JPH06151862A - Insulated gate bipolar transistor - Google Patents

Insulated gate bipolar transistor

Info

Publication number
JPH06151862A
JPH06151862A JP29545092A JP29545092A JPH06151862A JP H06151862 A JPH06151862 A JP H06151862A JP 29545092 A JP29545092 A JP 29545092A JP 29545092 A JP29545092 A JP 29545092A JP H06151862 A JPH06151862 A JP H06151862A
Authority
JP
Japan
Prior art keywords
layer
emitter electrode
electrically connected
insulating film
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29545092A
Other languages
Japanese (ja)
Inventor
Tatsu Saito
龍 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29545092A priority Critical patent/JPH06151862A/en
Publication of JPH06151862A publication Critical patent/JPH06151862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce a resistance component of a channel diffusion layer directly below source layers without increasing the switching loss of an IGBT and control a latchup and improve a reliability. CONSTITUTION:By connecting an emitter electrode 11 to source layers 5 through conductor films 10 inserted under interlayer insulating films 9 between gate electrodes 8, a length of the source layers 5 can be shortened without changing a thickness of the interlayer insulating films 9 and a resistance component of a channel diffusion layer 4 directly below the source layers 5 can be reduced. For example, a titanium silicide is used as a material of the conductor films 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上にMOS
構造により基板内を流れる電流を制御できる絶縁ゲート
型バイポーラトランジスタ (以下IGBTと記す) に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a MOS on a semiconductor substrate.
The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as an IGBT) capable of controlling a current flowing in a substrate depending on its structure.

【0002】[0002]

【従来の技術】IGBTは、複数個によってモジュール
を構成して使用されることが多く、特に高速スイッチン
グ特性、高信頼性が要求される。図2は一部上層部を除
いて断面を示したIGBTチップの斜視図である。図に
おいて、コレクタ層となるp+シリコン基板1の上にn
+ バッファ層2を介してエピタキシャル成長によりn-
層3が積層され、このn- 層3の表面層に選択的にp形
のチャネル拡散層4が形成されている。さらにこのチャ
ネル拡散層4の表面層に選択的にn+ ソース層5が形成
され、このn+ 層5とn- 層3の露出部とにはさまれた
チャネル拡散層4の部分6をチャネル領域として、その
上にゲート絶縁膜7を介してp+ 多結晶シリコン層から
なり、ゲート端子Gに接続されるゲート電極8が設けら
れている。このゲート電極8と層間絶縁膜9で絶縁され
るエミッタ電極11は、p層4およびn+ 層5に共通に接
触し、エミッタ端子Eに接続されている。一方、p+
レクタ層1にはコレクタ端子Cに接続されたコレクタ電
極12が接触している。図3はこのIGBTの等価回路図
でp+ 層1とn+ 層2およびn- 層3とp層4とからな
るPNPバイポーラトランジスタ31、n+ 層2およびn
- 層3とp層4とn+層5とからなるNPNバイポーラ
トランジスタ32ならびにn- 層3、p層4、n + 層5お
よびゲート電極8からなるMOSFET33が組み合わさ
れたものである。 IGBTの高速化のためにスイッチ
ング時間を制御するには次の方法が知られている。
2. Description of the Related Art An IGBT is composed of a plurality of modules.
It is often used to configure
Characteristics and high reliability are required. Figure 2 shows a part of the upper layer
It is a perspective view of the IGBT chip which showed the cross section. In the figure
Where p becomes the collector layer+N on the silicon substrate 1
+N by epitaxial growth via the buffer layer 2-
Layer 3 is laminated, this n-P-type selectively on the surface layer of layer 3
Channel diffusion layer 4 is formed. Furthermore, this tea
Selectively n on the surface layer of the flannel diffusion layer 4.+Source layer 5 is formed
And this n+Layers 5 and n-Sandwiched between exposed parts of layer 3
Using the portion 6 of the channel diffusion layer 4 as a channel region,
P over the gate insulating film 7+From the polycrystalline silicon layer
And the gate electrode 8 connected to the gate terminal G is provided.
Has been. The gate electrode 8 is insulated from the interlayer insulating film 9.
The emitter electrode 11 is a p-layer 4 and an n-type+Commonly connected to layer 5
It is touched and connected to the emitter terminal E. On the other hand, p+Ko
The collector layer 1 is connected to the collector terminal C.
Pole 12 is touching. Figure 3 is an equivalent circuit diagram of this IGBT.
At p+Layers 1 and n+Layers 2 and n-Layer 3 and p layer 4
PNP bipolar transistor 31, n+Layers 2 and n
-Layer 3 and p layer 4 and n+NPN bipolar consisting of layer 5
Transistor 32 and n-Layer 3, p layer 4, n +Layer 5
And MOSFET 33 consisting of gate electrode 8 are combined
It was the one. Switch to speed up the IGBT
The following method is known to control the ringing time.

【0003】(1) チップ寸法が大きくなると空乏層が大
きくなり、スイッチング時間が遅くなるので、チップ寸
法を小さくする。 (2) 重金属拡散あるいは電子線照射を行い、ライフタイ
ムを短くする。 (3) 半導体基体のn- 層3の抵抗率を上げて厚さを薄く
する、あるいはn+ 層4の抵抗率を下げて厚さを薄くす
るなど仕様を変える。 IGBTの信頼性の向上は、ラッチアップの発生を抑制
することによって達成される。IGBTには、n+
5、p層4、n- 層3から寄生NPNトランジスタが生
ずるため、このNPNトランジスタがp+ 層1、n+
2およびn- 層3、p層4とからなるPNPトランジス
タと共に寄生サイリスタを構成し、このサイリスタが動
作してしまうと、上記のMOSFET33をオフしてもサ
イリスタを流れる電流を阻止することができなくなり、
IGBTは熱暴走して破壊してしまう。これを一般にラ
ッチアップと呼ぶ。このラッチアップはn+ 層5直下の
pチャネル拡散層4に大きな正孔電流が流れることによ
り、その部分の抵抗成分による電圧降下がp層4とn+
層5の間のPN接合の拡散電位を上まわることによって
生ずる。
(1) As the chip size becomes larger, the depletion layer becomes larger and the switching time becomes slower, so the chip size is made smaller. (2) Diffusion of heavy metals or electron beam irradiation to shorten the lifetime. (3) The specifications are changed by increasing the resistivity of the n layer 3 of the semiconductor substrate to reduce the thickness, or decreasing the resistivity of the n + layer 4 to reduce the thickness. The improvement of the reliability of the IGBT is achieved by suppressing the occurrence of latch-up. In the IGBT, a parasitic NPN transistor is generated from the n + layer 5, the p layer 4 and the n layer 3, so that the NPN transistor is composed of the p + layer 1, the n + layer 2 and the n layer 3 and the p layer 4. If a parasitic thyristor is formed together with a PNP transistor and this thyristor operates, the current flowing through the thyristor cannot be blocked even if the MOSFET 33 is turned off.
The IGBT runs hot and runs into destruction. This is generally called latch-up. In this latch-up, a large hole current flows in the p-channel diffusion layer 4 just below the n + layer 5, so that the voltage drop due to the resistance component in that portion causes the p-layer 4 and n +.
It occurs by raising the diffusion potential of the PN junction between layers 5.

【0004】従って、ラッチアップ耐量を向上実現する
には、チップ寸法を大きくして破壊しにくくするほか
に、チャネル拡散層4のn+ 層5直下の部分の抵抗成分
を下げる次の方法が知られている。 (1) チャネル拡散層4を高不純物濃度にし、深くする。 (2) チャネル拡散層4のn+ 層5の下の部分に重なるよ
うに予めp+ 拡散層を形成しておく。
Therefore, in order to improve the latch-up withstanding capability, the following method is known, in which the chip size is increased to make it difficult to break and the resistance component of the portion of the channel diffusion layer 4 immediately below the n + layer 5 is reduced. Has been. (1) The channel diffusion layer 4 is made high in impurity concentration and deepened. (2) A p + diffusion layer is formed in advance so as to overlap the portion of the channel diffusion layer 4 below the n + layer 5.

【0005】(3) (2) のようにしてチャネル拡散層4形
成後、その内部に再びp+ 拡散層を形成する。
(3) After the channel diffusion layer 4 is formed as described in (2), the p + diffusion layer is formed therein again.

【0006】[0006]

【発明が解決しようとする課題】図2に示すようなIG
BTをターンオフする場合、キャリアがn- 層3からn
+ 層5にはき出されるが、このキャリアによりテール電
流が生ずる。図4はその状態を示し、線41は電圧、線42
は電流で、ターンオフ時に電流42が長いテール43を引い
てしまい、斜線を引いて示す損失44がターンオフ時に大
きくなる。このテール電流をおさえるために、重金属拡
散や電子線照射を行うと、コレクタ・エミッタ電圧V
CE(sat) がばらつき、チップ単価、作業工数が増加す
る。また、チップ寸法を変えることは経済性、組立作業
性が悪化し、n+ ソース層5直下のチャネル拡散層4を
浅くしてMOS部の損失を低減すれば、ラッチアップし
やすくなり、信頼性が低下する。
[Problems to be Solved by the Invention] IG as shown in FIG.
When turning off the BT, the carrier is n-Layers 3 to n
+Although it is ejected to layer 5, this carrier causes a tail charge.
A flow occurs. Fig. 4 shows the state, line 41 is voltage, line 42
Is the current and at turn-off the current 42 pulls the long tail 43
The loss 44 shown by hatching is large at turn-off.
I hear In order to suppress this tail current, heavy metal expansion
When collector or electron beam irradiation is performed, collector-emitter voltage V
CE (sat)Variation, chip unit price and work man-hour increase
It Also, changing the chip size is economical and assembly work
Sex deteriorates, n+The channel diffusion layer 4 directly below the source layer 5
If it is made shallow to reduce the loss of the MOS part, it will latch up.
It becomes easier and the reliability decreases.

【0007】本発明の目的は、上述の問題を解決し、ス
イッチング損失を増大することなくラッチアップを抑制
して高信頼性にしたIGBTを提供することにある。
An object of the present invention is to solve the above problems and to provide an IGBT with high reliability by suppressing latch-up without increasing switching loss.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、一側に第二導電形の第一層が接する第一導電形の第
二層の他側の表面層に選択的に形成された第二導電形の
第三層とその第三層の表面層に選択的に形成された第二
導電形の第四層とを有し、第三層の第二層露出部と第四
層とにはさまれた露出部上に絶縁膜を介してゲート電極
を備え、第一層にコレクタ電極が電気的に接続され、第
三層および第四層にゲート電極と層間絶縁膜によって絶
縁されたエミッタ電極が共通に電気的に接続されるIG
BTにおいて、エミッタ電極が、第四層および層間絶縁
膜の間から第三層露出部上にまで延在する導体膜を介し
て第四層と電気的に接続されたものとする。そして、一
つの半導体基板の複数の個所においてエミッタ電極が第
三層および第四層に電気的に接続され、そのうちのエミ
ッタ電極と外部との接続のための導線ボンディング領域
の近傍の個所においてのみエミッタ電極が導体膜を介し
て第四層と電気的に接続されたことが有効である。ま
た、半導体がシリコンであり、導体膜がけい化チタンよ
りなることが有効である。
In order to achieve the above object, a surface layer on the other side of a second layer of the first conductivity type is selectively formed on one side of which a first layer of the second conductivity type is in contact. A third layer of the second conductivity type and a fourth layer of the second conductivity type selectively formed on the surface layer of the third layer, the second layer exposed portion of the third layer and the fourth layer A gate electrode is provided on the exposed part sandwiched by an insulating film, the collector electrode is electrically connected to the first layer, and the gate electrode and the interlayer insulating film are insulated from the third layer and the fourth layer. IG in which the emitter electrodes are commonly electrically connected
In the BT, it is assumed that the emitter electrode is electrically connected to the fourth layer through the conductor film extending between the fourth layer and the interlayer insulating film and over the exposed portion of the third layer. The emitter electrodes are electrically connected to the third layer and the fourth layer at a plurality of locations on one semiconductor substrate, and the emitter electrodes are provided only at a location near the conductor bonding area for connecting the emitter electrodes to the outside. It is effective that the electrode is electrically connected to the fourth layer through the conductor film. Further, it is effective that the semiconductor is silicon and the conductor film is made of titanium silicide.

【0009】[0009]

【作用】従来構造では、第四層をエミッタ電極と電気的
に接続するためには、第四層を層間絶縁膜の存在しない
部分まで延在させて露出させる必要があった。これに対
し、第四層とエミッタ電極を導体膜を介して接続するこ
とにより、第四層がすべて層間絶縁膜の下にあってもエ
ミッタ電極との接続が可能になり、層間絶縁膜を薄くす
ることなく第四層を短くできる。その結果、第四層直下
での第三層における電圧降下が第四層短縮分だけ低減で
き、ラッチアップ耐量を向上させることができる。この
ような構造は、ラッチアップの起こりやすいエミッタ電
極と導線との接続部近傍に配することにより特に効果が
ある。
In the conventional structure, in order to electrically connect the fourth layer to the emitter electrode, it was necessary to extend and expose the fourth layer to the portion where the interlayer insulating film was not present. On the other hand, by connecting the fourth layer and the emitter electrode via the conductor film, it is possible to connect to the emitter electrode even if the fourth layer is entirely under the interlayer insulating film, and the interlayer insulating film can be made thin. The fourth layer can be shortened without doing. As a result, the voltage drop in the third layer immediately below the fourth layer can be reduced by the shortening of the fourth layer, and the latch-up withstand capability can be improved. Such a structure is particularly effective by arranging it in the vicinity of the connecting portion between the emitter electrode and the conducting wire where latch-up easily occurs.

【0010】[0010]

【実施例】図1は本発明の一実施例のIGBTのエミッ
タ電極接触部近傍を示し、図2と共通の部分に同一の符
号が付されている。この構造は、n- 層3の表面層にp
形のチャネル拡散層4を形成後、ゲート絶縁膜7を介し
て形成したゲート電極8とレジスト膜とをマスクとして
のドナー拡散によりn+ ソース層5を形成する。あるい
はゲート電極8のみをマスクにしてn+ 層形成後、エッ
チングで短いn+ ソース層を残してもよい。次に、ゲー
ト電極8およびシリコン基板の露出面上に導体膜10を形
成し、ゲート電極8の上およびp層4露出面の中央部上
の部分をエッチングで除去する。このあと、ゲート電極
8を覆う層間絶縁膜9を成長させ、p層4露出面および
TiSi2 膜10の一部の上に接触孔を明けたのち、Alにより
エミッタ電極11を形成し、150 〜200 ℃でアニールす
る。導体膜10の導体としてけい化チタン (TiSi2 ) を用
いることは、このアニーリングに耐えること、またシリ
コンとオーム性接触を作りやすいことなどの利点がある
が、金属導体を適用してもよい。
FIG. 1 shows the vicinity of an emitter electrode contact portion of an IGBT according to an embodiment of the present invention, and the same parts as those in FIG. 2 are designated by the same reference numerals. This structure has p on the surface layer of the n layer 3.
After forming the channel-shaped channel diffusion layer 4, the n + source layer 5 is formed by donor diffusion using the gate electrode 8 formed through the gate insulating film 7 and the resist film as a mask. Alternatively, the short n + source layer may be left by etching after forming the n + layer using only the gate electrode 8 as a mask. Next, the conductor film 10 is formed on the exposed surface of the gate electrode 8 and the silicon substrate, and the portions on the gate electrode 8 and the central portion of the exposed surface of the p layer 4 are removed by etching. After that, an interlayer insulating film 9 covering the gate electrode 8 is grown, and the exposed surface of the p layer 4 and
After forming a contact hole on a part of the TiSi 2 film 10, an emitter electrode 11 is formed of Al and annealed at 150 to 200 ° C. The use of titanium silicide (TiSi 2 ) as the conductor of the conductor film 10 has the advantages of withstanding this annealing and being easy to make ohmic contact with silicon, but a metal conductor may be applied.

【0011】図6、図7はIGBTの半導体基板全体を
平面図で示し、基板21には図1あるいは図2に示すよう
なセル構造が多数形成されるが、ゲート電極8およびエ
ミッタ電極9の端子との接続は、ゲートボンディングパ
ッド22およびエミッタボンディングパッド23を利用して
のAl導線のボンディングによって行う。図6の実施例で
は図1に示すような導体膜10を用いるセル構造を斜線を
引いた領域20で示すように基板全面に適用しているが、
図7の実施例では、特にラッチアップの起こりやすいエ
ミッタボンディングパッド23近傍にのみ適用し、他は図
2に示すセル構造となっている。
FIGS. 6 and 7 are plan views showing the entire semiconductor substrate of the IGBT, and a large number of cell structures as shown in FIG. 1 or 2 are formed on the substrate 21, but the gate electrode 8 and the emitter electrode 9 are formed. The connection with the terminal is performed by bonding the Al conductive wire using the gate bonding pad 22 and the emitter bonding pad 23. In the embodiment of FIG. 6, the cell structure using the conductor film 10 as shown in FIG. 1 is applied to the entire surface of the substrate as shown by the shaded region 20.
In the embodiment shown in FIG. 7, the cell structure shown in FIG. 2 is applied only to the vicinity of the emitter bonding pad 23 where latch-up is likely to occur.

【0012】[0012]

【発明の効果】本発明によれば、エミッタ電極とソース
層との接続を、半導体基板全面もしくはラッチアップの
起こりやすい一部でゲート電極、エミッタ電極の層間絶
縁膜下に入りこむ導体膜を介して行うことにより、層間
絶縁膜を薄くしなくてもソース層を短縮することがで
き、ソース層直下のチャネル拡散層の抵抗成分を低減し
てラッチアップの発生を抑制することが可能になった。
これにより、スイッチング損失を増加させることなく信
頼性が向上したIGBTが得られた。
According to the present invention, the emitter electrode and the source layer are connected to each other via the conductor film which penetrates under the interlayer insulating film of the gate electrode and the emitter electrode over the entire surface of the semiconductor substrate or a portion where latchup is likely to occur. By doing so, the source layer can be shortened without thinning the interlayer insulating film, the resistance component of the channel diffusion layer immediately below the source layer can be reduced, and the occurrence of latch-up can be suppressed.
As a result, an IGBT with improved reliability was obtained without increasing switching loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のIGBTのエミッタ電極接
触部近傍断面図
FIG. 1 is a sectional view of the vicinity of an emitter electrode contact portion of an IGBT according to an embodiment of the present invention.

【図2】従来のIGBTの斜視断面図FIG. 2 is a perspective sectional view of a conventional IGBT.

【図3】IGBTの等価回路図FIG. 3 is an equivalent circuit diagram of the IGBT.

【図4】IGBTの電圧、電流、損失波形図[Fig. 4] IGBT voltage, current, loss waveform diagram

【図5】本発明の一実施例のIGBT半導体基板の平面
FIG. 5 is a plan view of an IGBT semiconductor substrate according to an embodiment of the present invention.

【図6】本発明の別の実施例のIGBT半導体基板の平
面図
FIG. 6 is a plan view of an IGBT semiconductor substrate according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 p+ コレクタ層 2 n+ バッファ層 3 n- 層 4 p形チャネル拡散層 5 n+ ソース層 7 ゲート絶縁膜 8 ゲート電極 9 層間絶縁膜 10 導体膜 11 エミッタ電極 12 コレクタ電極1 p + collector layer 2 n + buffer layer 3 n layer 4 p-type channel diffusion layer 5 n + source layer 7 gate insulating film 8 gate electrode 9 interlayer insulating film 10 conductor film 11 emitter electrode 12 collector electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一側に第二導電形の第一層が接する第一導
電形の第二層の他側の表面層に選択的に形成された第二
導電形の第三層とその第三層の表面層に選択的に形成さ
れた第二導電形の第四層を有し、第三層の第二層露出部
と第四層とにはさまれた露出部上に絶縁膜を介してゲー
ト電極を備え、第一層にコレクタ電極が電気的に接続さ
れ、第三層および第四層にゲート電極と層間絶縁膜によ
って絶縁されたエミッタ電極が共通に電気的に接続され
るものにおいて、エミッタ電極が、第四層および層間絶
縁膜の間から第三層露出部上にまで延在する導体膜を介
して第四層と電気的に接続されたことを特徴とする絶縁
ゲート型バイポーラトランジスタ。
1. A third layer of the second conductivity type selectively formed on a surface layer on the other side of the second layer of the first conductivity type, which is in contact with the first layer of the second conductivity type, and a third layer thereof. It has a fourth layer of the second conductivity type selectively formed on the surface layer of the three layers, and an insulating film is formed on the exposed portion sandwiched between the second layer exposed portion of the third layer and the fourth layer. A collector electrode is electrically connected to the first layer, and a gate electrode and an emitter electrode insulated by an interlayer insulating film are commonly electrically connected to the third layer and the fourth layer. In the insulated gate type, the emitter electrode is electrically connected to the fourth layer through a conductor film extending from between the fourth layer and the interlayer insulating film to above the exposed portion of the third layer. Bipolar transistor.
【請求項2】一つの半導体基板の複数の個所においてエ
ミッタ電極が第三層および第四層に電気的に接続され、
そのうちのエミッタ電極と外部との接続のための導線ボ
ンディング領域の近傍の個所においてのみエミッタ電極
が導体膜を介して第四層と電気的に接続された請求項1
記載の絶縁ゲート型バイポーラトランジスタ。
2. An emitter electrode is electrically connected to a third layer and a fourth layer at a plurality of points on one semiconductor substrate,
The emitter electrode is electrically connected to the fourth layer through a conductor film only in a portion in the vicinity of a wire bonding region for connecting the emitter electrode to the outside.
The insulated gate bipolar transistor described.
【請求項3】半導体がシリコンであり、導体膜がけい化
チタンよりなる請求項1あるいは2記載の絶縁ゲート型
バイポーラトランジスタ。
3. The insulated gate bipolar transistor according to claim 1, wherein the semiconductor is silicon and the conductor film is made of titanium silicide.
JP29545092A 1992-11-05 1992-11-05 Insulated gate bipolar transistor Pending JPH06151862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29545092A JPH06151862A (en) 1992-11-05 1992-11-05 Insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29545092A JPH06151862A (en) 1992-11-05 1992-11-05 Insulated gate bipolar transistor

Publications (1)

Publication Number Publication Date
JPH06151862A true JPH06151862A (en) 1994-05-31

Family

ID=17820748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29545092A Pending JPH06151862A (en) 1992-11-05 1992-11-05 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JPH06151862A (en)

Similar Documents

Publication Publication Date Title
US5801420A (en) Lateral semiconductor arrangement for power ICS
JPH0758784B2 (en) Lateral insulated gate bipolar transistor with improved latch-up prevention performance
JPH02275675A (en) Mos type semiconductor device
JPS6115370A (en) Semiconductor device
JPH01125979A (en) Insulated gate bipolar transistor
JPH06196705A (en) Reverse-current carrying type insulated gate bipolar transistor and manufacture thereof
JPH07115189A (en) Insulated gate type bipolar transistor
JPH0575110A (en) Semiconductor device
JPH0758320A (en) Insulated gate bipolar transistor
JP2950025B2 (en) Insulated gate bipolar transistor
US5587595A (en) Lateral field-effect-controlled semiconductor device on insulating substrate
EP0338312B1 (en) Insulated gate bipolar transistor
JP3302275B2 (en) Semiconductor devices
EP0630054A1 (en) Thyristor with insulated gate and method for operating the same
JPH08130249A (en) Semiconductor device
JPH05206159A (en) Semiconductor device
JPH08148675A (en) Semiconductor device
JPH04216674A (en) Horizontal-type mos control-type thyristor
JPS605568A (en) Vertical insulated gate field effect transistor
US5624855A (en) Process of producing insulated-gate bipolar transistor
JP2830744B2 (en) Integrated device
US4309715A (en) Integral turn-on high voltage switch
KR100266388B1 (en) Semiconductor device and method of manufacturing thereof
JPH06151862A (en) Insulated gate bipolar transistor
KR100241055B1 (en) Trench gate laterl insulated gate bipolar transistor