JPH06163765A - Aluminum nitride heat sink and its manufacture - Google Patents

Aluminum nitride heat sink and its manufacture

Info

Publication number
JPH06163765A
JPH06163765A JP43A JP33944992A JPH06163765A JP H06163765 A JPH06163765 A JP H06163765A JP 43 A JP43 A JP 43A JP 33944992 A JP33944992 A JP 33944992A JP H06163765 A JPH06163765 A JP H06163765A
Authority
JP
Japan
Prior art keywords
heat sink
aluminum nitride
holes
heat
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Naoto Nakatani
直人 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP43A priority Critical patent/JPH06163765A/en
Publication of JPH06163765A publication Critical patent/JPH06163765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To achieve enlargement of the current capacity of a heat sink and enhancement of the reliability of the heat sink in the heat sink wherein it is used for the mounting of a semiconductor bare chip, it is provided with conductivity between the surface and the rear and it is made of aluminum nitride and to provide the manufacturing method of the heat sink. CONSTITUTION:A heat sink is provided with an aluminum nitride heat-sink base body 10A in which through holes 12 have been made and which has been baked, with conductor parts 14A which have been filled into the through holes and which have been baked, with metallized layers 16A which have been baked and formed on both faces of the heat-sink base body and with metal-plated layers 18 which have been formed on surfaces of the metallized layers. The heat sink is manufactured in such a way that an aluminum nitride heat-sink raw body in which the through holes have been made, a conductor paste 14 filled into the through holes and a conductor paste 16 with which both faces of the heat-sink base body have been coated are baked and formed simultaneously and that the metallized layers on both faces are plated with a metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ベアチップ実装
に用いられ、表裏面間の導電性を持たせた窒化アルミ製
のヒートシンクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink made of aluminum nitride which is used for mounting a semiconductor bare chip and has conductivity between front and back surfaces.

【0002】[0002]

【従来の技術】窒化アルミ(ALN)は高い熱伝導性
(アルミナの5〜10倍)と電気絶縁性を持ち、またベ
リリヤのような毒性の問題もないため、アルミナやベリ
リヤに代わる半導体実装用基板として注目されている。
2. Description of the Related Art Aluminum nitride (ALN) has high thermal conductivity (5 to 10 times that of alumina) and electrical insulation and does not have the toxicity problem of beryllia. It is attracting attention as a substrate.

【0003】図2はこの窒化アルミ基板(以下ALN基
板という)1にパワートランジスタ2のベアチップを一
体化した実装例を示す断面図である。ここにパワートラ
ンジスタ2は、従来は銅製のヒートシンク(ヒートスプ
レッダ)3を介して基板1に固着されている。
FIG. 2 is a sectional view showing a mounting example in which a bare chip of a power transistor 2 is integrated with this aluminum nitride substrate (hereinafter referred to as ALN substrate) 1. Here, the power transistor 2 is conventionally fixed to the substrate 1 via a heat sink (heat spreader) 3 made of copper.

【0004】すなわちトランジスタ2のシリコン基板4
はトランジスタ2のコレクタCとなっていて、このシリ
コン基板(半導体ベアチップ)4はヒートシンク3に5
で示す半田付け部により半田付けされている。またこの
ヒートシンク3はALN基板1上に形成された回路パタ
ーン6に7で示す半田付け部により半田付けされてい
る。一方トランジスタ2のベースBとエミッタEとは、
リード線8、9によってALN基板1上の回路パターン
10、11に接続されている。なおここで用いるヒート
シンク3はその表面が金めっきあるいはニッケルめっき
されている。
That is, the silicon substrate 4 of the transistor 2
Is the collector C of the transistor 2, and the silicon substrate (semiconductor bare chip) 4 is attached to the heat sink 3 by 5
Soldered by the soldering part indicated by. The heat sink 3 is soldered to the circuit pattern 6 formed on the ALN substrate 1 by the soldering portion indicated by 7. On the other hand, the base B and the emitter E of the transistor 2 are
The lead wires 8 and 9 are connected to the circuit patterns 10 and 11 on the ALN substrate 1. The surface of the heat sink 3 used here is gold-plated or nickel-plated.

【0005】このように従来のヒートシンク3は銅で作
られているが、この銅の熱膨張率は20×10-6/℃位
であり、シリコンの約3.6×10-6/℃に比べて4〜
5倍も大きい。このため、特に大型のシリコン基板4を
用いるトランジスタ1では、銅とシリコンとの熱膨張率
の違いにより半田付け部5の半田やシリコン基板4にク
ラックが発生し易く、信頼性が低下する問題があった。
As described above, the conventional heat sink 3 is made of copper, and the coefficient of thermal expansion of this copper is about 20 × 10 −6 / ° C., which is about 3.6 × 10 −6 / ° C. of silicon. 4 ~
It is 5 times bigger. Therefore, particularly in the transistor 1 using the large-sized silicon substrate 4, there is a problem that the solder of the soldering portion 5 and the silicon substrate 4 are likely to be cracked due to the difference in thermal expansion coefficient between copper and silicon, and the reliability is deteriorated. there were.

【0006】またシリコンの熱膨張率に近い材料として
銅・タングステンなどがあるが、これは比重が約10で
大きく、軽量化の障害になる。そこでヒートシンク3の
材料として、窒化アルミ(ALN)を用いることが考え
られている。このALNは熱膨張率が室温〜400℃の
平均で4.4×10-6/℃とシリコンに近いからであ
る。また比重も3.2で軽量でもあるからである。
Materials such as copper and tungsten which have a coefficient of thermal expansion close to that of silicon include copper and tungsten, which have a large specific gravity of about 10, which is an obstacle to weight reduction. Therefore, it is considered to use aluminum nitride (ALN) as the material of the heat sink 3. This is because this ALN has a coefficient of thermal expansion of 4.4 × 10 −6 / ° C. on average from room temperature to 400 ° C., which is close to that of silicon. Also, the specific gravity is 3.2, which is also lightweight.

【0007】しかしこのALNは電気的に絶縁体である
ため、図2のようにコレクタCであるシリコン基板4を
直接回路パターン6に接続する場合には、ヒートシンク
自身に導電性を持たせることが必要になる。そこでこの
ALN製のヒートシンクを用いる場合には、この両面お
よび側縁を含む全面に真空蒸着法またはスパッタリング
法により薄膜を形成したり(薄膜メタライズ)、導体ペ
ーストを印刷し焼成することによって導電の厚膜を形成
していた(厚膜メタライズ)。またモリブデンマンガン
等の高融点メタライズを行っていた。
However, since this ALN is an electrical insulator, when the silicon substrate 4 which is the collector C is directly connected to the circuit pattern 6 as shown in FIG. 2, the heat sink itself may be made conductive. You will need it. Therefore, when this ALN heat sink is used, a thin film is formed on the entire surface including both sides and side edges by a vacuum deposition method or a sputtering method (thin film metallization), or a conductive paste is printed and baked to obtain a conductive thickness. A film was formed (thick film metallization). Moreover, high melting point metallization of molybdenum manganese etc. was performed.

【0008】[0008]

【従来技術の問題点】このように従来はALN製ヒート
シンクを用いる場合には、その外側の全面に薄膜または
厚膜のメタライズ層を形成し、側縁を介して上下面間の
導電性を得ていた。このため上下面間の電流容量が制限
され、大電流パワートランジスタへ適用するのが困難に
なったり、信頼性が低下するという問題があった。
As described above, when a heat sink made of ALN is conventionally used, a metallization layer of a thin film or a thick film is formed on the entire outer surface of the heat sink to obtain conductivity between the upper and lower surfaces through the side edges. Was there. For this reason, the current capacity between the upper and lower surfaces is limited, which makes it difficult to apply it to a large current power transistor, and there is a problem that reliability is reduced.

【0009】[0009]

【発明の目的】本発明はこのような事情に鑑みなされた
ものであり、電流容量を大きくすることができ、信頼性
も向上する窒化アルミヒートシンクを提供することを第
1の目的とする。またこのヒートシンクの製造方法を提
供することを第2の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is a first object of the present invention to provide an aluminum nitride heat sink capable of increasing current capacity and improving reliability. A second object is to provide a method for manufacturing this heat sink.

【0010】[0010]

【発明の構成】本発明によれば第1の目的は、スルーホ
ールが形成されかつ焼成された窒化アルミのヒートシン
ク基体と、前記スルーホールに充填され焼成された導体
部と、前記ヒートシンク基体の両面に焼成されたメタラ
イズ層と、このメタライズ層の表面に形成された金属め
っき層とを有することを特徴とする窒化アルミヒートシ
ンクにより達成される。
According to the present invention, a first object is to provide a heat sink base made of aluminum nitride in which through holes are formed and fired, a conductor portion filled in the through holes and fired, and both sides of the heat sink base. And a metal plating layer formed on the surface of the metallized layer and an aluminum nitride heat sink.

【0011】また第2の目的は、スルーホールが形成さ
れた窒化アルミのヒートシンク素体と、前記スルーホー
ルに充填された導体ペーストと、前記ヒートシンク素体
の両面に塗布された導体ペーストとを同時焼成した後、
両面のメタライズ層に金属めっきを施すことを特徴とす
る窒化アルミヒートシンクの製造方法により達成され
る。
A second object is to simultaneously form a heat sink element body of aluminum nitride having a through hole formed therein, a conductor paste filled in the through hole, and a conductor paste applied to both surfaces of the heat sink element body. After firing
This is achieved by a method for manufacturing an aluminum nitride heat sink characterized by applying metal plating to both metallized layers.

【0012】[0012]

【実施例】図1は本発明による製造方法の処理工程を示
す図である。この図1(A)で符号10は窒化アルミ
(ALN)のグリーンシートである。このグリーンシー
ト10は前記図2で説明したヒートシンク3にほぼ対応
する厚さと大きさを持つ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing processing steps of a manufacturing method according to the present invention. In FIG. 1A, reference numeral 10 is a green sheet of aluminum nitride (ALN). The green sheet 10 has a thickness and size substantially corresponding to the heat sink 3 described in FIG.

【0013】このグリーンシート10は、図1(B)に
示すように複数の貫通孔すなわちスルーホール12が形
成されて、ヒートシンク素体10Aとなる。このスルー
ホール12付きのグリーンシートすなわちヒートシンク
素体10Aは、そのスルーホール12に導体ペースト1
4が充填され、さらにその上下両面に導体ペースト16
が塗布され、図1(C)に示すグリーンシート10Bと
なる。導体ペースト14および16には、窒化アルミと
熱膨張率が近いモリブデン/マンガンやタングステンの
粒子を混入したペーストを用いるのが望ましい。
As shown in FIG. 1B, the green sheet 10 has a plurality of through holes, that is, through holes 12, to form a heat sink body 10A. The green sheet with the through holes 12, that is, the heat sink body 10A has the conductor paste 1 in the through holes 12.
4 and filled with conductor paste 16 on both upper and lower surfaces thereof.
Is applied to form a green sheet 10B shown in FIG. For the conductor pastes 14 and 16, it is desirable to use a paste containing particles of molybdenum / manganese or tungsten having a coefficient of thermal expansion close to that of aluminum nitride.

【0014】導体ペースト14と16とに同じ材質のペ
ーストを用いる場合には、ヒートシンク素体10Aにス
クイーズ法やスクリーン印刷法などを用いてスルーホー
ル12と上下両面とに同時に導体ペースト14、16を
供給することができる。導体ペースト14と16とを異
なる材質のペーストとして、別々に供給するようにして
もよい。
When the same material is used for the conductor pastes 14 and 16, the conductor pastes 14 and 16 are simultaneously formed on the through hole 12 and the upper and lower surfaces by using the squeeze method or the screen printing method on the heat sink body 10A. Can be supplied. The conductor pastes 14 and 16 may be separately supplied as pastes of different materials.

【0015】このようにスルーホール12および両面に
導体ペースト14、16が供給されたグリーンシート1
0Bは、焼成炉(図示せず)に入れられて焼成される。
この結果図1(D)に示すように、上下両面の導体ペー
スト16、16はメタライズ層16A、16Aとなり、
スルーホール12内の導体ペースト14は、これらのメ
タライズ層16A、16Aを電気接続する導体部14A
となる。またヒートシンク素体10Aは焼成されてヒー
トシンク基体10Cとなる。なおこのヒートシンク10
Aは複数枚積層して厚みを調整してもよい。
In this way, the green sheet 1 having the through holes 12 and the conductor pastes 14 and 16 provided on both sides thereof.
OB is put into a firing furnace (not shown) and fired.
As a result, as shown in FIG. 1D, the conductor pastes 16 and 16 on both upper and lower surfaces become metallized layers 16A and 16A,
The conductor paste 14 in the through hole 12 is a conductor portion 14A for electrically connecting these metallized layers 16A, 16A.
Becomes Further, the heat sink body 10A is fired to become a heat sink base body 10C. This heat sink 10
A may be formed by laminating a plurality of sheets to adjust the thickness.

【0016】このように焼成された後、メタライズ層1
6A、16Aの表面には、電解めっき法あるいは無電解
めっき法により金あるいはニッケルめっきなどの金属め
っき層18、18が仕上げめっきとして形成される。
After firing in this way, the metallized layer 1
Metal plating layers 18, 18 such as gold or nickel plating are formed as finish plating on the surfaces of 6A, 16A by electrolytic plating or electroless plating.

【0017】この結果焼成された窒化アルミのヒートシ
ンク基体10Cと、スルーホール12内に充填され焼成
された導体部14Aと、両面に焼成されたメタライズ層
16A、16Aと、金属めっき層18、18とを有する
ヒートシンク3Aが形成される(図1の(E)参照)。
なおスルーホール12は多数設ければ導体部14Aの電
流密度が小さくなり望ましいが、本発明はスルーホール
12を1つ設けたものも包含する。
As a result, a fired aluminum nitride heat sink substrate 10C, a conductor portion 14A filled in the through holes 12 and fired, metallized layers 16A and 16A fired on both sides, and metal plating layers 18 and 18. A heat sink 3A having the above is formed (see FIG. 1E).
Although it is desirable to provide a large number of through holes 12 because the current density of the conductor portion 14A becomes small, the present invention also includes a single through hole 12.

【0018】[0018]

【発明の効果】請求項1の発明によれば、ヒートシンク
基体のスルーホールに充填し焼成した導体部により、そ
の両面のメタライズ層および金属めっき層との間の導電
性が得られる。ここに導体部に電流を流すので、導体部
の数を増やすことにより電流容量を容易に増大できる。
またヒートシンク基体が厚くなっても導電性が確実に得
られ、信頼性が高い。請求項2の発明によれば、このヒ
ートシンクの製造方法が得られる。
According to the first aspect of the present invention, the conductor portion filled in the through hole of the heat sink substrate and fired provides conductivity between the metallized layer and the metal plated layer on both sides of the conductor portion. Since a current is passed through the conductors here, the current capacity can be easily increased by increasing the number of conductors.
Further, even if the heat sink substrate becomes thick, the conductivity is surely obtained and the reliability is high. According to the invention of claim 2, the method for manufacturing the heat sink can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程を示す図FIG. 1 is a diagram showing a manufacturing process of the present invention.

【図2】ヒートシンクの適用例を示す図FIG. 2 is a diagram showing an application example of a heat sink.

【符号の説明】[Explanation of symbols]

3A ヒートシンク 10 グリーンシート 10A ヒートシンク素体 10C ヒートシンク基体 12 スルーホール 14、16 導体ペースト 14A 導電部 16A、 メタライズ層 18 金属めっき層 3A heatsink 10 green sheet 10A heatsink body 10C heatsink substrate 12 through holes 14, 16 conductor paste 14A conductive part 16A, metallization layer 18 metal plating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スルーホールが形成されかつ焼成された
窒化アルミのヒートシンク基体と、前記スルーホールに
充填され焼成された導体部と、前記ヒートシンク基体の
両面に焼成されたメタライズ層と、このメタライズ層の
表面に形成された金属めっき層とを有することを特徴と
する窒化アルミヒートシンク。
1. A heat sink base made of aluminum nitride in which through holes are formed and fired, a conductor portion filled in the through holes and fired, a metallized layer fired on both sides of the heat sink base, and this metallized layer. An aluminum nitride heat sink having a metal plating layer formed on the surface of the aluminum nitride heat sink.
【請求項2】 スルーホールが形成された窒化アルミの
ヒートシンク素体と、前記スルーホールに充填された導
体ペーストと、前記ヒートシンク素体の両面に塗布され
た導体ペーストとを同時焼成した後、両面のメタライズ
層に金属めっきを施すことを特徴とする窒化アルミヒー
トシンクの製造方法。
2. A heat sink element body of aluminum nitride having a through hole formed therein, a conductor paste filled in the through hole, and a conductor paste applied to both sides of the heat sink element are co-fired, and then both sides 2. A method for manufacturing an aluminum nitride heat sink, which comprises subjecting the metallized layer of 1. to metal plating.
JP43A 1992-11-27 1992-11-27 Aluminum nitride heat sink and its manufacture Pending JPH06163765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163765A (en) 1992-11-27 1992-11-27 Aluminum nitride heat sink and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163765A (en) 1992-11-27 1992-11-27 Aluminum nitride heat sink and its manufacture

Publications (1)

Publication Number Publication Date
JPH06163765A true JPH06163765A (en) 1994-06-10

Family

ID=18327572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06163765A (en) 1992-11-27 1992-11-27 Aluminum nitride heat sink and its manufacture

Country Status (1)

Country Link
JP (1) JPH06163765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543663A (en) * 1993-12-27 1996-08-06 Kabushiki Kaisha Toshiba Semiconductor device and BGA package
EP0755074A2 (en) * 1995-07-18 1997-01-22 Tokuyama Corporation Submount
KR100455881B1 (en) * 2001-12-06 2004-11-06 (주)나노팩 Package structure of optical device and method of manufacturing thereof
JP2014192371A (en) * 2013-03-27 2014-10-06 Toyoda Gosei Co Ltd Light-emitting device and method for manufacturing the same
CN112918039A (en) * 2021-01-21 2021-06-08 西安工业大学 Composite structure of metal composite material and forming method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543663A (en) * 1993-12-27 1996-08-06 Kabushiki Kaisha Toshiba Semiconductor device and BGA package
EP0755074A2 (en) * 1995-07-18 1997-01-22 Tokuyama Corporation Submount
EP0755074A3 (en) * 1995-07-18 1998-04-01 Tokuyama Corporation Submount
KR100379975B1 (en) * 1995-07-18 2003-07-18 가부시키가이샤 도쿠야마 Submount
KR100455881B1 (en) * 2001-12-06 2004-11-06 (주)나노팩 Package structure of optical device and method of manufacturing thereof
JP2014192371A (en) * 2013-03-27 2014-10-06 Toyoda Gosei Co Ltd Light-emitting device and method for manufacturing the same
CN112918039A (en) * 2021-01-21 2021-06-08 西安工业大学 Composite structure of metal composite material and forming method thereof

Similar Documents

Publication Publication Date Title
US20020112882A1 (en) Ceramic circuit board
JPH0613726A (en) Ceramic circuit substrate
JPH06163765A (en) Aluminum nitride heat sink and its manufacture
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
JP2001127224A (en) Insulating alumina board and alumina copper-pasted circuit board
JP2687604B2 (en) Method of manufacturing printed circuit board
JP2509428B2 (en) Ultra-small electronic package
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS59184586A (en) Circuit board for placing semiconductor element
JPH10224059A (en) Heat sink
JPH0459779B2 (en)
JPH0746007A (en) Substrate for electric power and electric power amplifier for high frequency
JP2000114441A (en) Multilayer metal plate and its manufacture
JP3645744B2 (en) Ceramic wiring board
JPH06177495A (en) Aluminum nitride printed wiring board
JPH0789574B2 (en) Pellet mounting board manufacturing method
JP3222348B2 (en) Manufacturing method of ceramic package
JPH04130757A (en) Ceramic package for semiconductor element
JPH11297909A (en) Metallic plate for radiating heat and package for electronic parts using it
JPH05343874A (en) Heat dissipation structure of hybrid ic
JPH0636601Y2 (en) Circuit board
JPS61136976A (en) Electric circuit production on non-oxide ceramic substrate
JP2000164996A (en) Ceramic wiring board
JP2000114442A (en) Package for electronic part
JPH08191122A (en) Ceramic package with heat spreader and manufacture thereof