JPH06151755A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH06151755A
JPH06151755A JP4322731A JP32273192A JPH06151755A JP H06151755 A JPH06151755 A JP H06151755A JP 4322731 A JP4322731 A JP 4322731A JP 32273192 A JP32273192 A JP 32273192A JP H06151755 A JPH06151755 A JP H06151755A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
charge storage
storage node
insulating film
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4322731A
Other languages
Japanese (ja)
Inventor
Shoichi Iwasa
昇一 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4322731A priority Critical patent/JPH06151755A/en
Publication of JPH06151755A publication Critical patent/JPH06151755A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a stacked DRAM of memory cell structure high in resistance to soft errors, wherein an ONO film as a capacitor insulating film is enhanced in reliability. CONSTITUTION:In a stacked DRAM memory cell, a charge storage node is of three-layered structure composed of an arsenic-doped polycrystalline silicon layer 10a as a lower layer, a phosphorus-doped polycrystalline layer 10b as an upper layer, and an insulating film 11 interposed between the polycrystalline silicon layers 10a and 10b. The polycrystalline silicon layers 10a and 10b are electrically connected together through the intermediary of a phosphorus-doped polycrystalline silicon side wall 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶装置に関し、
例えば、スタック型DRAMメモリセルの構造に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device,
For example, it relates to the structure of a stack type DRAM memory cell.

【0002】[0002]

【従来の技術】従来のスタック型DRAMメモリセルで
は図4に示される構造が一般的である。図4において、
1はP型シリコン基板、2は素子分離絶縁膜、3はトラ
ンスファーゲート電極、4は電荷蓄積ノード、5は容量
絶縁膜、6はプレート電極、7、17は層間絶縁膜、8
はビット線、9はソース/ドレイン拡散層である。
2. Description of the Related Art A conventional stacked DRAM memory cell generally has a structure shown in FIG. In FIG.
1 is a P-type silicon substrate, 2 is an element isolation insulating film, 3 is a transfer gate electrode, 4 is a charge storage node, 5 is a capacitive insulating film, 6 is a plate electrode, 7 and 17 are interlayer insulating films, 8
Is a bit line, and 9 is a source / drain diffusion layer.

【0003】上記電荷蓄積ノード4には、通常、材料と
して多結晶シリコン層が用いられており、トランスファ
ーゲートトランジスタのドレイン拡散層9とオーミック
接触させるために、ドレイン拡散層9と同一導電型の不
純物がドーピングされる。ここでは、一般にドレイン拡
散層9がN型であることから、その場合を例にとって述
べる。
A polycrystalline silicon layer is usually used as a material for the charge storage node 4, and in order to make ohmic contact with the drain diffusion layer 9 of the transfer gate transistor, an impurity of the same conductivity type as the drain diffusion layer 9 is used. Is doped. Here, since the drain diffusion layer 9 is generally N-type, the case will be described as an example.

【0004】DRAMの特性上最も厳しく要求されるの
は、電荷蓄積ノード4上に形成される容量絶縁膜5の信
頼性が充分であることである。従って、容量絶縁膜5の
信頼性を高めるため、電荷蓄積ノード4にはリンをドー
ピングし、電荷蓄積ノード4のグレインサイズ(結晶粒
径)を大きくして表面を平滑化した上で容量絶縁膜5
(通常、ONO膜)を形成する。
The most severe requirement for the characteristics of DRAM is that the reliability of the capacitance insulating film 5 formed on the charge storage node 4 is sufficient. Therefore, in order to improve the reliability of the capacitance insulating film 5, the charge storage node 4 is doped with phosphorus, the grain size (crystal grain size) of the charge storage node 4 is increased to smooth the surface, and then the capacitance insulation film 5 is formed. 5
(Normally, ONO film) is formed.

【0005】しかし、容量絶縁膜5の形成時またはその
後の熱処理で、前記電荷蓄積ノード4中にドープされた
リンがドレイン拡散層9中へも拡散し、ドレイン拡散層
9の接合深さを大きくしてしまう。
However, the phosphorus doped in the charge storage node 4 is diffused into the drain diffusion layer 9 by the heat treatment at the time of forming the capacitance insulating film 5 or after that, and the junction depth of the drain diffusion layer 9 is increased. Resulting in.

【0006】一方、このドレイン拡散層9はメモリセル
のノードとして働くため、ソフトエラー対策上は接合深
さが小さいほうがα線の捕獲断面積が減るので都合がよ
い。そこで、最近では、電荷蓄積ノード4のドーピング
不純物としてリンではなくヒ素が使われるようになって
きた。
On the other hand, since the drain diffusion layer 9 functions as a node of the memory cell, it is advantageous that the junction depth is smaller because the trapping cross-section area of α-rays is reduced as a measure against soft error. Therefore, recently, arsenic instead of phosphorus has been used as a doping impurity of the charge storage node 4.

【0007】[0007]

【発明が解決しようとする課題】従来は、前述のように
ソフトエラー対策のために、電荷蓄積ノード4にヒ素を
ドープしていたが、この場合、電荷蓄積ノード4上に形
成される容量絶縁膜5の膜質が劣化し、TDDB(Time
Dependent Dielectric Breakdown)特性が悪くなり、リ
ンをドープする場合に比べて著しく信頼性を損なうとい
う問題があった。
Conventionally, the charge storage node 4 was doped with arsenic as a countermeasure against the soft error as described above. In this case, however, the capacitance insulation formed on the charge storage node 4 is prevented. The film quality of the film 5 deteriorates, and TDDB (Time
There was a problem that the Dependent Dielectric Breakdown) characteristic was deteriorated and the reliability was remarkably reduced as compared with the case of doping with phosphorus.

【0008】そこで、この発明は、信頼性の高い容量絶
縁膜を有し、且つソフトエラー耐性もあるメモリセル構
造を有する半導体記憶装置を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a semiconductor memory device having a memory cell structure having a highly reliable capacitive insulating film and having soft error resistance.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、第一導電型半導体基板上に第二導電型拡
散層を有するトランジスタと、前記第二導電型拡散層の
一方に接続される電荷蓄積ノード及び該電荷蓄積ノード
上に容量絶縁膜を介して形成されたプレート電極とによ
り構成されるメモリセルを有する半導体記憶装置におい
て、前記電荷蓄積ノードが、第一種第二導電型不純物を
ドープした多結晶シリコン層、絶縁膜及び第二種第二導
電型不純物をドープした多結晶シリコン層を順次積層し
てなり、且つ、前記電荷蓄積ノードの側壁部に、第二導
電型不純物がドープされた多結晶シリコン層からなるサ
イドウォールを有するものである。
In order to solve the above problems, the present invention provides a transistor having a second conductivity type diffusion layer on a first conductivity type semiconductor substrate and one of the second conductivity type diffusion layer. In a semiconductor memory device having a memory cell composed of a charge storage node connected to the charge storage node and a plate electrode formed on the charge storage node via a capacitive insulating film, the charge storage node is a first-type second conductivity type. A polycrystalline silicon layer doped with a type impurity, an insulating film, and a polycrystalline silicon layer doped with an impurity of the second type second conductivity type are sequentially stacked, and a second conductivity type is formed on a sidewall portion of the charge storage node. It has a sidewall made of a polycrystalline silicon layer doped with impurities.

【0010】[0010]

【作用】本発明においては、容量絶縁膜は第二種第二導
電型不純物として例えばリンをドープした多結晶シリコ
ン層上に形成されるので、信頼性の高い良質な容量絶縁
膜を提供できるとともに、第二導電型拡散層であるドレ
イン拡散層には第一種第二導電型不純物として例えばヒ
素をドープした多結晶シリコン層が接触しているので、
熱処理等によってヒ素が基板中へ拡散しても接合深さを
浅く保つことができる。
In the present invention, since the capacitive insulating film is formed on the polycrystalline silicon layer doped with phosphorus as the second type second conductivity type impurity, for example, it is possible to provide a highly reliable and good capacitive insulating film. Since the drain diffusion layer which is the second conductivity type diffusion layer is in contact with the polycrystalline silicon layer doped with, for example, arsenic as the first type second conductivity type impurity,
The junction depth can be kept shallow even if arsenic diffuses into the substrate by heat treatment or the like.

【0011】[0011]

【実施例】以下、本発明をスタック型DRAMメモリセ
ルに適用した実施例を図1〜図3を参照して説明する。
図1は本実施例の構造を示しており、図1(a)〜
(c)及び図2はその製造工程を示している。なお、図
1〜図3の実施例において、図4に示した従来例と対応
する構成部分には、同一の符号を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a stack type DRAM memory cell will be described below with reference to FIGS.
FIG. 1 shows the structure of this embodiment, which is shown in FIG.
FIG. 2C and FIG. 2 show the manufacturing process. In addition, in the embodiment of FIGS. 1 to 3, the same reference numerals are given to the components corresponding to those of the conventional example shown in FIG.

【0012】まず、図2(a)に示すように、P型シリ
コン基板1上に多結晶シリコン層からなるトランスファ
ーゲート電極3を形成し、且つN型のソース/ドレイン
拡散層9を形成する。
First, as shown in FIG. 2A, a transfer gate electrode 3 made of a polycrystalline silicon layer is formed on a P-type silicon substrate 1, and an N-type source / drain diffusion layer 9 is formed.

【0013】次に、図2(b)に示すように、全面に電
荷蓄積ノードの下層部となる多結晶シリコン層10aを
CVD法により1500〜2000Å程度の厚さに堆積
し、この多結晶シリコン層10aに、イオン注入法を用
い、ヒ素を、75kev程度のエネルギーで且つドーズ
量5×1015cm-2程度の条件でドーピングした後、熱
処理を行う。
Next, as shown in FIG. 2B, a polycrystalline silicon layer 10a, which is a lower layer portion of the charge storage node, is deposited on the entire surface by a CVD method to a thickness of about 1500 to 2000Å, and this polycrystalline silicon layer 10a is deposited. The layer 10a is doped with arsenic by an ion implantation method at an energy of about 75 kev and a dose amount of about 5 × 10 15 cm −2 , and then heat treatment is performed.

【0014】次に、図2(c)に示すごとく、ヒ素ドー
プ電荷蓄積ノード多結晶シリコン層10a上をドライO
2 雰囲気中で熱酸化して、100〜200Å程度の膜厚
の絶縁膜11を形成し、さらにこの絶縁膜11上に電荷
蓄積ノードの上層部となる多結晶シリコン層をCVD法
により堆積し、これにリンをドーピングしてリンドープ
電荷蓄積ノード多結晶層10bを形成する。
Next, as shown in FIG. 2C, dry O is deposited on the arsenic-doped charge storage node polycrystalline silicon layer 10a.
2 Thermal oxidation is performed in an atmosphere to form an insulating film 11 having a film thickness of about 100 to 200Å, and a polycrystalline silicon layer serving as an upper layer portion of a charge storage node is deposited on the insulating film 11 by a CVD method, This is doped with phosphorus to form a phosphorus-doped charge storage node polycrystalline layer 10b.

【0015】次に、ホトレジスト膜12をパターン形成
した後、このホトレジスト膜12をマスクにして、リン
ドープ電荷蓄積ノード多結晶シリコン層10b、絶縁膜
11、ヒ素ドープ電荷蓄積ノード多結晶シリコン層10
aに異方性ドライエッチングを行い、順次自己整合的に
パターニングする。なお、絶縁膜11は、ヒ素ドープ電
荷蓄積ノード多結晶シリコン層10aとリンドープ電荷
蓄積ノード多結晶シリコン層10bとを領域的に分離す
るためのものである。
Next, after patterning the photoresist film 12, the photoresist film 12 is used as a mask to form the phosphorus-doped charge storage node polycrystalline silicon layer 10b, the insulating film 11, and the arsenic-doped charge storage node polycrystalline silicon layer 10.
Anisotropic dry etching is performed on a and patterning is sequentially performed in a self-aligned manner. The insulating film 11 is for regionally separating the arsenic-doped charge storage node polycrystalline silicon layer 10a and the phosphorus-doped charge storage node polycrystalline silicon layer 10b.

【0016】次に、図3(a)に示すように、ホトレジ
スト膜12を除去した後、全面に2000〜3000Å
程度の厚さのリンドープ多結晶シリコン層13をCVD
法により堆積し、異方性ドライエッチングを行うことに
よって、図3(b)に示すごとく、サイドウォール13
を形成し、リンドープ電荷蓄積ノード多結晶シリコン層
10bとヒ素ドープ電荷蓄積ノード多結晶シリコン層1
0aを電気的に接続する。
Next, as shown in FIG. 3A, after the photoresist film 12 is removed, 2000 to 3000 Å is formed on the entire surface.
CVD of a phosphorus-doped polycrystalline silicon layer 13 of about thickness
3B, anisotropic dry etching is performed, and as shown in FIG. 3B, the sidewall 13 is formed.
To form a phosphorus-doped charge storage node polycrystalline silicon layer 10b and an arsenic-doped charge storage node polycrystalline silicon layer 1
0a is electrically connected.

【0017】次に、図3(c)に示すように、ONO膜
等の容量絶縁膜14と、多結晶シリコン層からなるプレ
ート電極15とを順次形成する。そして、図1に示すよ
うに、層間絶縁膜16を常圧CVD法により堆積し、ソ
ース拡散層9上の層間絶縁膜16にビットコンタクト1
6aを開孔し、アルミ配線を埋め込むことでビット線8
を形成する。
Next, as shown in FIG. 3C, a capacitive insulating film 14 such as an ONO film and a plate electrode 15 made of a polycrystalline silicon layer are sequentially formed. Then, as shown in FIG. 1, the interlayer insulating film 16 is deposited by the atmospheric pressure CVD method, and the bit contact 1 is formed on the interlayer insulating film 16 on the source diffusion layer 9.
Bit line 8 by opening 6a and embedding aluminum wiring
To form.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
容量絶縁膜は第二種第二導電型不純物である例えばリン
をドープした多結晶シリコン層上に形成されるので、信
頼性の高い良質な容量絶縁膜を提供できる一方、第二導
電型拡散層であるドレイン拡散層には第一種第二導電型
不純物である例えばヒ素をドープした多結晶シリコン層
が接触するため、この多結晶シリコン層中のヒ素が基板
側へ拡散しても浅い接合を形成することができ、ソフト
エラーに対しても耐性のあるメモリセル構造となる。ま
た、本発明はスタック型DRAMメモリセルのみなら
ず、スタックトレンチ型DRAMメモリセルに対しても
有効である。
As described above, according to the present invention,
Since the capacitor insulating film is formed on the polycrystalline silicon layer doped with the second-type second-conductivity-type impurity, for example, phosphorus, a high-quality capacitor insulating film having high reliability can be provided, while the second-conductivity-type diffusion layer is provided. Since the drain diffusion layer, which is a contact layer, is contacted with a polycrystalline silicon layer doped with, for example, arsenic, which is a first-type second conductivity type impurity, even if arsenic in the polycrystalline silicon layer diffuses to the substrate side, a shallow junction is formed. The memory cell structure can be formed and is resistant to soft errors. Further, the present invention is effective not only for the stack type DRAM memory cell but also for the stack trench type DRAM memory cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるスタック型DRAMメ
モリセルの構成を示す断面図である。
FIG. 1 is a sectional view showing a structure of a stack type DRAM memory cell according to an embodiment of the present invention.

【図2】図1のメモリセルの製造工程を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a manufacturing process of the memory cell of FIG.

【図3】図1のメモリセルの製造工程を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a manufacturing process of the memory cell of FIG.

【図4】従来のスタック型DRAMメモリセルの構成を
示す断面図である。
FIG. 4 is a sectional view showing a configuration of a conventional stack type DRAM memory cell.

【符号の説明】[Explanation of symbols]

1 シリコン基板 9 ソース/ドレイン拡散層 10a ヒ素ドープ電荷蓄積ノード多結晶シリコン層 10b リンドープ電荷蓄積ノード多結晶シリコン層 11 絶縁膜 13 サイドウォール 14 容量絶縁膜 15 プレート電極 1 Silicon Substrate 9 Source / Drain Diffusion Layer 10a Arsenic-Doped Charge Storage Node Polycrystalline Silicon Layer 10b Phosphorus-Doped Charge Storage Node Polycrystalline Silicon Layer 11 Insulating Film 13 Sidewall 14 Capacitive Insulating Film 15 Plate Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型半導体基板上に第二導電型拡
散層を有するトランジスタと、前記第二導電型拡散層の
一方に接続される電荷蓄積ノード及び該電荷蓄積ノード
上に容量絶縁膜を介して形成されたプレート電極とによ
り構成されるメモリセルを有する半導体記憶装置におい
て、 前記電荷蓄積ノードが、第一種第二導電型不純物をドー
プした多結晶シリコン層、絶縁膜及び第二種第二導電型
不純物をドープした多結晶シリコン層を順次積層してな
り、且つ、前記電荷蓄積ノードの側壁部に、第二導電型
不純物がドープされた多結晶シリコン層からなるサイド
ウォールを有することを特徴とする半導体記憶装置。
1. A transistor having a second conductivity type diffusion layer on a first conductivity type semiconductor substrate, a charge storage node connected to one of the second conductivity type diffusion layers, and a capacitive insulating film on the charge storage node. In a semiconductor memory device having a memory cell composed of a plate electrode formed via a conductive layer, the charge storage node is a polycrystalline silicon layer doped with an impurity of the first type second conductivity type, an insulating film and a second type. A polycrystalline silicon layer doped with a second conductivity type impurity is sequentially stacked, and a sidewall made of a polycrystalline silicon layer doped with a second conductivity type impurity is provided on a side wall portion of the charge storage node. A semiconductor memory device characterized by:
JP4322731A 1992-11-06 1992-11-06 Semiconductor memory device Withdrawn JPH06151755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4322731A JPH06151755A (en) 1992-11-06 1992-11-06 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4322731A JPH06151755A (en) 1992-11-06 1992-11-06 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH06151755A true JPH06151755A (en) 1994-05-31

Family

ID=18146997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4322731A Withdrawn JPH06151755A (en) 1992-11-06 1992-11-06 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH06151755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696722B1 (en) * 1998-06-15 2004-02-24 Samsung Electronics Co., Ltd. Storage node of DRAM cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696722B1 (en) * 1998-06-15 2004-02-24 Samsung Electronics Co., Ltd. Storage node of DRAM cell

Similar Documents

Publication Publication Date Title
JP3090198B2 (en) Structure of semiconductor device and method of manufacturing the same
JP2633650B2 (en) Semiconductor memory device and method of manufacturing the same
US4808544A (en) LDD structure containing conductive layer between gate oxide and sidewall spacer
US20020113237A1 (en) Semiconductor memory device for increasing access speed thereof
JP3021800B2 (en) Semiconductor device and manufacturing method thereof
JPH0653412A (en) Semiconductor memory device and fabrication thereof
US5027172A (en) Dynamic random access memory cell and method of making thereof
JPH118355A (en) Ferroelectric memory
JPH08250677A (en) Semiconductor memory device and its fabrication method
JP3195785B2 (en) Semiconductor storage device and method of manufacturing the same
JPH07105478B2 (en) Method for manufacturing semiconductor device
JPH0715949B2 (en) DRAM cell and manufacturing method thereof
JPH0888332A (en) Manufacture of semiconductor memory device
JPH0279462A (en) Semiconductor memory
JP3052419B2 (en) Semiconductor memory device and method of manufacturing the same
JPH06151755A (en) Semiconductor memory device
US6489198B2 (en) Semiconductor device and method of manufacturing the same
JPH11135749A (en) Semiconductor storage device
JP3382005B2 (en) Semiconductor memory device and method of manufacturing the same
JP2739983B2 (en) Semiconductor memory device and method of manufacturing the same
JPH10289984A (en) Semiconductor storage device and its manufacture
JPH07183395A (en) Semiconductor device
JP2753092B2 (en) Method for manufacturing semiconductor memory device
JP2931612B2 (en) Semiconductor storage device
JP2936660B2 (en) Semiconductor storage device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201