JPH06151896A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06151896A
JPH06151896A JP29944592A JP29944592A JPH06151896A JP H06151896 A JPH06151896 A JP H06151896A JP 29944592 A JP29944592 A JP 29944592A JP 29944592 A JP29944592 A JP 29944592A JP H06151896 A JPH06151896 A JP H06151896A
Authority
JP
Japan
Prior art keywords
oxide film
film
conductive layer
silicon oxide
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29944592A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29944592A priority Critical patent/JPH06151896A/en
Publication of JPH06151896A publication Critical patent/JPH06151896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent charge generated during breakdown of a voltage clamp diode from being directly captured in a silicon oxide film by forming a conductive layer by burying not to bring a P-N junction surface into contact with a LOCOS edge and not to be exposed to a silicon substrate surface at a position which is a specified depth from the substrate surface. CONSTITUTION:A silicon oxide film 22 is formed by selective oxidation method and a P<+>-type conductive layer 4 is formed simultaneously by activating ion- implanted boron. A silicon oxide film 32 is formed by thermal oxidation method and then boron is ion-implanted at an acceleration energy of 160 to 200keV to form a buried type P<+> conductive layer 44. This is positioned at a depth of about 0.5mum from a surface of a silicon substrate 1. Phosphorus is ion- implanted at an acceleration energy of 100keV and then a resist film is removed. After cleaned, it is thermally treated at 900 to 1000 deg.C for 10 to 30 minutes to form an N<+> type conductive layer 16. Thereby, variation of a clamp voltage can be prevented even if a clamp diode is energized for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にP−N接合型ダイオードの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a P-N junction type diode.

【0002】[0002]

【従来の技術】従来のP−N接合型ダイオードを有する
半導体装置は図4に示すような構造となっており、次の
様な製造方法により得られていた。P型シリコン基板1
表面にイオン注入法により選択的にP+ 型導電層4を形
成した後、選択酸化法によりP+ 導電層4直上に選択的
にフィールド酸化膜であるところのシリコン酸化膜22
を形成する。
2. Description of the Related Art A conventional semiconductor device having a P-N junction type diode has a structure as shown in FIG. 4 and is obtained by the following manufacturing method. P-type silicon substrate 1
After forming the P + type conductive layer 4 selectively by ion implantation on the surface, the silicon oxide film where a selective field oxide film immediately above P + conductive layer 4 by a selective oxidation method 22
To form.

【0003】次に、周辺MOSトランジスタの形成のた
めにゲート絶縁膜となるシリコン酸化膜、ゲート電極と
なる多結晶シリコン膜5を形成し、さらに多結晶シリコ
ン膜5表面を酸化する。その後、ホトレジスト膜および
シリコン酸化膜22をマスクに用いたイオン注入法によ
り、シリコン酸化膜22および多結晶シリコン膜5に対
して、自己整合的にN+ 型導電層6、16を形成する。
続いて、ホトレジスト膜およびシリコン酸化膜22をマ
スクに用いたイオン注入法により、シリコン酸化膜22
に対して、自己整合的にP+ 型導電層7を形成し、熱処
理を施す。次にCVD法により層間絶縁膜としてのBP
SG膜8を全面に1.0μm程度堆積し、コンタクトホ
ールを開口する。次に、多結晶シリコン膜9、アルミニ
ウム膜10の積層膜からなる金属配線を形成し、PN接
合ダイオードの配線を形成する。続いて、半導体装置の
表面保護のために、CVD法により全面にPSG膜11
を堆積し、熱処理を行ない、さらにCVD法により全面
にシリコン窒化膜12を堆積し、従来の半導体装置が完
成していた。
Next, a silicon oxide film serving as a gate insulating film and a polycrystalline silicon film 5 serving as a gate electrode are formed to form a peripheral MOS transistor, and the surface of the polycrystalline silicon film 5 is further oxidized. Then, by ion implantation using the photoresist film and the silicon oxide film 22 as a mask, the N + -type conductive layers 6 and 16 are formed in a self-aligned manner with respect to the silicon oxide film 22 and the polycrystalline silicon film 5.
Then, the silicon oxide film 22 is formed by an ion implantation method using the photoresist film and the silicon oxide film 22 as a mask.
On the other hand, the P + type conductive layer 7 is formed in a self-aligned manner and heat treatment is performed. Next, BP as an interlayer insulating film is formed by the CVD method.
The SG film 8 is deposited on the entire surface by about 1.0 μm, and a contact hole is opened. Next, a metal wiring made of a laminated film of the polycrystalline silicon film 9 and the aluminum film 10 is formed to form a wiring for the PN junction diode. Then, in order to protect the surface of the semiconductor device, the PSG film 11 is formed on the entire surface by the CVD method.
Was deposited, a heat treatment was performed, and a silicon nitride film 12 was deposited on the entire surface by a CVD method to complete a conventional semiconductor device.

【0004】[0004]

【発明が解決しようとする課題】この従来の製造方法で
製造された半導体装置では、フィールド酸化膜であると
ころのシリコン酸化膜22のロコスエッジにPN接合が
形成されており、ロコスエッジはこれの形成時に機械的
応力により酸化膜中に多数の電荷捕獲準位が発生しやす
いと同時に、この部分は酸化膜厚の遷移領域であり、P
N接合近傍での酸化膜は極度に薄くなる。このため、P
N接合部でのアバランシェブレークダウンした状態で使
用するような電圧クランプダイオードではアバランシェ
ブレイクダウン時に発生した電荷がシリコン酸化膜22
中の電荷捕獲準位に捕獲される。これと同時に、シリコ
ン酸化膜22における酸化膜厚の遷移領域でかつ酸化膜
厚の薄い領域では、この発生電荷がシリコン酸化膜22
の薄い部分をトンネル現象により通り抜けて、シリコン
酸化膜22と層間絶縁膜であるBPSG膜8との界面の
電荷捕獲準位に注入し捕獲される。これらの結果、捕獲
電荷の下層のP+ 導電層4の表面電荷密度が変化し、ク
ランプダイオードの通電時間とともにクランプ電圧が1
0%〜30%程度変化上昇するという大きな欠点を有し
ている。
In the semiconductor device manufactured by the conventional manufacturing method, the PN junction is formed at the locos edge of the silicon oxide film 22 which is the field oxide film, and the locos edge is formed at the time of forming the locos edge. A large number of charge trap levels are likely to be generated in the oxide film due to mechanical stress, and at the same time, this portion is a transition region of the oxide film thickness.
The oxide film near the N junction becomes extremely thin. Therefore, P
In a voltage clamp diode that is used in a state where the avalanche breakdown occurs at the N-junction, the charge generated during the avalanche breakdown is generated by the silicon oxide film 22.
It is trapped in the charge trap level inside. At the same time, in the transition region of the oxide film thickness of the silicon oxide film 22 and the region where the oxide film thickness is thin, the generated electric charges are generated by the silicon oxide film 22.
Through a thin film of the silicon oxide film 22 by a tunnel phenomenon, and is injected and trapped in the charge trap level at the interface between the silicon oxide film 22 and the BPSG film 8 which is the interlayer insulating film. As a result, the surface charge density of the P + conductive layer 4 below the trapped charges changes, and the clamp voltage becomes 1 with the energization time of the clamp diode.
It has a major drawback that it changes and rises by about 0% to 30%.

【0005】又、本製造方法により得られた半導体装置
では、PN接合面がシリコン基板表面に露出した形状と
なっている為、PN接合面の上層絶縁膜の汚染等による
電荷の影響に対しても変動要因が大きく、信頼性的にも
不利である。
Further, in the semiconductor device obtained by this manufacturing method, since the PN junction surface has a shape exposed on the surface of the silicon substrate, the influence of charges due to contamination of the upper insulating film of the PN junction surface, etc. Also has a large fluctuation factor and is disadvantageous in terms of reliability.

【0006】本発明の目的は、半導体表面接触のPN接
合ダイオードでアバランシェブレークダウンモードで使
用するような電圧クランプダイオードで、ブレークダウ
ン時に発生する電荷が接合面上層の絶縁膜中に捕獲され
る結果クランプ電圧が変化するのを防ぐことができ、信
頼性の優れた半導体装置を提供することにあります。
An object of the present invention is a voltage clamp diode such as used in avalanche breakdown mode in a PN junction diode having a semiconductor surface contact, and as a result, charges generated during breakdown are trapped in an insulating film above a junction surface. It is to provide a highly reliable semiconductor device that can prevent the clamp voltage from changing.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に同一導電型を有する不純物を
選択的に導入し、後に選択酸化法により、フィールド酸
化膜を形成し、続けてMOS型トランジスタのゲート電
極を形成する工程と、選択的に半導体基板と同一導電型
の不純物をイオン注入法により、150〜300keV
の加速エネルギーでイオンを施し、半導体基板表面よ
り、0.2〜0.5μm程度の深さの位置に埋込み型の
不純物層を形成する。次に、前記埋込み層の電極取り出
し用拡散層として、前記不純物層と同一導電型の不純物
を選択的に形成する工程と、前記、埋込み型不純物層と
逆導電型の不純物を前記埋込み型不純物層と接合する様
に選択的に形成し、900〜1000℃で10〜30分
熱処理を施す工程とを備えている。
According to a method of manufacturing a semiconductor device of the present invention, an impurity having the same conductivity type is selectively introduced onto a semiconductor substrate, and a field oxide film is formed by a selective oxidation method after that. 150 to 300 keV by a step of forming a gate electrode of a MOS transistor by an ion implantation method with an impurity of the same conductivity type as the semiconductor substrate.
Ions are applied with an acceleration energy of 1 to form a buried type impurity layer at a depth of about 0.2 to 0.5 μm from the surface of the semiconductor substrate. Next, a step of selectively forming an impurity of the same conductivity type as the impurity layer as an electrode extraction diffusion layer of the buried layer, and a step of forming an impurity of a conductivity type opposite to that of the buried impurity layer in the buried impurity layer And a process for selectively performing heat treatment at 900 to 1000 ° C. for 10 to 30 minutes.

【0008】ここで、埋込み不純物層の深さは0.2μ
m以下の場合には不純物濃度ピーク値が熱処理により、
半導体基板表面へ露出する結果、PN接合面が半導体基
板表面へ露出する。
Here, the depth of the buried impurity layer is 0.2 μm.
When m or less, the impurity concentration peak value is
As a result of being exposed to the semiconductor substrate surface, the PN junction surface is exposed to the semiconductor substrate surface.

【0009】0.5μm以上では、不純物層の電極取り
出し用拡散層を深く押し込む必要があり、PN接合層の
急しゅんな濃度勾配を得ることが出来なくなる。
When the thickness is 0.5 μm or more, the diffusion layer for taking out the electrode of the impurity layer needs to be pushed deeply, and a steep concentration gradient of the PN junction layer cannot be obtained.

【0010】さらに、半導体基板表面より熱拡散法で不
純物層を押し込む場合には、不純物濃度が極度に低下
し、所望のツェナー電圧を確保することが困難となる。
Further, when the impurity layer is pushed in from the surface of the semiconductor substrate by the thermal diffusion method, the impurity concentration is extremely lowered and it becomes difficult to secure a desired Zener voltage.

【0011】又、不純物形成後の熱処理としては、熱処
理不足の場合には、イオン注入で形成した不純物層の微
少結晶欠陥が回復されずPN接合リークが発生する。
As for the heat treatment after the formation of impurities, if the heat treatment is insufficient, fine crystal defects in the impurity layer formed by ion implantation cannot be recovered and a PN junction leak occurs.

【0012】熱処理量が多い場合には、所望の不純物層
濃度勾配が得られない。
When the heat treatment amount is large, a desired impurity layer concentration gradient cannot be obtained.

【0013】[0013]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の製造方法を説明するため
に工程順に示した断面図である。
The present invention will be described below with reference to the drawings. 1A to 1D are cross-sectional views shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【0014】まず図1(a)に示す様に、P型シリコン
基板1表面に熱酸化法により100nm程度のシリコン
酸化膜2を形成し、減圧CVD法により膜厚100nm
程度のシリコン窒化膜3を堆積し、ホトリソグラフィ法
により、シリコン窒化膜3のパターニングを行なう。
First, as shown in FIG. 1A, a silicon oxide film 2 of about 100 nm is formed on the surface of a P-type silicon substrate 1 by a thermal oxidation method, and a film thickness of 100 nm is formed by a low pressure CVD method.
The silicon nitride film 3 is deposited to a certain extent, and the silicon nitride film 3 is patterned by the photolithography method.

【0015】次に図1(b)に示す様にホウ素を選択的
にイオン注入し、ホトレジスト膜を除去した後、選択酸
化法によりフィールド酸化膜であるシリコン酸化膜22
を形成すると同時に、イオン注入されたホウ素を活性化
して、P+ 型導電層4を形成する。
Next, as shown in FIG. 1B, boron is selectively ion-implanted to remove the photoresist film, and then the silicon oxide film 22 which is a field oxide film is formed by a selective oxidation method.
Simultaneously with the formation of the above, the ion-implanted boron is activated to form the P + type conductive layer 4.

【0016】続けて、図1(c)に示すように、シリコ
ン窒化膜3、シリコン酸化膜2を除去した後、周辺MO
Sトランジスタ用のゲート絶縁膜となるシリコン酸化膜
32を熱酸化法により形成し、周辺のMOSトレアンジ
スタ用のゲート電極となる多結晶シリコン膜5をCVD
法、ホトリソグラフィ法により形成し、多結晶シリコン
膜5の表面を酸化してシリコン酸化膜42を形成する。
次にスパッタ法により、アルミニウム膜10を1.5μ
m程度堆積した後、フォトリソグラフィ法により、選択
的に開口する。続けて、イオン注入法によりホウ素を1
60〜200keVの加速エネルギーで2〜4×1014
atm/cm2 程度イオン注入し、埋込み型P+ 導電層
44を形成する。
Subsequently, as shown in FIG. 1C, after removing the silicon nitride film 3 and the silicon oxide film 2, the peripheral MO film is removed.
A silicon oxide film 32 to be a gate insulating film for an S transistor is formed by a thermal oxidation method, and a polycrystalline silicon film 5 to be a gate electrode for a peripheral MOS transistor is formed by CVD.
Method, photolithography method, and the surface of the polycrystalline silicon film 5 is oxidized to form a silicon oxide film 42.
Next, the aluminum film 10 is formed to a thickness of 1.5 μm by a sputtering method.
After depositing about m, openings are selectively formed by photolithography. Continuously, 1 ion of boron was obtained by the ion implantation method.
2-4 × 10 14 with acceleration energy of 60-200 keV
Ions are implanted at about atm / cm 2 to form a buried P + conductive layer 44.

【0017】次に、図1(d)に示す様に、ホトレジス
ト50を用いイオン注入法により、30〜50keVの
加速エネルギーで、3〜9×1015atm/cm2 イオ
ン注入しP+ 型導電層7を形成する。
Next, as shown in FIG. 1 (d), a photoresist 50 is ion-implanted at an acceleration energy of 30 to 50 keV, and ions of 3 to 9 × 10 15 atm / cm 2 are implanted to form a P + -type conductivity. Form the layer 7.

【0018】続けて、図1(e)に示す通り、ホトレジ
スト膜をマスク材として、イオン注入法により、リンを
100keVの加速エネルギーで3〜9×1015atm
/cm2 イオン注入し、ホトレジスト膜を除去し、洗浄
を施した後、900〜1000℃で10〜30分間熱処
理を施し、N+ 型導電層16を形成する。さらに、CV
D法により層間絶縁膜となるBPSG膜8を0.8〜
1.2μm程度堆積する。
Subsequently, as shown in FIG. 1 (e), phosphorus is ion-implanted using a photoresist film as a mask material at an acceleration energy of 100 keV at 3 to 9 × 10 15 atm.
/ Cm 2 ions are implanted, the photoresist film is removed, and after cleaning, heat treatment is performed at 900 to 1000 ° C. for 10 to 30 minutes to form the N + type conductive layer 16. Furthermore, CV
The BPSG film 8 serving as an interlayer insulating film is formed in a thickness of 0.8
Deposit about 1.2 μm.

【0019】次に図1(f)に示す様に、ホトリソグラ
フィ法によりコンタクト孔を開口した後、CVD法、ス
パッタ法により多結晶シリコン膜9およびアルミニウム
膜10の積層膜を形成し、ホトリソグラフィ法によりこ
の積層膜をパターニングして、金属配線を形成し、PN
接合ダイオードおよび、MOS型トランジスタの配線を
形成し、400〜500℃の温度で熱処理を施す。
Next, as shown in FIG. 1F, a contact hole is opened by photolithography, and then a laminated film of a polycrystalline silicon film 9 and an aluminum film 10 is formed by CVD and sputtering, and photolithography is performed. This laminated film is patterned by a method to form metal wiring, and PN
The junction diode and the wiring of the MOS transistor are formed and heat treatment is performed at a temperature of 400 to 500 ° C.

【0020】その後図1(g)に示す通り、半導体装置
の表面保護のために、CVD法により、全面にPSG膜
11を堆積し、さらにCVD法により全面にシリコン窒
化膜12を堆積し、本発明の半導体装置が完成する。
Thereafter, as shown in FIG. 1G, in order to protect the surface of the semiconductor device, a PSG film 11 is deposited on the entire surface by a CVD method, and a silicon nitride film 12 is further deposited on the entire surface by a CVD method. The semiconductor device of the invention is completed.

【0021】以上説明した様に、本発明の半導体装置で
は、PN接合を構成する各々の濃度プロファイルは図3
に示す通りであり、P+ 型導電層のピーク濃度は5〜8
×1018atm/cm3 で、シリコン基板表面より約
0.5μmの深さに位置している。又、シリコン基板表
面より、熱拡散法により押し込んだN+ 型導電層は不純
物濃度が約1017〜1018atm/cm3 程度でPN接
合を形成しており、接合深さはシリコン基板表面より
0.3〜0.4μmの深さで構成され、かつPN接合部
がロコスエッジから離れており、理想的なPNダイオー
ドを構成することが可能となっている。
As described above, in the semiconductor device of the present invention, the concentration profile of each PN junction is shown in FIG.
And the peak concentration of the P + type conductive layer is 5 to 8
It is located at a depth of about 0.5 μm from the surface of the silicon substrate at × 10 18 atm / cm 3 . Further, the N + type conductive layer pressed from the surface of the silicon substrate by the thermal diffusion method forms a PN junction with an impurity concentration of about 10 17 to 10 18 atm / cm 3 , and the junction depth is from the surface of the silicon substrate. It is configured to have a depth of 0.3 to 0.4 μm, and the PN junction is separated from the locos edge, which makes it possible to configure an ideal PN diode.

【0022】この為PN接合部でアバランシェブレーク
ダウンした状態で使用するような電圧クランプダイオー
ドでもアバランシェブレークダウン時に発生した電荷が
直接シリコン酸化膜中に電荷捕獲されることが無い結
果、クランプダイオードを長期通電した場合でもクラン
プ電圧が変動することなく安定に動作するという大きな
利点を有している。
Therefore, even in a voltage clamp diode which is used in the avalanche breakdown state at the PN junction, the charges generated during the avalanche breakdown are not directly trapped in the silicon oxide film. It has a great advantage that the clamp voltage does not fluctuate even when energized and operates stably.

【0023】図2は、本発明の第2の実施例を説明する
ための半導体素子の断面図である。
FIG. 2 is a sectional view of a semiconductor device for explaining the second embodiment of the present invention.

【0024】第2の実施例の半導体装置の製造方法は、
第1の実施例とほぼ同様であるので相違点のみ説明す
る。図2に示す通り、埋込みP+ 型導電層をイオン注入
法で形成した後、アルミニウム膜をマスクとして、第2
の埋込み層としてイオン注入法によりリンを350〜4
00keVの加速エネルギーで2〜4×1014atm/
cm2 程度イオン注入し、N+ 型導電層45を形成し、
PN接合を形成する不純物層を双方共にシリコン基板表
面より、0,3〜0.4μmの深さに埋込んでいる。
本、第2の実施例では、イオン注入により、双方の不純
物濃度ピーク値をイオン注入の加速エネルギーのみで調
整することが可能となる為所望のツェナー電圧を容易に
得ることが出来るという大きな利点を有する。
The semiconductor device manufacturing method of the second embodiment is
Since it is almost the same as the first embodiment, only the differences will be described. As shown in FIG. 2, after the buried P + type conductive layer is formed by the ion implantation method, the second layer is formed using the aluminum film as a mask.
As a buried layer of phosphorus, phosphorus of 350 to 4 is formed by an ion implantation method.
2-4 × 10 14 atm / with acceleration energy of 00 keV
Ion implantation of about cm 2 to form an N + type conductive layer 45,
Both of the impurity layers forming the PN junction are buried from the surface of the silicon substrate to a depth of 0.3 to 0.4 μm.
In the present embodiment and the second embodiment, it is possible to adjust both impurity concentration peak values by the ion implantation only by the acceleration energy of the ion implantation, so that there is a great advantage that a desired Zener voltage can be easily obtained. Have.

【0025】[0025]

【発明の効果】以上説明した様に本発明により製造した
半導体装置は、PN接合面が酸化膜質が悪く、電荷捕獲
準位の高いロコスエッジに接触することがなく、かつ、
シリコン基板表面に露出することが無く、シリコン基板
表面より、0.2〜0.5μm程度の深さの位置に埋込
み型で構成されている為、アバランシェブレークダウン
状態で使用する電圧クランプダイオードでもブレイクダ
ウン時に発生する電荷が直接シリコン酸化膜中に捕獲さ
れることが無い結果、クランプダイオードに長時間通電
してもクランプ電圧の変動が起らず、実際に本実施例に
よる半導体装置によりクランプ電圧の時間変動を測定し
たところ電圧変化は0〜2%であり従来の半導体装置に
比べて大幅な改善がみられた。
As described above, in the semiconductor device manufactured by the present invention, the PN junction surface has a poor oxide film quality, does not come into contact with the locos edge having a high charge trapping level, and
It is not exposed on the surface of the silicon substrate and is embedded at a depth of 0.2 to 0.5 μm from the surface of the silicon substrate. Therefore, even the voltage clamp diode used in the avalanche breakdown state breaks. As a result that the charges generated at the time of down are not captured directly in the silicon oxide film, the clamp voltage does not fluctuate even when the clamp diode is energized for a long time. When the time variation was measured, the voltage change was 0 to 2%, which was a great improvement over the conventional semiconductor device.

【0026】また、本装置では、PN接合面がシリコン
基板中に埋込まれている結果、製造工程中のPN接合部
上層の絶縁膜膜質(例えばプラズマ窒化膜中の帯電電荷
の影響、汚染等)の影響もなく、安定したツェナー電圧
を得ることが出来た。
Further, in this device, since the PN junction surface is embedded in the silicon substrate, the quality of the insulating film of the upper layer of the PN junction during the manufacturing process (for example, the influence of the charged charges in the plasma nitride film, contamination, etc.). ), A stable Zener voltage could be obtained.

【0027】さらには、半導体装置の長期信頼度も良好
であり特性の揃ったかつ、信頼性の高い半導体装置を提
供することが可能となった。
Furthermore, it has become possible to provide a semiconductor device which has a good long-term reliability of the semiconductor device, uniform characteristics, and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するために工程順に示
した半導体素子の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device shown in the order of steps for explaining an embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための半導体
素子の断面図である。
FIG. 2 is a sectional view of a semiconductor device for explaining a second embodiment of the present invention.

【図3】本発明の第1の実施例における不純物濃度プロ
ファイルである。
FIG. 3 is an impurity concentration profile in the first example of the present invention.

【図4】従来の半導体装置の製造方法を説明するための
半導体素子の断面図である。
FIG. 4 is a cross-sectional view of a semiconductor element for explaining a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2,22,32,42 シリコン酸化膜 3,12 シリコン窒化膜 4,7 P+ 型導電層 5,9 多結晶シリコン膜 16 N+ 型導電層 8 BPSG膜 10 アルミニウム膜 44 埋込みP+ 型導電層 45 埋込みN+ 型導電層 50 ホトレジスト膜1 P-type silicon substrate 2, 22, 32, 42 Silicon oxide film 3, 12 Silicon nitride film 4, 7 P + type conductive layer 5, 9 Polycrystalline silicon film 16 N + type conductive layer 8 BPSG film 10 Aluminum film 44 Embedded P + type conductive layer 45 Embedded N + type conductive layer 50 Photoresist film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一半導体基板上に接合型ダイオードお
よびMOS型トランジスタを形成する半導体装置の製造
方法において、半導体基板上に同一導電型を有する不純
物を選択的に導入し、後に選択酸化法によりフィールド
酸化膜を形成する工程と、MOS型トランジスタのゲー
ト電極を形成する工程と、選択的に基板と同一導電型の
不純物をイオン注入法により、150〜300keVの
加速エネルギーでイオン注入を施し、半導体基板表面よ
り0.2〜0.5μm程度の深さの位置に埋込み型の不
純物層を形成する工程と、前記不純物層と同一導電型の
不純物を選択的に形成する工程と、前記埋込み不純物層
と逆導電型の不純物を選択的に形成し、900〜100
0℃で10〜30分熱処理を施す工程とを有することを
特徴とする半導体装置の製造方法。
1. In a method of manufacturing a semiconductor device in which a junction diode and a MOS transistor are formed on the same semiconductor substrate, an impurity having the same conductivity type is selectively introduced onto the semiconductor substrate, and then a field is formed by a selective oxidation method. A step of forming an oxide film, a step of forming a gate electrode of a MOS transistor, and an impurity of the same conductivity type as the substrate are selectively ion-implanted by an ion implantation method at an acceleration energy of 150 to 300 keV to obtain a semiconductor substrate. A step of forming an embedded impurity layer at a depth of about 0.2 to 0.5 μm from the surface, a step of selectively forming an impurity of the same conductivity type as the impurity layer, and the embedded impurity layer Impurities of opposite conductivity type are selectively formed, and 900 to 100
A step of performing heat treatment at 0 ° C. for 10 to 30 minutes.
JP29944592A 1992-11-10 1992-11-10 Manufacture of semiconductor device Pending JPH06151896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29944592A JPH06151896A (en) 1992-11-10 1992-11-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29944592A JPH06151896A (en) 1992-11-10 1992-11-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06151896A true JPH06151896A (en) 1994-05-31

Family

ID=17872675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29944592A Pending JPH06151896A (en) 1992-11-10 1992-11-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06151896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472274B1 (en) * 2000-06-29 2002-10-29 International Business Machines Corporation MOSFET with self-aligned channel edge implant and method
US6987309B2 (en) * 2001-12-27 2006-01-17 Kabushiki Kaisha Toshiba Semiconductor device applied to a variable capacitance capacitor and amplifier
WO2018051416A1 (en) * 2016-09-13 2018-03-22 新電元工業株式会社 Semiconductor device and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472274B1 (en) * 2000-06-29 2002-10-29 International Business Machines Corporation MOSFET with self-aligned channel edge implant and method
US6987309B2 (en) * 2001-12-27 2006-01-17 Kabushiki Kaisha Toshiba Semiconductor device applied to a variable capacitance capacitor and amplifier
WO2018051416A1 (en) * 2016-09-13 2018-03-22 新電元工業株式会社 Semiconductor device and manufacturing method therefor
JP6301561B1 (en) * 2016-09-13 2018-03-28 新電元工業株式会社 Semiconductor device and manufacturing method thereof
US10424578B2 (en) 2016-09-13 2019-09-24 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2667390B2 (en) Semiconductor device manufacturing method
US4422885A (en) Polysilicon-doped-first CMOS process
JPH0355984B2 (en)
US4477965A (en) Process for manufacturing a monolithic integrated solid-state circuit comprising at least one bipolar planar transistor
EP0594339B1 (en) Method of manufacturing a CMOS device
US20030094669A1 (en) Semiconductor device and manufacturing method for the same
JP2000082682A (en) Fabrication of semiconductor-insulation layer and element having it
US6784073B1 (en) Method of making semiconductor-on-insulator device with thermoelectric cooler
JPS6214459A (en) Manufacture of semiconductor device
JPH0785470B2 (en) Device manufacturing method
JPH07249770A (en) Semiconductor device and its fabrication
JPH06151896A (en) Manufacture of semiconductor device
US5322805A (en) Method for forming a bipolar emitter using doped SOG
JP3921764B2 (en) Manufacturing method of semiconductor device
JPH0917867A (en) Method of forming contact part in semiconductor device
JP2006100694A (en) Mesa-structure semiconductor device and manufacturing method thereof
JP2847790B2 (en) Method of manufacturing complementary MOS transistor
JP2699421B2 (en) Method for manufacturing semiconductor device
JPH09162174A (en) Fabrication of semiconductor device
JPH05102145A (en) Method for forming polysilicon wiring
JPS63257244A (en) Semiconductor device and manufacture thereof
JPS6297364A (en) Manufacture of semiconductor device
JPH0695550B2 (en) Semiconductor device
JPH11297816A (en) Manufacture of semiconductor device
JPS6258667B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981201