JPH06151838A - Insulated gate bipolar transistor - Google Patents

Insulated gate bipolar transistor

Info

Publication number
JPH06151838A
JPH06151838A JP29750092A JP29750092A JPH06151838A JP H06151838 A JPH06151838 A JP H06151838A JP 29750092 A JP29750092 A JP 29750092A JP 29750092 A JP29750092 A JP 29750092A JP H06151838 A JPH06151838 A JP H06151838A
Authority
JP
Japan
Prior art keywords
layer
collector
base
gate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29750092A
Other languages
Japanese (ja)
Other versions
JP3206149B2 (en
Inventor
Hitoshi Sumida
仁志 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29750092A priority Critical patent/JP3206149B2/en
Priority to GB9322665A priority patent/GB2272572B/en
Publication of JPH06151838A publication Critical patent/JPH06151838A/en
Priority to US08/491,517 priority patent/US5572055A/en
Priority to US08/491,686 priority patent/US5624855A/en
Application granted granted Critical
Publication of JP3206149B2 publication Critical patent/JP3206149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve the amount of latch-up resistance of a horizontal type insulate-gate bipolar transistor suited for incorporation inside an integrated circuit device etc. CONSTITUTION:An emitter region including a p-type base connection layer 25 and an n-type source layer 26 is laid out at the same side as a collector region including an n-type buffer layer 21 and a p-type collector layer 24 for the channel region on the surface of a p-type base layer 23 at the lower side of a gate 22. Then, the current due to holes which are injected into a semiconductor region 12 from a collector region according to the current of an electron e which enters the n-type semiconductor region 12 from the source layer 26 via the channel region and then flows to the collector region is led to the base connection layer 25 via a surface channel (hs) for reducing the current components through an internal channel (hi) and then the current components flowing from the internal channel (hi) to the base layer 23 are led into the base connection layer 25 with a low resistivity at the lower side of the source layer 26, thus preventing latch-up from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路装置用等に適す
るいわゆる横形構造の絶縁ゲートバイポーラトランジス
タ (以下IGBTという) に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called lateral structure insulated gate bipolar transistor (hereinafter referred to as IGBT) suitable for an integrated circuit device or the like.

【0002】[0002]

【従来の技術】IGBTは周知のようにゲート制御が可能な
バイポーラトランジスタであり、電界効果トランジスタ
がもつ高入力インピーダンスとバイポーラトランジスタ
がもつ低出力インピーダンスを兼備する特長があり、回
路のスイッチング用等に好適な電力用個別半導体装置と
して広く利用されている。この個別素子としてのIGBTは
従来から縦形構造とされるのが通例であるが、最近では
その動作に関連する制御回路を一体に組み込んだ集積回
路であるいわゆるインテリジェント化素子の形で利用す
る傾向が強まっているため、IGBTにも集積化に有利な横
形構造を採用する場合が増えて来ている。図5にこの横
形IGBTの従来構造の代表例を示す。
2. Description of the Related Art As is well known, an IGBT is a bipolar transistor whose gate can be controlled, and is characterized by having both a high input impedance of a field effect transistor and a low output impedance of a bipolar transistor. It is widely used as a suitable power individual semiconductor device. Conventionally, the IGBT as an individual element is usually formed in a vertical structure, but recently, there is a tendency to use it in the form of a so-called intelligent element which is an integrated circuit in which a control circuit related to its operation is integrally incorporated. As the strength is increasing, the number of cases in which the lateral structure, which is advantageous for integration, is adopted for the IGBT is increasing. FIG. 5 shows a typical example of the conventional structure of this lateral IGBT.

【0003】図5はIGBT40をその単位構造で示し、それ
用のチップないしウエハ10は通常の集積回路用と同様に
例えばp形の基板11上にn形のエピタキシャル層をIGBT
40を作り込むべき半導体領域12として成長させてなる。
この半導体領域12の表面から図の左右の両側にn形のバ
ッファ層41を,図の中央部にp形のベース層42をまずそ
れぞれ拡散した上で、バッファ層41内にはコレクタ層43
を,ベース層42内にはベース接続層44をいずれも高不純
物濃度のp形で拡散する。次に、ベース層42の両端部の
上側にゲート45を薄いゲート酸化膜45aを介し配設し、
それをマスクの一部に利用するイオン注入法により高不
純物濃度のn形のソース層46を浅く拡散する。さらに、
電極膜30によりベース接続層44とソース層46を短絡して
エミッタ端子Eを導出し、かつコレクタ層43からコレク
タ端子Cを,ゲート45からゲート端子Gをそれぞれ導出
する。
FIG. 5 shows an IGBT 40 in its unit structure. A chip or wafer 10 for the IGBT 40 has, for example, an n-type epitaxial layer on a p-type substrate 11 as in an ordinary integrated circuit.
40 is grown as a semiconductor region 12 to be built.
The n-type buffer layer 41 is first diffused on the left and right sides of the figure from the surface of the semiconductor region 12, and the p-type base layer 42 is first diffused in the center of the figure, and then the collector layer 43 is formed in the buffer layer 41.
In the base layer 42, the base connection layer 44 is diffused as a p-type having a high impurity concentration. Next, the gates 45 are arranged above the both ends of the base layer 42 with the thin gate oxide film 45a interposed therebetween.
An n-type source layer 46 having a high impurity concentration is shallowly diffused by an ion implantation method using it as a part of a mask. further,
The base connection layer 44 and the source layer 46 are short-circuited by the electrode film 30 to derive the emitter terminal E, and the collector layer 43 derives the collector terminal C and the gate 45 derives the gate terminal G.

【0004】この横形IGBT40の動作を説明する。ゲート
端子Gにエミッタ端子Eより正側のゲート電位を与える
とゲート45の下側のベース層42の表面にチャネルが導通
するので、これを介しソース層46から多数キャリアであ
る電子が半導体領域12に注入される。これによりIGBT40
がオンするが、コレクタ層43に流入する電子によってそ
れから少数キャリアであるホールがバッファ層41を介し
て半導体領域12に注入され、これに基づくいわゆる伝導
度変調作用によりベース層42とコレクタ層43の間の半導
体領域12の導電率が高まってIGBT40のオン電圧が一層低
められる。このIGBT40をオフ動作させるにはゲート端子
Gに与えていたゲート電位を消失させてゲート45の下側
のチャネルを非導通状態にすることでよい。
The operation of this lateral IGBT 40 will be described. When a gate potential on the positive side of the emitter terminal E is applied to the gate terminal G, a channel is conducted to the surface of the base layer 42 below the gate 45, so that electrons, which are majority carriers, are transferred from the source layer 46 through the semiconductor region 12 through the channel. Is injected into. This allows IGBT40
Is turned on, but holes that are minority carriers are then injected into the semiconductor region 12 through the buffer layer 41 by electrons flowing into the collector layer 43, and the so-called conductivity modulation action based on this causes the base layer 42 and the collector layer 43 to The conductivity of the semiconductor region 12 in between increases and the ON voltage of the IGBT 40 is further lowered. In order to turn off the IGBT 40, the gate potential applied to the gate terminal G may be erased to bring the lower channel of the gate 45 into a non-conducting state.

【0005】このように、IGBT40はオン時に伝導度変調
を利用してそのオン電圧を低め得る利点を有するが、オ
フ動作時には伝導度変調領域からキャリアを排除する必
要があるのでオフ動作速度が遅くなりやすい欠点があ
る。バッファ層41はその不純物濃度を半導体領域12より
も高く設定することにより、コレクタ領域43から半導体
領域12に注入される少数キャリア量を制御してIGBT40の
オフ動作速度を改善する役目を果たすが、ふつうそれだ
けでは不充分なので半導体領域12に対し白金等のライフ
タイムキラーを導入することにより、オン電圧は若干と
も上昇するがオフ動作中の伝導度変調領域内のキャリア
の消滅を促進するのが通例である。
As described above, the IGBT 40 has an advantage that the ON voltage can be lowered by utilizing the conductivity modulation at the time of ON, but the OFF operation speed is slow because it is necessary to remove carriers from the conductivity modulation region at the time of OFF operation. There is a drawback that it tends to occur. The buffer layer 41 serves to improve the off-operation speed of the IGBT 40 by controlling the amount of minority carriers injected from the collector region 43 into the semiconductor region 12 by setting the impurity concentration thereof higher than that of the semiconductor region 12. Usually, this is not enough, so by introducing a lifetime killer such as platinum to the semiconductor region 12, it is common to promote the disappearance of carriers in the conductivity modulation region during the OFF operation, although the ON voltage increases slightly. Is.

【0006】[0006]

【発明が解決しようとする課題】上述のような従来の横
形構造のIGBTでも縦形構造の場合とほぼ同様な低いオン
電圧と適度のオフ動作速度をもたせることができるが、
縦形構造に比べてラッチアップが発生しやすい問題があ
る。図6はこのラッチアップの発生原因を図5の右半分
についてキャリアの流路により示すものである。IGBT40
のオン時には多数キャリアである電子eはソース層46か
らゲート45の下側のチャネルを通った後、横形なので図
のように半導体領域12の表面部を経由してコレクタ層43
に流れる。少数キャリアであるホールhはコレクタ層43
からこれと逆向きに半導体領域12の表面部を経由してベ
ース層42に入った後、図のようにソース層46の下側を通
ってエミッタ端子E用の電極膜30に流れる。
Although the conventional lateral IGBT as described above can have a low on-voltage and an appropriate off-operation speed which are almost the same as those in the vertical structure,
There is a problem that latch-up is more likely to occur than in the vertical structure. FIG. 6 shows the cause of this latch-up in the right half of FIG. IGBT40
When the electron is turned on, the electrons e, which are majority carriers, pass through the channel under the gate 45 from the source layer 46, and are horizontal, so that the collector layer 43 passes through the surface portion of the semiconductor region 12 as shown in the figure.
Flow to. The holes h that are minority carriers are in the collector layer 43.
Then, after entering the base layer 42 through the surface portion of the semiconductor region 12 in the opposite direction, it flows to the electrode film 30 for the emitter terminal E through the lower side of the source layer 46 as shown in the figure.

【0007】さて、p形のコレクタ層43とn形の半導体
領域12とp形のベース層42とn形のソース層46はpnpnの
サイリスタ構造を形成しており、そのゲートに当たるベ
ース層42とソース層46の間のpn接合にホール電流が注入
されると点弧して、エミッタ端子Eとコレクタ端子Cの
間に大電流が流れるラッチアップが発生する。縦形の場
合はホール電流が図の下側からエミッタ端子Eに向け上
方に流れるので上述のpn接合の付近にほとんど流れない
が、横形の場合はホールhの電流が図のようにソース層
46の下側を迂回するように流れるので、上述のpn接合へ
の注入がとくに図でAで示す個所で起きやすくなるので
ある。かかるラッチアップの危険のため横形のIGBTは動
作信頼性が縦形よりも低く、電流容量を高めるのも困難
になる。本発明の目的は、かかる問題点を解決して横形
構造のIGBTのラッチアップ耐量を向上させることにあ
る。
The p-type collector layer 43, the n-type semiconductor region 12, the p-type base layer 42, and the n-type source layer 46 form a pnpn thyristor structure, and the base layer 42 corresponding to the gate thereof is formed. When a hole current is injected into the pn junction between the source layers 46, it is ignited and a latch-up in which a large current flows between the emitter terminal E and the collector terminal C occurs. In the case of the vertical type, since the hole current flows upward from the lower side of the figure toward the emitter terminal E, it hardly flows in the vicinity of the above pn junction, but in the case of the horizontal type, the current of the hole h is as shown in the figure.
Since the current flows so as to bypass the lower side of 46, the above-mentioned injection into the pn junction is likely to occur particularly at the portion indicated by A in the figure. Due to the risk of such latch-up, the lateral IGBT has lower operational reliability than the vertical IGBT, and it is difficult to increase the current capacity. An object of the present invention is to solve such a problem and improve the latch-up withstanding capability of a lateral IGBT.

【0008】[0008]

【課題を解決するための手段】本発明のIGBTによれば、
一方の導電形をもつ半導体領域の表面からベース層を他
方の導電形で拡散し、ベース層と一部が重なり合うよう
にその一方側にベース接続層を他方の導電形で拡散し、
ベース層およびベース接続層の表面から両層の境界を含
む範囲内にソース層を一方の導電形で浅く拡散し、ソー
ス層の他方側のベース層の表面を上側から覆うようにゲ
ートを配設し、ベース接続層の一方側の半導体領域の表
面からコレクタ層を他方の導電形で拡散した上で、ベー
ス接続層とソース層からエミッタ端子, コレクタ層から
コレクタ端子, ゲートからゲート端子をそれぞれ導出す
ることにより上述の目的を達成する。
According to the IGBT of the present invention,
The base layer is diffused from the surface of the semiconductor region having one conductivity type with the other conductivity type, and the base connection layer is diffused with the other conductivity type on one side so that the base layer partially overlaps,
The source layer is shallowly diffused by one conductivity type within the range including the boundary between the base layer and the base connection layer, and the gate is arranged so as to cover the surface of the base layer on the other side of the source layer from above. Then, diffuse the collector layer from the surface of the semiconductor region on one side of the base connection layer to the other conductivity type, and then derive the emitter terminal from the base connection layer and source layer, the collector terminal from the collector layer, and the gate terminal from the gate. By doing so, the above-mentioned object is achieved.

【0009】かかる構造の本発明のIGBTのオフ動作速度
を極力高める上では、コレクタ層に対しそれに隣接する
半導体領域の表面から一方の導電形のコレクタショート
層を拡散して両層からコレクタ端子を導出するのが有利
であり、さらにこのコレクタショート層をゲートのパタ
ーンの端部を取り囲む範囲内のコレクタ層のかわりに拡
散するのが、IGBTのオフ動作速度を高めかつラッチアッ
プ耐量を一層向上する上でとくに有利である。
In order to maximize the off-operation speed of the IGBT of the present invention having such a structure, a collector short layer of one conductivity type is diffused from the surface of the semiconductor region adjacent to the collector layer to form collector terminals from both layers. It is advantageous to derive it. Further, diffusion of this collector short layer instead of the collector layer within the range surrounding the end of the gate pattern enhances the off-operation speed of the IGBT and further improves the latch-up withstand capability. Especially advantageous above.

【0010】なお、本発明のIGBTを構成する半導体層や
ゲートの平面的な配置のパターンとしては、細長い短冊
状のゲートを環状のエミッタ領域を介してコレクタ層で
取り囲むパターン、または細長い短冊状のコレクタ層を
環状のエミッタ領域を介してゲートで取り囲むパターン
とすることでもよいが、ゲートとコレクタ層を互いに櫛
歯状に入り組むパターンで配設してこれら櫛歯の相互間
にエミッタ領域を蛇行するように配設するのがとくに有
利である。
As the pattern of the semiconductor layers and gates constituting the IGBT of the present invention in a plane, a strip-shaped gate is surrounded by a collector layer via an annular emitter region, or a strip-shaped strip. The collector layer may be surrounded by the gate via the annular emitter region, but the gate and collector layers may be arranged in a comb-shaped pattern so that the emitter region meanders between the comb teeth. Is particularly advantageous.

【0011】また、本発明のIGBTの製造に際してはベー
ス層とソース層をゲートをマスクとして不純物を導入す
るイオン注入法によって拡散するのが両層の拡散パター
ンの精度を向上しかつ工程数を減少させる上で有利であ
り、さらに同じ導電形をもつコレクタ層とベース接続層
を同時拡散によって同じ不純物濃度と拡散深さに作り込
むようにするのが工程数を減少させる上で有利である。
なお、本発明のIGBTにおいても従来と同様に伝導度変調
の制御用にバッファ層をコレクタ層に付随して一方の導
電形で設けるのが有利であり、ゲートはもちろんゲート
酸化膜を介してソース層の他方側のベース層の表面を覆
うように配設する。
Further, in manufacturing the IGBT of the present invention, the base layer and the source layer are diffused by an ion implantation method in which impurities are introduced using the gate as a mask to improve the accuracy of the diffusion pattern of both layers and reduce the number of steps. Further, it is advantageous to reduce the number of steps by making the collector layer and the base connection layer having the same conductivity type into the same impurity concentration and the same diffusion depth by simultaneous diffusion.
Also in the IGBT of the present invention, it is advantageous to provide the buffer layer with one conductivity type in association with the collector layer for controlling the conductivity modulation as in the conventional case. It is arranged so as to cover the surface of the base layer on the other side of the layer.

【0012】[0012]

【作用】図5や図6からわかるように、従来のIGBTでは
ゲート45の下側のベース層42の表面であるチャネル領域
に対し、ベース接続層44とソース層46からなるエミッタ
領域をコレクタ層41とは反対側に配置していたが、本発
明はこのエミッタ領域をチャネル領域よりコレクタ層側
に配置し、かつエミッタ領域内のベース接続層をソース
層よりコレクタ層側に配置することにより、前述のよう
にコレクタ層からエミッタ領域に流入する少数キャリア
であるホールの電流をベース接続層に引き抜いて、ラッ
チアップ発生の原因であるソース層の下側のベース層内
に横方向に流れるホール電流をほぼ皆無にするものであ
る。
As can be seen from FIGS. 5 and 6, in the conventional IGBT, the emitter region composed of the base connection layer 44 and the source layer 46 is formed in the collector layer with respect to the channel region which is the surface of the base layer 42 below the gate 45. Although it is arranged on the side opposite to 41, the present invention arranges the emitter region on the collector layer side of the channel region, and the base connection layer in the emitter region on the collector layer side of the source layer. As described above, the hole current, which is minority carriers flowing from the collector layer to the emitter region, is extracted to the base connection layer, and the hole current flowing laterally in the base layer below the source layer, which causes latch-up, is generated. Is almost eliminated.

【0013】すなわち本発明では前項にいうよう、例え
ばn形の半導体領域の表面にp形のベース層を拡散し、
ベース層と一部が重なるよう一方側にp形のベース接続
層を拡散するとともに同じ一方側の半導体領域の表面に
p形のコレクタ層を拡散し、ベース層とベース接続層の
表面の両者の境界を含む範囲にn形のソース層を浅く拡
散し、かつソース層の他方側のベース層の表面を上側か
ら覆うようにゲートを設けることにより、ゲート下のチ
ャネル領域に対しベース接続層とソース層からなるエミ
ッタ領域をコレクタ層と同じ側に配設する。
That is, in the present invention, as described in the preceding paragraph, for example, a p-type base layer is diffused on the surface of an n-type semiconductor region,
A p-type base connecting layer is diffused to one side so as to partially overlap with the base layer, and a p-type collector layer is diffused to the surface of the semiconductor region on the same one side so that both the base layer and the surface of the base connecting layer are diffused. By shallowly diffusing the n-type source layer in the range including the boundary and providing the gate so as to cover the surface of the base layer on the other side of the source layer from above, the base connection layer and the source are provided to the channel region below the gate. The emitter region consisting of layers is arranged on the same side as the collector layer.

【0014】これによって、コレクタ層からのホール電
流は最も近いベース接続層を通ってエミッタ端子に抜け
るようになり、その一部だけがベース層からベース接続
層を経由してソース層の下側を通るが、その流路のソー
ス層下の横方向成分の発生が従来のようにベース層内で
なくそれより不純物濃度が1桁以上高く比抵抗が低いベ
ース接続層内なので、それとソース層の間のpn接合への
ホール注入がほとんど起こらず、従って本発明によりIG
BTのラッチアップ耐量を向上できる。
As a result, the hole current from the collector layer passes through the base connection layer closest to the emitter terminal, and only a part of the hole current flows from the base layer to the lower side of the source layer via the base connection layer. Although it passes through, the lateral component under the source layer of the flow path is not in the base layer as in the past, but in the base connection layer where the impurity concentration is one digit or more higher and the specific resistance is lower than that in the base layer. Almost no hole injection into the pn junction of the
BT latch-up resistance can be improved.

【0015】[0015]

【実施例】以下、図を参照して本発明の実施例を説明す
る。図1は本発明の第1実施例の構造とその動作をキャ
リアの流路によって示す断面図、図2は本発明のコレク
タショート層を設ける第2実施例の断面図、図3はゲー
トとコレクタ層とを互いに入り組んだ櫛歯状のパターン
にに形成する本発明の第3実施例の上面図、図4はコレ
クタショート層をゲートのパターンの端部を取り囲む範
囲に設ける本発明の第4実施例の上面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure and operation of the first embodiment of the present invention by a carrier flow path, FIG. 2 is a sectional view of a second embodiment in which a collector short layer of the present invention is provided, and FIG. 3 is a gate and a collector. FIG. 4 is a top view of a third embodiment of the present invention in which the layers and the layers are formed in a comb-shaped pattern intricately interdigitated with each other, and FIG. 4 is a fourth embodiment of the present invention in which a collector short layer is provided in a range surrounding the end of the gate pattern. It is a top view of an example.

【0016】図1(a) に第1実施例のIGBT20を図6に対
応するその単位構造の断面で示す。本発明によるIGBT20
でもふつうこの単位構造を図の左右方向に複数回繰り返
して構成される。この実施例のIGBT20が作り込まれるウ
エハ10は従来と同様に例えばp形の半導体基板11にn形
の半導体領域12としてエピタキシャル層を数十μmの厚
みに成長させてなり、半導体領域12は10Ωcm程度の比較
的高抵抗性とするのがよい。この実施例のIGBT20はコレ
クタ側にバッファ層21を用いるので、その製造工程上は
まずn形のバッファ層21を半導体領域12の図では左右の
表面から例えば1016原子/cm3 の不純物濃度で5μmの
深さに拡散し、かつ半導体領域12の図の中央部に多結晶
シリコンの 0.5μm程度の膜厚のゲート22を 0.1μm程
度のごく薄いゲート酸化膜22aを介して配設する。
FIG. 1A shows the IGBT 20 of the first embodiment in a cross section of its unit structure corresponding to FIG. IGBT 20 according to the invention
However, this unit structure is usually repeated multiple times in the left-right direction in the figure. The wafer 10 in which the IGBT 20 of this embodiment is built is formed by growing an epitaxial layer as an n-type semiconductor region 12 on the p-type semiconductor substrate 11 in a thickness of several tens of μm, similarly to the conventional case, and the semiconductor region 12 is 10 Ωcm. It is preferable that the resistance is relatively high. Since the IGBT 20 of this embodiment uses the buffer layer 21 on the collector side, the n-type buffer layer 21 is first formed from the left and right surfaces in the figure of the semiconductor region 12 at an impurity concentration of, for example, 10 16 atoms / cm 3 in the manufacturing process. A gate 22 of polycrystalline silicon having a film thickness of about 0.5 μm is disposed in the central portion of the semiconductor region 12 in the drawing with a depth of 5 μm, and a very thin gate oxide film 22a of about 0.1 μm is provided.

【0017】次に、p形のベース層23をこのゲート22の
両側からその下側にそれぞれもぐり込むように例えば10
17原子/cm3 の不純物濃度で4μmの深さに拡散する。
このベース層23はゲート22をマスクの一部とするボロン
のイオン注入とその熱拡散により作り込むのが有利であ
る。ついで、バッファ層21内のコレクタ層24とベース層
23と一部が重なるベース接続層25とをボロンの同時拡散
によりいずれもp形の1018〜1019原子/cm3 の高不純物
濃度で2μm程度の深さに作り込む。さらに、n形のソ
ース層26をゲート22の両側部に通例のようにそれをマス
クの一部とする砒素のイオン注入とその熱拡散により、
例えば1020原子/cm3 の高不純物濃度で0.2μmの深さ
に, かつ図示のようにベース層23とベース接続層25の境
界を含むパターンで作り込む。このソース層26と半導体
領域12との間のゲート22の下側のベース層23の表面部が
チャネル領域となる。
Next, the p-type base layer 23 is sunk from both sides of the gate 22 to the lower side thereof, for example, 10
Diffuse to a depth of 4 μm with an impurity concentration of 17 atoms / cm 3 .
Advantageously, the base layer 23 is formed by ion implantation of boron using the gate 22 as a part of the mask and its thermal diffusion. Next, the collector layer 24 and the base layer in the buffer layer 21
23 and a part of the base connection layer 25 which partially overlap each other are formed at a depth of about 2 μm with a high impurity concentration of 10 18 to 10 19 atoms / cm 3 of p-type by simultaneous diffusion of boron. Further, the n-type source layer 26 is formed on both sides of the gate 22 by arsenic ion implantation using the n-type source layer 26 as a part of the mask and the thermal diffusion thereof, as usual.
For example, a high impurity concentration of 10 20 atoms / cm 3 is formed to a depth of 0.2 μm, and a pattern including the boundary between the base layer 23 and the base connection layer 25 is formed as shown in the drawing. The surface portion of the base layer 23 below the gate 22 between the source layer 26 and the semiconductor region 12 serves as a channel region.

【0018】以上によりIGBT20の半導体層の作り込みが
終了するので、ついでその端子用にアルミの電極膜30を
図のように要所に配設する。ベース接続層25とソース層
26の表面を図のように電極膜30で短絡してそれらからエ
ミッタ端子Eを導出し、かつゲート22とコレクタ層24に
それぞれ導電接触する電極膜30によりそれらからそれぞ
れゲート端子Gとコレクタ端子Cを導出することによ
り、この横形のIGBT20の図の完成状態とする。なお、ゲ
ート22に対する電極膜は図示の断面以外の個所に設けら
れる。また、図示以外にも通例の絶縁膜や保護膜がもち
ろん設けられるが簡略化のため図から省略されている。
Since the fabrication of the semiconductor layer of the IGBT 20 is completed as described above, the aluminum electrode film 30 for the terminal is then provided at the important place as shown in the figure. Base connection layer 25 and source layer
The surface of the electrode 26 is short-circuited by the electrode film 30 as shown in the drawing to derive the emitter terminal E from them, and the electrode film 30 conductively contacts the gate 22 and the collector layer 24, respectively. By deriving, the drawing of this horizontal IGBT 20 is completed. The electrode film for the gate 22 is provided at a position other than the cross section shown. Further, other than the illustration, a usual insulating film or protective film is of course provided, but it is omitted from the drawing for simplification.

【0019】次に図1(a) の右半分の拡大断面である図
1(b) を参照してこの第1実施例のIGBT20の動作を説明
する。上述の説明からわかるよう本発明のIGBTの構造で
は、ゲート22の下のベース層23の表面のチャネル領域に
対し、エミッタ端子Eが導出されるベース接続層25とソ
ース層26からなるエミッタ領域が従来の構造とは逆にコ
レクタ層24と同じ側に設けられる。従って、ゲート端子
Gにエミッタ端子Eに対し正の電位を与えてゲート22の
下側のn形のチャネルを導通させたとき、多数キャリア
である電子eはソース層26から図のようにこのチャネル
を通って半導体領域12に入った後はそのベース層23の下
側の従来よりかなり深い範囲を経由してコレクタ層24に
向かって流れる。
Next, the operation of the IGBT 20 of the first embodiment will be described with reference to FIG. 1 (b) which is an enlarged cross section of the right half of FIG. 1 (a). As can be seen from the above description, in the structure of the IGBT of the present invention, the emitter region including the base connection layer 25 and the source layer 26 from which the emitter terminal E is derived is formed in the channel region on the surface of the base layer 23 below the gate 22. Contrary to the conventional structure, it is provided on the same side as the collector layer 24. Therefore, when a positive potential is applied to the gate terminal G with respect to the emitter terminal E to make the n-type channel under the gate 22 conductive, electrons e which are majority carriers are emitted from the source layer 26 to this channel as shown in the figure. After entering into the semiconductor region 12 through the through, the current flows toward the collector layer 24 through a region deeper than the conventional one below the base layer 23.

【0020】この電子eのコレクタ層24への流入に応じ
てそれから逆に少数キャリアであるホールが半導体領域
12に注入されるが、本発明では図示のようにホールの流
路はクーロン力により電子eの流路の方に引き寄せられ
て半導体領域12の内部を通る内部流路hiと, コレクタ層
24から最短距離にあるベース接続層25に向けて半導体領
域12の表面に沿って流れる表面流路hsとの間に分布す
る。かかるホール電流の内の表面流路hsの付近の成分は
半導体領域12からベース接続層25に引き抜かれ、内部流
路hi付近の成分はベース層23を経由してベース接続層25
に入り、IGBT20がオン動作した当初は前者より後者の方
が若干大きいが、伝導度変調が盛んな完全オン状態では
両者はほぼ同程度と考えられる。
In response to the inflow of the electrons e into the collector layer 24, conversely, holes which are minority carriers are changed to the semiconductor region.
In the present invention, as shown in the figure, the hole channel is drawn toward the channel of the electron e by the Coulomb force and passes through the inside of the semiconductor region 12 and the collector layer.
It is distributed between the surface flow path hs flowing along the surface of the semiconductor region 12 toward the base connection layer 25 located at the shortest distance from 24. The component of the hole current in the vicinity of the surface flow path hs is extracted from the semiconductor region 12 to the base connection layer 25, and the component in the vicinity of the internal flow path hi passes through the base layer 23 to the base connection layer 25.
In the beginning, when the IGBT 20 is turned on, the latter is slightly larger than the former, but in the fully on state where conductivity modulation is active, both are considered to be about the same.

【0021】本発明ではこのように半導体領域12中のホ
ール電流の表面流路hs付近の成分をベース接続層25に直
接に引き抜いてラッチアップの危険を従来より減少させ
る。残る問題は内部流路hi付近を通るホール電流の成分
であり、これは図示のようにベース層23とベース接続層
25の中をhi1とhi2で示す流路の間に分布して流れ、と
くに流路hi2付近の成分がソース層26の下側で横方向の
電流成分をもつことになるが、かかるホール電流の横方
向成分がソース層23の下側に流れるのはベース層23より
ずっと比抵抗が低いベース接続層25であるからそれから
ソース層23との間のpn接合にホールが注入される危険は
ごく少ない。以上のように本発明では、ホール電流の表
面流路hs付近の成分がベース接続層25に引き抜かれ、内
部流路hi付近の成分がソース層26の下側では比抵抗の低
いベース接続層25内を通るので、ラッチアップ発生のお
それが従来より大幅に減少する。
In the present invention, the component of the hole current in the semiconductor region 12 in the vicinity of the surface flow path hs is directly extracted to the base connection layer 25 in this way, so that the risk of latch-up is reduced as compared with the conventional case. The remaining problem is the component of the hole current passing near the internal flow path hi, which is the base layer 23 and the base connection layer as shown in the figure.
Flows are distributed in the channel 25 between the flow channels indicated by hi1 and hi2, and the component near the flow channel hi2 has a lateral current component below the source layer 26. Since the lateral component flows to the lower side of the source layer 23 in the base connection layer 25, which has a much lower resistivity than the base layer 23, the risk of holes being injected into the pn junction with the source layer 23 is very small. . As described above, in the present invention, the component of the hole current in the vicinity of the surface flow path hs is extracted to the base connection layer 25, and the component in the vicinity of the internal flow path hi is below the source layer 26 and has a low specific resistance. Since it passes through the inside, the risk of latch-up is greatly reduced compared to the conventional case.

【0022】IGBT20のオフ動作時にはもちろんゲート端
子Gの電位を消失させてゲート22の下のチャネル領域を
非導通状態にする。これにより、電子eの半導体領域12
への流入が停止してその内部に残存する電子eがコレク
タ層24の方に吸収されるが、半導体領域12内の電子eの
密度が低下するとともにそれにクーロン力により引き寄
せられていたホール電流の内部流路hi付近の成分の割合
が減少して表面流路hs付近の成分の割合が増加し、後者
の成分がベース接続層25にすべて引き抜かれた後に空乏
層が半導体領域12内に延びてIGBT20が完全なオフ状態に
なる。これからわかるように、本発明のIGBT20ではオフ
動作時にラッチアップが発生する危険は少なく、とくに
オフ動作中にエミッタ端子に侵入しやすい外来ノイズ等
に対するラッチアップ耐量を向上できる。
When the IGBT 20 is turned off, the potential of the gate terminal G is of course lost so that the channel region under the gate 22 is made non-conductive. Thereby, the semiconductor region 12 of the electron e is
The flow of electrons into the collector layer 24 is stopped and the electrons e remaining therein are absorbed by the collector layer 24. However, the density of the electrons e in the semiconductor region 12 decreases, and the hole current attracted by the Coulomb force to the electrons e decreases. The proportion of the component in the vicinity of the internal flow channel hi decreases and the proportion of the component in the vicinity of the surface flow channel hs increases, and the depletion layer extends into the semiconductor region 12 after the latter component is completely extracted to the base connection layer 25. The IGBT 20 is completely turned off. As can be seen from the above, in the IGBT 20 of the present invention, the risk of latch-up occurring during the off operation is small, and particularly the latch-up resistance against external noise that easily enters the emitter terminal during the off operation can be improved.

【0023】図2に示す第2実施例ではIGBT20のオフ動
作速度を上げるためコレクタ領域をコレクタショート構
造にする。図のようにp形のコレクタ層24に隣接してn
形のコレクタショート層27を作り込んで、両層の表面を
電極膜30で短絡してコレクタ端子Cを導出する。また、
図の例ではIGBT20用のウエハ10として基板11と半導体領
域12用のn形の基板を酸化膜11aを介し相互に接合した
基板接合形のウエハが用いられている。他の構造は第1
実施例と同じである。この実施例ではIGBT20のオフ動作
中に半導体領域12の内部に残存する多数キャリアである
電子eをn形のコレクタショート層27に引き抜くことに
より、ホールの逆注入の量を減少させてオフ動作時間を
短縮する。なお、コレクタショート層27は図示のように
両側からコレクタ層24で挟んで設けるのが有利であり、
かつコレクタ領域を第1実施例のバッファ層21との複合
化構造としてもよい。
In the second embodiment shown in FIG. 2, the collector region has a collector short structure in order to increase the off-operation speed of the IGBT 20. N adjacent to the p-type collector layer 24 as shown
The collector short layer 27 having a shape is formed, and the surfaces of both layers are short-circuited by the electrode film 30 to derive the collector terminal C. Also,
In the illustrated example, as the wafer 20 for the IGBT 20, a substrate-bonding type wafer is used in which a substrate 11 and an n-type substrate for the semiconductor region 12 are bonded to each other via an oxide film 11a. Other structure is first
Same as the embodiment. In this embodiment, the electrons e, which are the majority carriers remaining inside the semiconductor region 12 during the off operation of the IGBT 20, are extracted to the n-type collector short layer 27 to reduce the amount of reverse injection of holes to reduce the off operation time. To shorten. The collector short layer 27 is advantageously provided by sandwiching the collector layer 24 from both sides as shown in the figure,
Moreover, the collector region may have a composite structure with the buffer layer 21 of the first embodiment.

【0024】図3はチャネル領域とコレクタ領域との平
面的なパターンを互いに入り組んだ櫛歯状に形成する第
3実施例を第1実施例の構造に対応する上面図により示
す。櫛歯は図の左右方向に細長く形成されるが図ではそ
の中央部が省略されている。図示のようにチャネル領域
を覆うゲート22は左側から右側に突出する櫛歯状に,バ
ッファ層21とコレクタ層24とその上の電極膜30を含むコ
レクタ領域は右側から左側に突出する櫛歯状にそれぞれ
形成され、これらの入り組む両櫛歯の相互間にソース層
26とベース接続層25とその上側の電極膜30を含むエミッ
タ領域と半導体領域12の露出表面が蛇行するパターンで
配設される。
FIG. 3 is a top view corresponding to the structure of the first embodiment of the third embodiment in which the planar patterns of the channel region and the collector region are formed in a comb-like shape in which they are intricately interdigitated with each other. The comb teeth are formed elongated in the left-right direction in the figure, but the central portion thereof is omitted in the figure. As shown in the figure, the gate 22 covering the channel region has a comb shape protruding from the left side to the right side, and the collector region including the buffer layer 21, the collector layer 24 and the electrode film 30 thereon has a comb shape protruding from the right side to the left side. The source layer is formed between each of these intricate comb teeth.
The exposed regions of the semiconductor region 12 and the emitter region including the base connection layer 25 and the electrode film 30 above the base connection layer 25 are arranged in a meandering pattern.

【0025】この第3実施例では図3の左側のゲート22
上の電極膜30からゲート端子Gを,右側のコレクタ層24
上の電極膜30からコレクタ端子Cをそれぞれ図のように
ごく簡単に導出でき、かつエミッタ端子Eもエミッタ領
域上の電極膜30の適宜な個所から容易に導出できる。ま
た、この実施例はIGBTを集積回路装置に作り込む際にチ
ップ面積を節約できる利点を有する。もちろんこれに限
らず、本発明のIGBTの平面パターンは端子の導出がこの
実施例ほど容易でないが例えばゲートを細長い短冊状に
形成して環状のエミッタ領域を介してコレクタ層で取り
囲むようにも、あるいは細長い短冊状のコレクタ層を環
状のエミッタ領域を介してゲートで取り囲むようにも形
成できる。
In the third embodiment, the gate 22 on the left side of FIG.
From the upper electrode film 30 to the gate terminal G, the collector layer 24 on the right side
The collector terminal C can be easily derived from the upper electrode film 30 as shown in the figure, and the emitter terminal E can also be easily derived from an appropriate portion of the electrode film 30 on the emitter region. In addition, this embodiment has an advantage that the chip area can be saved when the IGBT is built into the integrated circuit device. Of course, not limited to this, the planar pattern of the IGBT of the present invention is not as easy to derive the terminal as in this embodiment, but for example, the gate is formed in a long and narrow strip shape and is surrounded by the collector layer via the annular emitter region, Alternatively, the elongated strip-shaped collector layer can be formed so as to be surrounded by the gate via the annular emitter region.

【0026】図4に第4実施例を図3の右側に対応する
上面図で示す。ただし、この図には図3からゲート22や
電極膜30を除いた半導体層のパターンを示す。図の中央
部がゲートで覆われる半導体領域12とベース層23であっ
て、それらの右端がゲートの端部である。この端部を囲
むようソース層26とベース接続層25からなるエミッタ領
域と半導体領域12の表面があり、その外側にバッファ層
21が拡散される。このバッファ層21の外側に右側端部を
含めてp形のコレクタ層24を拡散すると、それから半導
体領域12に注入されるホールhの電流が図で扇形で示す
ようにエミッタ領域に高密度に集中して、ラッチアップ
がそこで発生しやすい。このため、この第4実施例では
ゲート端部に対応する範囲内にはp形のコレクタ層24の
かわりにn形のコレクタショート層28を拡散し、両層の
表面をコレクタ端子用の電極膜により短絡する。これに
より、ゲート端部を囲む範囲ではホールの注入がないの
で伝導度変調が起きなくなり、IGBTの電流容量がその分
若干は減少するが弱点部をなくしてラッチアップ耐量を
向上できる。
FIG. 4 shows a fourth embodiment in a top view corresponding to the right side of FIG. However, this figure shows the pattern of the semiconductor layer from which the gate 22 and the electrode film 30 have been removed from FIG. The central portion of the figure is the semiconductor region 12 and the base layer 23 covered by the gate, and the right ends thereof are the end portions of the gate. There is a surface of the semiconductor region 12 and the emitter region composed of the source layer 26 and the base connection layer 25 so as to surround this end portion, and the buffer layer is provided outside thereof.
21 are spread. When the p-type collector layer 24 including the right end portion is diffused outside the buffer layer 21, the current of the holes h injected into the semiconductor region 12 from the buffer layer 21 is concentrated in the emitter region at a high density as shown in a fan shape in the figure. Then, latch-up easily occurs there. For this reason, in the fourth embodiment, the n-type collector short layer 28 is diffused in place of the p-type collector layer 24 in the range corresponding to the gate end, and the surfaces of both layers are electrode films for collector terminals. Short circuit. As a result, since there is no injection of holes in the range surrounding the gate end, conductivity modulation does not occur, and the current capacity of the IGBT is slightly reduced by that amount, but the weak point can be eliminated and the latch-up withstand capability can be improved.

【0027】以上説明した本発明のIGBTは横形ではある
が 200V以上の高耐圧と数A以上の電流容量を同時に賦
与でき、もちろん関連回路とともに集積回路装置内に容
易に作り込むことができる。また、2V程度の低いオン
電圧と2〜数μSの短いオフ動作時間をもつIGBTが得ら
れる。なお、以上の実施例で述べたIGBTを構成する各半
導体層の導電形や不純物濃度, 拡散深さ等の数値や拡散
のパターンはあくまで例示であり、本発明はこれらに限
ることなくその要旨内で必要ないし場合に応じ種々な態
様で実施をすることができる。
Although the IGBT of the present invention described above is a lateral type, it can simultaneously provide a high withstand voltage of 200 V or more and a current capacity of several A or more, and of course can be easily incorporated in an integrated circuit device together with related circuits. Further, an IGBT having a low on-voltage of about 2 V and a short off-operation time of 2 to several μS can be obtained. It should be noted that the numerical values such as the conductivity type, the impurity concentration, the diffusion depth, etc., and the diffusion pattern of each semiconductor layer constituting the IGBT described in the above embodiments are merely examples, and the present invention is not limited to these Can be carried out in various modes depending on the necessity or case.

【0028】[0028]

【発明の効果】以上のとおり本発明のIGBTでは、一方の
導電形の半導体領域の表面から他方の導電形のベース層
を拡散し、それと一部が重なり合うようにその一方側に
他方の導電形のベース接続層を拡散し、ベース層とベー
ス接続層内の両層の境界を含む範囲に一方の導電形のソ
ース層を拡散し、ソース層の他方側のベース層の表面を
上側から覆うようにゲートを配設し、かつベース接続層
の一方側の半導体領域に他方の導電形のコレクタ層を拡
散した上でベース接続層とソース層からエミッタ端子,
コレクタ層からコレクタ端子, ゲートからゲート端子を
それぞれ導出することにより、次の効果を上げることが
できる。
As described above, in the IGBT of the present invention, the base layer of the other conductivity type is diffused from the surface of the semiconductor region of the one conductivity type, and the other conductivity type is provided on one side so as to partially overlap with the base layer. Of the base layer on the other side of the source layer to cover the surface of the base layer on the other side of the source layer from the upper side. The base connection layer and the source layer to the emitter terminal, after disposing a collector layer of the other conductivity type in the semiconductor region on one side of the base connection layer,
The following effects can be obtained by deriving the collector terminal from the collector layer and the gate terminal from the gate.

【0029】(a) 従来とは逆にエミッタ領域をチャネル
領域よりもコレクタ層側に配置することにより、コレク
タ層側からエミッタ領域に流入するホール電流をそのベ
ース接続層に直接に引き抜いてソース層の下側に流れる
ホール電流を減少させ、かつソース層下を横方向に通る
ホール電流成分を比抵抗が低いベース接続層内にのみ流
してソース層とのpn接合へのホールの注入を防止するこ
とにより、横形構造のIGBTのラッチアップ耐量を向上さ
せることができる。
(A) By arranging the emitter region closer to the collector layer side than the channel region contrary to the conventional case, the hole current flowing from the collector layer side into the emitter region is directly drawn out to the base connection layer thereof, and the source layer is formed. The hole current flowing under the source layer is reduced, and the hole current component passing laterally under the source layer is allowed to flow only in the base connection layer having a low specific resistance to prevent injection of holes into the pn junction with the source layer. As a result, the latch-up resistance of the lateral IGBT can be improved.

【0030】(b) IGBTのオフ動作時にホール電流の大部
分が半導体領域の表面部に流れかつベース接続層に速や
かに引き抜かれるので、ラッチアップ発生のおそれが非
常に少なくなり、とくにオフ動作に伴いエミッタ端子か
ら侵入しやすい外来ノイズに対するラッチアップ耐量を
向上できる。また、ホール電流の吸収速度が上昇するの
でIGBTのオフ動作時間を従来より短縮できる。
(B) When the IGBT is turned off, most of the hole current flows to the surface of the semiconductor region and is quickly extracted to the base connection layer, so that the possibility of latch-up is greatly reduced, and especially in the off operation. As a result, it is possible to improve the latch-up resistance against external noise that easily enters from the emitter terminal. Further, since the hole current absorption speed is increased, the off-operation time of the IGBT can be shortened as compared with the conventional case.

【0031】なお、本発明はとくに集積回路装置に組み
込む横形IGBTに適用してそのラッチアップ耐量とオフ動
作特性を向上させる著効を奏するものである。
The present invention is particularly effective when applied to a lateral IGBT incorporated in an integrated circuit device to improve its latch-up resistance and off-operation characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による絶縁ゲートバイポーラトランジス
タの第1実施例の構造を示し、同図(a) はその単位構造
を示す断面図、同図(b) のその内部のキャリアの流路を
示す断面図である。
FIG. 1 shows a structure of a first embodiment of an insulated gate bipolar transistor according to the present invention, FIG. 1 (a) is a sectional view showing the unit structure, and FIG. 1 (b) shows a flow path of carriers therein. FIG.

【図2】コレクタショート層を設ける本発明の第2実施
例の断面図である。
FIG. 2 is a sectional view of a second embodiment of the present invention in which a collector short layer is provided.

【図3】ゲートとコレクタ層を互いに入り組んだ櫛歯状
のパターンに形成する本発明の第3実施例の上面図であ
る。
FIG. 3 is a top view of a third embodiment of the present invention in which a gate and a collector layer are formed in a comb-shaped pattern in which they are intricately interdigitated with each other.

【図4】コレクタショート層をゲートパターンの端部を
取り囲む範囲に設ける本発明の第4実施例の上面図であ
る。
FIG. 4 is a top view of a fourth embodiment of the present invention in which a collector short layer is provided in a range surrounding an end of a gate pattern.

【図5】従来の絶縁ゲートバイポーラトランジスタの単
位構造を示す断面図である。
FIG. 5 is a sectional view showing a unit structure of a conventional insulated gate bipolar transistor.

【図6】図5の従来例の内部のキャリアの流路を示す断
面図である。
FIG. 6 is a cross-sectional view showing a channel of a carrier inside the conventional example of FIG.

【符号の説明】 10 絶縁ゲートバイポーラトランジスタ用のウエハ 11 ウエハの基板 12 絶縁ゲートバイポーラトランジスタを作り込む
半導体領域 20 絶縁ゲートバイポーラトランジスタの単位構造 21 バッファ層 22 ゲート 23 ベース層 24 コレクタ層 25 ベース接続層 26 ソース層 27 コレクタショート層 28 コレクタショート層 30 端子用の電極膜 C コレクタ端子 E エミッタ端子 e 多数キャリアとしての電子 h 少数キャリアとしてのホール G ゲート端子
[Explanation of Codes] 10 Wafer for Insulated Gate Bipolar Transistor 11 Wafer Substrate 12 Semiconductor Region for Insulating Gate Bipolar Transistor 20 Unit Structure of Insulated Gate Bipolar Transistor 21 Buffer Layer 22 Gate 23 Base Layer 24 Collector Layer 25 Base Connection Layer 26 source layer 27 collector short layer 28 collector short layer 30 terminal electrode film C collector terminal E emitter terminal e electrons as majority carriers h holes as minority carriers G gate terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一方の導電形の半導体領域と、その表面か
ら拡散された他方の導電形のベース層と、ベース層と一
部が重なり合うようその一方側に拡散された他方の導電
形のベース接続層と、ベース層およびベース接続層の表
面から両層の境界を含む範囲内に浅く拡散された一方の
導電形のソース層と、ソース層の他方側のベース層の表
面を上側から覆うように配設されたゲートと、ベース接
続層の一方側の半導体領域の表面から拡散された他方の
導電形のコレクタ層とを備え、ベース接続層とソース層
からエミッタ端子を, コレクタ層からコレクタ端子を,
ゲートからゲート端子をそれぞれ導出してなることを特
徴とする絶縁ゲートバイポーラトランジスタ。
1. A semiconductor region of one conductivity type, a base layer of the other conductivity type diffused from the surface of the semiconductor region, and a base of the other conductivity type diffused to one side so as to partially overlap the base layer. Cover the connection layer, the base layer and the source layer of one conductivity type that is shallowly diffused within the range including the boundary between the base layer and the surface of the base connection layer, and the surface of the base layer on the other side of the source layer from above. And a collector layer of the other conductivity type diffused from the surface of the semiconductor region on one side of the base connecting layer, the base connecting layer and the source layer form an emitter terminal, and the collector layer forming a collector terminal. To
An insulated gate bipolar transistor, wherein each gate terminal is derived from the gate.
【請求項2】請求項1に記載のトランジスタにおいて、
コレクタ層に対してそれに隣接する半導体領域の表面か
ら一方の導電形のコレクタショート層を拡散し、それと
コレクタ層からコレクタ端子を導出するようにしたこと
を特徴とする絶縁ゲートバイポーラトランジスタ。
2. The transistor according to claim 1, wherein
An insulated gate bipolar transistor, characterized in that a collector short layer of one conductivity type is diffused from a surface of a semiconductor region adjacent to the collector layer, and a collector terminal is derived from the collector short layer.
【請求項3】請求項2に記載のトランジスタにおいて、
ゲートのパターンの端部を取り囲む範囲内にコレクタシ
ョート層を拡散するようにしたことを特徴とする絶縁ゲ
ートバイポーラトランジスタ。
3. The transistor according to claim 2, wherein
An insulated gate bipolar transistor, characterized in that a collector short layer is diffused within a range surrounding an end of a gate pattern.
【請求項4】請求項1に記載のトランジスタにおいて、
ゲートとコレクタ層とが互いに櫛歯状に入り組むパター
ンで配設されることを特徴とする絶縁ゲートバイポーラ
トランジスタ。
4. The transistor according to claim 1, wherein
An insulated gate bipolar transistor, characterized in that the gate and the collector layer are arranged in a comb-shaped interdigitated pattern.
【請求項5】請求項1に記載のトランジスタにおいて、
ベース層とソース層とをゲートをマスクとして不純物を
導入するイオン注入法により拡散するようにしたことを
特徴とする絶縁ゲートバイポーラトランジスタ。
5. The transistor according to claim 1, wherein
An insulated gate bipolar transistor, characterized in that a base layer and a source layer are diffused by an ion implantation method in which impurities are introduced using a gate as a mask.
JP29750092A 1992-11-09 1992-11-09 Insulated gate bipolar transistor Expired - Lifetime JP3206149B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29750092A JP3206149B2 (en) 1992-11-09 1992-11-09 Insulated gate bipolar transistor
GB9322665A GB2272572B (en) 1992-11-09 1993-11-03 Insulated-gate bipolar transistor and process of producing the same
US08/491,517 US5572055A (en) 1992-11-09 1995-06-19 Insulated-gate bipolar transistor with reduced latch-up
US08/491,686 US5624855A (en) 1992-11-09 1995-06-19 Process of producing insulated-gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29750092A JP3206149B2 (en) 1992-11-09 1992-11-09 Insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JPH06151838A true JPH06151838A (en) 1994-05-31
JP3206149B2 JP3206149B2 (en) 2001-09-04

Family

ID=17847318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29750092A Expired - Lifetime JP3206149B2 (en) 1992-11-09 1992-11-09 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP3206149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311212A (en) * 2004-04-26 2005-11-04 Fuji Electric Device Technology Co Ltd High breakdown strength insulated gate bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311212A (en) * 2004-04-26 2005-11-04 Fuji Electric Device Technology Co Ltd High breakdown strength insulated gate bipolar transistor

Also Published As

Publication number Publication date
JP3206149B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US5960264A (en) Method of manufacturing an insulated gate semiconductor device
JP3288218B2 (en) Insulated gate semiconductor device and method of manufacturing the same
US6118150A (en) Insulated gate semiconductor device and method of manufacturing the same
KR100218873B1 (en) Insulated gate semiconductor device and manufacturing method thereof
US4495513A (en) Bipolar transistor controlled by field effect by means of an isolated gate
US4717940A (en) MIS controlled gate turn-off thyristor
JPH01125979A (en) Insulated gate bipolar transistor
JP3338185B2 (en) Semiconductor device
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
JPH01198076A (en) Semiconductor device
JPH06169087A (en) Schottky barrier diode
EP0616369B1 (en) MIS-type semiconductor device
US5869850A (en) Lateral insulated gate bipolar transistor
JP2635044B2 (en) Semiconductor device
JPS643347B2 (en)
JPS608628B2 (en) Semiconductor integrated circuit device
JP3586193B2 (en) Semiconductor device and manufacturing method thereof
EP0064613A2 (en) Semiconductor device having a plurality of element units operable in parallel
US5572055A (en) Insulated-gate bipolar transistor with reduced latch-up
JPH05299658A (en) Semiconductor device and manufacture thereof
US5237186A (en) Conductivity-modulation metal oxide field effect transistor with single gate structure
JPH0465552B2 (en)
JP2963204B2 (en) Manufacturing method of insulated gate bipolar transistor
JP3206149B2 (en) Insulated gate bipolar transistor
JPH0888357A (en) Lateral igbt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080706

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080706

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350