JPH06151235A - Laminated type porcelain capacitor - Google Patents

Laminated type porcelain capacitor

Info

Publication number
JPH06151235A
JPH06151235A JP4293168A JP29316892A JPH06151235A JP H06151235 A JPH06151235 A JP H06151235A JP 4293168 A JP4293168 A JP 4293168A JP 29316892 A JP29316892 A JP 29316892A JP H06151235 A JPH06151235 A JP H06151235A
Authority
JP
Japan
Prior art keywords
glass frit
glass
capacitor
electrode
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4293168A
Other languages
Japanese (ja)
Inventor
Yoshio Yokoe
宣雄 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4293168A priority Critical patent/JPH06151235A/en
Publication of JPH06151235A publication Critical patent/JPH06151235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To give a high resistance against the mechanical stress and thermal shock coming from outside without decreasing adhesive strength of the capacitor element of an electrode by a method wherein the glass frit of an external electrode is constituted by the glass having additional PbO and ZnO borosilicate glass characteristics. CONSTITUTION:There is no change in the structure of this laminated type porcelain capacitor when compared with the conventional structure, and a capacitor element 3 is formed by laminating a plurality of dielectric layers 1 through the intermediary of an inner electrodes 2. The inner electrodes 2 are led out alternately to the side face of the capacitor element 3, a pair of outer electrodes 4 are formed on the side face of the inner electrodes 2, and besides, a plated film 5 is formed on the surface of the outer electrodes 4. The outer electrodes 4 are composed of glass frit of 13.5 to 22.0vol.%, desirably 15 to 18vol.%, and the remaining part consisting of a metal conductor, the glass frit contains at least B2O3 and SiO2, and Pb of 53.1 to 60.2wt.% in terms of an oxide, and Zn of 10.2 to 15.3wt.% in terms of an oxide are contained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層型磁器コンデンサ
に関するもので、詳細には、外部電極の改善により熱衝
撃性および機械的強度を向上させ、大容量化、高積層化
に対応し得る磁器コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated porcelain capacitor. More specifically, it is possible to improve thermal shock resistance and mechanical strength by improving external electrodes, and to cope with large capacity and high lamination. It concerns a porcelain capacitor.

【0002】[0002]

【従来技術】図1に、積層型磁器コンデンサの典型的な
構造を示した。図1によれば、複数の誘電体層1は、そ
れぞれ内部電極2を介して積層されており、そのコンデ
ンサ素体3の側面には、内部電極2と電気的に接続され
た一対の外部電極4が形成されている。さらに、外部電
極4の表面にはNiおよびSnなどのメッキ膜5が施さ
れている。
2. Description of the Related Art FIG. 1 shows a typical structure of a laminated ceramic capacitor. According to FIG. 1, a plurality of dielectric layers 1 are laminated via an internal electrode 2, and a pair of external electrodes electrically connected to the internal electrode 2 is provided on a side surface of the capacitor body 3. 4 are formed. Further, the surface of the external electrode 4 is coated with a plating film 5 of Ni, Sn, or the like.

【0003】従来より外部電極は、一般にAg,Pdな
どの金属導体をガラスフリットによりコンデンサ素体磁
器に結合させて機械的強度を具備させる、いわゆるガラ
スボンドタイプが用いられている。この外部電極に含ま
れるガラスフリット成分には、(1)磁器素体と、外部
電極主成分の金属(主としてAg)を機械的に結合させ
る、(2)焼結した金属導体の空孔に充填され、外部電
極膜の組織を緻密化させる、の2つの役割を有する。ま
た、最近ではコンデンサの大容量化に伴い高積層化が進
み、耐熱衝撃性が要求されつつあり、そのためにはメッ
キ工程など湿式加工工程において液体が電極中に浸入し
ないために緻密な外部電極であることも必要とされてい
る。
Conventionally, a so-called glass bond type external electrode has been generally used in which a metal conductor such as Ag or Pd is bonded to a capacitor body porcelain by a glass frit to provide mechanical strength. The glass frit component contained in the external electrode is (1) mechanically bonded to the porcelain body and the metal (mainly Ag) as the main component of the external electrode, and (2) filled in the pores of the sintered metal conductor. And has a dual role of densifying the structure of the external electrode film. In addition, recently, as the capacity of capacitors has increased, the number of layers has increased, and thermal shock resistance is being demanded. For this reason, liquid does not penetrate into the electrodes during wet processing such as plating, so a precise external electrode is required. There is also a need to be.

【0004】かかる目的を満足するために、従来より外
部電極の成分組成について各種の改良が提案されてい
る。例えば、特公昭62−1662号には、外部電極を
構成するガラスフリットを、酸化亜鉛を主成分とする硼
珪酸亜鉛ガラスにアルカリ金属酸化物およびアルカリ土
類酸化物を添加したガラス組成物により構成することに
より耐還元性、耐酸性を改善することが開示されてい
る。
[0004] In order to satisfy such an object, various improvements have been proposed in the component composition of the external electrode. For example, in Japanese Examined Patent Publication No. 62-1662, a glass frit that constitutes an external electrode is composed of a glass composition in which an alkali metal oxide and an alkaline earth oxide are added to zinc borosilicate glass whose main component is zinc oxide. It is disclosed that the reduction resistance and the acid resistance are improved by doing so.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、上記
特公昭62−1662号にて提案されたガラス組成物に
よれば、耐還元性、耐酸性の改善効果を奏するものの、
前述したガラスフリットの役割に対しては、不十分であ
り、例えば、誘電体層が最も一般的なチタン酸バリウム
からなる積層型磁器コンデンサ素体に対して採用した場
合、磁器素体とガラスフリットが反応し、磁器素体の機
械的強度を劣化させ、その結果、素子を回路基板に実装
したとき、基板のたわみなどに起因して素子が割れると
いう問題があった。
However, according to the glass composition proposed in Japanese Patent Publication No. 62-1662, although the reduction resistance and the acid resistance are improved,
It is insufficient for the role of the glass frit described above. For example, when it is applied to the laminated porcelain capacitor element body whose dielectric layer is most commonly made of barium titanate, the porcelain element body and the glass frit are used. Reacts to deteriorate the mechanical strength of the porcelain body, and as a result, when the element is mounted on a circuit board, the element is cracked due to the bending of the board or the like.

【0006】また、金属導体としてAgを選択し、前記
ガラスフリットと混合した外部電極では、電極膜を緻密
化するためにはAgに対して、ガラスフリットをおよそ
8重量%以上含有することが必要となる。この種のガラ
スフリットの比重は約3.0であるからAgに対して体
積ではおよそ28%以上になる。このように外部電極中
に多量のガラスフリットを含有すると、磁器との反応す
る領域が界面から深くなり、反応層の熱膨張係数が磁器
固有のそれと大きく異なるようになって、その結果、電
極を焼成したときにクラックが発生したり、基板への実
装後の基板のわずかなたわみで破壊したりする問題があ
る。逆に、ガラスフリットの量を少なくすると膜組織が
十分に緻密化せず、後工程のメッキ膜を施す工程におい
て、メッキ溶液が電極内に浸入し熱衝撃性を低下させる
などの問題があった。
Further, in the external electrode in which Ag is selected as the metal conductor and mixed with the glass frit, it is necessary to contain about 8% by weight or more of glass frit with respect to Ag in order to densify the electrode film. Becomes Since the specific gravity of this type of glass frit is about 3.0, the volume is about 28% or more with respect to Ag. When a large amount of glass frit is contained in the external electrode in this way, the region that reacts with the porcelain deepens from the interface, and the thermal expansion coefficient of the reaction layer differs greatly from that peculiar to the porcelain. There are problems that cracks are generated when firing and that the substrate is broken by a slight deflection after mounting on the substrate. On the contrary, when the amount of glass frit is reduced, the film structure is not sufficiently densified, and there is a problem that the plating solution penetrates into the electrode and deteriorates thermal shock resistance in the subsequent step of applying the plating film. .

【0007】[0007]

【問題点を解決するための手段】そこで、本発明者等
は、上記問題に対して検討を重ねた結果、外部電極を焼
成によって形成した後に、電極内部のガラス組成物が存
在する部位を詳細に調査したところ、ガラスフリットの
組成に依って電極内のガラスの分散状態に一定の傾向を
もつことを見出した。即ち、B2 3 、SiO2 を含
み、ZnOが多く、PbOがないか又は少ない場合に
は、ガラスが電極表面に偏在する傾向が強く、また逆に
2 3 、SiO2 を含みPbOが多く、ZnOがない
か又は少ない場合には、ガラスが電極と磁器コンデンサ
素体との界面に偏在する傾向が強いことを見出した。こ
れに対して、B2 3 、SiO2 を含み、さらにZnO
とPbOを含み、ZnOとPbOが一定の範囲にある場
合、ガラスが電極内に均一に分散することを見出した。
即ち、金属導体と磁器とを強く結合させ緻密な膜構造を
もつ電極ができ、かつ磁器の機械的強度を劣化させない
フリットとして、少なくともB2 3 およびSiO2
含み、さらにPbおよびZnを特定の割合で含有するガ
ラスを選択することにより、優れた特性を有する外部電
極が得られることを知見し、本発明に至った。
Therefore, as a result of repeated studies on the above problems, the inventors of the present invention have found that after forming the external electrode by firing, the site where the glass composition is present inside the electrode is detailed. As a result, it was found that the dispersion state of the glass in the electrode has a certain tendency depending on the composition of the glass frit. That includes B 2 O 3, SiO 2, ZnO many, if PbO is no or less includes strong tendency glass is unevenly distributed on the electrode surface and the B 2 O 3, SiO 2 conversely PbO It has been found that when the amount of ZnO is large and ZnO is absent or small, the glass tends to be unevenly distributed at the interface between the electrode and the ceramic capacitor body. On the other hand, it contains B 2 O 3 and SiO 2 , and ZnO
It has been found that when ZnO and PbO are contained in a certain range, the glass is dispersed uniformly in the electrode.
That is, an electrode having a dense film structure can be formed by strongly bonding the metal conductor and the porcelain, and at least B 2 O 3 and SiO 2 are contained as a frit that does not deteriorate the mechanical strength of the porcelain, and Pb and Zn are specified. It was found that an external electrode having excellent characteristics can be obtained by selecting the glass contained at a ratio of, and the present invention has been completed.

【0008】即ち、本発明の積層型磁器コンデンサは、
内部電極を介して誘電体層が複数積層されたコンデンサ
素体と、該内部電極と電気的に接続するように該コンデ
ンサ素体の側面に形成された一対の外部電極を具備する
ものであり、前記外部電極が、13.5〜22体積%の
ガラスフリットと、残部がAgまたはAgを含む合金か
らなる金属導体からなり、該ガラスフリットが少なくと
もB2 3 およびSiO2 を含有し、さらにPbを酸化
物換算で53.1〜60.2重量%、Znを酸化物換算
で10.2〜15.3重量%の割合で含有することを特
徴とするものである。
That is, the laminated ceramic capacitor of the present invention is
A capacitor element body in which a plurality of dielectric layers are laminated via internal electrodes, and a pair of external electrodes formed on a side surface of the capacitor element body so as to be electrically connected to the internal electrodes, The external electrode is composed of 13.5 to 22% by volume of a glass frit and the balance is a metal conductor made of Ag or an alloy containing Ag, and the glass frit contains at least B 2 O 3 and SiO 2 , and further Pb. Is 53.1 to 60.2% by weight in terms of oxide, and Zn is 10.2 to 15.3% by weight in terms of oxide.

【0009】以下、本発明を詳述する。本発明における
積層型磁器コンデンサは、従来の構造と変わりなく、図
1に示すように、複数の誘電体層1が内部電極2を介し
て積層されてコンデンサ素体3が形成される。内部電極
2は、コンデンサ素体3の側面に交互に導出され、その
側面には一対の外部電極4が形成され、さらに外部電極
4の表面にはメッキ膜5が形成される。
The present invention will be described in detail below. The multilayer ceramic capacitor according to the present invention has the same structure as the conventional one, and as shown in FIG. 1, a plurality of dielectric layers 1 are stacked via internal electrodes 2 to form a capacitor body 3. The internal electrodes 2 are alternately led out to the side surfaces of the capacitor body 3, a pair of external electrodes 4 are formed on the side surfaces, and a plating film 5 is formed on the surfaces of the external electrodes 4.

【0010】本発明によれば、この外部電極4が、ガラ
スフリット13.5〜22.0体積%,特に15〜18
体積%と、残部が金属導体から構成され、ガラスフリッ
トが少なくともB2 3 およびSiO2 を含有するとと
もに、Pbを酸化物換算で53.1〜60.2重量%、
特に57.0〜59.0重量%、Znを酸化物換算で1
0.2〜15.3重量%、特に11.0〜12.0重量
%の割合で含有するものである。
According to the invention, this external electrode 4 comprises a glass frit of 13.5-22.0% by volume, in particular 15-18.
% By volume, the balance being composed of a metal conductor, the glass frit containing at least B 2 O 3 and SiO 2 , and 53.1 to 60.2% by weight of Pb in terms of oxide.
Particularly, 57.0 to 59.0% by weight, Zn is 1 in terms of oxide.
The content is 0.2 to 15.3% by weight, particularly 11.0 to 12.0% by weight.

【0011】本発明において、外部電極中のガラスフリ
ットの量を上記の範囲に限定したのは、その量が13.
5体積%より少ないと外部電極と磁器の固着力が十分で
ない上に電極膜組織が疎になり熱衝撃性が低下する。ま
た、ガラスフリットの量が22体積%を越えると外部電
極表面に強固なガラス層が形成され、酸処理などの前処
理を行ってもメッキ膜を形成するのが困難となる。
In the present invention, the amount of glass frit in the external electrode is limited to the above range because the amount is 13.
If it is less than 5% by volume, the adhesive force between the external electrode and the porcelain is not sufficient, and the electrode film structure becomes sparse to reduce the thermal shock resistance. Further, if the amount of glass frit exceeds 22% by volume, a strong glass layer is formed on the surface of the external electrode, and it becomes difficult to form a plated film even if pretreatment such as acid treatment is performed.

【0012】また、ガラスフリット中のPb量およびZ
n量を上記の範囲に限定したのは、Pbが53.1重量
%より少ないか、またはZnが15.3重量%より多い
とコンデンサのたわみ強度が低下し、Pbが60.2重
量%より多いか、またはZnが10.2重量%より少な
いと電極膜内部に空孔が残存し膜を十分に緻密化できな
いためである。
Also, the amount of Pb and Z in the glass frit
The amount of n is limited to the above range because the flexural strength of the capacitor decreases when Pb is less than 53.1% by weight or Zn is more than 15.3% by weight, and Pb is more than 60.2% by weight. This is because if the amount is large or Zn is less than 10.2% by weight, pores remain inside the electrode film and the film cannot be sufficiently densified.

【0013】なお、本発明におけるガラスフリット中の
2 3 およびSiO2 量は、軟化点に応じて適宜その
量を決定すればよいが、およそB2 3 は15〜22重
量%、SiO2 は8〜15重量%の割合で含有され、そ
の他、アルカリ金属、アルカリ土類金属、TiO2 、A
2 3 などを含む場合もある。
[0013] Incidentally, B 2 O 3 and SiO 2 content of glass frit in the present invention may be determined the amount appropriately in accordance with the softening point but, approximately B 2 O 3 is 15 to 22 wt%, SiO 2 is contained in a proportion of 8 to 15% by weight, and other than that, alkali metal, alkaline earth metal, TiO 2 , A
In some cases, it may contain 1 2 O 3 or the like.

【0014】上記のようなガラスフリットは、硼珪酸鉛
系ガラスと硼珪酸亜鉛系ガラスを全体組成が前述の比率
になるように混合したものが好適に使用されるが、ガラ
スを構成する金属酸化物粉末を全体組成で調合して所定
の温度で溶融したものであってもよい。
The glass frit as described above is preferably a mixture of lead borosilicate glass and zinc borosilicate glass so that the overall composition is in the above-mentioned ratio. It is also possible that the material powder is prepared in the whole composition and melted at a predetermined temperature.

【0015】また、外部電極を構成する金属導体として
は、Ag又はAgとPdの合金などが用いられ、内部電
極としてはAg/Pd合金またはPdなどが用いられ
る。
Further, Ag or an alloy of Ag and Pd is used as the metal conductor forming the external electrode, and Ag / Pd alloy or Pd is used as the internal electrode.

【0016】さらに、誘電体層は、周知の誘電体からな
るもので、例えば、BaTiO3 系、Pb(Mg1/3
2/3 )O3 系、Pb(Zn1/3 Nb2/3 )O3 系、P
b(FeNdNb)O3 系などから所望の特性に応じた
誘電体を選択することができる。
Further, the dielectric layer is made of a well-known dielectric, for example, BaTiO 3 system, Pb (Mg 1/3 N).
b 2/3 ) O 3 system, Pb (Zn 1/3 Nb 2/3 ) O 3 system, P
It is possible to select a dielectric material according to desired characteristics from a b (FeNdNb) O 3 system or the like.

【0017】[0017]

【作用】B2 3 、SiO2 を含み、ZnOが多く、P
bOがないか又はその量が少ない硼珪酸亜鉛ガラスは、
外部電極のガラスフリットの1成分として、金属導体と
コンデンサ磁器素体とを強く結合させることができる
が、ガラスが磁器素体に強く反応してできる反応層の熱
膨張係数が磁器固有のそれに対して小さくなるために磁
器の機械的強度を劣化させるとともに、ガラスが電極表
面に偏在する傾向が強く、また逆にB2 3 、SiO2
を含みPbOが多く、ZnOがないか又はその量が少な
い硼珪酸鉛ガラスは、電極を磁器素体に強く結合させ、
かつ磁器との反応が軽微であり、反応部の熱膨張係数が
磁器固有のそれを大差なく、磁器素体の機械的強度を劣
化させることがないが、電極と磁器コンデンサ素体との
界面に偏在する傾向が強い。
[Function] Contains B 2 O 3 and SiO 2 , contains a large amount of ZnO, and P
Zinc borosilicate glass, which has no or a small amount of bO,
As a component of the glass frit of the external electrode, the metal conductor and the capacitor porcelain body can be strongly coupled, but the thermal expansion coefficient of the reaction layer formed by the glass reacting strongly with the porcelain body is peculiar to that of porcelain. And the mechanical strength of the porcelain is deteriorated, and the glass tends to be unevenly distributed on the electrode surface. On the contrary, B 2 O 3 , SiO 2
Lead borosilicate glass containing a large amount of PbO and a low amount or a small amount of ZnO causes the electrode to be strongly bonded to the porcelain body,
Moreover, the reaction with the porcelain is slight, the thermal expansion coefficient of the reaction part is not much different from that peculiar to porcelain, and the mechanical strength of the porcelain body is not deteriorated, but at the interface between the electrode and the porcelain body Strong tendency to be unevenly distributed.

【0018】本発明によれば、これらのPbO系、Zn
O系の2つの硼珪酸ガラスの特性を合わせもつガラスに
よって外部電極のガラスフリットを構成することによ
り、電極のコンデンサ素体への密着強度を低下させるこ
となく、外部からの機械的応力や熱的衝撃に対して高い
耐抗性を付与することができる。また、コンデンサのた
わみ強度が向上するとともに、膜自体が緻密であること
からメッキ工程でメッキ液が膜中に浸入することがな
く、製造時の歩留りを向上するとともに、熱衝撃性を向
上し、基板への実装時の熱ストレスに耐え、製品の信頼
性を高めることができる。
According to the present invention, these PbO-based, Zn
By constructing the glass frit of the external electrode with a glass having the characteristics of two O-based borosilicate glasses, the mechanical strength and thermal stress from the outside can be reduced without lowering the adhesion strength of the electrode to the capacitor body. High resistance to impact can be imparted. In addition, the flexural strength of the capacitor is improved, and since the film itself is dense, the plating solution does not penetrate into the film during the plating process, improving the yield during manufacturing and improving the thermal shock resistance. It withstands thermal stress when mounted on the board and can improve product reliability.

【0019】[0019]

【実施例】BaTiO3 97.7重量%、Nb2
5 1.47重量%、Sm2 3 0.49重量%、ZnO
0.34重量%からなる混合粉末に有機結合材および可
塑剤を加え、泥漿にしドクターブレード法によりグリー
ンシートを作製した。
EXAMPLES BaTiO 3 97.7% by weight, Nb 2 O
5 1.47% by weight, Sm 2 O 3 0.49% by weight, ZnO
An organic binder and a plasticizer were added to a mixed powder of 0.34% by weight to prepare a slurry, and a green sheet was prepared by a doctor blade method.

【0020】このグリーンシートに金属導体としてPd
からなる内部電極用ペーストを塗布し、これらを積層圧
着した後、1300℃の大気中で焼成してコンデンサ素
体を作製した。
Pd is used as a metal conductor on this green sheet.
The internal electrode paste consisting of was applied, laminated and pressure-bonded, and then fired in the atmosphere at 1300 ° C. to prepare a capacitor element body.

【0021】次に、Agからなる金属導体にPbO62
〜75重量%、B2 3 12〜25重量%、SiO2
〜20重量%の組成からなる硼珪酸鉛ガラスとZnO5
5〜65重量%、B2 3 25〜40重量%、SiO2
5〜20重量%およびLi2O1.0〜2.5重量%の
組成からなる硼珪酸亜鉛系ガラスとをガラスの全体組成
が表1になるように混合して添加し外部電極用ペースト
を作製した。そして、それぞれのペーストをコンデンサ
素体の端面に塗布後、610〜750℃の大気中で熱処
理して外部電極をコンデンサ素体に焼付け、積層型磁器
コンデンサを得た。
Next, PbO62 was added to the metal conductor made of Ag.
˜75 wt%, B 2 O 3 12 to 25 wt%, SiO 2 2
~ 20 wt% lead borosilicate glass and ZnO5
5 to 65% by weight, B 2 O 3 25 to 40% by weight, SiO 2
A zinc borosilicate glass having a composition of 5 to 20% by weight and Li 2 O of 1.0 to 2.5% by weight is mixed and added so that the overall composition of the glass is as shown in Table 1 to prepare an external electrode paste. did. Then, each paste was applied to the end surface of the capacitor body, and then heat-treated in the atmosphere at 610 to 750 ° C. to burn the external electrodes to the capacitor body to obtain a laminated porcelain capacitor.

【0022】得られた積層型磁器コンデンサをEIAJ
試験法に準拠し、厚さ1.6mmのガラスエポキシ基板
にそれぞれ20個のコンデンサを実装してたわみ試験を
行い、素子が破壊する限界時のたわみ量を測定し、平均
値を表1に示した。
The obtained laminated porcelain capacitor was EIAJ
According to the test method, 20 capacitors are mounted on each glass epoxy substrate with a thickness of 1.6 mm, a flexure test is performed, and the flexure amount at the time when the element breaks is measured. The average value is shown in Table 1. It was

【0023】また、各コンデンサにつき、305℃の溶
融ハンダ中に浸漬して磁器中のクラックの存在を検査
し、300個中のクラックが発生したコンデンサの数を
表1に示した。
Each capacitor was immersed in molten solder at 305 ° C. and inspected for the presence of cracks in the porcelain, and the number of cracked capacitors out of 300 is shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、ガラスフリット
中に鉛を含まない試料No.1、2はたわみに対する強度
が小さく、鉛を含んだ系でも鉛の含有量が60.2重量
%を越える試料No.6、7ではたわみに対する強度が高
いものの、耐熱衝撃性が小さい。さらに、ガラスフリッ
トの量が13.5体積%より少ない試料No.8では、耐
熱衝撃性が小さく、ガラスフリット量が22体積%より
大きい試料No,11では、たわみに対する強度を十分で
かつ熱衝撃性もコンデンサ磁器素体にクラックが発生し
たものがなかったが、メッキ膜が剥離したものが2個/
200個存在した。これは、外部電極表面にガラス層が
強固に形成され、強固なメッキ膜を形成することができ
なかったためと考えられ、適当でない。これに対して、
本発明のコンデンサでは、熱衝撃試験においてクラック
の発生は全く認められず、かつメッキ膜の剥離など外観
の異常がなく、また破壊限界のたわみ量も4.0mm以
上の優れたたわみ強度を示した。
As is clear from Table 1, Sample Nos. 1 and 2 containing no lead in the glass frit have a low strength against bending, and the lead content of the system containing lead exceeds 60.2% by weight. Samples Nos. 6 and 7 have high flexural strength but low thermal shock resistance. Further, Sample No. 8 having a glass frit amount of less than 13.5% by volume has low thermal shock resistance, and Sample No. 11 having a glass frit amount of more than 22% by volume has sufficient strength against bending and thermal shock. There were no cracks in the capacitor porcelain body, but the plating film peeled off in 2 pieces /
There were 200 pieces. It is considered that this is because the glass layer was firmly formed on the surface of the external electrode, and a strong plating film could not be formed, which is not suitable. On the contrary,
In the capacitor of the present invention, no crack was found in the thermal shock test, there was no abnormality in appearance such as peeling of the plating film, and the flexural limit at the breaking limit was 4.0 mm or more, indicating excellent flexural strength. .

【0026】[0026]

【発明の効果】以上詳述した通り、本発明によれば、外
部からの機械的応力や熱的衝撃に対して高い耐抗力を付
与することができ、コンデンサのたわみ強度を高めると
ともに基板への実装に際して印加される熱ストレスに耐
えることができるために、製品の信頼性を高めることが
できる。
As described in detail above, according to the present invention, it is possible to impart high resistance to external mechanical stress and thermal shock, enhance the flexural strength of the capacitor, and increase the flexural strength of the capacitor. Since it can withstand the thermal stress applied during mounting, the reliability of the product can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層型磁器コンデンサの構造を説明するための
断面図である。
FIG. 1 is a cross-sectional view for explaining the structure of a laminated ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 誘電体層 2 内部電極 3 コンデンサ素体 4 外部電極 5 メッキ膜 1 Dielectric layer 2 Internal electrode 3 Capacitor element body 4 External electrode 5 Plating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部電極を介して誘電体層が複数積層され
たコンデンサ素体と、該内部電極と電気的に接続するよ
うに該コンデンサ素体の側面に形成された一対の外部電
極を具備する積層型磁器コンデンサにおいて、前記外部
電極が、13.5〜22体積%のガラスフリットと、残
部がAgまたはAgを含む合金からなる金属導体からな
り、該ガラスフリットが少なくともB2 3 およびSi
2 を含有し、さらにPbを酸化物換算で53.1〜6
0.2重量%、Znを酸化物換算で10.2〜15.3
重量%の割合で含有することを特徴とする積層型磁器コ
ンデンサ。
1. A capacitor element body having a plurality of dielectric layers laminated via internal electrodes, and a pair of external electrodes formed on the side surfaces of the capacitor element body so as to be electrically connected to the internal electrodes. In the laminated ceramic capacitor described above, the external electrode is made of 13.5 to 22% by volume of glass frit and the balance is a metal conductor made of Ag or an alloy containing Ag, and the glass frit is at least B 2 O 3 and Si.
Containing O 2, further Pb in terms of oxide from 53.1 to 6
0.2 wt%, Zn converted to oxide 10.2 to 15.3
A laminated porcelain capacitor characterized by being contained in a weight percentage.
JP4293168A 1992-10-30 1992-10-30 Laminated type porcelain capacitor Pending JPH06151235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4293168A JPH06151235A (en) 1992-10-30 1992-10-30 Laminated type porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4293168A JPH06151235A (en) 1992-10-30 1992-10-30 Laminated type porcelain capacitor

Publications (1)

Publication Number Publication Date
JPH06151235A true JPH06151235A (en) 1994-05-31

Family

ID=17791299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4293168A Pending JPH06151235A (en) 1992-10-30 1992-10-30 Laminated type porcelain capacitor

Country Status (1)

Country Link
JP (1) JPH06151235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079983A (en) * 2017-10-26 2019-05-23 京都エレックス株式会社 Conductive paste for external electrode formation of laminate chip component and laminate chip component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079983A (en) * 2017-10-26 2019-05-23 京都エレックス株式会社 Conductive paste for external electrode formation of laminate chip component and laminate chip component

Similar Documents

Publication Publication Date Title
JP4645594B2 (en) Conductive paste and ceramic electronic component using the same
US6370015B2 (en) Laminated ceramic electronic device
KR100366930B1 (en) Conductive Paste and Ceramic Electronic Device Using the Same
JPH08180731A (en) Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor
JPH0340109B2 (en)
JP6075460B2 (en) Multilayer ceramic electronic components
JP2001222912A (en) Conductive paste and ceramic electronic part
JPWO2015045721A1 (en) Multilayer ceramic electronic components
JP2003077336A (en) Conductive paste and laminated ceramic capacitor using the same
KR100375293B1 (en) Conductive paste and multi-layer ceramic electronic component using the same
JPH087645A (en) Conductive paste and multilayer ceramic capacitor
JPH06151235A (en) Laminated type porcelain capacitor
JPH0834168B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JPH08330173A (en) Multilayer ceramic capacitor and its manufacture
JP3337819B2 (en) Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
JP4576660B2 (en) Conductive paste for multilayer ceramic capacitor and multilayer ceramic capacitor using the same
JPH06176956A (en) Laminated porcelain capacitor
JP3324253B2 (en) Conductive paste for forming terminal electrodes of electronic components
JPH0817140B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JPH06188145A (en) Monolithic ceramic capacitor
JP2000036220A (en) Conductive paste and ceramic electronic part using same
JP2005019185A (en) Copper conductive paste and laminated ceramic electronic part
JP2968316B2 (en) Multilayer ceramic capacitors
JP2003142804A (en) Circuit board
JP3253028B2 (en) External electrode forming method of multilayer ceramic capacitor