JP3253028B2 - External electrode forming method of multilayer ceramic capacitor - Google Patents

External electrode forming method of multilayer ceramic capacitor

Info

Publication number
JP3253028B2
JP3253028B2 JP11825792A JP11825792A JP3253028B2 JP 3253028 B2 JP3253028 B2 JP 3253028B2 JP 11825792 A JP11825792 A JP 11825792A JP 11825792 A JP11825792 A JP 11825792A JP 3253028 B2 JP3253028 B2 JP 3253028B2
Authority
JP
Japan
Prior art keywords
ceramic capacitor
multilayer ceramic
external electrode
weight
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11825792A
Other languages
Japanese (ja)
Other versions
JPH05291076A (en
Inventor
慎一郎 黒岩
昌禎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11825792A priority Critical patent/JP3253028B2/en
Publication of JPH05291076A publication Critical patent/JPH05291076A/en
Application granted granted Critical
Publication of JP3253028B2 publication Critical patent/JP3253028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、積層セラミックコン
デンサに関し、詳しくは、Pb系複合ペロブスカイト型
セラミックを誘電体として用いた積層セラミックコンデ
ンサの外部電極形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor, and more particularly, to a method for forming external electrodes of a multilayer ceramic capacitor using a Pb-based composite perovskite ceramic as a dielectric.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】この発
明が関連する積層セラミックコンデンサとしては、例え
ば、図1に示すように、BaTiO3系誘電体セラミッ
ク(高温焼成セラミック)からなる誘電体11中に複数
層の内部電極(例えば、Pd電極)12を積層して積層
セラミックコンデンサ素子13を形成し、その両端側に
導電ペーストを塗布、焼付けして外部電極14を形成す
るとともに、ニッケル、スズ、あるいは半田などのメッ
キを施し、外部電極14上に金属メッキ膜15を形成し
て、実装時の半田付け工程における銀くわれを防止した
り、半田付け性を向上させたりした積層セラミックコン
デンサがある。
2. Description of the Related Art As a multilayer ceramic capacitor to which the present invention relates, for example, as shown in FIG. 1, a dielectric material 11 made of a BaTiO 3 -based dielectric ceramic (high-temperature fired ceramic) is used. A multilayer ceramic capacitor element 13 is formed by laminating a plurality of layers of internal electrodes (for example, Pd electrodes) 12 on both sides, and a conductive paste is applied to both ends thereof and baked to form external electrodes 14. Alternatively, there is a multilayer ceramic capacitor in which plating such as solder is performed, and a metal plating film 15 is formed on the external electrodes 14 to prevent silver cracking in a soldering process at the time of mounting or improve solderability. .

【0003】そして、上記のような積層セラミックコン
デンサおいては、近年、小型化、大容量化への要求が大
きくなり、その要求に応えるために高い誘電率を有する
Pb系複合ペロブスカイト型セラミックが誘電体として
用いられるに至っている。
In recent years, demands for miniaturization and large-capacity of the multilayer ceramic capacitor as described above have increased, and in order to meet the demand, a Pb-based composite perovskite ceramic having a high dielectric constant has been developed. It has been used as a body.

【0004】このPb系複合ペロブスカイト型セラミッ
クは、高い誘電率を有するとともに、900〜1000
℃という低温で焼結できるという特徴を有しており、積
層セラミックコンデンサの誘電体として使用した場合、
焼結温度を低くすることが可能であるため、内部電極と
して、耐熱性に優れた高価なPtやPdを用いることな
く、Agの含有率が高く経済的なAg−Pd合金を用い
ることができるという長所がある。
[0004] The Pb-based composite perovskite ceramic has a high dielectric constant and a 900-1000
It has the feature that it can be sintered at a low temperature of ℃, and when used as a dielectric of multilayer ceramic capacitors,
Since the sintering temperature can be lowered, an economical Ag-Pd alloy having a high Ag content can be used as an internal electrode without using expensive Pt or Pd having excellent heat resistance. There is an advantage.

【0005】しかし、Pb系複合ペロブスカイト型セラ
ミックを誘電体として用いた積層セラミックコンデンサ
において外部電極を形成する場合、導電ペーストを積層
セラミックコンデンサ素子に塗布して800℃以上の温
度で焼付けを行うと、ガラスフリットとPb系複合ペロ
ブスカイト型セラミック(誘電体)が反応してガラス成
分が誘電体の粒界に侵入し、誘電体にクラックが発生し
て、内部電極切れを生じ、静電容量が変動するという問
題点がある。
However, when external electrodes are formed in a multilayer ceramic capacitor using a Pb-based composite perovskite ceramic as a dielectric, a conductive paste is applied to the multilayer ceramic capacitor element and baked at a temperature of 800 ° C. or more. The glass frit reacts with the Pb-based composite perovskite-type ceramic (dielectric) to cause the glass component to penetrate into the grain boundaries of the dielectric, causing cracks in the dielectric, causing internal electrodes to be cut, and the capacitance to fluctuate. There is a problem.

【0006】また、Pb系複合ペロブスカイト型セラミ
ックは、BaTiO3系セラミックなどの高温焼成セラ
ミックに比べて化学的耐久性(特に耐酸性)が低いた
め、外部電極にメッキ処理を施す工程でメッキ液が外部
電極を経て誘電体(Pb系複合ペロブスカイト型セラミ
ック)にまで達し、誘電体を侵して対向電極間の絶縁不
良を生じさせ、特性を劣化させるという問題点がある。
Further, since the Pb-based composite perovskite-type ceramic has a lower chemical durability (especially acid resistance) than a high-temperature fired ceramic such as a BaTiO 3 -based ceramic, a plating solution is required in a step of plating an external electrode. There is a problem that the dielectric material (Pb-based composite perovskite ceramic) is reached via the external electrode, and the dielectric material is corroded to cause poor insulation between the opposing electrodes, thereby deteriorating the characteristics.

【0007】この発明は、上記問題点を解決するもので
あり、Pb系複合ペロブスカイト型セラミックからなる
誘電体にクラック(内部クラック)を発生させず、ニッ
ケルやスズなどの金属メッキを行った後にも対向電極間
の絶縁抵抗を低下させることがなく、接着強度にも優れ
た外部電極を形成することが可能な積層セラミックコン
デンサの外部電極形成方法を提供することを目的とす
る。
The present invention has been made to solve the above problems, and does not cause cracks (internal cracks) in a dielectric made of a Pb-based composite perovskite-type ceramic, and even after plating with a metal such as nickel or tin. It is an object of the present invention to provide a method for forming an external electrode of a multilayer ceramic capacitor capable of forming an external electrode having excellent adhesive strength without lowering an insulation resistance between opposed electrodes.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の積層セラミックコンデンサの外部電極形
成方法は、Pb系複合ペロブスカイト型セラミックから
なる誘電体中に内部電極が積層された積層セラミックコ
ンデンサ素子に外部電極を形成するとともに、該外部電
極にニッケルメッキなどの金属メッキを施してなる積層
セラミックコンデンサの外部電極形成方法であって、A
g粉末100重量部と、軟化点が400℃以下のPbO
−B23−SiO2系ガラスフリット18〜27重量部
とを含有する導電ペーストを、積層セラミックコンデン
サ素子に塗布し、600℃以下の温度で焼付けを行うこ
とにより外部電極を形成することを特徴とする。
In order to achieve the above object, a method for forming an external electrode of a multilayer ceramic capacitor according to the present invention is directed to a multilayer ceramic capacitor in which an internal electrode is laminated in a dielectric made of a Pb-based composite perovskite ceramic. A method for forming an external electrode of a multilayer ceramic capacitor, comprising forming an external electrode on a capacitor element and applying a metal plating such as nickel plating to the external electrode.
g powder 100 parts by weight and PbO having a softening point of 400 ° C. or less
A conductive paste containing 18 to 27 parts by weight of -B 2 O 3 -SiO 2 -based glass frit is applied to a multilayer ceramic capacitor element, and baked at a temperature of 600 ° C. or less to form an external electrode. Features.

【0009】なお、上記ガラスフリットは、Al23
Na2O、K2O、及びZnOの1種または2種以上を1
0重量%以下の割合で含有するものであってもよい。
The above glass frit is made of Al 2 O 3 ,
One or more of Na 2 O, K 2 O, and ZnO
It may be contained at a ratio of 0% by weight or less.

【0010】[0010]

【作用】積層セラミックコンデンサ素子に塗布した導電
ペーストの焼付けが低温で行われるため、Pb系複合ペ
ロブスカイト型セラミックからなる誘電体にクラック
(内部クラック)を発生させることなく、内部電極の断
線(内部電極切れ)による静電容量の変動(劣化)を防
止することが可能になるとともに、外部電極中のガラス
成分が金属メッキ液の誘電体への浸透を阻止して、対向
電極間の絶縁抵抗の劣化を防止し、良好な特性を保持す
ることを可能にする。
Since the conductive paste applied to the multilayer ceramic capacitor element is baked at a low temperature, cracks (internal cracks) do not occur in the dielectric composed of Pb-based composite perovskite ceramics, and the internal electrodes are disconnected (internal electrodes). (E.g., cutting) can prevent capacitance fluctuation (deterioration), and prevent the glass component in the external electrode from penetrating the metal plating solution into the dielectric, thereby deteriorating the insulation resistance between the opposing electrodes. And maintain good characteristics.

【0011】また、Ag粉末に添加されるガラスフリッ
トとして、軟化点が低いガラスフリットが用いられてい
るため、焼付け温度を低くしても十分な接着強度を得る
ことができる。
Further, since a glass frit having a low softening point is used as a glass frit added to the Ag powder, a sufficient adhesive strength can be obtained even if the baking temperature is lowered.

【0012】[0012]

【実施例】以下、この発明の実施例を比較例とともに示
してその特徴をさらに詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the features of the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0013】この実施例においては、式: Pb(Mg1/3Nb2/3)O3−Pb(Zn1/3Nb2/3
3−PbTiO3 で表されるPb系複合ペロブスカイト型セラミックを誘
電体として用い、この誘電体中にAg−Pdからなる内
部電極を積層するとともに、下記の実施例1〜4及び比
較例1〜3に示すような導電ペーストを用い、これをP
b系複合ペロブスカイト型セラミックからなる誘電体に
塗布し、所定の焼成条件で焼付けを行って外部電極を形
成するとともに、外部電極が形成された積層セラミック
コンデンサ素子を多数の通液孔が形成されたバレルに入
れ、例えば、硫酸ニッケルや硫酸スズなどを含有するメ
ッキ液に浸漬し、バレルを回転させて外部電極上にニッ
ケルメッキ、スズ、あるいは半田などをメッキすること
により、積層セラミックコンデンサを製造した。すなわ
ち、この積層セラミックコンデンサは、図1に示すよう
に、誘電体1中に複数層の内部電極2が積層された積層
セラミックコンデンサ素子3の両端側に外部電極4を設
け、さらに、外部電極4上に金属メッキ膜5を配設する
ことにより形成されている。
In this embodiment, the formula: Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/3 Nb 2/3 )
Using a Pb-based composite perovskite-type ceramic represented by O 3 —PbTiO 3 as a dielectric, an internal electrode made of Ag—Pd is laminated in the dielectric, and the following Examples 1 to 4 and Comparative Examples 1 to Using a conductive paste as shown in FIG.
It was applied to a dielectric made of a b-type composite perovskite-type ceramic, baked under predetermined firing conditions to form external electrodes, and a number of liquid holes were formed in the multilayer ceramic capacitor element on which the external electrodes were formed. Placed in a barrel, for example, immersed in a plating solution containing nickel sulfate, tin sulfate, etc., and by rotating the barrel to plate nickel plating, tin, or solder on an external electrode, a multilayer ceramic capacitor was manufactured. . That is, in this multilayer ceramic capacitor, as shown in FIG. 1, external electrodes 4 are provided at both ends of a multilayer ceramic capacitor element 3 in which a plurality of internal electrodes 2 are laminated in a dielectric 1. It is formed by disposing a metal plating film 5 thereon.

【0014】実施例1 Ag粉末 : 100重量部 ガラスフリット : 18重量部 (組成)……PbO:B23:SiO2:Al23=8
5:11:2:2(重量比) (軟化点)…330℃ 有機ビヒクル : 40重量部 を含有する導電ペーストを外部電極として塗布し、52
0℃の温度条件下に焼付けを行った後、Niメッキ、ス
ズメッキ、及び半田メッキのいずれかを施すことにより
積層セラミックコンデンサを製造する。
Example 1 Ag powder: 100 parts by weight Glass frit: 18 parts by weight (composition): PbO: B 2 O 3 : SiO 2 : Al 2 O 3 = 8
5: 11: 2: 2 (weight ratio) (softening point) ... 330 ° C Organic vehicle: 40 parts by weight A conductive paste containing 40 parts by weight was applied as an external electrode, and 52
After baking under a temperature condition of 0 ° C., any one of Ni plating, tin plating, and solder plating is applied to manufacture a multilayer ceramic capacitor.

【0015】実施例2〜4 ガラスフリットの添加量を20重量部(実施例2)、2
3重量部(実施例3)、27重量部(実施例4)に変え
たこと以外は上記実施例1と同一の条件、方法により積
層セラミックコンデンサを製造する。
Examples 2 to 4 The amount of glass frit added was 20 parts by weight (Example 2).
A multilayer ceramic capacitor is manufactured under the same conditions and method as in Example 1 except that 3 parts by weight (Example 3) and 27 parts by weight (Example 4) are used.

【0016】比較例1〜3 ガラスフリットの添加量を15重量部(比較例1)、1
6重量部(比較例2)、30重量部(比較例3)に変え
たこと以外は上記実施例1と同一の条件、方法により積
層セラミックコンデンサを製造する。
Comparative Examples 1 to 3 The amount of glass frit added was 15 parts by weight (Comparative Example 1).
A multilayer ceramic capacitor is manufactured under the same conditions and method as in Example 1 except that the amount is changed to 6 parts by weight (Comparative Example 2) and 30 parts by weight (Comparative Example 3).

【0017】上記のようにして製造した積層セラミック
コンデンサについて、メッキ後に発生した絶縁不良数、
及び電極引張強度を調べるとともに、誘電体の内部クラ
ックの発生の有無などを観察した。その結果を表1に示
す。
With respect to the multilayer ceramic capacitor manufactured as described above, the number of insulation defects generated after plating,
In addition to examining the electrode tensile strength, the presence or absence of occurrence of internal cracks in the dielectric was observed. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、表1において、「絶縁不良数」は、
直流16Vを印加し、一分後に、logIR<8.50と
なる試料の数(試料数100個当りの数)を示し、「電
極引張強度」は、引張り試験において電極破壊が生じた
ときの荷重(試料100個の平均値)を示している。
In Table 1, "the number of insulation failures"
One minute after applying a direct current of 16 V, the number of samples satisfying logIR <8.50 (the number per 100 samples) is shown. The “electrode tensile strength” is the load when electrode failure occurs in the tensile test. (Average value of 100 samples) is shown.

【0020】なお、比較例3の試料については、外部電
極形成後(導電ペーストの焼付け後)に誘電体(Pb系
複合ペロブスカイト型セラミック)に内部クラックの発
生が認められたため、絶縁不良数、及び電極引張強度の
測定(評価)は行わなかった。この内部クラックは、導
電ペースト中のガラスフリットの含有量が多いため、焼
成時の体積収縮による応力が大きくなることにより生じ
たものとみられる。
In the sample of Comparative Example 3, internal cracks were observed in the dielectric (Pb-based composite perovskite ceramic) after the formation of the external electrodes (after baking of the conductive paste). The measurement (evaluation) of the electrode tensile strength was not performed. This internal crack is considered to have been caused by an increase in stress due to volume shrinkage during firing due to a large content of glass frit in the conductive paste.

【0021】また、図2は、ガラスフリット添加量と絶
縁不良発生率及び電極引張強度との関係を示す線図であ
る。
FIG. 2 is a graph showing the relationship between the amount of glass frit added, the rate of occurrence of insulation failure, and the tensile strength of the electrode.

【0022】表1に示すように、ガラスフリットの添加
量が18重量部未満の比較例1及び比較例2において
は、試料100個につき、6個(比較例1),及び3個
(比較例2)の試料について絶縁不良の発生が認められ
た。
As shown in Table 1, in Comparative Examples 1 and 2 in which the amount of glass frit added was less than 18 parts by weight, 6 (Comparative Example 1) and 3 (Comparative Example) per 100 samples Insufficiency of insulation was observed for the sample of 2).

【0023】また、表2から、ガラスフリットの添加量
が増加すると絶縁不良発生率が減少し、Ag粉末100
重量部に対するガラスフリットの添加量が18重量部を
越えると絶縁不良が発生しなくなることがわかる。した
がって、ガラスフリットの添加量は、18重量部以上で
あることが好ましい。
Further, from Table 2, it can be seen that the increase in the amount of glass frit decreases the rate of occurrence of insulation failure, and that the Ag powder 100%
It can be seen that if the amount of glass frit exceeds 18 parts by weight per part by weight, insulation failure does not occur. Therefore, the amount of glass frit added is preferably at least 18 parts by weight.

【0024】また、表1及び図2より、ガラスフリット
の添加量が増加するとともに電極引張強度も増大する
が、ガラスフリットの添加量が27重量部を越え、30
重量部に達すると前述のように誘電体にクラックが発生
するため、ガラスフリットの添加量は、27重量部以下
であることが好ましい。
Further, from Table 1 and FIG. 2, although the addition amount of glass frit increases and the tensile strength of the electrode also increases, the addition amount of glass frit exceeds 27 parts by weight and 30
Since cracks occur in the dielectric as described above when the weight reaches part by weight, the amount of glass frit added is preferably 27 parts by weight or less.

【0025】なお、上記実施例においては、式: Pb(Mg1/3Nb2/3)O3−Pb(Zn1/3Nb2/3
3−PbTiO3 で表されるPb系複合ペロブスカイト型セラミックを誘
電体として用いた場合について説明したが、Pb系複合
ペロブスカイト型セラミックは、上記実施例のセラミッ
クに限られるものではなく、その他の種々のPb系複合
ペロブスカイト型セラミックを用いることができる。
In the above embodiment, the formula: Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Zn 1/3 Nb 2/3 )
The case where the Pb-based composite perovskite ceramic represented by O 3 —PbTiO 3 is used as the dielectric has been described. However, the Pb-based composite perovskite ceramic is not limited to the ceramic of the above-described embodiment, but may be other various types. Pb-based composite perovskite-type ceramics can be used.

【0026】また、PbO−B23−SiO2系ガラス
フリットの成分比率についても上記実施例に限定される
ものではなく、上記実施例とは異なる成分比率にするこ
とが可能であり、さらに、Al23、Na2O、K2O、
ZnOの1種または2種以上を10重量%以下の割合で
含有させることも可能である。
Further, the component ratio of the PbO—B 2 O 3 —SiO 2 based glass frit is not limited to the above embodiment, but may be different from the above embodiment. , Al 2 O 3 , Na 2 O, K 2 O,
One or more of ZnO may be contained at a ratio of 10% by weight or less.

【0027】また、この発明の積層セラミックコンデン
サの外部電極の形成方法においては、積層セラミックコ
ンデンサ素子の形状や外部電極の形状に特に制約はな
く、必要に応じて種々の形状に形成することが可能であ
る。
In the method of forming external electrodes of a multilayer ceramic capacitor according to the present invention, there are no particular restrictions on the shape of the multilayer ceramic capacitor element and the shape of the external electrodes, and they can be formed in various shapes as necessary. It is.

【0028】[0028]

【発明の効果】上述のように、この発明の積層セラミッ
クコンデンサの外部電極形成方法は、Ag粉末100重
量部と、軟化点が400℃以下のPbO−B23−Si
2系ガラスフリット18〜27重量部とを含有する導
電ペーストを積層セラミックコンデンサ素子に塗布し、
600℃以下の温度で焼付けを行うことにより外部電極
を形成するようにしているので、ペロブスカイト型セラ
ミックからなる誘電体にクラック(内部クラック)を発
生させることがなく、静電容量の変動(劣化)を防止す
ることができるとともに、金属メッキ液の誘電体への浸
透を阻止し、対向電極間の絶縁抵抗の劣化を防止して良
好な特性を保持することが可能になる。
As described above, the method for forming the external electrodes of the multilayer ceramic capacitor according to the present invention uses 100 parts by weight of Ag powder and PbO--B 2 O 3 --Si having a softening point of 400 ° C. or less.
A conductive paste containing 18 to 27 parts by weight of an O 2 -based glass frit is applied to the multilayer ceramic capacitor element,
Since the external electrodes are formed by baking at a temperature of 600 ° C. or less, cracks (internal cracks) do not occur in the dielectric composed of perovskite-type ceramics, and fluctuations (deterioration) in capacitance are caused. In addition, it is possible to prevent the metal plating solution from penetrating into the dielectric, prevent deterioration of the insulation resistance between the opposing electrodes, and maintain good characteristics.

【0029】また、Ag粉末に添加されるガラスフリッ
トとして、軟化点が低いガラスフリットが用いられてい
るため、焼付け温度を低くしても十分な接着強度を得る
ことができる。
Further, since a glass frit having a low softening point is used as a glass frit added to the Ag powder, a sufficient adhesive strength can be obtained even if the baking temperature is lowered.

【0030】したがって、この発明の積層セラミックコ
ンデンサの外部電極の形成方法によれば、十分な強度を
有する外部電極を形成することができるとともに、金属
メッキを施した後の絶縁抵抗の劣化を抑制して良好な特
性を維持することができる。
Therefore, according to the method for forming the external electrodes of the multilayer ceramic capacitor of the present invention, it is possible to form the external electrodes having sufficient strength and to suppress the deterioration of the insulation resistance after the metal plating. And good characteristics can be maintained.

【0031】さらに、絶縁抵抗を劣化させることなくメ
ッキ処理を施すことができるため、実装時の半田付け工
程における銀くわれを防止し(ニッケルメッキを施した
場合)、あるいは半田付け性を向上させる(スズメッキ
あるいは半田メッキを施した場合)ことが可能になる。
Furthermore, since plating can be performed without deteriorating the insulation resistance, silver cracking in the soldering step at the time of mounting is prevented (when nickel plating is applied), or the solderability is improved. (When tin plating or solder plating is applied).

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の一実施例にかかる方法により
外部電極を形成した積層セラミックコンデンサを示す断
面図である。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor having external electrodes formed by a method according to an embodiment of the present invention.

【図2】ガラスフリットの添加量と、絶縁不良発生率及
び電極引張強度との関係を示す線図である。
FIG. 2 is a graph showing the relationship between the amount of glass frit added, the rate of occurrence of insulation failure, and the electrode tensile strength.

【符号の説明】[Explanation of symbols]

1 誘電体(Pb系複合ペロブスカイト型セ
ラミック) 2 内部電極 3 積層セラミックコンデンサ素子 4 外部電極 5 金属メッキ膜
DESCRIPTION OF SYMBOLS 1 Dielectric (Pb-type composite perovskite type ceramic) 2 Internal electrode 3 Multilayer ceramic capacitor element 4 External electrode 5 Metal plating film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Pb系複合ペロブスカイト型セラミック
からなる誘電体中に内部電極が積層された積層セラミッ
クコンデンサ素子に外部電極を形成するとともに、該外
部電極にニッケルメッキなどの金属メッキを施してなる
積層セラミックコンデンサの外部電極形成方法であっ
て、Ag粉末100重量部と、軟化点が400℃以下の
PbO−B23−SiO2系ガラスフリット18〜27
重量部とを含有する導電ペーストを、積層セラミックコ
ンデンサ素子に塗布し、600℃以下の温度で焼付けを
行うことにより外部電極を形成することを特徴とする積
層セラミックコンデンサの外部電極形成方法。
1. A laminated structure in which external electrodes are formed on a multilayer ceramic capacitor element in which internal electrodes are laminated in a dielectric composed of a Pb-based composite perovskite ceramic, and the external electrodes are subjected to metal plating such as nickel plating. an external electrode forming method of a ceramic capacitor, a Ag powder 100 parts by weight, a softening point of 400 ° C. or less PbO-B 2 O 3 -SiO 2 based glass frit 18-27
A method for forming an external electrode of a multilayer ceramic capacitor, comprising applying a conductive paste containing a weight part to a multilayer ceramic capacitor element and baking at a temperature of 600 ° C. or less to form an external electrode.
JP11825792A 1992-04-09 1992-04-09 External electrode forming method of multilayer ceramic capacitor Expired - Lifetime JP3253028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11825792A JP3253028B2 (en) 1992-04-09 1992-04-09 External electrode forming method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11825792A JP3253028B2 (en) 1992-04-09 1992-04-09 External electrode forming method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH05291076A JPH05291076A (en) 1993-11-05
JP3253028B2 true JP3253028B2 (en) 2002-02-04

Family

ID=14732148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11825792A Expired - Lifetime JP3253028B2 (en) 1992-04-09 1992-04-09 External electrode forming method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3253028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616677B1 (en) * 2005-04-11 2006-08-28 삼성전기주식회사 Glass frit for dielectric ceramic composition, dielectric ceramic composition, multilayer laminated ceramic capacitor and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161223A (en) * 1993-12-10 1995-06-23 Murata Mfg Co Ltd Conductive paste and multilayer ceramic capacitor
JP2001023822A (en) * 1999-07-07 2001-01-26 Tdk Corp Laminated ferrite chip inductor array and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616677B1 (en) * 2005-04-11 2006-08-28 삼성전기주식회사 Glass frit for dielectric ceramic composition, dielectric ceramic composition, multilayer laminated ceramic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JPH05291076A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
CA2211259C (en) Monolithic ceramic capacitor and producing method thereof
US10522287B2 (en) Multilayer ceramic electronic component having inorganic matter at an interface between an external electrode and the ceramic body
JP2992570B2 (en) Ceramic multilayer capacitor and method of manufacturing the same
JP3494115B2 (en) Conductive paste and multilayer ceramic electronic component using the same
US6442813B1 (en) Method of producing a monolithic ceramic capacitor
JP3253028B2 (en) External electrode forming method of multilayer ceramic capacitor
EP0987721B1 (en) Chip-type multilayer electronic part
JP3544569B2 (en) Multilayer ceramic capacitors
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH087645A (en) Conductive paste and multilayer ceramic capacitor
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JPH097879A (en) Ceramic electronic part and manufacture thereof
JPH0817139B2 (en) Laminated porcelain capacitors
JP2996016B2 (en) External electrodes for chip-type electronic components
JPH0656825B2 (en) Ceramic capacitors
JP3554957B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
US6654227B2 (en) Ceramic electronic parts and method for manufacturing the same
JP2996015B2 (en) External electrodes for chip-type electronic components
JPH09283365A (en) Layered ceramic electronic part and its manufacture
JPH09115772A (en) External electrode for chip electronic component
JPH07201637A (en) Multilayer ceramic electronic device
JP3123310B2 (en) Conductive paste for chip-type electronic components
JPH1154358A (en) Laminated ceramic capacitor
JPH09120932A (en) Laminated electronic component
JPH0574648A (en) Laminated electronic component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11