JPH06149372A - Traveling controller for beam-light-guided working vehicle - Google Patents

Traveling controller for beam-light-guided working vehicle

Info

Publication number
JPH06149372A
JPH06149372A JP4297142A JP29714292A JPH06149372A JP H06149372 A JPH06149372 A JP H06149372A JP 4297142 A JP4297142 A JP 4297142A JP 29714292 A JP29714292 A JP 29714292A JP H06149372 A JPH06149372 A JP H06149372A
Authority
JP
Japan
Prior art keywords
beam light
light
steering control
information
work vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4297142A
Other languages
Japanese (ja)
Inventor
Koji Yoshikawa
浩司 吉川
Kazuo Uchikoshi
一夫 打越
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4297142A priority Critical patent/JPH06149372A/en
Publication of JPH06149372A publication Critical patent/JPH06149372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To exactly judge whether the cause of the non-light reception of an optical sensor for a steering control is due to the deviation of a body side control position, or due to the abnormality of a guidance beam light so as to execute an appropriate processing by stopping a steering control based on the received information of the optical sensor in the case of the abnormality based on the information of a working vehicle side communicating means. CONSTITUTION:When the light output of a guiding beam light projecting means B1 is not present, a ground side communicating means 27 transmits the abnormality information to a working vehicle V. And also, even when an object interrupting the optical path of a guiding beam light A1, that is, an optical path interrupting object is present, the ground side communicating means 27 transmits the abnormality information to the working vehicle V. The working vehicle V stops the steering control based on the received information of an optical sensor 17 for the steering control in the case of the abnormality, based on the information from a working vehicle side communicating means 19. Thus, when the guiding beam light A1 is not received by the optical sensor 17 for the steering control, it is possible to judge whether the cause is due to the deviation of the body of the working vehicle V, or due to the abnormal projection, and to erase the unnecessary steering control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業車が複数個の走行
行程の夫々に沿って自動走行するように、各走行行程の
一端側から他端側に向けて誘導用ビーム光を投射する誘
導用ビーム光投射手段が地上側に設けられ、前記作業車
に、前記誘導用ビーム光を受光する操向制御用光センサ
と、その操向制御用光センサの受光情報に基づいて、前
記作業車が前記誘導用ビーム光に沿って自動走行するよ
うに操向制御する操向制御手段とが設けられたビーム光
誘導式作業車の走行制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention projects a guide light beam from one end side to the other end side of each traveling stroke so that a work vehicle automatically travels along each of a plurality of traveling strokes. A guidance beam light projection means is provided on the ground side, and the work vehicle receives the steering beam light for guidance, and the work based on the light reception information of the steering control light sensor. The present invention relates to a travel control device for a beam light guided work vehicle, which is provided with steering control means for steering control so that the vehicle automatically travels along the guiding beam light.

【0002】[0002]

【従来の技術】上記この種のビーム光誘導式作業車の走
行制御装置は、作業用に設定された複数個の走行行程の
一端側から他端側に向けて投射される誘導用ビーム光に
沿って作業車が自動走行するように、作業車側に設けら
れた操向制御用光センサの受光情報(例えば車体横幅方
向に複数個並べられた受光素子の受光位置の情報)から
車体の車体横幅方向での操向位置を判別して適正な操向
位置になるように制御するようにしたものであるが、従
来では、操向制御用光センサが誘導用ビーム光を受光し
なくなった場合には、例えば、非受光状態になる前の上
記光センサの受光位置からビーム光のずれた方向を予測
してその方向に操向して受光状態に復帰するようにさせ
ていた。
2. Description of the Related Art A traveling control device for a beam light guided work vehicle of this type is designed to guide light beams projected from one end side to the other end side of a plurality of traveling strokes set for work. In order for the work vehicle to automatically run along the vehicle body, the vehicle body of the vehicle body is determined from the light receiving information of the steering control optical sensor provided on the work vehicle side (for example, the information of the light receiving position of the plurality of light receiving elements arranged in the vehicle width direction). The steering position in the width direction is determined and the control is performed so that the steering position becomes the proper steering position.However, in the past, when the steering control optical sensor stopped receiving the guiding light beam, For example, the direction in which the beam light is deviated from the light receiving position of the optical sensor before the non-light receiving state is predicted, and the light beam is steered in that direction to return to the light receiving state.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
では、例えば、レーザー発光装置等の誘導用ビーム光投
射手段が故障してビーム光を出力しなくなった場合にお
いては、上記ビーム光を受光する状態への復帰操向を続
けてもビーム光を検出できないので、適正な操向位置か
ら大きくずれてしまうことになり、例えば畔際を走行し
ているときには畔に車体が衝突するおそれもあった。あ
るいは、誘導用ビーム光の投射方向の前方側を作業者が
横切る等して一時的に誘導用ビーム光が投射されなくな
った場合においては、所定時間経過すれば受光状態に復
帰するにもかかわらず不要な操向を行う結果になってい
た。
However, in the above-mentioned prior art, for example, when the guiding light beam projection means such as a laser light emitting device fails to stop outputting the light beam, the light beam is received. Returning to the state Since the beam of light cannot be detected even if the steering is continued, it will be greatly deviated from the proper steering position.For example, when traveling on the shore, the car body may collide with the shore. . Alternatively, in the case where the guiding beam light is temporarily not projected because the operator crosses the front side in the projection direction of the guiding beam light, etc., the light receiving state is restored after a predetermined time elapses. It resulted in unnecessary steering.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の欠点を解消すべ
く、操向制御用光センサが誘導用ビーム光を受光しなく
なった場合に、その非受光の原因が車体操向位置のずれ
によるものか、あるいは、誘導用ビーム光が正常に投射
されなくなったことによるかを的確に判断して、前記不
要な操向制御を行うことを回避させることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to eliminate the drawbacks of the above-mentioned prior art when the steering control optical sensor does not receive the guiding light beam. In addition, it is necessary to accurately judge whether the cause of the non-reception is due to the shift of the steering position of the vehicle body or the fact that the guiding beam light is not normally projected, and perform the unnecessary steering control. To avoid.

【0005】[0005]

【課題を解決するための手段】本発明によるビーム光誘
導式作業車の走行制御装置の特徴構成は、地上側に、前
記誘導用ビーム光投射手段の光出力の有無を検出するビ
ーム光出力有無検出手段と、前記各走行行程の一端側か
ら他端側に向けて投射された前記誘導用ビーム光の光路
を遮断する光路遮断物の有無を検出する光路遮断物有無
検出手段と、前記ビーム光出力有無検出手段及び前記光
路遮断物有無検出手段の検出情報に基づいて、前記誘導
用ビーム光投射手段の光出力が無い場合あるいは前記誘
導用ビーム光の光路を遮断する光路遮断物が有る場合の
少なくともいずれか一方の場合には異常と判別して、そ
の判別情報を前記作業車側に送信する地上側通信手段と
が設けられ、前記作業車側に、前記地上側通信手段から
の送信情報を受信する作業車側通信手段が設けられ、前
記操向制御手段は、前記作業車側通信手段の情報に基づ
いて、前記異常の場合には前記操向制御用光センサの受
光情報に基づく前記操向制御を中止するように構成され
ている点にある。
A characteristic configuration of a traveling control device for a beam light guide type working vehicle according to the present invention is to detect the presence or absence of a light beam output from the guiding beam light projecting means on the ground side. Detecting means, detecting means for detecting the presence or absence of an optical path blocker for blocking the optical path of the guiding beam light projected from one end side to the other end side of each traveling stroke, and the beam light Based on the detection information of the output presence / absence detection means and the optical path blocker presence / absence detection means, when there is no optical output of the guiding beam light projection means or when there is an optical path blocker that blocks the optical path of the guiding beam light In the case of at least one of them, it is determined that there is an abnormality, and the ground side communication means for transmitting the discrimination information to the work vehicle side is provided, and the work vehicle side is provided with the transmission information from the ground side communication means. Receive Working vehicle side communication means is provided, and the steering control means, based on the information of the working vehicle side communication means, in the case of the abnormality, the steering based on the light reception information of the steering control optical sensor. It is configured to stop the control.

【0006】[0006]

【作用】本発明の特徴構成によれば、地上側において、
ビーム光出力有無検出手段によって誘導用ビーム光投射
手段の光出力の有無が検出されると共に、光路遮断物有
無検出手段によって誘導用ビーム光の光路を遮断する光
路遮断物の有無が検出され、これらの検出情報に基づい
て、地上側通信手段が、誘導用ビーム光投射手段の光出
力が無い場合あるいは誘導用ビーム光の光路を遮断する
光路遮断物が有る場合の少なくともいずれか一方の場合
には異常と判別してその判別情報を作業車側に送信す
る。又、操向制御用光センサの受光情報に基づいて操向
制御しながら自動走行している作業車は、操向制御用光
センサが誘導用ビーム光を受光しなくなると、作業車側
通信手段によって地上側から異常の判別情報が送信され
ているかどうかを調べ、異常情報が送信されていない場
合には、上記非受光になった原因が車体操向位置のずれ
によるものと判断して、例えば、非受光状態になる前の
上記光センサの受光情報から車体操向位置のずれた方向
を予測してその方向に復帰操向させる。一方、異常情報
が送信されている場合には、その非受光になった原因を
誘導用ビーム光が正常に投射されていないことによるも
のと判断し、操向制御用光センサの受光情報に基づく操
向制御を中止する。
According to the characteristic configuration of the present invention, on the ground side,
The presence / absence of light output of the guiding beam light projection means is detected by the beam light output presence / absence detecting means, and the presence / absence of an optical path blocker for blocking the optical path of the guiding light beam is detected by the optical path blocker presence / absence detecting means. Based on the detection information of, the ground side communication means, in the case of at least one of the case where there is no optical output of the guidance beam light projection means or there is an optical path blocker for blocking the optical path of the guidance beam light, It is determined to be abnormal, and the determination information is transmitted to the work vehicle side. Further, when the steering control optical sensor stops receiving the guiding beam light, the working vehicle automatically traveling while controlling the steering based on the light reception information of the steering control optical sensor, the working vehicle side communication means. Check whether or not the abnormality determination information is transmitted from the ground side, and if the abnormality information is not transmitted, it is determined that the cause of the non-light reception is due to the shift of the vehicle body steering position. The direction in which the vehicle body steering position is deviated is predicted from the light reception information of the optical sensor before the non-light receiving state, and the return steering is performed in that direction. On the other hand, if the abnormality information is transmitted, it is determined that the reason why the light is not received is that the guidance light beam is not normally projected, and based on the light reception information of the steering control optical sensor. Stop steering control.

【0007】[0007]

【発明の効果】従って、本発明の特徴構成によれば、作
業車が操向制御用光センサの受光情報に基づく操向制御
を行いながら自動走行しているときに、その操向制御用
光センサが誘導用ビーム光を受光しなくなった場合に、
その非受光の原因が車体操向位置のずれによるものか、
あるいは、誘導用ビーム光が正常に投射されなくなった
ことによるものかが的確に判断され、この判断結果に基
づいて、誘導用ビーム光が正常に投射されなくなったこ
とによる場合には、上記操向制御用光センサの受光情報
に基づく操向制御を中止し、もって、従来のように不要
な操向制御を行うことによる前記不具合の発生を有効に
回避させて、ビーム光誘導式作業車の操向信頼性を向上
させることができるに至った。
Therefore, according to the feature of the present invention, when the work vehicle is automatically traveling while performing the steering control based on the light receiving information of the steering control optical sensor, the steering control light is used. If the sensor no longer receives the guiding light beam,
Is the cause of the non-light reception due to the shift of the steering position of the car body,
Alternatively, it is accurately determined whether or not the guidance beam light is no longer normally projected, and based on this determination result, when the guidance beam light is no longer normally projected, the steering The steering control based on the light reception information of the control optical sensor is stopped, and thus the occurrence of the above-mentioned inconvenience caused by performing unnecessary steering control as in the conventional case is effectively avoided, and the steering of the beam light guide type work vehicle is effectively prevented. It has become possible to improve reliability.

【0008】[0008]

【実施例】以下、本発明を田植え用の作業車の走行制御
装置に適用した場合における実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a traveling control device for a rice planting work vehicle will be described below with reference to the drawings.

【0009】図5に示すように、圃場内に設定された互
いに平行に並ぶ複数個の作業用の走行行程において、田
植え用の作業車Vを走行行程の長さ方向に沿って自動走
行するように誘導するために、その走行用ガイドとなる
誘導用ビーム光A1を走行行程の長さ方向に沿ってその
一端側から他端側に向けて投射する誘導用ビーム光投射
手段としての誘導用レーザ光投射装置B1が、前記複数
個の走行行程が並ぶ方向に沿って隣接する2個の走行行
程に対して1個の割合でその2個の走行行程の中間に相
当する位置で地上側に設置され、もって、互いに平行す
る複数個の走行行程の夫々において前記誘導用ビーム光
A1を投射できるように構成している。尚、本実施例で
は、前記誘導用ビーム光A1によって誘導される前記作
業車Vが、各走行行程の両端部において180度方向転
換しながら、各走行行程を往復走行するようにしてあ
る。
As shown in FIG. 5, in a plurality of work traveling strokes set in a field parallel to each other, a rice planting work vehicle V is automatically driven along the length direction of the traveling stroke. Laser beam as a guiding beam light projection means for projecting the guiding beam light A1 which serves as a guide for the traveling from the one end side to the other end side along the length direction of the traveling path. The light projection device B1 is installed on the ground side at a position corresponding to the middle of the two traveling strokes at a ratio of one to two traveling strokes adjacent to each other along the direction in which the plurality of traveling strokes are arranged. Therefore, the guiding beam light A1 can be projected in each of a plurality of parallel traveling strokes. In this embodiment, the work vehicle V guided by the guiding beam light A1 is adapted to reciprocate in each traveling stroke while changing the direction by 180 degrees at both ends of each traveling stroke.

【0010】又、前記走行行程の長さ方向における両端
部の位置を示すと共に、次の走行行程への回向動作の開
始位置を示すための回向用ビーム光A2を、前記誘導用
ビーム光A1の投射方向に対して直交する方向に向けて
投射する回向用レーザ光投射装置B2が、走行行程の長
さ方向における両端部夫々に対応する前記走行行程が並
ぶ圃場横側方箇所に設けられている。これにより、前記
作業車Vが各走行行程の終端部に達するに伴って、前記
作業車Vを次の走行行程に向けて180度方向転換させ
ることにより、所定範囲の圃場における植え付け作業を
連続して自動的に行えるようにしている。
Further, the turning beam light A2 for indicating the positions of both ends in the length direction of the traveling stroke and for indicating the start position of the turning operation for the next traveling stroke is used as the guiding beam light. A turning laser light projection device B2 for projecting in a direction orthogonal to the projection direction of A1 is provided at a lateral side of the field where the traveling strokes are arranged corresponding to both ends in the longitudinal direction of the traveling strokes. Has been. Thus, as the working vehicle V reaches the end of each traveling stroke, the working vehicle V is turned by 180 degrees toward the next traveling stroke, so that the planting work in the field in the predetermined range is continued. So that it can be done automatically.

【0011】図6に示すように、前記誘導用レーザ光投
射装置B1は、ビーム光を出力するレーザダイオード2
1と、このレーザダイオード21の出力光を垂直方向の
所定角度範囲で走査するガルバノスキャナー25とによ
って構成されている。又、前記レーザダイオード21の
出力光の一部が、プリズム22によって取り出されミラ
ー23で反射されて受光素子であるホトダイオード24
に入射している。そして、レーザダイオード21からビ
ーム光が出力されればホトダイオード24がオン状態と
なる一方、ビーム光が出力されていなければホトダイオ
ード24がオフ状態となり、これにより、上記ホトダイ
オード24が、前記誘導用ビーム光投射手段B1の光出
力の有無を検出するビーム光出力有無検出手段を構成す
る。又、前記誘導用レーザ光投射装置B1側から誘導用
レーザ光A1の投射方向つまり光路に向かって検出用の
超音波信号を投射するとともに、光路前方側に物体があ
る場合にはそれからの反射信号を検出してオン状態とな
るように構成された超音波センサ26が設けられ、この
超音波センサ26によって、前記各走行行程の一端側か
ら他端側に向けて投射された前記誘導用ビーム光A1の
光路を遮断する光路遮断物の有無を検出する光路遮断物
有無検出手段が構成される。
As shown in FIG. 6, the guiding laser beam projection device B1 includes a laser diode 2 for outputting a beam of light.
1 and a galvano scanner 25 that scans the output light of the laser diode 21 within a predetermined angle range in the vertical direction. Further, a part of the output light of the laser diode 21 is taken out by the prism 22 and reflected by the mirror 23 to be a photodiode 24 which is a light receiving element.
Is incident on. When the laser diode 21 outputs the beam light, the photodiode 24 is turned on. On the other hand, when the beam light is not output, the photodiode 24 is turned off. A beam light output presence / absence detecting unit for detecting presence / absence of light output of the projection unit B1 is configured. Further, an ultrasonic wave signal for detection is projected from the guiding laser beam projection device B1 side toward the projecting direction of the guiding laser beam A1, that is, toward the optical path, and when there is an object on the front side of the optical path, a reflection signal from the object. Is provided and an ultrasonic sensor 26 configured to be turned on is provided, and the guidance beam light projected by the ultrasonic sensor 26 from one end side to the other end side of each traveling stroke. Optical path blocker presence / absence detection means for detecting the presence / absence of an optical path blocker that blocks the optical path of A1 is configured.

【0012】又、前記ホトダイオード24及び前記超音
波センサ26の検出情報に基づいて、前記誘導用ビーム
光投射手段B1の光出力が無い場合あるいは前記誘導用
ビーム光A1の光路を遮断する光路遮断物が有る場合の
少なくともいずれか一方の場合には、誘導用ビーム光A
1の投射状態が異常即ち前記作業車V側に対して誘導用
ビーム光A1が送られていない状態と判別して、その判
別情報を前記作業車V側に対して無線通信式に送信する
地上側通信手段27が設けられている。又、この地上側
通信手段27からの送信情報には、上記判別情報に加え
て、いずれの走行行程の誘導用ビーム光A1の投射状態
についての判別情報かを識別するための識別情報が付加
されている。尚、前記誘導用レーザ光投射装置B1、前
記超音波センサ26、及び前記地上側通信手段27等
は、地上側の所定高さに設けられた台21上に図示しな
い取付け機構によって取付固定されている。
Further, based on the detection information of the photodiode 24 and the ultrasonic sensor 26, when there is no light output of the guiding beam light projecting means B1 or an optical path blocker for blocking the optical path of the guiding beam light A1. In at least one of the cases where there is
The projection state of 1 is abnormal, that is, it is determined that the guidance beam light A1 is not sent to the work vehicle V side, and the determination information is wirelessly transmitted to the work vehicle V side. Side communication means 27 is provided. Further, in addition to the above-mentioned discrimination information, the transmission information from the ground side communication means 27 is added with discrimination information for discriminating which traveling stroke the discrimination state is regarding the projection state of the guiding beam light A1. ing. The guiding laser beam projection device B1, the ultrasonic sensor 26, the ground side communication means 27, etc. are mounted and fixed by a mounting mechanism (not shown) on a stand 21 provided at a predetermined height on the ground side. There is.

【0013】前記作業車Vの構成について説明すれば、
図5及び図6に示すように、左右一対の前輪3及び後輪
4を備えた走行機体5の後部に、作業装置としての苗植
え付け装置6が、昇降自在で且つ駆動停止自在に設けら
れている。又、図1に示すように、前記前後輪3,4
は、左右を一対として前後で各別に操向操作自在に構成
され、操向用の油圧シリンダ7,8と、それらに対する
電磁操作式の制御弁9,10とが設けられている。つま
り、前輪3又は後輪4の一方のみを操向する2輪ステア
リング形式、前後輪3,4を逆位相で且つ同角度に操向
する4輪ステアリング形式、前後輪3,4を同位相で且
つ同角度に操向する平行ステアリング形式の三種類のス
テアリング形式を選択使用できるようになっている。
The structure of the work vehicle V will be described below.
As shown in FIGS. 5 and 6, a seedling planting device 6 as a working device is provided at a rear portion of a traveling machine body 5 including a pair of left and right front wheels 3 and rear wheels 4 so as to be movable up and down and stop driving. There is. Further, as shown in FIG. 1, the front and rear wheels 3, 4
Is composed of a pair of left and right sides so that steering operation can be freely performed in the front and rear, and hydraulic cylinders 7 and 8 for steering and electromagnetic control valves 9 and 10 for them are provided. That is, a two-wheel steering system that steers only one of the front wheels 3 or the rear wheels 4, a four-wheel steering system that steers the front and rear wheels 3, 4 in opposite phases and at the same angle, and the front and rear wheels 3, 4 in the same phase. In addition, it is possible to selectively use three types of steering types, that is, a parallel steering type that steers at the same angle.

【0014】図1中、11はエンジンEからの出力を変
速して前記前後輪3,4の夫々を同時に駆動する油圧式
無段変速装置、12はその変速操作用の電動モータ、1
3は前記植え付け装置6の昇降用油圧シリンダ、14は
その制御弁、15は前記エンジンEによる前記植え付け
装置6の駆動を断続する電磁操作式の植え付けクラッチ
である。又、前記作業車Vの走行並びに前記植え付け装
置6の作動を制御するためのマイクロコンピュータ利用
の制御装置16が設けられ、この制御装置16が、後述
の各種センサ等からの入力情報に基づいて、前記変速用
モータ12、前記各制御弁9,10,14、及び、前記
植え付けクラッチ15の夫々を制御するように構成され
ている。
In FIG. 1, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 at the same time, 12 is an electric motor for gear shifting operation, 1
3 is a hydraulic cylinder for raising and lowering the planting device 6, 14 is a control valve thereof, and 15 is an electromagnetically-operated planting clutch that connects and disconnects the drive of the planting device 6 by the engine E. Further, a control device 16 using a microcomputer for controlling the traveling of the work vehicle V and the operation of the planting device 6 is provided, and the control device 16 is based on input information from various sensors described later. The shift motor 12, the control valves 9, 10, 14 and the planting clutch 15 are configured to be controlled respectively.

【0015】前記作業車Vには、図1に示すように、前
記前後輪3,4夫々の操向角を検出するポテンショメー
タ利用の操向角検出センサR1,R2と、前記変速装置
11の変速状態に基づいて間接的に前後進状態及び車速
を検出するポテンショメータ利用の車速センサR3と、
前記変速装置11の出力軸の回転数を計数して走行距離
を検出するためのエンコーダS4、後述の回向用光セン
サS3、及び後述の操向制御用光センサ17の各種セン
サが設けられている。又、前記地上側通信手段27から
の送信情報を無線通信式に受信する作業車側通信手段1
9が設けられ、この受信情報は、前記制御装置16に入
力されている。尚、前記送信情報中の識別情報を解読す
る手段が、前記制御装置16内に構成されている。
As shown in FIG. 1, the work vehicle V includes steering angle detection sensors R1 and R2 using potentiometers for detecting steering angles of the front and rear wheels 3 and 4, and a shift of the transmission 11. A vehicle speed sensor R3 that uses a potentiometer to indirectly detect the forward / backward traveling state and the vehicle speed based on the state,
An encoder S4 for counting the number of rotations of the output shaft of the transmission 11 to detect the traveling distance, a turning optical sensor S3 described later, and various sensors for a steering control optical sensor 17 described later are provided. There is. Further, the work vehicle side communication means 1 for wirelessly receiving the transmission information from the ground side communication means 27.
9 is provided, and this received information is input to the control device 16. A means for decoding the identification information in the transmission information is configured in the control device 16.

【0016】図5及び図6にも示すように、前記誘導用
ビーム光A1に対する機体横幅方向でのずれをその機体
横幅方向での受光位置に基づいて検出するために前記誘
導用ビーム光A1を受光する操向制御用光センサ17が
機体右側方の前方側に設けられ、更に、前記回向用ビー
ム光A2を受光する回向用光センサS3が、機体左右何
れの側からでも前記回向用ビーム光A2を受光できるよ
うに、前記操向制御用光センサ17の前方側の機体左右
両側の夫々に設けられている。尚、前記回向用光センサ
S3は前記回向用ビーム光A2に対する受光の有無のみ
を検出するように構成され、受光位置は判別できないよ
うになっている。
As shown in FIGS. 5 and 6, the guiding beam light A1 is used to detect the deviation in the lateral direction of the machine body with respect to the guiding beam light A1 based on the light receiving position in the lateral direction of the machine body. A steering control optical sensor 17 for receiving light is provided on the front side on the right side of the machine body, and a turning optical sensor S3 for receiving the turning beam light A2 is further provided for the turning direction from either side of the machine body. The steering control light sensor 17 is provided on each of the left and right sides of the fuselage so that it can receive the beam light A2. The turning optical sensor S3 is configured to detect only whether or not the turning beam light A2 is received, and the light receiving position cannot be determined.

【0017】前記操向制御用光センサ17について説明
を加えれば、図6及び図7に示すように、機体前後方向
に間隔dを隔て且つ上下方向にも間隔を隔てて位置する
ように配置された前後一対の光センサS1,S2から構
成され、そして、前記誘導用ビーム光A1が機体前後の
何れの方向から入射される場合でも差のない状態で受光
できるようにするために、機体前後の各方向からの入射
光を前記光センサS1,S2夫々の受光面に向けて反射
する反射鏡18を備えている。前記前後一対の光センサ
S1,S2の夫々は、図7にも示すように、複数個の受
光素子Dを機体横幅方向に並設したものであって、横幅
方向でのセンサ中心D0に位置する受光素子の位置を基
準として、前記誘導用ビーム光A1を受光した前後夫々
の受光素子の位置X1,X2を検出できるように構成さ
れている。
The steering control optical sensor 17 will be described. As shown in FIG. 6 and FIG. 7, the steering control optical sensor 17 is arranged so as to be positioned at a distance d in the longitudinal direction of the machine body and at a distance in the vertical direction. It is composed of a pair of front and rear optical sensors S1 and S2, and in order to be able to receive the guiding beam light A1 with no difference even when it is incident from any direction in the front and rear of the body, A reflecting mirror 18 is provided for reflecting the incident light from each direction toward the light receiving surface of each of the optical sensors S1 and S2. As shown in FIG. 7, each of the pair of front and rear optical sensors S1 and S2 has a plurality of light receiving elements D arranged side by side in the lateral direction of the machine body, and is located at the sensor center D0 in the lateral direction. With the position of the light receiving element as a reference, the positions X1 and X2 of the respective light receiving elements before and after the reception of the guiding beam light A1 can be detected.

【0018】そして、前記制御装置16を利用して、前
記操向制御用光センサ17の受光情報に基づいて、前記
作業車Vが前記誘導用ビーム光A1に沿って自動走行す
るように操向制御する操向制御手段100と、前記作業
車Vが一つの走行行程の終端部に達するに伴って、その
一つの走行行程に隣接する次の走行行程の始端部に向け
て前記作業車Vを所定の回向パターンで回向動作させる
回向制御手段101とが構成されている。
Then, the control device 16 is used to steer the work vehicle V so as to automatically travel along the guidance beam light A1 based on the light reception information of the steering control optical sensor 17. As the steering control means 100 for controlling the work vehicle V reaches the end portion of one travel stroke, the work vehicle V is moved toward the start end portion of the next travel stroke adjacent to the one travel stroke. A turning control means 101 for performing a turning operation in a predetermined turning pattern is configured.

【0019】前記操向制御手段100について説明すれ
ば、前記操向制御用光センサ17の前記前後一対の光セ
ンサS1,S2の夫々の受光素子の位置X1,X2とそ
の車体前後方向での取り付け間隔dとに基づいて、下式
から、前記誘導用ビーム光A1の投射方向に対する走行
機体5の傾きφと横幅方向における位置の偏位xとを求
めるようになっている。
Explaining the steering control means 100, the positions X1 and X2 of the light receiving elements of the pair of front and rear optical sensors S1 and S2 of the steering control optical sensor 17 and their mounting in the vehicle front-back direction are attached. Based on the distance d, the inclination φ of the traveling machine body 5 with respect to the projection direction of the guiding beam light A1 and the position deviation x in the lateral width direction are obtained from the following equation.

【0020】[0020]

【数1】 φ=tan-1(|X1−X2|/d) x=X1## EQU1 ## φ = tan -1 (| X1-X2 | / d) x = X1

【0021】尚、この例では、前記横幅方向における位
置の偏位xは、前記一対の光センサS1,S2の一方
(S1)の受光位置としているが、前記傾きφによる誤
差が生じないようにするために、前記一対の光センサS
1,S2夫々の受光位置X1,X2の平均値を用いるよ
うにしてもよい。そして、前記作業車Vは、前記傾きφ
と前記偏位xとが共に零となるように、目標操向角を設
定して操向制御されることになる。但し、本実施例で
は、各走行行程では、前記前輪3のみを操向する2輪ス
テアリング形式で操向制御するように構成してある。
In this example, the position deviation in the lateral width direction is set to the light receiving position of one (S1) of the pair of photosensors S1 and S2, but an error due to the inclination φ does not occur. In order to do so, the pair of optical sensors S
You may make it use the average value of the light receiving positions X1 and X2 of 1 and S2, respectively. The work vehicle V has the inclination φ.
The target steering angle is set and steering control is performed so that both the deviation x and the deviation x become zero. However, in the present embodiment, the steering control is performed in a two-wheel steering system in which only the front wheels 3 are steered in each traveling stroke.

【0022】又、前記操向制御手段100は、前記作業
車側通信手段19の情報に基づいて、前記異常の場合に
は前記操向制御用光センサ17の受光情報に基づく前記
操向制御を中止するように構成されている。すなわち、
前記異常の場合は、作業車Vが走行している走行行程に
おいて操向制御用の走行ガイドとなる誘導用ビーム光A
1が、作業車V側に対して投射されておらず、この状態
で制御を継続しても正常な操向制御ができないからであ
る。
Further, the steering control means 100 controls the steering based on the information of the work vehicle side communication means 19 and, in the case of the abnormality, the received light information of the steering control optical sensor 17. It is configured to stop. That is,
In the case of the above-mentioned abnormality, the guidance beam light A that serves as a traveling guide for steering control in the traveling stroke of the work vehicle V is traveling.
1 is not projected to the work vehicle V side, and normal steering control cannot be performed even if control is continued in this state.

【0023】次に、前記回向制御手段101について説
明すれば、図8に示すように、前記回向用光センサS3
が前記回向用ビーム光A2を検出した地点をeとし、こ
のe地点から前記エンコーダS4の検出情報に基づいて
距離aだけ走行させた地点fから180度の旋回動作を
開始し、所定の旋回区間gを経て旋回動作の終点hに至
り、次の走行行程の始端部に移動したことになる。従っ
て、前記回向パターンは、上記e地点からh地点までの
経路e〜hによって設定される。
Next, the turning control means 101 will be described. As shown in FIG. 8, the turning optical sensor S3 is used.
Is a point at which the turning light beam A2 is detected, and a turning operation of 180 degrees is started from a point f at which a distance a is traveled based on the detection information of the encoder S4 from the point e, and a predetermined turning is performed. It means that the vehicle has reached the end point h of the turning motion through the section g and moved to the start end portion of the next traveling stroke. Therefore, the turning pattern is set by the routes e to h from the point e to the point h.

【0024】次に、図2に示すフローチャートに基づい
て、前記地上側通信手段27の誘導用ビーム光投射状態
についての判別動作を説明すれば、前記ホトダイオード
24が非受光状態である場合あるいは前記超音波センサ
26がオン状態である場合のいずれかであるときには、
誘導用ビーム光投射状態が異常と判別してその判別情報
を送信する。一方、前記ホトダイオード24が受光状態
で且つ前記超音波センサ26がオフ状態である場合は、
誘導用ビーム光投射状態が正常と判別されるので、その
判別情報は送信しない。そして、上記動作を繰り返す。
Next, referring to the flow chart shown in FIG. 2, the discrimination operation of the guiding beam light projection state of the ground side communication means 27 will be described. In the case where the photodiode 24 is in the non-light receiving state, When either of the cases where the sound wave sensor 26 is in the ON state,
The projection light beam projection state is determined to be abnormal, and the determination information is transmitted. On the other hand, when the photodiode 24 is in the light receiving state and the ultrasonic sensor 26 is in the off state,
Since the guiding light beam projection state is determined to be normal, the determination information is not transmitted. Then, the above operation is repeated.

【0025】次に、図3及び図4に示すフローチャート
に基づいて、前記制御装置16の動作について説明すれ
ば、前記作業車Vは、前記誘導用レーザ光投射装置B1
から投射される誘導用ビーム光A1を機体後方側から受
光する状態で、圃場の一端側に設定された最初の走行行
程を、その長さ方向に沿って一端側から他端側に向けて
走行開始する(図5参照)。
Next, the operation of the control device 16 will be described with reference to the flow charts shown in FIGS. 3 and 4. In the work vehicle V, the guiding laser beam projection device B1 is used.
In the state of receiving the guiding beam light A1 projected from the rear side of the machine body, the first traveling path set on one end side of the field is traveled from one end side to the other end side along the length direction thereof. Start (see Figure 5).

【0026】走行開始後は、前記誘導用ビーム光投射状
態の異常情報が送信されていない場合には、前記操向制
御用センサ17による前記誘導用ビーム光A1の受光位
置情報に基づいて、前記一対の光センサS1,S2の両
方の受光位置がセンサ中央となるように、前述の如く、
2輪ステアリング形式で前記前輪3を操向制御すること
になる。但し、前記地上側通信手段27からの前記異常
情報が送信されている場合には、前記操向制御用センサ
17による上記操向制御を中止するとともに直ちに走行
を停止して作業を終了する。前記回向用光センサS3
が、走行行程の一端側において投射される前記回向用ビ
ーム光A2を受光すると、その地点から設定距離走行し
て植え付け開始位置に達するに伴って、植え付け装置6
を下降させると共に駆動開始して、植え付け作業を開始
することになる。
After the start of traveling, if the abnormality information of the guiding beam light projection state is not transmitted, the above-mentioned information is received based on the light receiving position information of the guiding beam light A1 by the steering control sensor 17. As described above, the light receiving positions of both of the pair of optical sensors S1 and S2 are at the center of the sensor.
Steering control of the front wheels 3 is performed in a two-wheel steering system. However, when the abnormality information is transmitted from the ground side communication means 27, the steering control by the steering control sensor 17 is stopped and the traveling is immediately stopped to finish the work. The turning optical sensor S3
However, when receiving the turning beam light A2 projected on one end side of the traveling stroke, the planting device 6 is driven as the vehicle travels a set distance from that point and reaches the planting start position.
The planting work is started by lowering and driving.

【0027】更に、前記地上側通信手段27からの前記
異常情報の送信がないことを確認しながら走行を続け、
前記作業車Vが走行行程の終端部に達して前記回向用光
センサS3が走行行程の他端側において投射される回向
用ビーム光A2を受光すると(e地点)、前記植え付け
装置6の駆動を停止して植え付け作業を停止する。尚、
回向回数等に基づいて作業終了を判別した場合には、次
の回向動作を行わず、走行停止して全処理を終了する。
そして、上記e地点から前記操向制御用センサ17によ
って操向位置を検出しながらf地点に向けて走行させ
る。
Further, while confirming that the abnormality information is not transmitted from the ground side communication means 27, the traveling is continued,
When the working vehicle V reaches the end portion of the traveling stroke and the turning optical sensor S3 receives the turning beam light A2 projected on the other end side of the traveling stroke (point e), the planting device 6 is operated. Stop driving and stop planting work. still,
When it is determined that the work is completed based on the number of times of turning, the next turning operation is not performed, the traveling is stopped, and the entire process is ended.
The steering control sensor 17 detects the steering position from the point e, and the vehicle travels toward the point f.

【0028】f地点に到着すると、前記2輪ステアリン
グ形式から前記4輪ステアリング形式に切り換えて、前
記作業車Vを次の走行行程の始端部に向けて180度方
向転換させるための前記旋回区間gに沿った旋回動作を
開始することになる。そして、上記旋回区間gの旋回動
作の終了点であるh地点に到着すると、前記4輪ステア
リング形式から前記2輪ステアリング形式に切り換え
て、次の走行行程において前記操向制御用センサ17に
基づく前記操向制御に移行する。
When the vehicle arrives at point f, the two-wheel steering type is switched to the four-wheel steering type and the turning section g for turning the working vehicle V by 180 degrees toward the start end of the next traveling stroke. The turning operation according to is started. When the vehicle arrives at point h, which is the end point of the turning operation in the turning section g, the four-wheel steering type is switched to the two-wheel steering type, and the steering control sensor 17 is used in the next traveling stroke. Shift to steering control.

【0029】〔別実施例〕上記実施例では、前記地上側
通信手段27から異常情報が送信された場合には、直ち
に走行を停止して作業を終了するように、制御装置16
を構成したが、これ以外に、例えば所定距離走行させて
それでも異常情報が送信されている場合に走行を停止さ
せるように構成してもよい。この構成によれば、異常状
態が一時的なものであって所定時間後に正常状態に復帰
するような場合に、必要以上に作業を中断することがな
くなるという利点がある。
[Other Embodiments] In the above embodiment, the control device 16 is arranged so that when abnormal information is transmitted from the ground side communication means 27, the traveling is immediately stopped to finish the work.
However, in addition to this, for example, the vehicle may be driven for a predetermined distance and stopped when the abnormality information is still transmitted. According to this configuration, there is an advantage that the work is not interrupted more than necessary when the abnormal state is temporary and the normal state is restored after a predetermined time.

【0030】又、上記実施例では、ビーム光出力有無検
出手段24を、ホトダイオード24によって構成した
が、これ以外の各種受光素子を使用することが可能であ
る。又、光路遮断物有無検出手段26を反射式の超音波
センサによって構成したが、これに限らず、例えば反射
式の光電センサ等を使用することが可能である。
Further, in the above embodiment, the light beam output presence / absence detecting means 24 is constituted by the photodiode 24, but various light receiving elements other than this can be used. Further, although the light path blocker presence / absence detecting means 26 is configured by a reflection type ultrasonic sensor, the present invention is not limited to this, and a reflection type photoelectric sensor or the like can be used.

【0031】又、上記実施例では、回向動作において車
体の旋回を、4輪ステアリング形式で行わせるようにし
た場合を例示したが、2輪ステアリング形式で旋回させ
てもよく、又、回向パターンについても、前記の経路e
〜hに限らず作業車Vのステアリング性能等に応じて種
々のパターンが設定できる。
Further, in the above embodiment, the case where the turning of the vehicle body is performed in the four-wheel steering type in the turning operation is illustrated, but it may be turned in the two-wheel steering type. The pattern e
Various patterns can be set in accordance with the steering performance of the work vehicle V, etc.

【0032】又、上記実施例では、本発明を田植え用の
作業車の走行制御装置に適用したものを例示したが、田
植え機以外の農機及び各種走行作業車にも適用できるも
のであって、その際の各部の具体構成は種々変更でき
る。
Further, in the above-mentioned embodiment, the present invention is applied to the traveling control device of the work vehicle for rice planting, but it is also applicable to agricultural machines other than rice planting machines and various traveling work vehicles. In that case, the specific configuration of each unit can be variously changed.

【0033】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【0034】[0034]

【図面の簡単な説明】[Brief description of drawings]

【図1】制御構成のブロック図FIG. 1 is a block diagram of a control configuration.

【図2】制御作動のフローチャートFIG. 2 is a flowchart of control operation.

【図3】制御作動のフローチャートFIG. 3 is a flowchart of control operation.

【図4】制御作動のフローチャートFIG. 4 is a flowchart of control operation.

【図5】走行行程及び回向動作を説明する概略平面図FIG. 5 is a schematic plan view illustrating a traveling stroke and a turning operation.

【図6】作業車及び誘導用ビーム光投射手段の概略側面
FIG. 6 is a schematic side view of a work vehicle and a beam light projection means for guidance.

【図7】操向制御用光センサの受光位置の説明図FIG. 7 is an explanatory diagram of a light receiving position of a steering control optical sensor.

【図8】回向パターンの説明図FIG. 8 is an explanatory diagram of a turning pattern.

【符号の説明】[Explanation of symbols]

V 作業車 A1 誘導用ビーム光 B1 誘導用ビーム光投射手段 17 操向制御用光センサ 100 操向制御手段 24 ビーム光出力有無検出手段 26 光路遮断物有無検出手段 27 地上側通信手段 19 作業車側通信手段 V work vehicle A1 guidance beam light B1 guidance beam light projection means 17 steering control optical sensor 100 steering control means 24 beam light output presence / absence detection means 26 light path block presence / absence detection means 27 ground side communication means 19 work vehicle side Communication means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 作業車(V)が複数個の走行行程の夫々
に沿って自動走行するように、各走行行程の一端側から
他端側に向けて誘導用ビーム光(A1)を投射する誘導
用ビーム光投射手段(B1)が地上側に設けられ、前記
作業車(V)に、前記誘導用ビーム光(A1)を受光す
る操向制御用光センサ(17)と、その操向制御用光セ
ンサ(17)の受光情報に基づいて、前記作業車(V)
が前記誘導用ビーム光(A1)に沿って自動走行するよ
うに操向制御する操向制御手段(100)とが設けられ
たビーム光誘導式作業車の走行制御装置であって、 地上側に、前記誘導用ビーム光投射手段(B1)の光出
力の有無を検出するビーム光出力有無検出手段(24)
と、前記各走行行程の一端側から他端側に向けて投射さ
れた前記誘導用ビーム光(A1)の光路を遮断する光路
遮断物の有無を検出する光路遮断物有無検出手段(2
6)と、前記ビーム光出力有無検出手段(24)及び前
記光路遮断物有無検出手段(26)の検出情報に基づい
て、前記誘導用ビーム光投射手段(B1)の光出力が無
い場合あるいは前記誘導用ビーム光(A1)の光路を遮
断する光路遮断物が有る場合の少なくともいずれか一方
の場合には異常と判別して、その判別情報を前記作業車
(V)側に送信する地上側通信手段(27)とが設けら
れ、 前記作業車(V)側に、前記地上側通信手段(27)か
らの送信情報を受信する作業車側通信手段(19)が設
けられ、 前記操向制御手段(100)は、前記作業車側通信手段
(19)の情報に基づいて、前記異常の場合には前記操
向制御用光センサ(17)の受光情報に基づく前記操向
制御を中止するように構成されているビーム光誘導式作
業車の走行制御装置。
1. The guide beam light (A1) is projected from one end side to the other end side of each traveling stroke so that the work vehicle (V) automatically travels along each of the plurality of traveling strokes. A guidance beam light projection means (B1) is provided on the ground side, and a steering control optical sensor (17) for receiving the guidance beam light (A1) on the work vehicle (V) and its steering control. The work vehicle (V) is based on the light reception information of the optical sensor (17) for use.
Is a traveling control device for a beam light guided work vehicle, which is provided with steering control means (100) for controlling the steering so that the vehicle automatically travels along the guiding beam light (A1), and A beam light output presence / absence detecting means (24) for detecting the presence / absence of light output of the guiding beam light projection means (B1)
And an optical path blocker presence / absence detection means (2) for detecting the presence or absence of an optical path blocker that blocks the optical path of the guiding beam light (A1) projected from one end side to the other end side of each traveling stroke.
6), based on the detection information of the beam light output presence / absence detection means (24) and the light path block presence / absence detection means (26), when there is no light output of the guiding beam light projection means (B1), or Ground-side communication for determining that there is an abnormality and transmitting the determination information to the work vehicle (V) side in at least one of cases where there is an optical path blocker that blocks the optical path of the guiding beam light (A1) Means (27) are provided, work vehicle side communication means (19) for receiving transmission information from the ground side communication means (27) is provided on the work vehicle (V) side, and the steering control means is provided. (100) stops the steering control based on the light-receiving information of the steering control optical sensor (17) in the case of the abnormality based on the information of the work vehicle side communication means (19). Beam light guided work configured Cruise control device.
JP4297142A 1992-11-06 1992-11-06 Traveling controller for beam-light-guided working vehicle Pending JPH06149372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297142A JPH06149372A (en) 1992-11-06 1992-11-06 Traveling controller for beam-light-guided working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297142A JPH06149372A (en) 1992-11-06 1992-11-06 Traveling controller for beam-light-guided working vehicle

Publications (1)

Publication Number Publication Date
JPH06149372A true JPH06149372A (en) 1994-05-27

Family

ID=17842754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297142A Pending JPH06149372A (en) 1992-11-06 1992-11-06 Traveling controller for beam-light-guided working vehicle

Country Status (1)

Country Link
JP (1) JPH06149372A (en)

Similar Documents

Publication Publication Date Title
JPH07281742A (en) Traveling controller for beam light guided work vehicle
JPH06149372A (en) Traveling controller for beam-light-guided working vehicle
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH0276009A (en) Unmanned vehicle operating system
JPH06149354A (en) Traveling controller for beam light guidance type working car
JPH075914A (en) Travel controller for beam light-guided work vehicles
JPH07281743A (en) Method for traveling work vehicle for ground work and controller therefor
JPH07175516A (en) Photodetector for beam light guide type operating vehicle
JPH08178650A (en) Position detecting device for work vehicle
JPH07175517A (en) Travel controller for beam light guide type operation vehicle
JPS63308609A (en) Working vehicle guide device using beam light
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JP3113457B2 (en) Work vehicle travel control device
JPH06149352A (en) Traveling controller for beam light guidance type working car
JPH0261705A (en) Running controller for beam light guided type working vehicle
JPH06161546A (en) Controller for traveling of light-guided work wagon
JPH0876842A (en) Light receiving device for beam light guide type working vehicle
JPH06149353A (en) Traveling controller for beam light guidance type working car
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPS62269610A (en) Running controller of moving body
JPS6371106A (en) Guide apparatus of working vehicle
JPH03129409A (en) Optically guiding type mobile vehicle control facility