JP2005311212A - High breakdown strength insulated gate bipolar transistor - Google Patents

High breakdown strength insulated gate bipolar transistor Download PDF

Info

Publication number
JP2005311212A
JP2005311212A JP2004129200A JP2004129200A JP2005311212A JP 2005311212 A JP2005311212 A JP 2005311212A JP 2004129200 A JP2004129200 A JP 2004129200A JP 2004129200 A JP2004129200 A JP 2004129200A JP 2005311212 A JP2005311212 A JP 2005311212A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
type
concentration diffusion
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004129200A
Other languages
Japanese (ja)
Other versions
JP4830263B2 (en
Inventor
Hitoshi Sumida
仁志 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004129200A priority Critical patent/JP4830263B2/en
Publication of JP2005311212A publication Critical patent/JP2005311212A/en
Application granted granted Critical
Publication of JP4830263B2 publication Critical patent/JP4830263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated gate bipolar transistor which can prevent the occurrence of latchup by increasing the lateral resistance of an n-type emitter layer in a small formation area to suppress an increase in voltage of the pn junction formed by the n-type emitter layer and a p-type base layer. <P>SOLUTION: The n-type emitter layer 4 consists of a highly doped diffusion layer 46 and a lightly doped diffusion layer 47. An emitter electrode is in contact with the highly doped diffusion layer 46, but not with the lightly doped diffusion layer 47. The end of the highly doped diffusion layer 46 is formed in a p-type contact layer 3. By not forming a channel in the end of the highly doped diffusion layer 46 to increase the lateral resistance of the n-type emitter layer 4, tolerance to latchup can be increased while forming the n-type emitter layer 4 in a small area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、絶縁ゲート形バイポーラトランジスタ(以下、IGBTと略す)に関する。   The present invention relates to an insulated gate bipolar transistor (hereinafter abbreviated as IGBT).

IGBTは周知のように、高入力インピーダンス特性と低出力インピーダンス特性を兼ね備えたパワーデバイスとしてさまざまな分野に広く使用されている。
IGBTは当初、家電、交通、産業分野のモータ制御用デバイスとして縦形構造の個別素子として盛んに開発されてきた。最近では、IGBTの動作を制御する制御回路をIGBTと同一チップ上に搭載した、いわゆるパワーICの市場拡大により、パワーICへの搭載を目的とした横形IGBTの開発も活発になっている。
図11は、一般的な高耐圧のnチャネル形横形IGBTの要部断面図である。尚、導電形を反転することによりpチャネル形横形IGBTとなる。また図には動作を説明するための電子電流Ieと正孔電流Ihを示した。
n形半導体基板あるいはn形エピタキシャル層などのn形半導体層1の表面にn形バッファ層11とp形ベース層2をある距離を設けて形成する。この距離は素子に要求される耐圧に応じて決定される。そして、n形バッファ層11内にはコレクタ層12を、p形ベース層2内にはp形コンタクト層3を、いずれも高不純物濃度のp形拡散層で形成する。また、p形ベース層2の表面層にはn形エミッタ層4が高不純物濃度の拡散層で形成される。
As is well known, IGBT is widely used in various fields as a power device having both high input impedance characteristics and low output impedance characteristics.
Initially, IGBTs have been actively developed as individual devices having a vertical structure as motor control devices in home appliances, transportation, and industrial fields. Recently, with the expansion of the so-called power IC market in which a control circuit for controlling the operation of the IGBT is mounted on the same chip as the IGBT, development of a lateral IGBT intended for mounting in a power IC has become active.
FIG. 11 is a cross-sectional view of a main part of a general high breakdown voltage n-channel type lateral IGBT. Note that a p-channel lateral IGBT is obtained by reversing the conductivity type. The figure also shows an electron current Ie and a hole current Ih for explaining the operation.
An n-type buffer layer 11 and a p-type base layer 2 are formed at a certain distance on the surface of an n-type semiconductor layer 1 such as an n-type semiconductor substrate or an n-type epitaxial layer. This distance is determined according to the breakdown voltage required for the element. Then, the collector layer 12 is formed in the n-type buffer layer 11 and the p-type contact layer 3 is formed in the p-type base layer 2, both of which are p-type diffusion layers having a high impurity concentration. An n-type emitter layer 4 is formed on the surface layer of the p-type base layer 2 as a diffusion layer having a high impurity concentration.

n形エミッタ層4からp形ベース層2を介し、n形半導体層1の表面にまたがって酸化膜でゲート絶縁膜8が形成される。そして、このゲート絶縁膜8上にゲート電極7が設けられる。ゲート絶縁膜8端からコレクタ領域14まではゲート絶縁膜8よりも厚い酸化膜でLOCOS酸化膜10が形成される。また、ゲート電極7は図のようにLOCOS酸化膜10上も部分的に覆うように配置される。この箇所のゲート電極7はフィールドプレートの働きをする。尚、図中の17はn形ドリフト層、6aはエミッタ電極端、9はn形エミッタ層4とエミッタ電極6とゲート電極7からなるエミッタ・ゲート領域、14はp形コレクタ層とコレクタ電極からなるコレクタ領域である。
p形コレクタ層12にはコレクタ電極13が接続し、またp形コンタクト層3およびn形エミッタ層4の一部にエミッタ電極6が接続する。エミッタ電極6にはエミッタ端子Eが接続し、コレクタ電極13にはコレクタ端子Cを接続し、ゲート電極7にはゲート端子Gが接続する。
A gate insulating film 8 is formed of an oxide film across the surface of the n-type semiconductor layer 1 from the n-type emitter layer 4 through the p-type base layer 2. A gate electrode 7 is provided on the gate insulating film 8. From the end of the gate insulating film 8 to the collector region 14, the LOCOS oxide film 10 is formed of an oxide film thicker than the gate insulating film 8. Further, the gate electrode 7 is disposed so as to partially cover the LOCOS oxide film 10 as shown. The gate electrode 7 at this point functions as a field plate. In the figure, 17 is an n-type drift layer, 6a is an emitter electrode end, 9 is an emitter / gate region comprising the n-type emitter layer 4, emitter electrode 6 and gate electrode 7, and 14 is a p-type collector layer and collector electrode. This is the collector area.
A collector electrode 13 is connected to the p-type collector layer 12, and an emitter electrode 6 is connected to part of the p-type contact layer 3 and the n-type emitter layer 4. An emitter terminal E is connected to the emitter electrode 6, a collector terminal C is connected to the collector electrode 13, and a gate terminal G is connected to the gate electrode 7.

つぎに、nチャネル形横形IGBTの動作を説明する図である。
エミッタ端子Eに対してゲート端子Gにしきい値電圧以上の電圧を与えるとゲート絶縁膜8直下のp形ベース層2の表面にチャネル5が形成され、これを介しn形エミッタ層4から多数キャリアである電子がn形半導体層1に注入されて電子電流Ieが流れる。そして、p形コレクタ層12に流入する電子電流によって少数キャリアである正孔がn形バッファ層11を介してn形半導体層1に注入され、正孔電流Ihが流れ、n形半導体層1が伝導度変調する。これがIGBTのオン動作である。
一方、ゲート端子Gに与えていたゲート電圧をしきい値電圧未満までに下げるとゲート絶縁膜8直下のチャネル5が消失し、電子電流Ieの注入が停止する。これにより、IGBTをオフさせることができる。
Next, the operation of the n-channel lateral IGBT will be described.
When a voltage equal to or higher than the threshold voltage is applied to the gate terminal G with respect to the emitter terminal E, a channel 5 is formed on the surface of the p-type base layer 2 immediately below the gate insulating film 8, and a majority carrier is formed from the n-type emitter layer 4 through this. Are injected into the n-type semiconductor layer 1 and an electron current Ie flows. Then, holes that are minority carriers are injected into the n-type semiconductor layer 1 through the n-type buffer layer 11 by the electron current flowing into the p-type collector layer 12, and the hole current Ih flows. Conductivity modulation. This is the ON operation of the IGBT.
On the other hand, when the gate voltage applied to the gate terminal G is lowered below the threshold voltage, the channel 5 immediately below the gate insulating film 8 disappears, and the injection of the electron current Ie is stopped. Thereby, IGBT can be turned off.

このようにIGBTはMOS駆動による高速スイッチング特性と、バイポーラ動作による大電流駆動能力を備えたデバイスであり、さまざまなアプリケーションにおいて優れたパフォーマンスを示している。しかし、IGBTには寄生サイリスタが存在し、この寄生サイリスタが動作するラッチアップ現象を防止しなければならないという大きな課題がある。
図12は、図11のnチャネル形横形IGBTのラッチアップ現象を説明する図である。
IGBTがオン状態になるとコレクタ領域14から少数キャリアである正孔がn形半導体層1に注入され正孔電流Ihが流れる。この正孔電流Ihはn形半導体層1−p形ベース層2−p形コンタクト層3−エミッタ電極6の経路でエミッタ端子Eに流れる。正孔電流Ihがp形ベース層2を流れる時に、n形エミッタ層4直下のp形ベース層2の横方向抵抗Rbによって電圧降下が発生し、この電圧降下によってn形エミッタ層4とp形ベース層2のpn接合が順バイアスされる。この順バイアス電圧が0.6V以上になると、n形エミッタ層4からp形ベース層2へ電子が注入され、電子流ILeがn形エミッタ層4−p形ベース層を経由してn形半導体層1に流れ込み、p形コレクタ層12/n形半導体層1/p形ベース層2/n形エミッタ層4で構成される寄生サイリスタがオンすることになる。これがIGBTのラッチアップ現象である。
As described above, the IGBT is a device having a high-speed switching characteristic by MOS driving and a large current driving capability by bipolar operation, and exhibits excellent performance in various applications. However, the IGBT has a parasitic thyristor, and there is a big problem that a latch-up phenomenon in which the parasitic thyristor operates must be prevented.
FIG. 12 is a diagram for explaining the latch-up phenomenon of the n-channel lateral IGBT of FIG.
When the IGBT is turned on, holes which are minority carriers are injected from the collector region 14 into the n-type semiconductor layer 1 and a hole current Ih flows. This hole current Ih flows to the emitter terminal E through the path of the n-type semiconductor layer 1 -p-type base layer 2 -p-type contact layer 3 -emitter electrode 6. When the hole current Ih flows through the p-type base layer 2, a voltage drop is generated by the lateral resistance Rb of the p-type base layer 2 immediately below the n-type emitter layer 4, and this voltage drop causes the n-type emitter layer 4 and the p-type The pn junction of the base layer 2 is forward biased. When the forward bias voltage becomes 0.6 V or more, electrons are injected from the n-type emitter layer 4 to the p-type base layer 2, and the electron current ILe passes through the n-type emitter layer 4-p-type base layer and forms an n-type semiconductor. The parasitic thyristor composed of the p-type collector layer 12 / n-type semiconductor layer 1 / p-type base layer 2 / n-type emitter layer 4 is turned on. This is the latch-up phenomenon of the IGBT.

ラッチアップが一旦起こると、MOSゲートによる電流制御機能が失われ、また素子の電圧印加状態によっては素子が破壊に到る危険がある。よって、IGBTの開発では横型構造や縦型構造に関係なく、このラッチアップの発生をいかに抑えるかが大きな課題となる。
ラッチアップの発生を防止するためにはp形ベース層2の横方向抵抗Rbによる電圧降下を抑え、n形エミッタ層4とp形ベース層2のpn接合が0.6V以上に順バイアスされないようにする必要がある。n形エミッタ層4とp形ベース層2のpn接合の順バイアス電の上昇を抑える手法として、n形エミッタ層4のパターンを最適化する方法がある。以下、これについて説明する。
図13は、高耐圧横型IGBTの平面パターンを示す図である。n形ドリフト層17が直線箇所と曲線箇所で構成され、蛇行したパターンとなっている。曲線箇所はエミッタ・ゲート領域9がドレイン領域14で囲まれたエミッタコーナー15とドレイン領域14がエミッタ・ゲート領域9で囲まれたコレクタコーナー16がある。X−X線で切断した要部断面図が図11である。
Once latch-up occurs, the current control function by the MOS gate is lost, and there is a risk that the device will be destroyed depending on the voltage application state of the device. Therefore, in the development of IGBT, regardless of the horizontal structure or the vertical structure, how to suppress the occurrence of this latch-up becomes a major issue.
In order to prevent the occurrence of latch-up, the voltage drop due to the lateral resistance Rb of the p-type base layer 2 is suppressed, so that the pn junction between the n-type emitter layer 4 and the p-type base layer 2 is not forward biased to 0.6V or more. It is necessary to. There is a method of optimizing the pattern of the n-type emitter layer 4 as a method for suppressing an increase in forward bias electricity at the pn junction between the n-type emitter layer 4 and the p-type base layer 2. This will be described below.
FIG. 13 is a diagram showing a planar pattern of a high breakdown voltage lateral IGBT. The n-type drift layer 17 is composed of straight portions and curved portions, and has a meandering pattern. The curved portion includes an emitter corner 15 in which the emitter / gate region 9 is surrounded by the drain region 14 and a collector corner 16 in which the drain region 14 is surrounded by the emitter / gate region 9. FIG. 11 is a cross-sectional view of the main part taken along the line XX.

図14は、図13のA部の詳細拡大図である。中央部にp形コレクタ層12が形成され、その両側にn形バッファ層11が形成され、さらにその外側にn形ドリフト層17、p形ベース層2、n形エミッタ層4、p形コンタクト層3がそれぞれ形成される。図中のX−X線で切断した要部断面図は図11である。この詳細拡大図では、ゲート絶縁膜8とエミッタ電極6とゲート電極7は省略し、n形半導体層1の表面に形成された拡散層を示している。
このパターンではn形エミッタ層4は高濃度拡散層でストライプ状に形成されている。尚、p形コンタクト層3はn形エミッタ層4に重なるようにn形エミッタ層4の下部領域まで形成される。このn形エミッタ層4のパターンは最も一般的であり、このパターンでは前記のpn接合の順バイアス電圧の上昇で、ラッチアップが発生しやすい。そこで、ラッチアップ対策した例が特許文献1に記載されており、それを図14の横形IGBTに適用した場合のパターンについて説明する。
FIG. 14 is a detailed enlarged view of part A of FIG. A p-type collector layer 12 is formed at the center, n-type buffer layers 11 are formed on both sides thereof, and an n-type drift layer 17, a p-type base layer 2, an n-type emitter layer 4, and a p-type contact layer are formed on the outer sides. 3 are formed. FIG. 11 is a cross-sectional view of the main part taken along the line XX in the figure. In this detailed enlarged view, the gate insulating film 8, the emitter electrode 6 and the gate electrode 7 are omitted, and a diffusion layer formed on the surface of the n-type semiconductor layer 1 is shown.
In this pattern, the n-type emitter layer 4 is formed in a stripe shape with a high concentration diffusion layer. The p-type contact layer 3 is formed up to the lower region of the n-type emitter layer 4 so as to overlap the n-type emitter layer 4. The pattern of the n-type emitter layer 4 is the most common. In this pattern, latch-up is likely to occur due to the increase of the forward bias voltage of the pn junction. Therefore, an example in which a latch-up countermeasure is taken is described in Patent Document 1, and a pattern in a case where it is applied to the horizontal IGBT of FIG. 14 will be described.

図15および図16は、ラッチアップ対策した横型IGBTの構成図であり、図15は要部平面図、図16(a)は図15のX−X線で切断した要部断面図、図16(b)は図15のY−Y線で切断した要部断面図、図16(c)は図15のZ−Z線で切断した要部断面図である。図15はゲート酸化膜8とエミッタ電極6とゲート電極7は省略されており、n形半導体層1の表面に形成された拡散層のみを示している。
この横型IGBTではn形エミッタ層4は高濃度拡散層44と高濃度拡散層45で構成され、高濃度拡散層45は分割形成され、この分割された高濃度拡散層45に挟まれて高濃度層44が形成されている。エミッタ電極6は高濃度拡散層44に接触し、高濃度拡散層45には接触しない。また、p形コンタクト層3の平面形状は直線でなく櫛の歯状に入り組んでおり、高濃度拡散層44の先端部がp形コンタクト層3の先端部に囲まれるように形成されている。尚、高濃度拡散層44と高濃度拡散層45は同一条件で形成される。
15 and 16 are configuration diagrams of a lateral IGBT with a latch-up countermeasure, FIG. 15 is a plan view of the main part, FIG. 16A is a cross-sectional view of the main part taken along line XX in FIG. (B) is the principal part sectional drawing cut | disconnected by the YY line | wire of FIG. 15, FIG.16 (c) is principal part sectional drawing cut | disconnected by the ZZ line | wire of FIG. FIG. 15 omits the gate oxide film 8, the emitter electrode 6, and the gate electrode 7, and shows only the diffusion layer formed on the surface of the n-type semiconductor layer 1.
In this lateral IGBT, the n-type emitter layer 4 is composed of a high-concentration diffusion layer 44 and a high-concentration diffusion layer 45, and the high-concentration diffusion layer 45 is divided and formed between the divided high-concentration diffusion layers 45. A layer 44 is formed. The emitter electrode 6 contacts the high concentration diffusion layer 44 and does not contact the high concentration diffusion layer 45. In addition, the planar shape of the p-type contact layer 3 is not a straight line but is interdigitated, and is formed so that the tip of the high-concentration diffusion layer 44 is surrounded by the tip of the p-type contact layer 3. The high concentration diffusion layer 44 and the high concentration diffusion layer 45 are formed under the same conditions.

このような構成にすると、高濃度拡散層44とベース層2との間のp形コンタクト層3は不純物濃度が高いためしきい値電圧は高くなりチャネルが形成されない。一方、エミッタ電極6と接触しない高濃度拡散層45の先端部と接するp形ベース層45は不純物濃度が低いためにチャネルが形成される。
このパターンの特徴は、電子電流はエミッタ電極6と非接触のn形エミッタ層4を構成する高濃度拡散層45のみに流れ、その時、高濃度拡散層45の横方向抵抗Reにより高濃度拡散層45の先端部の電位を上昇させるところにある。この電位上昇によりp形ベース層2とn形エミッタ層4のpn接合電圧の上昇が抑えられ、ラッチアップが起こりにくくなる。また、このパターンではエミッタフォロア構造となるため、IGBTの飽和電流を抑える効果もある。
With such a configuration, the p-type contact layer 3 between the high-concentration diffusion layer 44 and the base layer 2 has a high impurity concentration, so that the threshold voltage increases and a channel is not formed. On the other hand, the p-type base layer 45 that is in contact with the tip of the high-concentration diffusion layer 45 that is not in contact with the emitter electrode 6 has a low impurity concentration, so that a channel is formed.
The feature of this pattern is that the electron current flows only in the high-concentration diffusion layer 45 constituting the n-type emitter layer 4 not in contact with the emitter electrode 6, and at that time, the high-concentration diffusion layer is caused by the lateral resistance Re of the high-concentration diffusion layer 45. The potential at the tip of 45 is raised. Due to this potential increase, the increase in the pn junction voltage between the p-type base layer 2 and the n-type emitter layer 4 is suppressed, and latch-up is unlikely to occur. Further, since this pattern has an emitter follower structure, there is an effect of suppressing the saturation current of the IGBT.

n形エミッタ層4の異なるパターンとして、n形エミッタ層4をp形ベース層2内に短冊状に形成する手法が特許文献2に記載されており、それを図14の横形IGBTに適用した場合のパターンについて説明する。
図17および図18は、ラッチアップ対策した横型IGBTの構成図であり、図17は要部平面図、図18(a)は図17のX−X線で切断した要部断面図、図18(b)は図17のY−Y線で切断した要部断面図、図18(c)は図17のZ−Z線で切断した要部断面図である。図17はゲート酸化膜8とエミッタ電極6とゲート電極7は省略されており、n形半導体層1の表面に形成された拡散層のみを示している。
p形ベース層2内に高濃度拡散層44で形成されたn形エミッタ層4が短冊状に形成され、n形エミッタ層4はp形コンタクト層3によって分割される。分割されたn形エミッタ層4同士の間隔は要求特性によって調整される。このパターンではゲート電極7に対してp形コンタクト層3がn形エミッタ層4と並列に配置されるため、突き出したp形コンタクト層3からn形ドリフト層に蓄積した正孔を効果的に引き抜くことができて、ラッチアップの発生を抑えることができる。
As a different pattern of the n-type emitter layer 4, a method of forming the n-type emitter layer 4 in a strip shape in the p-type base layer 2 is described in Patent Document 2, which is applied to the lateral IGBT of FIG. The pattern will be described.
17 and 18 are configuration diagrams of a lateral IGBT with a latch-up measure, FIG. 17 is a plan view of the main part, FIG. 18A is a cross-sectional view of the main part taken along line XX of FIG. (B) is the principal part sectional drawing cut | disconnected by the YY line | wire of FIG. 17, FIG.18 (c) is principal part sectional drawing cut | disconnected by the ZZ line | wire of FIG. FIG. 17 omits the gate oxide film 8, the emitter electrode 6, and the gate electrode 7, and shows only the diffusion layer formed on the surface of the n-type semiconductor layer 1.
An n-type emitter layer 4 formed of a high-concentration diffusion layer 44 is formed in a strip shape in the p-type base layer 2, and the n-type emitter layer 4 is divided by the p-type contact layer 3. The interval between the divided n-type emitter layers 4 is adjusted according to the required characteristics. In this pattern, since the p-type contact layer 3 is arranged in parallel to the n-type emitter layer 4 with respect to the gate electrode 7, holes accumulated in the n-type drift layer are effectively extracted from the protruding p-type contact layer 3. And the occurrence of latch-up can be suppressed.

また、このパターンではn形エミッタ層4が形成されない領域が存在するため、n形エミッタ層4の横方向抵抗Reが多少大きくなり、p形ベース層2とn形エミッタ層4のpn接合電圧の上昇が抑えられ、ラッチアップが起こりにくくなる傾向になる。また、このパターンではエミッタフォロア構造となるため、IGBTの飽和電流を抑える効果もある。
また、例えば特許文献3では、絶縁ゲート形半導体装置のオン抵抗を増大させることなく、アバランシェ耐量やラッチアップ耐量を向上させるために、n形エミッタ層のチャネル側に低濃度拡散層を形成して、寄生トランジスタをオンしにくくすることが報告されている。
特開平6−13620号公報 図1〜図3 特開平5−206469号公報 特開平8−186254号公報 図1、図12
Further, in this pattern, since there is a region where the n-type emitter layer 4 is not formed, the lateral resistance Re of the n-type emitter layer 4 is somewhat increased, and the pn junction voltage between the p-type base layer 2 and the n-type emitter layer 4 is increased. The rise is suppressed, and the latch-up is less likely to occur. Further, since this pattern has an emitter follower structure, there is an effect of suppressing the saturation current of the IGBT.
For example, in Patent Document 3, a low-concentration diffusion layer is formed on the channel side of the n-type emitter layer in order to improve the avalanche resistance and the latch-up resistance without increasing the on-resistance of the insulated gate semiconductor device. It has been reported that parasitic transistors are difficult to turn on.
Japanese Patent Laid-Open No. 6-13620 FIG. JP-A-5-206469 JP, 8-186254, A FIG. 1, FIG.

IGBTはMOS駆動による高速スイッチング特性と、バイポーラ動作による大電流駆動能力を備えたデバイスであり、さまざまなアプリケーションにおいて優れたパフォーマンスを示している。しかし、IGBTには寄生サイリスタが存在し、この寄生サイリスタが動作するラッチアップ現象を防止しなければならないという大きな課題がある。
このラッチアップの発生を防止するためには、前記したように、n形エミッタ層とp形ベース層で形成される接合の電位上昇をいかに抑えるかが鍵となる。そのため、n形エミッタ層のパターンを工夫し、この領域での横方向抵抗を持たせる手法が考案されている。しかし、これらの手法ではn形エミッタ層が高濃度拡散で形成されるため、横方向抵抗を上げるためにはエミッタ電極との非接触面積を増やす必要がある。これはn形エミッタ層のパターン面積を増加させることになり、素子面積の増加をもたらす結果となる。
The IGBT is a device having a high-speed switching characteristic by MOS driving and a large current driving capability by bipolar operation, and exhibits excellent performance in various applications. However, the IGBT has a parasitic thyristor, and there is a big problem that a latch-up phenomenon in which the parasitic thyristor operates must be prevented.
In order to prevent the occurrence of latch-up, as described above, the key is how to suppress the potential increase of the junction formed by the n-type emitter layer and the p-type base layer. For this reason, a method has been devised in which the pattern of the n-type emitter layer is devised to provide lateral resistance in this region. However, in these methods, since the n-type emitter layer is formed by high concentration diffusion, it is necessary to increase the non-contact area with the emitter electrode in order to increase the lateral resistance. This increases the pattern area of the n-type emitter layer, resulting in an increase in the element area.

この発明の目的は、前記の課題を解決して、n形エミッタ層の横方向抵抗を少ない形成面積で増加させ、n形エミッタ層とp形ベース層のpn接合電圧の上昇を抑えることでラッチアップの発生を防止できる高耐圧絶縁ゲート型バイポーラトランジスタを提供することにある。   The object of the present invention is to solve the above-mentioned problems, increase the lateral resistance of the n-type emitter layer with a small formation area, and suppress the increase in the pn junction voltage between the n-type emitter layer and the p-type base layer. An object of the present invention is to provide a high breakdown voltage insulated gate bipolar transistor capable of preventing the occurrence of an increase.

前記の目的を達成するために、第1導電形半導体層の表面層に選択的に形成された第2導電形ベース層と、該第2導電形ベース層の表面層に選択的に形成された第1導電形エミッタ層と、該第1導電形エミッタ層と前記第1導電形半導体層に挟まれた前記第2導電形ベース層上にゲート絶縁膜を介して形成されたゲート電極とを有する絶縁ゲート形バイポーラトランジスタにおいて、前記第1導電形エミッタ層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層で形成され、前記高濃度拡散層に前記エミッタ電極が接触し、前記低濃度拡散層に前記エミッタ電極が接触しない構成とする。 また、前記高濃度拡散層と前記低濃度拡散層とは、前記ゲート電極側端部が該ゲート電極に対して交互に配置され、前記高濃度拡散層と前記半導体層との間の前記ベース層の表面層に前記高濃度拡散層と隣接して第2導電形反転防止層を有するとよい。   To achieve the above object, the second conductivity type base layer selectively formed on the surface layer of the first conductivity type semiconductor layer and the second conductivity type base layer selectively formed on the surface layer of the second conductivity type base layer. A first conductivity type emitter layer; and a gate electrode formed on the second conductivity type base layer sandwiched between the first conductivity type emitter layer and the first conductivity type semiconductor layer via a gate insulating film. In the insulated gate bipolar transistor, the first conductivity type emitter layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having an impurity concentration lower than that of the high concentration diffusion layer, and the high concentration diffusion layer includes the diffusion layer. The emitter electrode is in contact, and the emitter electrode is not in contact with the low concentration diffusion layer. The high-concentration diffusion layer and the low-concentration diffusion layer have the gate electrode side end portions alternately arranged with respect to the gate electrode, and the base layer between the high-concentration diffusion layer and the semiconductor layer It is preferable to have a second conductivity type anti-inversion layer adjacent to the high-concentration diffusion layer on the surface layer.

また、前記エミッタ層に隣接し前記ゲート電極と反対側に前記ベース層の表面層に選択的に形成された第2導電形コンタクト層を有し、前記反転防止層は、前記コンタクト層が前記高濃度拡散層の底部を覆い前記エミッタ層と前記半導体層との間の前記ベース層の表面に延在したものである。
また、前記第1導電形半導体層の表面層に前記第2導電形ベース層から離して形成された第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有するとよい。
また、前記第1導電形半導体層の表面層に前記第2導電形ベース層と離して形成された第1導電形バッファ層と、該第1導電形バッファ層の表面層に形成された前記第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有するとよい。
And a second conductivity type contact layer selectively formed on the surface layer of the base layer adjacent to the emitter layer and on the opposite side of the gate electrode. It covers the bottom of the concentration diffusion layer and extends to the surface of the base layer between the emitter layer and the semiconductor layer.
A second conductivity type collector layer formed on the surface layer of the first conductivity type semiconductor layer away from the second conductivity type base layer; and a collector electrode in contact with the second conductivity type collector layer. Good.
A first conductivity type buffer layer formed on a surface layer of the first conductivity type semiconductor layer apart from the second conductivity type base layer; and the first conductivity type buffer layer formed on a surface layer of the first conductivity type buffer layer. It is good to have a 2 conductivity type collector layer and a collector electrode which contacts this 2nd conductivity type collector layer.

また、前記第1導電形半導体層の裏面側の表面層に形成された第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有するとよい。
また、前記第1導電形半導体層の裏面側の表面層に形成された第1導電形バッファ層と、該第1導電形バッファ層の表面層に形成された前記第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有するとよい。
IGBTのラッチアップを防止するためには、n形エミッタ層とp形ベース層で形成される接合の電位上昇を抑える必要があり、これを実現する方法としてn形エミッタ層の抵抗を大きくする手法がある。そこで本発明では、n形エミッタ層の抵抗を増加させるためにn形エミッタ層を低濃度拡散層と高濃度拡散層の2つの拡散層で構成する。すなわち、エミッタ電極と接触する部分とその近傍には高濃度拡散層を形成し、その他の部分を低濃度拡散層で形成する。これにより、n形エミッタ層の横方向抵抗を少ない形成面積で増加させることが可能となる。また、n形エミッタ層においてラッチアップが発生する部分は低濃度拡散層で形成するため、MOS電流の増加とともにこの部分での電圧降下も上昇する。よって、n形エミッタ層とp形ベースコンタクト層の接合電位の上昇を素子電流の増加に応じて効果的に抑えることができる。以上により、IGBTのラッチアップ耐量向上を図ることができる。
Moreover, it is good to have the 2nd conductivity type collector layer formed in the surface layer of the back surface side of the said 1st conductivity type semiconductor layer, and the collector electrode which contacts this 2nd conductivity type collector layer.
A first conductivity type buffer layer formed on a surface layer on a back surface side of the first conductivity type semiconductor layer; and a second conductivity type collector layer formed on the surface layer of the first conductivity type buffer layer; It is preferable to have a collector electrode in contact with the second conductivity type collector layer.
In order to prevent the latch-up of the IGBT, it is necessary to suppress an increase in the potential of the junction formed by the n-type emitter layer and the p-type base layer. As a method for realizing this, a method of increasing the resistance of the n-type emitter layer There is. Therefore, in the present invention, in order to increase the resistance of the n-type emitter layer, the n-type emitter layer is composed of two diffusion layers, a low concentration diffusion layer and a high concentration diffusion layer. That is, a high-concentration diffusion layer is formed in and near the portion in contact with the emitter electrode, and the other portions are formed of the low-concentration diffusion layer. As a result, the lateral resistance of the n-type emitter layer can be increased with a small formation area. In addition, since the portion where the latch-up occurs in the n-type emitter layer is formed by the low concentration diffusion layer, the voltage drop in this portion also increases as the MOS current increases. Therefore, an increase in junction potential between the n-type emitter layer and the p-type base contact layer can be effectively suppressed according to an increase in device current. As described above, it is possible to improve the latch-up resistance of the IGBT.

この発明によると、IGBTのn形エミッタ層の抵抗を増加させるためにn形エミッタ層を高濃度拡散層と該高濃度拡散層より不純物濃度が低い低濃度拡散層の2つの拡散層で構成し、エミッタ電極と接触する部分とその近傍には高濃度拡散層を形成し、エミッタ電極と接触しない部分を低濃度拡散層で形成し、この高濃度拡散層のゲート電極側の先端部とベース層との間に高濃度のp形コンタクト層を延在して形成したり、p形反転防止層を形成することで、高濃度拡散層とベース層との間にチャネルを形成しない領域を形成することで、n形エミッタ層を流れる電子電流を横方向抵抗の大きな低濃度拡散層に流して、n形エミッタ層とp形ベース層のpn接合電圧の上昇を抑え、ラッチアップの発生を抑制できる。
この構成とすることにより、少ない形成面積でn形エミッタ層の横方向抵抗を増加させることが可能となり、その結果、少ない形成面積でラッチアップ耐量を向上させることができる。
According to the present invention, in order to increase the resistance of the IGBT n-type emitter layer, the n-type emitter layer is composed of two diffusion layers, a high-concentration diffusion layer and a low-concentration diffusion layer having a lower impurity concentration than the high-concentration diffusion layer. The high-concentration diffusion layer is formed in and near the portion that contacts the emitter electrode, and the portion that does not contact the emitter electrode is formed by the low-concentration diffusion layer. A region where no channel is formed is formed between the high-concentration diffusion layer and the base layer by forming a high-concentration p-type contact layer therebetween and forming a p-type inversion prevention layer. As a result, an electron current flowing through the n-type emitter layer is allowed to flow through the low-concentration diffusion layer having a large lateral resistance, thereby suppressing an increase in the pn junction voltage between the n-type emitter layer and the p-type base layer and suppressing the occurrence of latch-up. .
With this configuration, the lateral resistance of the n-type emitter layer can be increased with a small formation area, and as a result, the latch-up resistance can be improved with a small formation area.

この発明の実施の形態は、n形エミッタ層を高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層で形成し、エミッタ電極と高濃度拡散層を接触させ、低濃度拡散層とは接触させない構成とする。この高濃度拡散層のゲート電極側の先端部とベース層との間にp形反転防止層を形成し、該p形反転防止層にチャネルを形成させないようにして、n形エミッタ層の横方向抵抗を増大させることでラッチアップの発生を防止する。この構成とすることで、n形エミッタ層を小さい面積で形成しながら、ラッチアップ耐量の向上を図ることである。
以下の説明では、従来構造と同一部位には同一の符号を付した。
In the embodiment of the present invention, an n-type emitter layer is formed of a high-concentration diffusion layer and a low-concentration diffusion layer having a lower impurity concentration than the high-concentration diffusion layer, and the emitter electrode and the high-concentration diffusion layer are brought into contact with each other. The structure is not in contact with the layer. A p-type inversion prevention layer is formed between the gate electrode side tip of the high-concentration diffusion layer and the base layer, and a channel is not formed in the p-type inversion prevention layer, so that the lateral direction of the n-type emitter layer Increasing the resistance prevents latch-up from occurring. With this configuration, the latch-up resistance is improved while the n-type emitter layer is formed with a small area.
In the following description, the same reference numerals are assigned to the same parts as those of the conventional structure.

図1および図2は、この発明の第1実施例の高耐圧横形IGBTの構成図であり、図1は要部平面図、図2(a)は図1のX−X線で切断した要部断面図、図2(b)は図1のY−Y線で切断した要部断面図、図2(c)は図1のZ1−Z1線で切断した要部断面図、図2(d)は図1のZ2−Z2線で切断した要部断面図である。図1は図14に相当する図である。
n形半導体基板あるいはn形エピタキシャル層などの比抵抗5〜10Ω・cm程度のn形半導体層1の表面に不純物濃度1013cm-2程度のn形バッファ層11と不純物濃度3×1013cm-2程度のp形ベース層2をある距離を設けて形成する。この距離は素子に要求される耐圧に応じて決定される。そして、n形バッファ層11内には不純物濃度3×1015cm-2程度のコレクタ層12を、p形ベース層2内にはp形コンタクト層3を、いずれも高不純物濃度のp形拡散層で形成する。p形ベース層2の表面層にはn形エミッタ層4が高濃度拡散層46と高濃度拡散層46より不純物濃度の低い低濃度拡散層47で形成される。高濃度拡散層46は不純物濃度5×1015cm-2程度で形成され、低濃度拡散層47は不純物濃度1013cm-2程度で形成される。低濃度拡散層47は分割され、この分割された低濃度拡散層47同士に挟まれて高濃度拡散層46が形成され、この高濃度拡散層46のゲート電極側の先端部はp形コンタクト層3内に形成されている。p形コンタクト層3はp形ベース層2に比べ不純物濃度が高くゲート電圧が印加されても反転してチャネルとならないため、高濃度拡散層46とp形ベース層2との間に形成されるp形コンタクト層3は反転防止層の役割を果たす。高濃度拡散層46の低濃度拡散層47に隣接する側面は低濃度拡散層47と接続されるように形成される。
1 and 2 are configuration diagrams of a high breakdown voltage lateral IGBT according to a first embodiment of the present invention. FIG. 1 is a plan view of a main part, and FIG. 2 (a) is a cross-sectional view taken along line XX of FIG. FIG. 2B is a fragmentary sectional view taken along line YY of FIG. 1, FIG. 2C is a fragmentary sectional view taken along line Z1-Z1 of FIG. 1, and FIG. ) Is a cross-sectional view of the main part taken along the line Z2-Z2 of FIG. FIG. 1 corresponds to FIG.
An n-type buffer layer 11 having an impurity concentration of about 10 13 cm −2 and an impurity concentration of 3 × 10 13 cm are formed on the surface of an n-type semiconductor layer 1 having a specific resistance of about 5 to 10 Ω · cm, such as an n-type semiconductor substrate or an n-type epitaxial layer. A p-type base layer 2 of about −2 is formed at a certain distance. This distance is determined according to the breakdown voltage required for the element. Then, a collector layer 12 having an impurity concentration of about 3 × 10 15 cm −2 is formed in the n-type buffer layer 11, a p-type contact layer 3 is formed in the p-type base layer 2, and both p-type diffusions having a high impurity concentration. Form with layers. On the surface layer of the p-type base layer 2, the n-type emitter layer 4 is formed by a high-concentration diffusion layer 46 and a low-concentration diffusion layer 47 having a lower impurity concentration than the high-concentration diffusion layer 46. The high concentration diffusion layer 46 is formed with an impurity concentration of about 5 × 10 15 cm −2 , and the low concentration diffusion layer 47 is formed with an impurity concentration of about 10 13 cm −2 . The low-concentration diffusion layer 47 is divided, and a high-concentration diffusion layer 46 is formed by being sandwiched between the divided low-concentration diffusion layers 47, and the tip of the high-concentration diffusion layer 46 on the gate electrode side is a p-type contact layer. 3 is formed. Since the p-type contact layer 3 has a higher impurity concentration than the p-type base layer 2 and is not inverted even when a gate voltage is applied, the p-type contact layer 3 is formed between the high-concentration diffusion layer 46 and the p-type base layer 2. The p-type contact layer 3 serves as an anti-inversion layer. A side surface of the high concentration diffusion layer 46 adjacent to the low concentration diffusion layer 47 is formed so as to be connected to the low concentration diffusion layer 47.

n形エミッタ層4からp形ベース層2を介し、n形半導体層1の表面にまたがって酸化膜でゲート絶縁膜8が形成される。そして、このゲート絶縁膜8上にゲート電極7が設けられる。ゲート絶縁膜8端からコレクタ領域14まではゲート絶縁膜8よりも厚い酸化膜でLOCOS酸化膜10が形成される。また、ゲート電極7は図のようにLOCOS酸化膜10上も部分的に覆うように配置される。この箇所のゲート電極7はフィールドプレートの働きをする。
また、p形コンタクト層3およびn形エミッタ層4の一部にエミッタ電極6が接続し、p形コレクタ層12にはコレクタ電極13が接続する。エミッタ電極6にはエミッタ端子E、コレクタ電極13にはコレクタ端子C、ゲート電極7にはゲート端子Gがそれぞれ接続する。
A gate insulating film 8 is formed of an oxide film across the surface of the n-type semiconductor layer 1 from the n-type emitter layer 4 through the p-type base layer 2. A gate electrode 7 is provided on the gate insulating film 8. From the end of the gate insulating film 8 to the collector region 14, the LOCOS oxide film 10 is formed of an oxide film thicker than the gate insulating film 8. Further, the gate electrode 7 is disposed so as to partially cover the LOCOS oxide film 10 as shown. The gate electrode 7 at this point functions as a field plate.
An emitter electrode 6 is connected to a part of the p-type contact layer 3 and the n-type emitter layer 4, and a collector electrode 13 is connected to the p-type collector layer 12. An emitter terminal E is connected to the emitter electrode 6, a collector terminal C is connected to the collector electrode 13, and a gate terminal G is connected to the gate electrode 7.

尚、チャネル形成箇所5と反対側のエミッタ電極6側の高濃度拡散層46同士を接続しても構わない。また、前記のn形バッファ層11は耐圧が比較的低い場合には形成しなくてもよい。図中の17はn形ドリフト層、6aはエミッタ電極端である。
図3および図4は、図1および図2の高耐圧横形IGBTにおけるラッチアップの発生を抑制する様子を説明する図で、図3は図1のa−a線で切断した要部断面図、図4は図3のn形エミッタ層とp形コンタクト層とp形ベース層の拡大図である。
図3ではn形エミッタ層4が高濃度拡散層46と低濃度拡散層47の2つの拡散層で形成されている点が図11と異なる。ラッチアップのトリガ電流となるホール電流Ihはp形ベース層2の横方向抵抗Rbを通り、p形コンタクト層3を経由してエミッタ電極6に流れ込む。
Note that the high-concentration diffusion layers 46 on the emitter electrode 6 side opposite to the channel forming portion 5 may be connected. The n-type buffer layer 11 may not be formed when the breakdown voltage is relatively low. In the figure, 17 is an n-type drift layer, and 6a is an emitter electrode end.
FIGS. 3 and 4 are diagrams for explaining a state of suppressing the occurrence of latch-up in the high breakdown voltage lateral IGBT of FIGS. 1 and 2, and FIG. 3 is a cross-sectional view of a principal part taken along line aa in FIG. FIG. 4 is an enlarged view of the n-type emitter layer, the p-type contact layer, and the p-type base layer of FIG.
3 differs from FIG. 11 in that the n-type emitter layer 4 is formed of two diffusion layers, a high concentration diffusion layer 46 and a low concentration diffusion layer 47. The hole current Ih serving as a latch-up trigger current flows through the lateral resistance Rb of the p-type base layer 2 and flows into the emitter electrode 6 via the p-type contact layer 3.

n形エミッタ層4の一部が低濃度拡散層47で形成されるため、この領域の横方向抵抗Reは、図15、図16で示した従来技術のように高濃度拡散層44、45だけで形成した場合よりも大きい。よって、エミッタ電極6からn形エミッタ層4を構成する低濃度拡散層47を介し、チャネル5に電子電流Ieが流れることによって、この低濃度拡散層47の横方向抵抗Reによる電圧降下が増加する。その結果、p形ベース層2の横方向抵抗Rbと正孔電流Ihによる電圧降下が相殺されるようになり、n形エミッタ層4とp形ベース層2のpn接合電圧の上昇を抑えることが可能となる。
そして、従来技術のようにn形エミッタ層4を高濃度拡散層44、45だけで形成した場合に比べて、n形エミッタ層4での電圧降下をより大きくすることが可能となり、横方向抵抗Reを大きくするためのパターン面積を増加させる必要はない。これは、素子面積の増加を抑える効果をもたらす。
Since a part of the n-type emitter layer 4 is formed of the low-concentration diffusion layer 47, the lateral resistance Re in this region is only the high-concentration diffusion layers 44 and 45 as in the prior art shown in FIGS. Larger than when formed with Therefore, the electron current Ie flows from the emitter electrode 6 to the channel 5 through the low concentration diffusion layer 47 constituting the n-type emitter layer 4, thereby increasing the voltage drop due to the lateral resistance Re of the low concentration diffusion layer 47. . As a result, the voltage drop due to the lateral resistance Rb of the p-type base layer 2 and the hole current Ih is canceled out, and the increase in the pn junction voltage between the n-type emitter layer 4 and the p-type base layer 2 can be suppressed. It becomes possible.
As compared with the case where the n-type emitter layer 4 is formed only by the high-concentration diffusion layers 44 and 45 as in the prior art, the voltage drop in the n-type emitter layer 4 can be further increased, and the lateral resistance There is no need to increase the pattern area for increasing Re. This brings about the effect which suppresses the increase in an element area.

また、この低濃度拡散層47を形成するためのイオン注入工程は高濃度拡散層46を形成するイオン注入工程の直前に導入すれば良い。そして、熱処理工程は高濃度拡散層46と同一で良い。
パワーICへ適用する高耐圧横形IGBTに本発明を適用する場合ではこの低濃度拡散層47を、制御回路を構成するCMOSのLDD(Light Doped Drain)層の形成と同時に形成することが可能である。
前記したように、図1のようなパターンでn形エミッタ層を高濃度拡散層46と低濃度拡散層47で形成することで、n形エミッタ層4の横方向抵抗Reを、パターン面積を増やすことなく大きくすることができる。また、MOS電流の増加とともにn形エミッタ層4の電圧降下をより効果的に上昇させることができ、素子のラッチアップを防止することができる。
The ion implantation process for forming the low concentration diffusion layer 47 may be introduced immediately before the ion implantation process for forming the high concentration diffusion layer 46. The heat treatment step may be the same as that of the high concentration diffusion layer 46.
When the present invention is applied to a high breakdown voltage lateral IGBT applied to a power IC, the low-concentration diffusion layer 47 can be formed simultaneously with the formation of a CMOS LDD (Light Doped Drain) layer constituting the control circuit. .
As described above, the n-type emitter layer is formed of the high-concentration diffusion layer 46 and the low-concentration diffusion layer 47 in the pattern as shown in FIG. 1, thereby increasing the lateral resistance Re of the n-type emitter layer 4 and increasing the pattern area. Can be enlarged without Further, the voltage drop of the n-type emitter layer 4 can be increased more effectively with the increase of the MOS current, and the latch-up of the element can be prevented.

図5および図6は、この発明の第2実施例の高耐圧横形IGBTの構成図であり、図5は要部平面図、図6(a)は図5のX−X線で切断した要部断面図、図6(b)は図5のY−Y線で切断した要部断面図、図6(c)は図5のZ1−Z1線で切断した要部断面図、図6(d)は図5のZ2−Z2線で切断した要部断面図である。図5は図1に相当する図である。
図1との違いは、p形コンタクト層3が入り組んでいないことと、n形エミッタ層4を構成する高濃度拡散層46の先端部がp形反転防止層33内に形成されている点である。
この場合も高濃度拡散層46の先端部のp形反転防止層33にはチャネルが形成されないため、電子電流Ieは低濃度拡散層47を介してチャネル5に流れるため、第1実施例と同様の効果が得られる。
5 and 6 are configuration diagrams of a high breakdown voltage lateral IGBT according to a second embodiment of the present invention. FIG. 5 is a plan view of a main part, and FIG. 6 (a) is a cross-sectional view taken along line XX of FIG. FIG. 6B is a fragmentary sectional view taken along line YY of FIG. 5, FIG. 6C is a fragmentary sectional view taken along line Z1-Z1 of FIG. 5, and FIG. ) Is a cross-sectional view of the main part taken along the line Z2-Z2 of FIG. FIG. 5 corresponds to FIG.
The difference from FIG. 1 is that the p-type contact layer 3 is not intricate and the tip of the high concentration diffusion layer 46 constituting the n-type emitter layer 4 is formed in the p-type inversion prevention layer 33. is there.
In this case as well, since no channel is formed in the p-type inversion preventing layer 33 at the tip of the high concentration diffusion layer 46, the electron current Ie flows to the channel 5 through the low concentration diffusion layer 47, so that it is the same as in the first embodiment. The effect is obtained.

また、図1の場合にはp形コンタクト層3が入り組んでいるためマスク合わせずれなどで、高濃度拡散層46と低濃度拡散層47が接触できない場合が生じることがあるが、図5のパターンではそのようなことが生ぜすに、高濃度拡散層46の側面と低濃度拡散層47を確実に接触させることができる。   In the case of FIG. 1, since the p-type contact layer 3 is complicated, the high concentration diffusion layer 46 and the low concentration diffusion layer 47 may not contact each other due to misalignment of the mask. In such a case, the side surface of the high concentration diffusion layer 46 and the low concentration diffusion layer 47 can be reliably brought into contact with each other.

図7および図8は、この発明の第3実施例の高耐圧横形IGBTの構成図であり、図7は要部平面図、図8(a)は図7のX−X線で切断した要部断面図、図8(b)は図7のY−Y線で切断した要部断面図、図8(c)は図7のZ1−Z1線で切断した要部断面図、図8(d)は図7のZ2−Z2線で切断した要部断面図である。図7は図1に相当する図である。
図1との違いは、高濃度拡散層46が低濃度拡散層47より引っ込んでいる点である。この場合も第1実施例と同様の効果が得られる。
図1と比べると低濃度拡散層47の先端部の角部がp形コンタクト層3で隠れなくなる分だけ、先端部の長さが長くなり、オン抵抗が多少小さくなる。
7 and 8 are configuration diagrams of a high breakdown voltage lateral IGBT according to a third embodiment of the present invention. FIG. 7 is a plan view of a main part, and FIG. 8 (a) is a cross-sectional view taken along line XX of FIG. FIG. 8B is a fragmentary sectional view taken along line YY of FIG. 7, FIG. 8C is a fragmentary sectional view taken along line Z1-Z1 of FIG. 7, and FIG. ) Is a sectional view of the principal part taken along the line Z2-Z2 of FIG. FIG. 7 corresponds to FIG.
The difference from FIG. 1 is that the high concentration diffusion layer 46 is recessed from the low concentration diffusion layer 47. In this case, the same effect as that of the first embodiment can be obtained.
Compared with FIG. 1, the length of the tip is increased and the on-resistance is somewhat reduced by the amount that the corner of the tip of the low-concentration diffusion layer 47 is not hidden by the p-type contact layer 3.

図9および図10は、この発明の第4実施例の高耐圧縦形IGBTの構成図であり、図9は要部平面図、図10(a)は図9のX−X線で切断した要部断面図、図10(b)は図9のY−Y線で切断した要部断面図である。図9のZ1−Z1線で切断した要部断面図、図9のZ2−Z2線で切断した要部断面図は、図2(c)と図2(d)とそれぞれ同じである。この縦形IGBTに対しても前記の横型IGBTと同様の効果が得られる。
尚、縦型IGBTの場合も、横型IGBTと同様に、耐圧が比較的低い場合にはn形バッファ層は形成しない場合もある。本実施例は第1実施例を高耐圧縦型IGBTに適用したものであるが、第2実施例、第3実施例においても、高耐圧縦型IGBTに適用することも可能である。
FIGS. 9 and 10 are configuration diagrams of a high breakdown voltage vertical IGBT according to a fourth embodiment of the present invention. FIG. 9 is a plan view of a main part, and FIG. 10 (a) is a cross-sectional view taken along line XX of FIG. FIG. 10B is a partial cross-sectional view taken along line YY in FIG. 9. The main part sectional view cut along the Z1-Z1 line in FIG. 9 and the main part sectional view cut along the Z2-Z2 line in FIG. 9 are the same as FIG. 2 (c) and FIG. 2 (d), respectively. The same effect as that of the horizontal IGBT can be obtained for the vertical IGBT.
In the case of the vertical IGBT, as in the case of the horizontal IGBT, the n-type buffer layer may not be formed if the breakdown voltage is relatively low. In this embodiment, the first embodiment is applied to a high breakdown voltage vertical IGBT. However, the second and third embodiments can also be applied to a high breakdown voltage vertical IGBT.

この発明の第1実施例の高耐圧横形IGBTの要部平面図The principal part top view of the high voltage | pressure-resistant lateral IGBT of 1st Example of this invention (a)は図1のX−X線で切断した要部断面図、(b)は図1のY−Y線で切断した要部断面図、(c)は図1のZ1−Z1線で切断した要部断面図、(d)は図1のZ2−Z2線で切断した要部断面図(A) is a cross-sectional view of the main part cut along line XX in FIG. 1, (b) is a cross-sectional view of the main part cut along line Y-Y in FIG. 1, and (c) is a Z1-Z1 line in FIG. Cutaway main part sectional view, (d) is a sectional view taken along the line Z2-Z2 of FIG. 高耐圧横形IGBTにおけるラッチアップの発生を抑制する様子を説明する図で、図1のa−a線で切断した要部断面図FIG. 2 is a diagram for explaining a state of suppressing the occurrence of latch-up in a high breakdown voltage lateral IGBT, and is a cross-sectional view of a main part cut along a line aa in FIG. 図3のn形エミッタ層とp形コンタクト層とp形ベース層の拡大図Enlarged view of the n-type emitter layer, p-type contact layer and p-type base layer of FIG. この発明の第2実施例の高耐圧横形IGBTの要部平面図The principal part top view of the high voltage | pressure-resistant lateral IGBT of 2nd Example of this invention (a)は図5のX−X線で切断した要部断面図、(b)は図5のY−Y線で切断した要部断面図、(c)は図5のZ1−Z1線で切断した要部断面図、(d)は図5のZ2−Z2線で切断した要部断面図5A is a cross-sectional view of main parts cut along line XX in FIG. 5, FIG. 5B is a cross-sectional view of main parts cut along line YY in FIG. 5, and FIG. Cutaway principal part sectional view, (d) is a principal part sectional view cut along line Z2-Z2 of FIG. この発明の第3実施例の高耐圧横形IGBTの要部平面図The principal part top view of the high voltage | pressure-resistant lateral IGBT of 3rd Example of this invention (a)は図7のX−X線で切断した要部断面図、(b)は図7のY−Y線で切断した要部断面図、(c)は図7のZ1−Z1線で切断した要部断面図、(d)は図7のZ2−Z2線で切断した要部断面図7A is a cross-sectional view of main parts cut along line XX in FIG. 7, FIG. 7B is a cross-sectional view of main parts cut along line YY in FIG. 7, and FIG. Cutaway principal part sectional view, (d) is a principal part sectional view cut along line Z2-Z2 of FIG. この発明の第4実施例の高耐圧縦形IGBTの要部平面図The principal part top view of the high voltage | pressure-resistant vertical IGBT of 4th Example of this invention (a)は図9のX−X線で切断した要部断面図、(b)は図9のY−Y線で切断した要部断面図9A is a cross-sectional view of main parts cut along line XX in FIG. 9, and FIG. 9B is a cross-sectional view of main parts cut along line Y-Y in FIG. 一般的な高耐圧のnチャネル形横形IGBTの要部断面図Cross section of the main part of a general high breakdown voltage n-channel lateral IGBT 図11のnチャネル形横形IGBTのラッチアップ現象を説明する図The figure explaining the latch-up phenomenon of the n-channel type lateral IGBT of FIG. 高耐圧横型IGBTの平面パターンを示す図The figure which shows the plane pattern of a high voltage | pressure-resistant horizontal type IGBT 図13のA部の詳細拡大図Detailed enlarged view of part A in FIG. ラッチアップ対策した横形IGBTの要部平面図Plan view of main part of horizontal IGBT with latch-up countermeasure (a)は図15のX−X線で切断した要部断面図、(b)は図15のY−Y線で切断した要部断面図、(c)は図15のZ−Z線で切断した要部断面図(A) is a cross-sectional view of the main part cut along the line XX in FIG. 15, (b) is a cross-sectional view of the main part cut along the line YY in FIG. 15, and (c) is a ZZ line in FIG. Cutaway main part sectional view ラッチアップ対策した横形IGBTの要部平面図Plan view of main part of horizontal IGBT with latch-up countermeasure (a)は図17のX−X線で切断した要部断面図、(b)は図17のY−Y線で切断した要部断面図、(c)は図17のZ−Z線で切断した要部断面図17A is a cross-sectional view of main parts cut along line XX in FIG. 17, FIG. 17B is a cross-sectional view of main parts cut along line YY in FIG. 17, and FIG. Cutaway main part sectional view

符号の説明Explanation of symbols

1 n形半導体層
2 p形ベース層
3 p形コンタクト層
3a p形コンタクト層端
4 n形エミッタ層
5 チャネル/チャネル形成箇所
6 エミッタ電極
6a エミッタ電極端
7 ゲート電極
8 ゲート絶縁膜
10 LOCOS酸化膜
11 n形バッファ層
12 p形コレクタ層
13 コレクタ電極
17 n形ドリフト層
33 p形反転防止層
46 高濃度拡散層
47 低濃度拡散層
E エミッタ端子
G ゲート端子
C コレクタ端子
Ie 電子電流
ILe 電子流
Ih 正孔電流
Rb 横方向抵抗(p形ベース層)
Re 横方向抵抗(n形エミッタ層)
1 n-type semiconductor layer 2 p-type base layer 3 p-type contact layer 3a p-type contact layer end 4 n-type emitter layer 5 channel / channel formation place 6 emitter electrode 6a emitter electrode end 7 gate electrode 8 gate insulating film 10 LOCOS oxide film 11 n-type buffer layer 12 p-type collector layer 13 collector electrode 17 n-type drift layer 33 p-type inversion prevention layer 46 high-concentration diffusion layer 47 low-concentration diffusion layer E emitter terminal G gate terminal C collector terminal Ie electron current ILe electron current Ih Hole current Rb lateral resistance (p-type base layer)
Re lateral resistance (n-type emitter layer)

Claims (7)

第1導電形半導体層の表面層に選択的に形成された第2導電形ベース層と、該第2導電形ベース層の表面層に選択的に形成された第1導電形エミッタ層と、該第1導電形エミッタ層と前記第1導電形半導体層に挟まれた前記第2導電形ベース層上にゲート絶縁膜を介して形成されたゲート電極とを有する絶縁ゲート形バイポーラトランジスタにおいて、
前記第1導電形エミッタ層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層で形成され、前記高濃度拡散層に前記エミッタ電極が接触し、前記低濃度拡散層に前記エミッタ電極が接触しないことを特徴とする絶縁ゲート形バイポーラトランジスタ。
A second conductivity type base layer selectively formed on the surface layer of the first conductivity type semiconductor layer; a first conductivity type emitter layer selectively formed on the surface layer of the second conductivity type base layer; In an insulated gate bipolar transistor having a first conductivity type emitter layer and a gate electrode formed on the second conductivity type base layer sandwiched between the first conductivity type semiconductor layers via a gate insulation film,
The first conductivity type emitter layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer, and the emitter electrode is in contact with the high concentration diffusion layer, An insulated gate bipolar transistor, wherein the emitter electrode is not in contact with the low concentration diffusion layer.
前記高濃度拡散層と前記低濃度拡散層とは、前記ゲート電極側端部が該ゲート電極に対して交互に配置され、前記高濃度拡散層と前記半導体層との間の前記ベース層の表面層に前記高濃度拡散層と隣接して第2導電形反転防止層を有することを特徴とする請求項1に記載の絶縁ゲート形バイポーラトランジスタ。 The high-concentration diffusion layer and the low-concentration diffusion layer have the gate electrode side end portions alternately arranged with respect to the gate electrode, and the surface of the base layer between the high-concentration diffusion layer and the semiconductor layer 2. The insulated gate bipolar transistor according to claim 1, further comprising a second conductivity type inversion prevention layer adjacent to the high concentration diffusion layer. 前記エミッタ層に隣接し前記ゲート電極と反対側に前記ベース層の表面層に選択的に形成された第2導電形コンタクト層を有し、
前記反転防止層は、前記コンタクト層が前記高濃度拡散層の底部を覆い前記エミッタ層と前記半導体層との間の前記ベース層の表面に延在したものであることを特徴とする請求項2に記載の絶縁ゲート形バイポーラトランジスタ。
A second conductivity type contact layer selectively formed on a surface layer of the base layer adjacent to the emitter layer and opposite to the gate electrode;
3. The anti-inversion layer, wherein the contact layer covers the bottom of the high-concentration diffusion layer and extends on the surface of the base layer between the emitter layer and the semiconductor layer. An insulated gate bipolar transistor as described in 1.
前記第1導電形半導体層の表面層に前記第2導電形ベース層から離して形成された第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有することを特徴とする請求項1〜3のいずれか一項に記載の絶縁ゲート形バイポーラトランジスタ。 A second conductivity type collector layer formed on the surface layer of the first conductivity type semiconductor layer apart from the second conductivity type base layer, and a collector electrode in contact with the second conductivity type collector layer. The insulated gate bipolar transistor according to any one of claims 1 to 3. 前記第1導電形半導体層の表面層に前記第2導電形ベース層と離して形成された第1導電形バッファ層と、該第1導電形バッファ層の表面層に形成された前記第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有することを特徴とする請求項4に記載の絶縁ゲート形バイポーラトランジスタ。 A first conductivity type buffer layer formed on the surface layer of the first conductivity type semiconductor layer apart from the second conductivity type base layer; and the second conductivity type formed on the surface layer of the first conductivity type buffer layer. 5. The insulated gate bipolar transistor according to claim 4, further comprising a collector layer and a collector electrode in contact with the second conductivity type collector layer. 前記第1導電形半導体層の裏面側の表面層に形成された第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有することを特徴とする請求項1〜3のいずれか一項に記載の絶縁ゲート形バイポーラトランジスタ。 4. A second conductivity type collector layer formed on a surface layer on the back surface side of the first conductivity type semiconductor layer, and a collector electrode in contact with the second conductivity type collector layer. An insulated gate bipolar transistor according to any one of the above. 前記第1導電形半導体層の裏面側の表面層に形成された第1導電形バッファ層と、該第1導電形バッファ層の表面層に形成された前記第2導電形コレクタ層と、該第2導電形コレクタ層に接触するコレクタ電極とを有することを特徴とする請求項6に記載の絶縁ゲート形バイポーラトランジスタ。 A first conductivity type buffer layer formed on a surface layer on a back surface side of the first conductivity type semiconductor layer; a second conductivity type collector layer formed on a surface layer of the first conductivity type buffer layer; 7. The insulated gate bipolar transistor according to claim 6, further comprising a collector electrode in contact with the two-conductivity collector layer.
JP2004129200A 2004-04-26 2004-04-26 High voltage insulated gate bipolar transistor Expired - Fee Related JP4830263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129200A JP4830263B2 (en) 2004-04-26 2004-04-26 High voltage insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129200A JP4830263B2 (en) 2004-04-26 2004-04-26 High voltage insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JP2005311212A true JP2005311212A (en) 2005-11-04
JP4830263B2 JP4830263B2 (en) 2011-12-07

Family

ID=35439594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129200A Expired - Fee Related JP4830263B2 (en) 2004-04-26 2004-04-26 High voltage insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP4830263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071082A (en) * 2007-09-14 2009-04-02 Mitsubishi Electric Corp Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293585B (en) * 2017-06-30 2020-03-24 东南大学 Quick-turn-off silicon-on-insulator lateral insulated gate bipolar transistor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254658A (en) * 1984-05-30 1985-12-16 Toshiba Corp Conductive modulation type mosfet
JPH06151838A (en) * 1992-11-09 1994-05-31 Fuji Electric Co Ltd Insulated gate bipolar transistor
JPH09321290A (en) * 1996-05-30 1997-12-12 Fuji Electric Co Ltd Semiconductor device with insulted gate bipolar transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254658A (en) * 1984-05-30 1985-12-16 Toshiba Corp Conductive modulation type mosfet
JPH06151838A (en) * 1992-11-09 1994-05-31 Fuji Electric Co Ltd Insulated gate bipolar transistor
JPH09321290A (en) * 1996-05-30 1997-12-12 Fuji Electric Co Ltd Semiconductor device with insulted gate bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071082A (en) * 2007-09-14 2009-04-02 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP4830263B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US6707104B2 (en) Lateral high-breakdown-voltage transistor
US20060081919A1 (en) Semiconductor device
JP2004022693A (en) Semiconductor device
JP2008047772A (en) Insulated gate bipolar transistor
JPH08139319A (en) Semiconductor device and its manufacture
US6462378B1 (en) Power MOSFET with decreased body resistance under source region
JP2000156495A (en) High breakdown voltage lateral semiconductor device
JP2012033809A (en) Mos type semiconductor device
EP1026750A1 (en) Insulated gate field-effect transistors
US20080203535A1 (en) Semiconductor device
JP2021052078A (en) Semiconductor device and manufacturing method thereof
JP5261893B2 (en) Trench type insulated gate bipolar transistor
CN111326510B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
KR101174302B1 (en) Power device
JP2012059734A (en) Semiconductor device and manufacturing method thereof
JP4415767B2 (en) Insulated gate semiconductor device and manufacturing method thereof
US20100084684A1 (en) Insulated gate bipolar transistor
US8878239B2 (en) Semiconductor device
JP4830263B2 (en) High voltage insulated gate bipolar transistor
JPH08293618A (en) High breakdown strength semiconductor device
JP4756084B2 (en) Semiconductor device
JP5246638B2 (en) Semiconductor device
JP2005150348A (en) Semiconductor device
JP4839578B2 (en) Horizontal semiconductor device
KR20220016134A (en) Power Transistor Cells and Power Transistors

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees