JPH06161546A - Controller for traveling of light-guided work wagon - Google Patents

Controller for traveling of light-guided work wagon

Info

Publication number
JPH06161546A
JPH06161546A JP4307426A JP30742692A JPH06161546A JP H06161546 A JPH06161546 A JP H06161546A JP 4307426 A JP4307426 A JP 4307426A JP 30742692 A JP30742692 A JP 30742692A JP H06161546 A JPH06161546 A JP H06161546A
Authority
JP
Japan
Prior art keywords
light emitting
traveling
work vehicle
emitting means
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4307426A
Other languages
Japanese (ja)
Inventor
Masanori Fujiwara
正徳 藤原
Koji Yoshikawa
浩司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4307426A priority Critical patent/JPH06161546A/en
Publication of JPH06161546A publication Critical patent/JPH06161546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To facilitate the installation work of a light emitting means for guide. CONSTITUTION:This controller is provided with a light emitting means for guide on the side of the end part of a traveling process so that a work wagon may automatically run along straight-line traveling process, and the work wagon is provided with a right and left pair of image pickup means S1 imaging the light emitting means. The controller is provided with a steering location deviation amount discrimination means 101 discriminating the deviation amount from the proper steering location of the work wagon based on the positional information within the screen of the image pickup means S1 of the light emitting means and a traveling control means 100 controlling the traveling of the work wagon. The traveling control means 100 steers and controls the work wagon so that the deviation amount from the proper steering location may be reduced based on the information on the steering location deviation amount discrimination means 101, and a distance discrimination means 102 discriminating the distance from the work wagon to the light emitting means based on the positional information within the screen of the right and left pair of image pickup means S1 of the light emitting means is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業車が直線状の走行
行程に沿って自動走行するように、前記作業車の走行を
制御する走行制御手段が設けられた光誘導式作業車の走
行制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to traveling of a light-guided work vehicle provided with traveling control means for controlling the traveling of the work vehicle so that the work vehicle automatically travels along a straight traveling path. Regarding the control device.

【0002】[0002]

【従来の技術】上記この種の光誘導式作業車の走行制御
装置は、従来、例えば、作業地に設定された直線状の走
行行程の一端側から他端側に向けて誘導用の発光手段と
してのビーム光源から誘導用のビーム光を投射するとと
もに、その誘導用のビーム光を受光する光センサを作業
車側に設置してその光センサの車体横幅方向での受光位
置から作業車の適正操向位置からのずれ量を判別し、そ
のずれ量が小さくなるように作業車を操向制御してい
た。
2. Description of the Related Art Conventionally, a traveling control apparatus for a light-guided work vehicle of the above type has conventionally been provided with a light-emitting means for guiding from one end side to the other end side of a straight traveling path set on a work site. A light sensor for projecting a light beam for guidance from the beam light source as a light source and a light sensor for receiving the light beam for guidance are installed on the work vehicle side, and the work vehicle is properly positioned from the light receiving position in the lateral direction of the vehicle body. The deviation amount from the steering position is determined, and the work vehicle is steered so that the deviation amount becomes small.

【0003】[0003]

【発明が解決しようとする課題】従って、上記従来技術
では、誘導用のビーム光が作業車が自動走行する時の操
向用のガイドになるので、そのビーム光は走行行程の長
さ方向に交差する方向の所定位置を通り且つ走行行程の
長さ方向に沿って平行に投射されていることが要求され
るが、ビーム光の投射状態を上記のように正確に設定す
るには調整と確認のための多くの繰り返し作業を必要と
し、そのため、誘導用の発光手段の設置作業に多大の手
間と長時間を要するという問題点があった。
Therefore, in the above-mentioned prior art, since the beam light for guiding serves as a steering guide when the work vehicle automatically travels, the beam light travels in the longitudinal direction of the traveling stroke. It is required that the light passes through a predetermined position in the intersecting direction and is projected in parallel along the length direction of the traveling stroke, but adjustment and confirmation are required to accurately set the projection state of the beam light as described above. Therefore, there is a problem that a lot of labor and a long time are required for the work of installing the light emitting means for guiding.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の欠点を解消すべ
く、誘導用の発光手段の設置作業が簡素化できる光誘導
式作業車の走行制御装置を得ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a light guide type work vehicle capable of simplifying the work of installing a light emitting means for guiding in order to solve the drawbacks of the prior art. To obtain the traveling control device.

【0005】[0005]

【課題を解決するための手段】本発明による光誘導式作
業車の走行制御装置の第1の特徴構成は、走行行程の端
部側に誘導用の発光手段が設けられ、前記作業車に、車
体横幅方向に所定間隔隔てた状態で前記発光手段を撮像
する左右一対の撮像手段と、前記発光手段の前記左右一
対の撮像手段の画面内での位置情報に基づいて、前記作
業車の適正操向位置からのずれ量を判別する操向位置ず
れ量判別手段とが設けられ、前記走行制御手段が、前記
操向位置ずれ量判別手段の情報に基づいて、前記ずれ量
が小さくなるように前記作業車を操向制御するように構
成されている点にある。
A first characteristic configuration of a traveling control device for a light-guided work vehicle according to the present invention is provided with a light-emitting means for guiding on the end side of a traveling stroke, and the work vehicle comprises: Proper operation of the work vehicle is performed based on a pair of left and right image pickup means for picking up the light emitting means at a predetermined distance in the lateral direction of the vehicle body and position information of the light emitting means on the screen of the pair of left and right image pickup means. Steering position deviation amount determining means for determining the deviation amount from the heading position is provided, and the traveling control means is configured to reduce the deviation amount based on information of the steering position deviation amount determining means. It is configured to steer control the work vehicle.

【0006】又、第2の特徴構成は、前記発光手段の前
記左右一対の撮像手段の画面内での位置情報に基づい
て、前記作業車から前記発光手段までの距離を判別する
距離判別手段が設けられている点にある。
The second characteristic configuration is a distance discriminating means for discriminating the distance from the work vehicle to the light emitting means based on the position information of the pair of left and right image pickup means of the light emitting means on the screen. It is in the point provided.

【0007】[0007]

【作用】本発明の第1の特徴構成によれば、走行行程の
端部側(例えば終端側)に設けられた誘導用の発光手段
を作業車側の左右一対の撮像手段によって撮像し、その
左右一対の撮像手段の夫々の画面内での発光手段の位置
情報から、作業車の適正操向位置(例えば、図7に示す
ように、上記左右一対の撮像手段の倍率等の光学系の条
件を同一にした条件で、夫々の画面内での発光手段の画
面中央に対する位置が左右対称で同じ位置になるように
操向した位置、つまり、x1とx2が等しい状態)から
のずれ量が判別され、この判別されたずれ量が小さくな
るように作業車が操向制御されながら走行行程に沿って
自動走行する。
According to the first characteristic construction of the present invention, the guiding light emitting means provided on the end side (for example, the terminal side) of the traveling stroke is imaged by the pair of left and right imaging means on the side of the work vehicle, and Based on the position information of the light emitting means in the respective screens of the pair of left and right image pickup means, the proper steering position of the work vehicle (for example, as shown in FIG. 7, the conditions of the optical system such as the magnification of the pair of left and right image pickup means). Under the same condition, the deviation amount from the position where the light emitting means is steered so that the position with respect to the screen center in each screen is symmetrically the same position, that is, the state where x1 and x2 are equal) is determined. Then, the work vehicle automatically travels along the travel path while the steering control is performed so that the determined deviation amount becomes small.

【0008】又、第2の特徴構成によれば、発光手段の
左右一対の撮像手段の画面内での位置から、例えば、夫
々の撮像手段の光軸に対して夫々の撮像手段と発光手段
を結ぶ直線のなす角度が判別され、この両角度情報と左
右一対の撮像手段の車体横幅方向での所定間隔とによっ
て作業車から発光手段までの距離が判別される。
Further, according to the second characteristic configuration, from the positions of the pair of left and right image pickup means of the light emitting means on the screen, for example, the respective image pickup means and the light emitting means are respectively arranged with respect to the optical axes of the respective image pickup means. The angle formed by the connecting straight lines is determined, and the distance from the work vehicle to the light emitting means is determined based on both the angle information and the predetermined interval in the vehicle body lateral direction between the pair of left and right image pickup means.

【0009】[0009]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、誘導用の発光手段を例えば通常の電球等の光源によ
って構成し、それを走行行程の長さ方向に交差する方向
の所定位置に設置するだけでよいので、例えば従来のビ
ーム光式の発光手段のように走行行程に沿って発光手段
からの誘導用のビーム光が正確に投射されていることの
確認や調整の手間が必要でなくなり、もって、誘導用の
発光手段の設置作業が容易である光誘導式作業車の走行
制御装置を得るに至った。
According to the first characteristic construction of the present invention, therefore, the light emitting means for guiding is constituted by a light source such as an ordinary light bulb, and the light emitting means is arranged in a predetermined direction in the direction crossing the length direction of the traveling stroke. Since it is only necessary to install it at a position, for example, as in the case of a conventional beam light type light emitting means, it is troublesome to check and adjust that the light beam for guiding from the light emitting means is accurately projected along the traveling path. It is no longer necessary, and therefore, a travel control device for a light guide type work vehicle in which installation work of a light emitting means for guidance is easy can be obtained.

【0010】又、第2の特徴構成によれば、操向制御用
に設けられた左右一対の撮像手段の情報を活用すること
によって、別の検出手段を設けることなく作業車から発
光手段までの距離が判別でき、そして、この距離情報に
基づいて、例えば、走行行程の終端側への到着を確認し
たり、あるいは、隣接する他の走行行程への旋回動作開
始位置を確認することができ、もって、第1の特徴構成
に加えて、構成の複雑化を招くことなく一層便利な光誘
導式作業車の走行制御装置を得るに至った。
According to the second characteristic configuration, by utilizing the information of the pair of left and right image pickup means provided for steering control, the work vehicle to the light emitting means can be provided without providing another detecting means. The distance can be determined, and based on this distance information, for example, it is possible to confirm the arrival at the end side of the traveling stroke, or it is possible to confirm the turning operation start position to another adjacent traveling stroke, Therefore, in addition to the first characteristic configuration, it is possible to obtain a more convenient travel control device for a light guide type work vehicle without inviting complication of the configuration.

【0011】[0011]

【実施例】以下、本発明を田植え用の作業車の走行制御
装置に適用した場合における実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a traveling control device for a rice planting work vehicle will be described below with reference to the drawings.

【0012】図2及び図3に示すように、田植え用の作
業車Vが圃場内に設定された互いに平行に並ぶ直線状の
走行行程に沿って自動走行するように誘導するために、
その誘導時の目標となる誘導用の発光手段としての光源
B1が電球によって構成されて各走行行程の終端側に設
置されている。尚、走行行程の長さ方向に平行で且つ光
源B1の中心を通る直線が走行基準線Jとして設定され
ている。又、上記光源B1は、作業車V側に設けられる
後述のイメージセンサS1の設置位置と同じ高さになる
ように設置されている。又、作業車Vは、所定範囲の圃
場における植え付け作業を連続して自動的に行えるよう
に、各走行行程の端部において180度方向転換しなが
ら複数個の走行行程を往復走行するので、前記光源B1
は隣接する走行行程では反対側の端部に設置されてい
る。
As shown in FIGS. 2 and 3, in order to guide the work vehicles V for rice planting so as to automatically travel along the straight travel paths arranged in parallel to each other set in the field,
A light source B1 as a target light-emitting means for guiding is constituted by a light bulb and is installed on the end side of each traveling stroke. A straight line that is parallel to the length direction of the traveling path and passes through the center of the light source B1 is set as the traveling reference line J. Further, the light source B1 is installed so as to be at the same height as the installation position of an image sensor S1 described later provided on the work vehicle V side. Further, the work vehicle V reciprocates through a plurality of traveling strokes while changing the direction by 180 degrees at the end of each traveling stroke so that the planting operation in a field in a predetermined range can be continuously and automatically performed. Light source B1
Are installed at opposite ends of adjacent travels.

【0013】前記作業車Vの構成について説明すれば、
図2及び図3に示すように、左右一対の前輪3及び後輪
4を備えた車体5の後部に、作業装置としての苗植え付
け装置6が、昇降自在で且つ駆動停止自在に設けられて
いる。又、図1に示すように、前記前後輪3,4は、左
右を一対として前後で各別に操向操作自在に構成され、
操向用の油圧シリンダ7,8と、それらに対する電磁操
作式の制御弁9,10とが設けられている。つまり、前
輪3又は後輪4の一方のみを操向する2輪ステアリング
形式、前後輪3,4を逆位相で且つ同角度に操向する4
輪ステアリング形式、前後輪3,4を同位相で且つ同角
度に操向する平行ステアリング形式の3種類のステアリ
ング形式を選択使用できるようになっている。
The structure of the work vehicle V will be described below.
As shown in FIGS. 2 and 3, a seedling planting device 6 as a working device is provided at a rear portion of a vehicle body 5 having a pair of left and right front wheels 3 and rear wheels 4 so as to be vertically movable and drive-stoppable. . Further, as shown in FIG. 1, the front and rear wheels 3 and 4 are composed of a pair of left and right wheels so that the front and rear wheels can be individually steered.
Steering hydraulic cylinders 7 and 8 and electromagnetically operated control valves 9 and 10 for them are provided. That is, a two-wheel steering system in which only one of the front wheel 3 and the rear wheel 4 is steered, and the front and rear wheels 3, 4 are steered in opposite phases and at the same angle 4
It is possible to selectively use three types of steering systems: a wheel steering system and a parallel steering system in which the front and rear wheels 3, 4 are steered in the same phase and at the same angle.

【0014】図1中、11はエンジンEからの出力を変
速して前記前後輪3,4の夫々を同時に駆動する油圧式
無段変速装置、12はその変速操作用の電動モータ、1
3は前記植え付け装置6の昇降用油圧シリンダ、14は
その制御弁、15は前記エンジンEによる前記植え付け
装置6の駆動を断続する電磁操作式の植え付けクラッ
チ、16は前記作業車Vの走行並びに前記植え付け装置
6の作動を制御するためのマイクロコンピュータ利用の
制御装置であって、後述の各種センサによる検出情報に
基づいて、前記変速用モータ12、前記各制御弁9,1
0,14、及び、前記植え付けクラッチ15の夫々を制
御するように構成されている。
In FIG. 1, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 at the same time, 12 is an electric motor for gear shifting operation, 1
3 is a hydraulic cylinder for raising and lowering the planting device 6, 14 is a control valve thereof, 15 is an electromagnetically-operated planting clutch for intermittently driving the planting device 6 by the engine E, 16 is traveling of the work vehicle V, and A control device using a microcomputer for controlling the operation of the planting device 6, wherein the shifting motor 12 and the control valves 9, 1 are based on detection information from various sensors described later.
0, 14 and the planting clutch 15, respectively.

【0015】前記作業車Vに装備されるセンサ類につい
て説明すれば、図1に示すように、前記前後輪3,4夫
々の操向角を検出するポテンショメータ利用の操向角検
出センサR1,R2と、前記変速装置11の変速状態に
基づいて間接的に前後進状態及び車速を検出するポテン
ショメータ利用の車速センサR3と、前記変速装置11
の出力軸の回転数を計数して走行距離を検出するための
エンコーダS4とが設けられている。又、図2及び図3
にも示すように、車体横幅方向に所定間隔d隔てた状態
で前記光源B1を撮像する左右一対の撮像手段としての
白黒式のイメージセンサS1が、各光軸を水平面内に位
置させ且つ車体前後方向に沿わせた状態(従って両光軸
は平行状態である)で車体前方側を撮像するように機体
前部側の上部箇所に設置されている。尚、上記間隔dの
中点は車体横幅方向での中央位置に一致している。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 1, steering angle detection sensors R1 and R2 using potentiometers for detecting the steering angles of the front and rear wheels 3 and 4, respectively. And a vehicle speed sensor R3 using a potentiometer that indirectly detects the forward / backward traveling state and the vehicle speed based on the speed change state of the speed change device 11, and the speed change device 11
An encoder S4 for counting the number of rotations of the output shaft and detecting the traveling distance is provided. 2 and 3
As also shown in FIG. 1, a black and white image sensor S1 as a pair of left and right image pickup means for picking up the image of the light source B1 at a predetermined distance d in the lateral direction of the vehicle body is provided with the respective optical axes positioned in the horizontal plane and the front and rear of the vehicle body. It is installed at the upper part on the front side of the fuselage so as to image the front side of the vehicle body in a state of being aligned with the direction (therefore, both optical axes are in a parallel state). The midpoint of the interval d coincides with the center position in the lateral direction of the vehicle body.

【0016】図1に示すように、前記左右一対のイメー
ジセンサS1からの輝度信号を前記光源B1の明るさに
対応して予め設定された閾値に基づいて2値化し、前記
光源B1に対応する領域K(図7参照)を抽出した情報
を出力するコンパレータ19と、そのコンパレータ19
の出力情報を予め設定された画素密度(32×32画素
/1画面)に対応した画素情報として記憶する画像メモ
リ20とが設けられ、この画像メモリ20に記憶された
前記光源B1に対応する領域Kの情報が前記制御装置1
6に入力されるように構成されている。
As shown in FIG. 1, the luminance signals from the pair of left and right image sensors S1 are binarized based on a threshold value set in advance corresponding to the brightness of the light source B1 and correspond to the light source B1. Comparator 19 that outputs information extracted from region K (see FIG. 7), and the comparator 19
And an image memory 20 for storing the output information of the above as pixel information corresponding to a preset pixel density (32 × 32 pixels / 1 screen), and an area corresponding to the light source B1 stored in the image memory 20. The information of K is the control device 1
6 is input.

【0017】前記制御装置16を利用して、前記作業車
Vが前記直線状の各走行行程に沿って自動走行するよう
に作業車Vの走行を制御する走行制御手段100と、前
記光源B1の前記左右一対のイメージセンサS1の画面
内での位置情報に基づいて前記作業車Vの適正操向位置
からのずれ量を判別する操向位置ずれ量判別手段101
とが構成され、前記走行制御手段100は、前記操向位
置ずれ量判別手段101の情報に基づいて、前記ずれ量
が小さくなるように前記作業車Vを操向制御するように
構成されている。尚、前記制御装置16は、前記作業車
Vが一つの走行行程の終端部に達するに伴って、その一
つの走行行程に隣接する次の走行行程の始端部に向けて
設定回向パターンで前記作業車Vを回向動作させるよう
に構成されている(図6参照)。
Using the control device 16, the travel control means 100 for controlling the travel of the work vehicle V so that the work vehicle V automatically travels along each of the straight travel paths, and the light source B1. A steering position displacement amount determination means 101 for determining the displacement amount of the work vehicle V from the proper steering position based on the position information on the screen of the pair of left and right image sensors S1.
The traveling control means 100 is configured to steer the work vehicle V based on the information of the steering position displacement amount determination means 101 so that the displacement amount becomes small. . As the work vehicle V reaches the end portion of one traveling stroke, the control device 16 sets the turning pattern toward the starting end portion of the next traveling stroke adjacent to the one traveling stroke. The work vehicle V is configured to rotate (see FIG. 6).

【0018】前記操向位置ずれ量判別手段101につい
て説明すれば、図7に示すように、前記左右一対のイメ
ージセンサS1の夫々の画面(尚、(a)が左側のイメ
ージセンサS1の画面、(b)が右側のイメージセンサ
S1の画面を示す)内において、前記光源B1に対応す
る領域K1,K2の重心G1,G2と画面中央点Oとの
画面左右方向での間隔x1,x2が検出される。ここ
で、左右一対のイメージセンサS1の夫々の画面内での
前記両間隔x1,x2が同じであるときに、作業車Vが
適正操向位置に操向されていると判断するとともに、前
記両間隔x1,x2の差が大きいほど作業車Vの適正操
向位置からのずれ量が大きいと判別する。従って、前記
走行制御手段100は、両間隔x1,x2の差が小さく
なるように即ち両間隔x1,x2が等しくなるように2
輪ステアリング形式でステアリング操作することにな
る。
The steering position deviation amount determining means 101 will be described. As shown in FIG. 7, the respective screens of the pair of left and right image sensors S1 (where (a) is the screen of the left image sensor S1). (B) shows the screen of the image sensor S1 on the right side), the distances x1 and x2 in the left-right direction of the screen between the centers of gravity G1 and G2 of the regions K1 and K2 corresponding to the light source B1 and the screen center point O are detected. To be done. Here, when the distances x1 and x2 in the respective screens of the pair of left and right image sensors S1 are the same, it is determined that the work vehicle V is being steered to the proper steering position, and It is determined that the larger the difference between the intervals x1 and x2 is, the larger the deviation amount from the proper steering position of the work vehicle V is. Therefore, the travel control means 100 sets the distances x1 and x2 so that the difference between them becomes small, that is, the distances x1 and x2 become equal.
Steering will be done in the form of wheel steering.

【0019】又、前記制御装置16を利用して、前記光
源B1の前記左右一対のイメージセンサS1の画面内で
の位置情報に基づいて、前記作業車Vから前記光源B1
までの距離Lを判別する距離判別手段102が構成され
ている。具体的には、図8に左側のイメージセンサS1
の例を示すように、前記左右一対のイメージセンサS1
の夫々の画面内において検出された前記間隔x1,x2
と、イメージセンサS1の倍率等の光学系の条件とか
ら、各イメージセンサS1と光源B1を結ぶ直線が各イ
メージセンサS1の光軸となす角度θ1,θ2が算出さ
れる。そして、図9に示すように、この両角度θ1,θ
2と左右一対のイメージセンサS1の車体横幅方向での
設置間隔dとから、下式によって、前記作業車V(正確
には前記イメージセンサS1の設置位置)から前記光源
B1までの距離Lが判別される。尚、図8は、作業車V
の車体中心が前記走行基準線J上を通過する適正操向位
置での画面を示しており、角度θ1がθ1a<θ1b<
θ1c<θ1dのように大きくなるほど(即ち距離Lが
小さくなるほど)画面内の光源B1に対応する領域K1
の大きさが大きくなっている。
Further, utilizing the control device 16, the work vehicle V outputs the light source B1 based on the positional information of the light source B1 on the screen of the pair of left and right image sensors S1.
A distance discriminating means 102 for discriminating the distance L up to is constructed. Specifically, the image sensor S1 on the left side in FIG.
, The pair of left and right image sensors S1
The intervals x1 and x2 detected in the respective screens of
And the optical system conditions such as the magnification of the image sensor S1, the angles θ1 and θ2 formed by the straight line connecting each image sensor S1 and the light source B1 with the optical axis of each image sensor S1 are calculated. Then, as shown in FIG. 9, both the angles θ1, θ
2 and the installation distance d of the pair of left and right image sensors S1 in the lateral direction of the vehicle body, the distance L from the working vehicle V (to be exact, the installation position of the image sensor S1) to the light source B1 is determined by the following formula. To be done. Incidentally, FIG. 8 shows the work vehicle V.
Shows a screen at an appropriate steering position in which the center of the vehicle body passes over the traveling reference line J, and the angle θ1 is θ1a <θ1b <.
A region K1 corresponding to the light source B1 in the screen becomes larger as θ1c <θ1d (that is, the distance L becomes smaller).
Is getting bigger.

【0020】[0020]

【数1】L=d/(tan(θ1)+tan(θ2))## EQU1 ## L = d / (tan (θ1) + tan (θ2))

【0021】次に、図4及び図5に示すフローチャート
に基づいて、前記制御装置16の動作について説明すれ
ば、前記作業車Vは、その車体前後方向を圃場の最初の
走行行程の方向に合わせ、且つ、前記左右一対のイメー
ジセンサS1の夫々の画面内で前記光源B1に対応する
領域K1,K2の重心G1,G2が画面中央点Oから画
面左右方向で同間隔x1,x2に位置した状態を初期状
態に設定して、最初の走行行程をその長さ方向に沿って
始端側から終端側に向けて走行開始する(図2参照)。
Next, the operation of the control device 16 will be described with reference to the flow charts shown in FIGS. 4 and 5. In the working vehicle V, the longitudinal direction of the vehicle body is adjusted to the direction of the first traveling stroke of the field. In addition, the centers of gravity G1 and G2 of the areas K1 and K2 corresponding to the light source B1 in the respective screens of the pair of left and right image sensors S1 are located at the same intervals x1 and x2 in the left-right direction of the screen from the screen center point O. Is set to the initial state, and the first traveling stroke starts along the length direction from the starting end side toward the terminating end side (see FIG. 2).

【0022】走行開始後は、前記適正操向位置からのず
れ量の判別に基づく前記操向制御を実行する。同時に、
前記距離判別動作を行う。これらの操向制御及び距離判
別処理について説明すれば、図5に示すように、先ず、
前記一対のイメージセンサS1による撮像処理と前記光
源B1に対応する領域K1,K2の抽出処理及びその領
域K1,K2の重心G1,G2の判別処理を行い、その
重心G1,G2と画面中央点Oとの画面左右方向での間
隔x1,x2から前述のようにして作業車Vから光源B
1までの距離Lを判別する。又、上記両間隔x1,x2
の差より操向位置のずれ量を判別し、そのずれ量に比例
した操向角でステアリング操作する。尚、図7の場合は
右側のイメージセンサS1での前記間隔x2が左側のイ
メージセンサS1での前記間隔x1よりも大きい(x1
<x2)ので、作業車Vは適正操向位置よりも右側にず
れていると判断されて左側に操向操作される。
After the start of running, the steering control is executed based on the determination of the amount of deviation from the proper steering position. at the same time,
The distance determination operation is performed. The steering control and the distance determination processing will be described. First, as shown in FIG.
Imaging processing by the pair of image sensors S1, extraction processing of the areas K1 and K2 corresponding to the light source B1 and determination processing of the centers of gravity G1 and G2 of the areas K1 and K2 are performed, and the centers of gravity G1 and G2 and the screen center point O. From the intervals x1 and x2 in the horizontal direction of the screen from the work vehicle V to the light source B as described above.
The distance L to 1 is determined. Also, the above-mentioned intervals x1 and x2
The amount of deviation of the steering position is discriminated from the difference of, and the steering operation is performed at the steering angle proportional to the amount of deviation. In the case of FIG. 7, the interval x2 in the right image sensor S1 is larger than the interval x1 in the left image sensor S1 (x1
Since <x2), it is determined that the work vehicle V is displaced to the right of the proper steering position, and the steering operation is performed to the left.

【0023】又、前記エンコーダS4による走行距離の
検出情報に基づいて、作業車Vが走行行程の端部から設
定距離を走行して植え付け開始位置に達するに伴って、
前記植え付け装置6を下降させると共に駆動開始して、
植え付け作業を開始する。
Further, as the working vehicle V travels a set distance from the end of the travel stroke and reaches the planting start position based on the travel distance detection information by the encoder S4,
When the planting device 6 is lowered and driven,
Start planting work.

【0024】前記作業車Vが走行行程の終端部に達した
ことが、前記判別された距離Lによって確認されると
(e地点)、前記植え付け装置6の駆動を停止して植え
付け作業を停止する。尚、詳述はしないが、回向回数等
に基づいて作業終了を判別した場合には、次の回向動作
を行わず、走行停止して全処理を終了する。そして、図
6に示すように、上記e地点から前記エンコーダS4の
検出情報に基づいて距離aだけ走行させた地点fから、
前記2輪ステアリング形式を前記4輪ステアリング形式
に切り換えて、前記作業車Vを次の走行行程の始端部に
向けて180度方向転換させるための旋回動作を開始
し、所定の旋回区間gに沿って旋回動作の終点hまで旋
回動作させる。そして、上記旋回区間gの旋回動作が終
了した(h地点到着)後は、前記4輪ステアリング形式
を前記2輪ステアリング形式に切り換え、次の走行行程
における前記操向制御等を実行する。
When it is confirmed by the determined distance L that the work vehicle V has reached the end of the traveling stroke (point e), the driving of the planting device 6 is stopped and the planting work is stopped. . Although not described in detail, when it is determined that the work is completed based on the number of times of turning, the next turning operation is not performed, the traveling is stopped, and the entire process is ended. Then, as shown in FIG. 6, from a point f at which the vehicle has traveled a distance a from the point e based on the detection information of the encoder S4,
The two-wheel steering type is switched to the four-wheel steering type, and a turning operation for turning the working vehicle V by 180 degrees toward the start end portion of the next traveling stroke is started, and along a predetermined turning section g. The turning operation is performed until the end point h of the turning operation. Then, after the turning operation of the turning section g is completed (arrival at point h), the four-wheel steering type is switched to the two-wheel steering type, and the steering control and the like in the next traveling stroke are executed.

【0025】〔別実施例〕上記実施例では、車体横幅方
向に所定間隔d隔てた状態で設置される左右一対の撮像
手段S1が、各光軸を水平面内に位置させ且つ車体前後
方向に沿わせた状態すなわち両光軸を平行状態にしたも
のを例示したが、必ずしも、両光軸を平行状態にする必
要はなく、例えば、上記平行状態から各光軸を同一角度
だけ車体内方側に向けるようにしてもよい。又、上記実
施例では、左右一対の撮像手段S1の倍率は固定させて
いたが、例えば、ズーム機能を備えさせて、発光手段B
1からの距離が遠い場合には倍率を高くして、適正操向
位置からのずれの判別や前記距離の判別の精度を確保す
るようにすることもできる。
[Other Embodiments] In the above embodiment, the pair of left and right image pickup means S1 installed at a predetermined distance d in the lateral direction of the vehicle body has the respective optical axes located in the horizontal plane and along the longitudinal direction of the vehicle body. Although the state where both optical axes are made parallel is illustrated as an example, it is not always necessary to make both optical axes parallel to each other. You may turn it. Further, in the above-mentioned embodiment, the magnification of the pair of left and right image pickup means S1 is fixed, but for example, the zoom function is provided and the light emitting means B is provided.
When the distance from 1 is long, the magnification can be increased to ensure the accuracy of the determination of the deviation from the proper steering position and the determination of the distance.

【0026】又、上記実施例では、操向位置ずれ判別手
段101が、左右一対の撮像手段S1の各画面内での発
光手段B1に対応する領域K1,K2の重心G1,G2
と画面中央点Oとの画面左右方向での両間隔x1,x2
の差が大きいほど作業車Vの適正操向位置からのずれ量
が大きいと判別するように構成したが、この場合に、前
記画面内での間隔x1,x2の情報に例えば前記距離判
別手段102によって判別される距離Lの情報を組み合
わせることによって作業車Vの適正操向位置からのずれ
量をより高精度に判別することができる。即ち、作業車
Vの適正操向位置からのずれ量が同じであっても、作業
車Vが発光手段B1に近づくほど図7に示される前記画
面内での両間隔x1,x2の差は大きくなるので、上記
距離Lが小さい場合は、距離Lが大きい場合に比べて前
記両間隔x1,x2の差から判別されるずれ量を小さめ
に補正するのである。
Further, in the above embodiment, the steering position deviation discriminating means 101 has the centers of gravity G1 and G2 of the areas K1 and K2 corresponding to the light emitting means B1 in each screen of the pair of left and right image pickup means S1.
And the center point O of the screen in the left and right direction of the screen x1, x2
The larger the difference is, the larger the deviation from the proper steering position of the work vehicle V is determined. In this case, however, the distance determining means 102 may be included in the information on the intervals x1 and x2 in the screen. By combining the information of the distance L determined by the above, the deviation amount from the proper steering position of the work vehicle V can be determined with higher accuracy. That is, even if the amount of deviation of the work vehicle V from the proper steering position is the same, the difference between the two intervals x1 and x2 in the screen shown in FIG. 7 increases as the work vehicle V approaches the light emitting means B1. Therefore, when the distance L is small, the deviation amount determined from the difference between the two intervals x1 and x2 is corrected to be smaller than when the distance L is large.

【0027】又、上記実施例では、走行制御手段100
が、操向位置ずれ判別手段101が前記両間隔x1,x
2の差より判別した前記ずれ量が小さくするように、そ
のずれ量に比例した操向角を設定してその操向角でステ
アリング操作するものを例示したが、これ以外に、例え
ば、上記ずれ量に基づいて適正操向位置からのずれの方
向を判別し、そのずれを修正する方向に予め設定された
所定の操向角でステアリング操作するようにしてもよ
い。以上述べたように、操向位置ずれ判別手段101及
び走行制御手段100の具体構成は適宜変更設定でき
る。
Further, in the above embodiment, the traveling control means 100
However, the steering position shift discriminating means 101 determines that the two intervals x1, x
Although the steering angle is set in proportion to the deviation so that the determined deviation becomes smaller than the difference of 2 and the steering operation is performed at the steering angle, other than this, for example, The direction of deviation from the proper steering position may be determined based on the amount, and the steering operation may be performed at a predetermined steering angle set in advance in a direction in which the deviation is corrected. As described above, the specific configurations of the steering position deviation discriminating unit 101 and the traveling control unit 100 can be appropriately changed and set.

【0028】又、上記実施例では、誘導用の発光手段B
1を各走行行程の終端側に設置したものを例示したが、
終端側ではなく、始端側に設置して左右一対の撮像手段
S1が進行方向の後方側に向かって撮像するように構成
してもよい。又、発光手段B1も電球に限らず、例え
ば、発光ダイオード等の他の発光手段が使用できる。
In the above embodiment, the light emitting means B for guiding is used.
An example in which 1 is installed at the end side of each traveling stroke is shown.
The pair of left and right image pickup means S1 may be installed not at the terminal end side but at the start end side so as to image toward the rear side in the traveling direction. Further, the light emitting means B1 is not limited to a light bulb, but other light emitting means such as a light emitting diode can be used.

【0029】又、上記実施例では、左右一対の撮像手段
S1を白黒式のイメージセンサによって構成したが、こ
れ以外に、例えば、カラー式のイメージセンサでもよ
い。
In the above embodiment, the pair of left and right image pickup means S1 is composed of the black and white image sensor, but other than this, for example, a color image sensor may be used.

【0030】又、上記実施例では、左右一対の撮像手段
S1の情報に基づいて作業車Vから発光手段B1までの
距離Lを判別する距離判別手段102によって走行行程
の終端部に到達したこと等を判別するように構成した
が、この距離判別手段102によらずに、例えば、前記
エンコーダS4によって検出される走行距離の情報から
走行行程の終端部に到達したこと等を判別するようにし
てもよい。
Further, in the above embodiment, the distance determining means 102 for determining the distance L from the work vehicle V to the light emitting means B1 based on the information of the pair of left and right image pickup means S1 has reached the end of the traveling stroke. However, instead of using the distance determining means 102, for example, the fact that the end of the travel process has been reached can be determined from the information on the travel distance detected by the encoder S4. Good.

【0031】又、上記実施例では、回向動作において車
体の旋回を、4輪ステアリング形式で行わせるようにし
た場合を例示したが、2輪ステアリング形式で旋回させ
てもよく、又、回向軌跡も、前記の経路e〜hのものに
限らず作業車Vのステアリング性能等に応じて種々設定
できる。
Further, in the above embodiment, the case where the turning of the vehicle body is performed in the four-wheel steering type in the turning operation is illustrated, but it may be turned in the two-wheel steering type. The locus is not limited to the above routes e to h, but can be set variously according to the steering performance of the work vehicle V and the like.

【0032】又、上記実施例では、本発明を田植え用の
作業車の走行制御装置に適用したものを例示したが、田
植え機以外の農機及び各種自動走行式作業車に適用でき
るものであって、その際の各部の具体構成は種々変更で
きる。
Further, in the above embodiment, the present invention is applied to the traveling control device for the rice planting work vehicle, but it can be applied to agricultural machines other than the rice planting machine and various automatic traveling work vehicles. The specific configuration of each part at that time can be variously changed.

【0033】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】制御構成のブロック図FIG. 1 is a block diagram of a control configuration.

【図2】走行行程に沿った自動走行を説明する概略平面
FIG. 2 is a schematic plan view illustrating automatic traveling along a traveling stroke.

【図3】作業車及び発光手段の概略側面図FIG. 3 is a schematic side view of a work vehicle and a light emitting means.

【図4】制御作動のフローチャートFIG. 4 is a flowchart of control operation.

【図5】制御作動のフローチャートFIG. 5 is a flowchart of control operation.

【図6】回向軌跡の説明図FIG. 6 is an explanatory diagram of a turning trajectory.

【図7】操向位置ずれ判別の説明図FIG. 7 is an explanatory diagram for determining a steering position shift.

【図8】距離判別の説明図FIG. 8 is an explanatory diagram of distance determination

【図9】距離判別の説明図FIG. 9 is an explanatory diagram of distance determination

【符号の説明】[Explanation of symbols]

V 作業車 100 走行制御手段 B1 発光手段 S1 撮像手段 101 操向位置ずれ量判別手段 102 距離判別手段 V work vehicle 100 traveling control means B1 light emitting means S1 imaging means 101 steering position deviation amount determination means 102 distance determination means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 作業車(V)が直線状の走行行程に沿っ
て自動走行するように、前記作業車(V)の走行を制御
する走行制御手段(100)が設けられた光誘導式作業
車の走行制御装置であって、 走行行程の端部側に誘導用の発光手段(B1)が設けら
れ、前記作業車(V)に、車体横幅方向に所定間隔隔て
た状態で前記発光手段(B1)を撮像する左右一対の撮
像手段(S1)と、前記発光手段(B1)の前記左右一
対の撮像手段(S1)の画面内での位置情報に基づい
て、前記作業車(V)の適正操向位置からのずれ量を判
別する操向位置ずれ量判別手段(101)とが設けら
れ、 前記走行制御手段(100)が、前記操向位置ずれ量判
別手段(101)の情報に基づいて、前記ずれ量が小さ
くなるように前記作業車(V)を操向制御するように構
成されている光誘導式作業車の走行制御装置。
1. A light-guided work provided with travel control means (100) for controlling the travel of the work vehicle (V) so that the work vehicle (V) automatically travels along a straight travel path. A vehicle traveling control device, wherein a light emitting means (B1) for guiding is provided on an end side of a traveling stroke, and the light emitting means (B) is provided on the working vehicle (V) at a predetermined interval in a lateral direction of a vehicle body. B1) a pair of left and right image pickup means (S1) and position information of the light emitting means (B1) on the screen of the pair of left and right image pickup means (S1). Steering position deviation amount judging means (101) for judging the deviation amount from the steering position is provided, and the traveling control means (100) is based on the information of the steering position deviation amount judging means (101). , Steering control of the work vehicle (V) is performed so that the deviation amount becomes small. Configured light guided work vehicle travel control device as.
【請求項2】 前記発光手段(B1)の前記左右一対の
撮像手段(S1)の画面内での位置情報に基づいて、前
記作業車(V)から前記発光手段(B1)までの距離を
判別する距離判別手段(102)が設けられている請求
項1記載の光誘導式作業車の走行制御装置。
2. The distance from the work vehicle (V) to the light emitting means (B1) is determined based on position information of the light emitting means (B1) on the screen of the pair of left and right image pickup means (S1). The traveling control device for a light guide type work vehicle according to claim 1, further comprising a distance determining means (102) for performing the operation.
JP4307426A 1992-11-18 1992-11-18 Controller for traveling of light-guided work wagon Pending JPH06161546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4307426A JPH06161546A (en) 1992-11-18 1992-11-18 Controller for traveling of light-guided work wagon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4307426A JPH06161546A (en) 1992-11-18 1992-11-18 Controller for traveling of light-guided work wagon

Publications (1)

Publication Number Publication Date
JPH06161546A true JPH06161546A (en) 1994-06-07

Family

ID=17968922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307426A Pending JPH06161546A (en) 1992-11-18 1992-11-18 Controller for traveling of light-guided work wagon

Country Status (1)

Country Link
JP (1) JPH06161546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344202A (en) * 2005-06-07 2006-12-21 Lg Electronics Inc System and method for automatically returning self-moving robot to charger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344202A (en) * 2005-06-07 2006-12-21 Lg Electronics Inc System and method for automatically returning self-moving robot to charger

Similar Documents

Publication Publication Date Title
JPH0944240A (en) Guide device for moving vehicle
JPH07281742A (en) Traveling controller for beam light guided work vehicle
JPH06161546A (en) Controller for traveling of light-guided work wagon
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JPH06161545A (en) Controller for traveling of light-guided work wagon
JPH0944241A (en) Beam light guidance device for moving object
JPH07281743A (en) Method for traveling work vehicle for ground work and controller therefor
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JPH05204453A (en) Automatic steering control device for running vehicle for working
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH075914A (en) Travel controller for beam light-guided work vehicles
JPH08179829A (en) Guide controller for mobile object
JPH08178650A (en) Position detecting device for work vehicle
JPS63308609A (en) Working vehicle guide device using beam light
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JPH0216607A (en) Working vehicle guiding device for beam light utilization
JPH06124122A (en) Automatic steering controller for work traveling machine
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JPH06149352A (en) Traveling controller for beam light guidance type working car
JPH07291140A (en) Steering controller for working vehicle
JPH07175517A (en) Travel controller for beam light guide type operation vehicle
JPH0876843A (en) Light receiving device and travel controller for beam light guide type working vehicle
JPH01274212A (en) Mobile vehicle guidance facility
JPH0764635A (en) Traveling controller for work wagon