JPH06151967A - Nitrogen-iii compound semiconductor luminous element and manufacture thereof - Google Patents

Nitrogen-iii compound semiconductor luminous element and manufacture thereof

Info

Publication number
JPH06151967A
JPH06151967A JP31660292A JP31660292A JPH06151967A JP H06151967 A JPH06151967 A JP H06151967A JP 31660292 A JP31660292 A JP 31660292A JP 31660292 A JP31660292 A JP 31660292A JP H06151967 A JPH06151967 A JP H06151967A
Authority
JP
Japan
Prior art keywords
layer
concentration
light emitting
emitting diode
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31660292A
Other languages
Japanese (ja)
Other versions
JP3498185B2 (en
Inventor
Katsuhide Manabe
勝英 真部
Masahiro Kotaki
正宏 小滝
Masato Tamaki
真人 田牧
Junichi Umezaki
潤一 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP31660292A priority Critical patent/JP3498185B2/en
Publication of JPH06151967A publication Critical patent/JPH06151967A/en
Application granted granted Critical
Publication of JP3498185B2 publication Critical patent/JP3498185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve the luminance and life of an AlGaInN light emitting diode. CONSTITUTION:The title luminous element consists of an n-layer made of n-type gallium nitride (GaN) and i-layer made of i-type gallium nitride with p-type impurities added. The i-layer 5 consists of a large number of laminated thin films wherein the p-type impurity concentration is stepwise increased in the direction away from the junction with the n-layer 4. The i-layer 5 may be so structured that the p-type impurity concentration is gradually increased therein. The Zn concentration is varied within the range of 1X10<15>/cm<3>-2.0X10<21>/cm<3>. The structure mentioned above improves the electron injection efficiency, luminance and element life.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光の窒素−3属元
素化合物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue light-emitting nitrogen-group III compound semiconductor light-emitting device.

【0002】[0002]

【従来技術】従来、青色の発光ダイオードとしてGaN 系
の化合物半導体を用いたものが知られている。そのGaN
系の化合物半導体は直接遷移型であることから発光効率
が高いこと、光の3原色の1つである青色を発光色とす
ること等から注目されている。
2. Description of the Related Art Conventionally, as a blue light emitting diode, one using a GaN compound semiconductor has been known. Its GaN
Since the compound semiconductors of the type are direct transition type, they have high luminous efficiency, and blue, which is one of the three primary colors of light, is used as the emission color, and so on.

【0003】このようなGaN 系の化合物半導体を用いた
発光ダイオードは、サファイア基板上に直接又は窒化ア
ルミニウムから成るバッファ層を介在させて、N導電型
のGaN 系の化合物半導体から成る高キャリア濃度N+
と低キャリア濃度N層と、その低キャリア濃度N層の上
に低不純物濃度IL 層と高不純物濃度IH 層とを成長さ
せた構造をとっている(特開平3-252177号公報)。
A light emitting diode using such a GaN-based compound semiconductor has a high carrier concentration N formed of an N-conductivity type GaN-based compound semiconductor directly or on a sapphire substrate with a buffer layer made of aluminum nitride interposed. + layer and the low carrier concentration N layer, that has a structure which is grown a lightly doped I L layer and the high impurity concentration I H layer on the low carrier concentration N layer (JP-a-3-252177 JP ).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構造の発
光ダイオードの発光強度は未だ十分ではなく、改良が望
まれている。そこで、本発明の目的は、窒素−3属元素
化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む)
発光ダイオードの青色の発光強度を向上させることであ
る。
However, the light emission intensity of the light emitting diode having the above structure is not yet sufficient, and improvement is desired. Therefore, an object of the present invention is to provide a nitrogen-3 group compound semiconductor (including Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0).
It is to improve the blue emission intensity of the light emitting diode.

【0005】[0005]

【課題を解決するための手段】本発明は、N型の窒素−
3属元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0
を含む) からなるN層と、P型不純物を添加したI型の
窒素−3属元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,
X=Y=0 を含む) からなるI層とを有する窒素−3属元素
化合物半導体発光素子において、I層を、N層との接合
面から遠ざかる方向に、P型不純物濃度を連続的に又は
多段階的に増加させた構造としたことを特徴とする。
The present invention is directed to N-type nitrogen-
Group 3 element compound semiconductor (Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0
And a P-type impurity-added I-type nitrogen-group 3 element compound semiconductor (Al x Ga Y In 1-XY N; X = 0, Y = 0,
X = Y = 0) and an I layer made of (3), and the P type impurity concentration is continuously or in the direction of moving the I layer away from the joint surface with the N layer. The feature is that the structure is increased in multiple stages.

【0006】P型不純物としては例えばZnである。各I
層の成長温度は1000〜1200℃が望ましい。この範囲で結
晶成長させた場合には良質な結晶が得られると共に発光
輝度が向上した。
The P-type impurity is Zn, for example. Each I
The layer growth temperature is preferably 1000 to 1200 ° C. When crystals were grown in this range, good quality crystals were obtained and the emission brightness was improved.

【0007】P型不純物としてZnを用いた場合には、I
層の各薄膜の不純物濃度は、 1×1015〜 1×1022/cm3
の範囲で、連続的又は多段階的に増加させるのが望まし
い。
When Zn is used as the P-type impurity, I
The impurity concentration of each thin film of the layer is 1 × 10 15 to 1 × 10 22 / cm 3
It is desirable to increase continuously or in multiple steps within the range.

【0008】[0008]

【発明の作用及び効果】本発明は、I層を、N層との接
合面から遠ざかる方向に、P型不純物濃度を連続的に又
は多段階的に増加させた構造としたので、電子及び正孔
の注入効率が向上すると共に、発光部分がN層とI層と
の接合面、I層から発光するようになったため発光輝度
が向上した。又、発光中心の不純物原子が高濃度I層側
からN層側の低濃度I層側に移行するために、発光の安
定性や素子寿命の長期化が達成された。
According to the present invention, the I layer has a structure in which the P-type impurity concentration is increased continuously or in multiple steps in the direction away from the junction surface with the N layer. The injection efficiency of the holes was improved, and the emission brightness was improved because the light emitting portion started to emit light from the bonding surface between the N layer and the I layer and the I layer. Further, since the impurity atom at the luminescence center migrates from the high-concentration I layer side to the N-layer side low-concentration I layer side, the stability of light emission and the prolongation of the device life are achieved.

【0009】[0009]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。第1実施例 図1において、発光ダイオード10は、サファイア基板
1を有しており、そのサファイア基板1に500 ÅのAlN
のバッファ層2が形成されている。そのバッファ層2の
上には、順に、膜厚約2.2 μm、キャリア濃度 1.5×10
18/ cm3 のGaNから成る高キャリア濃度N+ 層3、膜厚
約 1.1μm、キャリア濃度1×1015/ cm3 のGaN から成
る低キャリア濃度N層4が形成されている。さらに、低
キャリア濃度N層4の上に多数薄膜の積層構造のI層5
が形成されている。I層5の各薄膜の膜厚は500Åで
ある。又、I層5の各薄膜51〜60のZn濃度は、 1×
1015/ cm3 、 5.0×1015/ cm3 、2.5 ×1016/ cm3 、1.
3 ×1017/ cm3 、6.3 ×1017/ cm3 、3.2 ×1018/ c
m3 、1.6 ×1019/ cm3 、7.9 ×1019/ cm3 、4.0 ×10
20/ cm3 、2.0 ×1021/ cm3 であり、最上層の超高不純
物濃度ISH層6のZn濃度は1.0 ×1022/ cm3 である。即
ち、各I層のZn濃度は約5倍の等比濃度差で形成されて
いる。そして、超高不純物濃度ISH層6に接続するアル
ミニウムで形成された電極8と高キャリア濃度N+ 層3
に接続するアルミニウムで形成された電極9とが形成さ
れている。
EXAMPLES The present invention will be described below based on specific examples. First Embodiment In FIG. 1, a light emitting diode 10 has a sapphire substrate 1, and the sapphire substrate 1 has 500 Å AlN.
Buffer layer 2 is formed. On the buffer layer 2, a film thickness of about 2.2 μm and a carrier concentration of 1.5 × 10
A high carrier concentration N + layer 3 made of 18 / cm 3 GaN and a low carrier concentration N layer 4 made of GaN having a film thickness of about 1.1 μm and a carrier concentration of 1 × 10 15 / cm 3 are formed. Further, on the low carrier concentration N layer 4, an I layer 5 having a multi-layered thin film structure is formed.
Are formed. The thickness of each thin film of the I layer 5 is 500Å. The Zn concentration of each of the thin films 51 to 60 of the I layer 5 is 1 ×
10 15 / cm 3 , 5.0 × 10 15 / cm 3 , 2.5 × 10 16 / cm 3 , 1.
3 × 10 17 / cm 3 , 6.3 × 10 17 / cm 3 , 3.2 × 10 18 / c
m 3 , 1.6 × 10 19 / cm 3 , 7.9 × 10 19 / cm 3 , 4.0 × 10
20 / cm 3 , 2.0 × 10 21 / cm 3 , and the Zn concentration of the uppermost ultrahigh impurity concentration I SH layer 6 is 1.0 × 10 22 / cm 3 . That is, the Zn concentration of each I layer is formed with a difference of about 5 times in equi-concentration. Then, the electrode 8 formed of aluminum and the high carrier concentration N + layer 3 connected to the ultra-high impurity concentration I SH layer 6 are formed.
And an electrode 9 made of aluminum that is connected to.

【0010】次に、この構造の発光ダイオード10の製
造方法について説明する。上記発光ダイオード10は、
有機金属化合物気相成長法( 以下「M0VPE 」と記す) に
よる気相成長により製造された。用いられたガスは、NH
3 とキャリアガスH2とトリメチルガリウム(Ga(CH3)3)
(以下「TMG 」と記す) とトリメチルアルミニウム(Al
(CH3)3)(以下「TMA 」と記す) とシラン(SiH4)とジエ
チル亜鉛(以下「DEZ 」と記す) である。
Next, a method of manufacturing the light emitting diode 10 having this structure will be described. The light emitting diode 10 is
It was manufactured by vapor phase epitaxy by an organometallic compound vapor phase epitaxy method (hereinafter referred to as "M0VPE"). The gas used is NH
3 and carrier gas H 2 and trimethylgallium (Ga (CH 3 ) 3 ).
(Hereinafter referred to as "TMG") and trimethyl aluminum (Al
(CH 3) 3) (a hereinafter referred to as "TMA") and silane (SiH 4) and diethyl zinc (hereinafter referred to as "DEZ").

【0011】まず、有機洗浄及び熱処理により洗浄した
A面を主面とする単結晶のサファイア基板1をM0VPE 装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH2を 2 liter/分で反応室に流しながら温度1100℃
でサファイア基板1を気相エッチングした。
First, the single-crystal sapphire substrate 1 whose main surface is the A-plane, which has been cleaned by organic cleaning and heat treatment, is mounted on the susceptor mounted in the reaction chamber of the M0VPE apparatus. Then, at a normal pressure of H 2 at a rate of 2 liters / minute, the temperature was 1100 ° C. while flowing into the reaction chamber.
Then, the sapphire substrate 1 was vapor-phase etched.

【0012】次に、温度を 400℃まで低下させて、H2
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で供給してAlN のバッファ層2が約 500Åの厚
さに形成された。
Next, the temperature is lowered to 400 ° C. and H 2 is added.
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
The buffer layer 2 of AlN was formed at a thickness of about 500Å by supplying at a mol / min.

【0013】次に、サファイア基板1の温度を1150℃に
保持し、H2を20 liter/分、NH3 を10 liter/分、TMG
を 1.7×10-4モル/分、H2で 0.86ppmまで希釈したシラ
ン(SiH4)を 200 ml/分の割合で30分間供給し、膜厚約
2.2μm、キャリア濃度 1.5×1018/ cm3 のGaN から成
る高キャリア濃度N+ 層3を形成した。
Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, and TMG is
Silane (SiH 4 ) diluted to 1.7 × 10 -4 mol / min and 0.86 ppm with H 2 at a rate of 200 ml / min for 30 minutes to obtain a film thickness of approximately
2.2 .mu.m, to form a high carrier concentration N + layer 3 made of GaN having a carrier concentration 1.5 × 10 18 / cm 3.

【0014】続いて、サファイア基板1の温度を1150℃
に保持し、H2を20 liter/分、NH3を10 liter/分、TMG
を1.7×10-4モル/分の割合で15分間供給し、膜厚約1.
1μm、キャリア濃度 1×1015/ cm3 のGaN から成る低
キャリア濃度N層4を形成した。
Then, the temperature of the sapphire substrate 1 is set to 1150 ° C.
, H 2 20 liter / min, NH 3 10 liter / min, TMG
Is supplied at a rate of 1.7 × 10 -4 mol / min for 15 minutes to obtain a film thickness of about 1.
A low carrier concentration N layer 4 made of GaN having a carrier concentration of 1 μm and a carrier concentration of 1 × 10 15 / cm 3 was formed.

【0015】次に、サファイア基板1を1150℃にして、
2 を20 liter/分、NH3 を10 liter/分、TMG を 1.7
×10-4モル/分、DEZ を時間0.7 分の間隔で、初期値 5
×10-10 モル/分から約5倍の比で11段階に流量を変
化させて、各膜厚500Å、Zn濃度が 1×1015/ cm3
2.0 ×1021/ cm3 の範囲で約5倍の比で変化する多段階
的積層構造のI層5を形成した。続いて、DEZ を 5×10
-3モル/分、他のガス流量は変化させずに、3分間供給
して、Zn濃度が1.0 ×1022/ cm3 、厚さ0.2μmの超
高不純物濃度ISH層6を形成した。このようにして、図
2に示す構造のウエハが得られた。
Next, the sapphire substrate 1 is heated to 1150 ° C.,
H 2 20 liter / min, NH 3 10 liter / min, TMG 1.7
Initial value 5 × 10 -4 mol / min, DEZ at intervals of 0.7 min
The flow rate was changed from 11 × 10 -10 mol / min to about 5 times in 11 steps to obtain a film thickness of 500 Å and a Zn concentration of 1 × 10 15 / cm 3
An I layer 5 having a multi-step laminated structure was formed in which the ratio was changed by about 5 times in the range of 2.0 × 10 21 / cm 3 . Next, set DEZ to 5 × 10.
-3 mol / min, the other gas flow rate was not changed and was supplied for 3 minutes to form an ultrahigh impurity concentration I SH layer 6 having a Zn concentration of 1.0 × 10 22 / cm 3 and a thickness of 0.2 μm. . In this way, the wafer having the structure shown in FIG. 2 was obtained.

【0016】次に、図3に示すように、超高不純物濃度
I層6の上に、スパッタリングによりSiO2層11を2000
Åの厚さに形成した。次に、そのSiO2層11上にフォト
レジスト12を塗布して、フォトリソグラフにより、そ
のフォトレジスト12を高キャリア濃度N+ 層3に対す
る電極形成部位のフォトレジストを除去したパターンに
形成した。
Next, as shown in FIG. 3, an SiO 2 layer 11 is formed on the ultra-high impurity concentration I layer 6 by a sputtering method.
Formed to a thickness of Å. Next, a photoresist 12 was applied on the SiO 2 layer 11, and the photoresist 12 was formed by photolithography in a pattern in which the photoresist at the electrode formation site for the high carrier concentration N + layer 3 was removed.

【0017】次に、図4に示すように、フォトレジスト
12によって覆われていないSiO2層11をフッ酸系エッ
チング液で除去した。次に、図5に示すように、フォト
レジスト12及びSiO2層11によって覆われていない部
位の超高不純物濃度ISH層6、第10I層60〜第1I
層51、低キャリア濃度N層4及び高キャリア濃度N+
層3の上面一部を、真空度0.04Torr、高周波電力0.44W/
cm3 、BCl3ガスを10cc/ 分でドライエッチングした後、
Arでドライエッチングした。
Next, as shown in FIG. 4, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid-based etching solution. Next, as shown in FIG. 5, the ultrahigh impurity concentration I SH layer 6 and the 10th I layer 60 to the 1Ith region not covered by the photoresist 12 and the SiO 2 layer 11 are formed.
Layer 51, low carrier concentration N layer 4 and high carrier concentration N +
Part of the upper surface of layer 3 has a vacuum degree of 0.04 Torr and high frequency power of 0.44 W /
After the cm 3, BCl 3 gas was dry-etched with 10 cc / min,
It was dry-etched with Ar.

【0018】次に、図6に示すように、超高不純物濃度
SH層6の上に残っているSiO2層11をフッ酸で除去し
た。次に、図7に示すように、試料の上全面に、Al層1
3を蒸着により形成した。そして、そのAl層13の上に
フォトレジスト14を塗布して、フォトリソグラフによ
り、そのフォトレジスト14が高キャリア濃度N+ 層3
及び超高不純物濃度ISH層6に対する電極部が残るよう
に、所定形状にパターン形成した。
Next, as shown in FIG. 6, the SiO 2 layer 11 remaining on the ultrahigh impurity concentration I SH layer 6 was removed with hydrofluoric acid. Next, as shown in FIG. 7, an Al layer 1 is formed on the entire upper surface of the sample.
3 was formed by vapor deposition. Then, a photoresist 14 is applied on the Al layer 13, and the photoresist 14 is formed into a high carrier concentration N + layer 3 by photolithography.
And a pattern was formed in a predetermined shape so that the electrode portion for the ultrahigh impurity concentration I SH layer 6 remained.

【0019】次に、図7に示すようにそのフォトレジス
ト14をマスクとして下層のAl層13の露出部を硝酸系
エッチング液でエッチングし、フォトレジスト14をア
セトンで除去し、高キャリア濃度N+ 層3の電極9、超
高不純物濃度ISH層6の電極8を形成した。
Next, as shown in FIG. 7, the exposed portion of the underlying Al layer 13 is etched with a nitric acid-based etching solution using the photoresist 14 as a mask, and the photoresist 14 is removed with acetone to obtain a high carrier concentration N +. The electrode 9 of the layer 3 and the electrode 8 of the ultrahigh impurity concentration I SH layer 6 were formed.

【0020】このようにして、図1に示すようにMIS(Me
ta- l-Insulator-Semiconductor)構造の窒化ガリウム系
発光素を製造することができる。このようにして製造さ
れた発光ダイオード10の発光強度を測定したところ、
2mcdであった。これは、従来の発光ダイオードに比べ
て、発光強度が10倍に向上した。又、発光面を観察した
所、発光点の数が飛躍的に増加していることも観察され
た。さらに、素子寿命も向上した。
In this way, as shown in FIG. 1, MIS (Me
It is possible to manufacture a gallium nitride-based luminescent element having a ta-l-Insulator-Semiconductor) structure. When the emission intensity of the light emitting diode 10 manufactured in this way was measured,
It was 2 mcd. This is a 10-fold improvement in light emission intensity compared to conventional light emitting diodes. Moreover, when the light emitting surface was observed, it was also observed that the number of light emitting points increased dramatically. Further, the device life is also improved.

【0021】第2実施例 次に、第2実施例にかかる発光ダイオードについて説明
する。図8において、発光ダイオード10は、サファイ
ア基板1を有しており、そのサファイア基板1に500 Å
のAlN のバッファ層2が形成されている。そのバッファ
層2の上には、順に、膜厚約2.2 μm、キャリア濃度
1.5×1018/ cm3 のGaN から成る高キャリア濃度N+
3、膜厚約 1.1μm、キャリア濃度1×1015/ cm3 のGa
N から成る低キャリア濃度N層4が形成されている。さ
らに、低キャリア濃度N層4の上にZn濃度が連続的に傾
斜して増加させたI層5が形成されている。I層5のZn
濃度はI層5とN層4との接合面からその面に垂直にと
ったx軸に対して、a×exp(−αx)+bの関数で変化
させている。但し、x=0の位置でのZn濃度は1 ×1015
/ cm3 であり、最上面のx=0.7μmの位置でのZn濃
度は1.0 ×1022/ cm3である。又、αは3/μmであ
る。そして、I層5の上面に接続するアルミニウムで形
成された電極8と高キャリア濃度N+ 層3に接続するア
ルミニウムで形成された電極9とが形成されている。
Second Embodiment Next, a light emitting diode according to a second embodiment will be described. In FIG. 8, the light emitting diode 10 has a sapphire substrate 1, and the sapphire substrate 1 has 500 Å
AlN buffer layer 2 is formed. On the buffer layer 2, a film thickness of about 2.2 μm and a carrier concentration
High carrier concentration N + layer 3 consisting of 1.5 × 10 18 / cm 3 GaN, film thickness about 1.1 μm, carrier concentration 1 × 10 15 / cm 3 Ga
A low carrier concentration N layer 4 made of N 2 is formed. Further, the I layer 5 in which the Zn concentration is continuously inclined and increased is formed on the low carrier concentration N layer 4. Zn of I layer 5
The concentration is changed by a function of a × exp (−αx) + b with respect to the x axis taken perpendicularly to the joining surface between the I layer 5 and the N layer 4. However, the Zn concentration at the position of x = 0 is 1 × 10 15
/ cm 3 , and the Zn concentration at the position of x = 0.7 μm on the uppermost surface is 1.0 × 10 22 / cm 3 . Further, α is 3 / μm. Then, an electrode 8 formed of aluminum and connected to the upper surface of the I layer 5 and an electrode 9 formed of aluminum and connected to the high carrier concentration N + layer 3 are formed.

【0022】この構造の発光ダイオード10の製造方法
はI層5を除いて第1実施例と同一である。I層5の製
造は次のようにして行われる。サファイア基板1を1150
℃にして、H2 を20 liter/分、NH3 を10 liter/分、
TMG を 1.7×10-4モル/分、DEZ のフローレイトを初期
値5×10-10 モル/分から5×10-3モル/分まで、
c×exp(−βt)+dの関数で変化させた。但し、β=
4.7 /分である。このようにして、 7分間、気相成長さ
せた結果、NI接合面でZn濃度1 ×1015/ cm3 、最上面
でZn濃度は1.0 ×1022/ cm3 、厚さ 0.5μmのI層5が
形成された。
The method of manufacturing the light emitting diode 10 having this structure is the same as that of the first embodiment except the I layer 5. The I layer 5 is manufactured as follows. Sapphire substrate 1 1150
In the ° C., the H 2 20 liter / min, the NH 3 10 liter / min,
TMG 1.7 x 10 -4 mol / min, DEZ flow rate from the initial value 5 x 10 -10 mol / min to 5 x 10 -3 mol / min,
It was changed by a function of c × exp (−βt) + d. However, β =
4.7 / min. In this way, as a result of vapor phase growth for 7 minutes, the Zn concentration at the NI junction surface was 1 × 10 15 / cm 3 , the Zn concentration at the uppermost surface was 1.0 × 10 22 / cm 3 , and the thickness of the I layer was 0.5 μm. 5 was formed.

【0023】次に、第1実施例と同様に処理して、図8
に示す構造の発光ダイオード10を形成した。このよう
にして製造された発光ダイオード10の発光強度を測定
したところ、2mcdであった。これは、従来の発光ダイオ
ードに比べて、発光強度が10倍に向上した。又、発光面
を観察した所、発光点の数が飛躍的に増加していること
も観察された。さらに、素子寿命も向上した。
Next, the same process as in the first embodiment is performed, and the process shown in FIG.
A light emitting diode 10 having the structure shown in was formed. The light emission intensity of the light emitting diode 10 thus manufactured was measured and found to be 2 mcd. This is a 10-fold improvement in light emission intensity compared to conventional light emitting diodes. Moreover, when the light emitting surface was observed, it was also observed that the number of light emitting points increased dramatically. Further, the device life is also improved.

【0024】尚、上記実施例では、I層5のZnの不純物
濃度分布をa×exp(−αx)+b(但し、α>0)とし
たが、a×exp(αx)+b(但し、α>0)の関数で増
加させても良い。さらに、別の関数で変化させても良
い。
In the above embodiment, the Zn impurity concentration distribution of the I layer 5 is axexp (-αx) + b (where α> 0), but a × exp (αx) + b (where α is It may be increased by a function of> 0). Further, it may be changed by another function.

【0025】第3実施例 図1に示す構造の第1実施例の発光ダイオードにおい
て、高キャリア濃度N+層3、低キャリア濃度N層4、
I層5、超高不純物濃度ISH層6を、それぞれ、Al0.2G
a0.5In0.3Nとした。高キャリア濃度N+ 層3は、シリコ
ンを添加して電子濃度2 ×1018/cm3に形成し、低キャリ
ア濃度N層4は不純物無添加で電子濃度1×1016/cm3
形成した。I層5の多重層は、第1実施例と同様に、Zn
濃度が、それぞれ、 1×1015/ cm3 、 5.0×1015/ c
m3 、2.5 ×1016/ cm3 、1.3 ×1017/cm3 、6.3 ×1017
/ cm3 、3.2 ×1018/ cm3 、1.6 ×1019/ cm3 、7.9 ×
1019/cm3 、4.0 ×1020/ cm3 、2.0 ×1021/ cm3
し、最上層の超高不純物濃度ISH層6のZn濃度は1.0 ×
1022/ cm3 とした。即ち、各I層のZn濃度は約5倍の等
比濃度差で形成されている。そして、超高不純物濃度I
SH層6に接続するアルミニウムで形成された電極8と高
キャリア濃度N+ 層3に接続するアルミニウムで形成さ
れた電極8とが形成されている。
Third Embodiment In the light emitting diode of the first embodiment having the structure shown in FIG. 1, a high carrier concentration N + layer 3, a low carrier concentration N layer 4,
The I layer 5 and the ultra-high impurity concentration I SH layer 6 are each made of Al 0.2 G
a 0.5 In 0.3 N. The high carrier concentration N + layer 3 was formed by adding silicon to an electron concentration of 2 × 10 18 / cm 3 , and the low carrier concentration N layer 4 was formed without adding impurities to an electron concentration of 1 × 10 16 / cm 3 . . The multi-layer of the I layer 5 is made of Zn as in the first embodiment.
The concentrations are 1 × 10 15 / cm 3 and 5.0 × 10 15 / c, respectively.
m 3 , 2.5 × 10 16 / cm 3 , 1.3 × 10 17 / cm 3 , 6.3 × 10 17
/ cm 3 , 3.2 × 10 18 / cm 3 , 1.6 × 10 19 / cm 3 , 7.9 ×
10 19 / cm 3 , 4.0 × 10 20 / cm 3 , 2.0 × 10 21 / cm 3, and the Zn concentration of the uppermost ultrahigh impurity concentration I SH layer 6 is 1.0 ×
It was set to 10 22 / cm 3 . That is, the Zn concentration of each I layer is formed with a difference of about 5 times in equi-concentration. And the ultra-high impurity concentration I
An electrode 8 made of aluminum and connected to the SH layer 6 and an electrode 8 made of aluminum and connected to the high carrier concentration N + layer 3 are formed.

【0026】次に、この構造の発光ダイオード10も第
1実施例の発光ダイオードと同様に製造することができ
る。トリメチルインジウム(In(CH3)3)がTMG 、TMA 、シ
ラン、CP2Mg ガスに加えて使用された。生成温度、ガス
流量は第1実施例と同じである。トリメチルインジウム
を 1.7×10-4モル/分で供給することを除いて他のガス
の流量は第1実施例と同一である。
Next, the light emitting diode 10 having this structure can be manufactured similarly to the light emitting diode of the first embodiment. Trimethylindium (In (CH 3 ) 3 ) was used in addition to TMG, TMA, silane, CP 2 Mg gas. The generation temperature and gas flow rate are the same as in the first embodiment. The flow rates of the other gases are the same as those in the first embodiment except that trimethylindium is supplied at 1.7 × 10 −4 mol / min.

【0027】このようにして製造された発光ダイオード
10の発光強度を測定したところ、2mcdであった。これ
は、従来の発光ダイオードに比べて、発光強度が10倍に
向上した。又、発光面を観察した所、発光点の数が飛躍
的に増加していることも観察された。さらに、素子寿命
も向上した。
The light emission intensity of the light emitting diode 10 thus manufactured was measured and found to be 2 mcd. This is a 10-fold improvement in light emission intensity compared to conventional light emitting diodes. Moreover, when the light emitting surface was observed, it was also observed that the number of light emitting points increased dramatically. Further, the device life is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る発光ダイオー
ドの構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.

【図2】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 2 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.

【図3】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 3 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図4】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 4 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.

【図5】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 5 is a cross-sectional view showing the manufacturing process of the light emitting diode of the same embodiment.

【図6】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 6 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図7】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 7 is a sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図8】第2実施例の発光ダイオードの構成を示した構
成図。
FIG. 8 is a configuration diagram showing a configuration of a light emitting diode of a second embodiment.

【符号の説明】[Explanation of symbols]

10…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度N+ 層 4…低キャリア濃度N層 5…I層 51…第1I層 60…第10I層 6…超高不純物濃度ISH層 7…電極 8…電極10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration N + layer 4 ... Low carrier concentration N layer 5 ... I layer 51 ... 1st I layer 60 ... 10I layer 6 ... Ultra high impurity concentration I SH layer 7 ... Electrode 8 ... Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田牧 真人 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 梅崎 潤一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masato Tamaki 1 Ochiai, Nagachi, Kasuga-cho, Nishikasugai-gun, Aichi Toyoda Gosei Co., Ltd. Toyoda Gosei Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 N型の窒素−3属元素化合物半導体(Alx
GaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) からなるN層と、
P型不純物を添加したI型の窒素−3属元素化合物半導
体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) からなるI
層とを有する窒素−3属元素化合物半導体発光素子にお
いて、 前記I層を、前記N層との接合面から遠ざかる方向に、
P型不純物濃度を連続的に又は多段階的に増加させた構
造としたことを特徴とする発光素子。
1. An N-type nitrogen-3 group element compound semiconductor (Al x
Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0)
I consisting of I-type nitrogen-group 3 element compound semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) doped with P-type impurities
A nitrogen-3 group element compound semiconductor light emitting device having a layer, the I layer in a direction away from a bonding surface with the N layer,
A light emitting device having a structure in which the P-type impurity concentration is increased continuously or in multiple steps.
JP31660292A 1992-10-29 1992-10-29 Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP3498185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31660292A JP3498185B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31660292A JP3498185B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06151967A true JPH06151967A (en) 1994-05-31
JP3498185B2 JP3498185B2 (en) 2004-02-16

Family

ID=18078905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31660292A Expired - Fee Related JP3498185B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3498185B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3498185B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
US6593599B1 (en) Light-emitting semiconductor device using gallium nitride group compound
JP2698796B2 (en) Group III nitride semiconductor light emitting device
US6472689B1 (en) Light emitting device
JP2681733B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
US5700713A (en) Light emitting semiconductor device using group III nitride compound and method of producing the same
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3312715B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
US6984536B2 (en) Method for manufacturing a gallium nitride group compound semiconductor
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH03252177A (en) Light emitting element of gallium nitride compound semiconductor
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3498185B2 (en) Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same
JP2681094B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH06151962A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP3727091B2 (en) Group 3 nitride semiconductor device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3232654B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3661871B2 (en) Method for producing gallium nitride compound semiconductor
JP3613190B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP3193980B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH05308156A (en) Gallium nitride compound semiconductor light emitting element
JPH06151964A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH04321279A (en) Gallium nitride base compound semiconductor light-emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees