-20
JPH0616557B2 true JPH0616557B2 (en) 1994-03-02

Family

ID=11606258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005260A Expired - Lifetime JPH0616557B2 (en) 1986-01-14 1986-01-14 Method for manufacturing insulated gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH0616557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672554B2 (en) * 2001-09-19 2004-01-06 Nifco Inc. Article storage device and shutter used therein

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115679A (en) * 1973-03-07 1974-11-05
JPS5050878A (en) * 1973-09-05 1975-05-07

Also Published As

Publication number Publication date
JPS62163373A (en) 1987-07-20

Similar Documents

Publication Publication Date Title
US6614075B2 (en) Semiconductor device and method of manufacturing the same
US7550352B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
JP3032138B2 (en) Method for manufacturing high-density MOS power device and high-density MOS power device manufactured by the method
USRE32800E (en) Method of making mosfet by multiple implantations followed by a diffusion step
KR950024326A (en) Semiconductor device having trench structure and manufacturing method thereof
JPH02250331A (en) Semiconductor device and its manufacture
JPH08264787A (en) Edge termination method of power mosfet and its structure
KR950002274B1 (en) Mos vlsi device having shallow junctions and method of making the same
EP0083447B1 (en) Triple diffused short channel device structure
US6030870A (en) High density MOS technology power device
US7294551B2 (en) Semiconductor device and method for manufacturing the same
US5817546A (en) Process of making a MOS-technology power device
US7514332B2 (en) Semiconductor device and method for manufacturing the same
US5291049A (en) Mosfet with buried element isolation regions
US5567965A (en) High-voltage transistor with LDD regions
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
JPH06224216A (en) Transistor and its preparation
JP2834058B2 (en) Method for manufacturing semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JPH0616557B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH0564458B2 (en)
KR100549941B1 (en) gate electrode structure for semiconductor device
JP3061157B2 (en) Method for forming semiconductor device
JPH05275693A (en) Manufacture of mosfet
JP2807718B2 (en) Semiconductor device and manufacturing method thereof