JPH0261705A - Running controller for beam light guided type working vehicle - Google Patents

Running controller for beam light guided type working vehicle

Info

Publication number
JPH0261705A
JPH0261705A JP63214272A JP21427288A JPH0261705A JP H0261705 A JPH0261705 A JP H0261705A JP 63214272 A JP63214272 A JP 63214272A JP 21427288 A JP21427288 A JP 21427288A JP H0261705 A JPH0261705 A JP H0261705A
Authority
JP
Japan
Prior art keywords
beam light
turning
optical sensor
light
receives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214272A
Other languages
Japanese (ja)
Inventor
Koji Yoshikawa
浩司 吉川
Kazuhiro Takahara
一浩 高原
Shigeru Tanaka
滋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63214272A priority Critical patent/JPH0261705A/en
Publication of JPH0261705A publication Critical patent/JPH0261705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To accurately turn a working vehicle by providing a turn optical sensor which receives both of beam light for turn and beam light for guide and using this turn optical sensor and a steering control optical sensor to move the working vehicle. CONSTITUTION:With respect to a working vehicle V1, a seedling planting device 6 is provided in the rear part of a running machine body 5 provided with pairs of right and left front wheels and rear wheels. A steering control optical sensor 17 which detects the tansverse deviation of the machine body from beam light A1 for guide is provided, and an optical sensor S3 of beam light A2 for turn is provided. A device B1 which projects the beam light A1 for guide as the running guide for the working vehicle V1 is mounted on a light source moving mobile body V2. A projecting device B2 of the beam light for turn is so provided that the beam light for turn is orthogonal to the beam light A1 for guide. Thus, the turn start position is accurately indicated by the beam light A2 for turn, and the working vehicle V1 is guided even during turn so that it is moved along a set route.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、互いに平行な複数個の作業行程の夫々におい
て作業車が作業行程に沿って自動走行するように、作業
行程の一端側から他端側に向けて誘導用ビーム光を投射
する誘導用ビーム光投射手段が設けられ、前記作業車に
は、前記誘導用ビーム光を受光する操向制御用光センサ
と、その操向制御用光センサの受光情報に基づいて、前
記作業車が前記誘導用ビーム光に沿って自動走行するよ
うに操向制御する操向制御手段と、前記作業車が一つの
作業行程の終端部に達するに伴って、その一つの作業行
程に隣接する次の作業行程の始端部に向けて移動させる
回向制御手段とが設けられたビーム光誘導式作業車の走
行制御装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for automatically moving a working vehicle from one end of the working stroke to the other in each of a plurality of parallel working strokes. A guiding beam light projection means for projecting a guiding beam light toward the end side is provided, and the work vehicle includes a steering control optical sensor that receives the guiding beam light, and a steering control light sensor for receiving the guiding beam light. a steering control means for controlling the steering so that the working vehicle automatically travels along the guiding beam light based on light reception information of the sensor; The present invention relates to a travel control device for a beam-guided working vehicle, which is provided with a turning control means for moving the working vehicle toward the starting end of the next working stroke adjacent to one working stroke.

〔従来の技術〕[Conventional technology]

上記この種のビーム光誘導式作業車の走行制御装置は、
作業行程の一端側から他端側に向けて投射される誘導用
ビーム光に沿って自動走行する作業車が、複数個の作業
行程に亘って自動走行するように、作業車が各作業行程
の終端部に達するに伴って、次の作業行程の始端部に向
けて自動的に移動させるようにしたものである。
The travel control device for this type of beam-guided work vehicle mentioned above is:
A work vehicle that automatically travels along a guidance beam projected from one end of the work process to the other end of the work process automatically travels over multiple work processes. As it reaches the terminal end, it is automatically moved toward the starting end of the next working stroke.

そして、従来では、作業行程の終端部に対する距離を測
定する超音波センサ等の測距手段を設けて、作業車が作
業行程の終端部に達したか否かを検出させるようにして
あった。
Conventionally, distance measuring means such as an ultrasonic sensor for measuring the distance to the end of the work stroke has been provided to detect whether the work vehicle has reached the end of the work stroke.

但し、次の作業行程の始端部に移動させる回向中は、誘
導用ビーム光によって誘導することができないので、回
向制御においては、予め設定された回向パターンを再生
することにより、自動的に回向させるようにしてあった
However, during turning to move to the starting end of the next work process, guidance cannot be provided by the guiding beam light. I was trying to get him to turn around.

ちなみに、従来では、作業車が作業行程の長さ方向にお
いて設定地点に達するに伴って、次の作業行程側に18
0度旋回させた状態で、設定距離を走行させ、その後、
操向制御用光センサが誘導用ビーム光を受光するまで、
次の作業行程における誘導ビーム光が投射される側に向
けて、幅寄せ移動させるようにしていた。
Incidentally, conventionally, as the work vehicle reaches the set point in the length direction of the work stroke, 18
Drive the set distance with the vehicle turned 0 degrees, and then
Until the steering control optical sensor receives the guidance beam light,
The guide beam is moved toward the side where the guiding beam light is projected in the next work process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来構成では、回向中は誘導用ビーム光を用いて誘
導できないので、例えば、田植え用の作業車等のように
、走行地面状態が悪くスリップし易い状態で走行する作
業車においては、回向後の作業車位置が、設定適正作業
開始位置からずれる虞れがあり、改善が望まれていた。
In the conventional configuration described above, guidance cannot be provided using the guiding beam light while turning, so for example, in a work vehicle such as a work vehicle for rice planting, which runs on poor ground conditions and is prone to slipping, it is difficult to turn. There is a risk that the subsequent position of the work vehicle may deviate from the appropriate work start position, and improvements have been desired.

又、作業車が作業行程の終端部に達したか否かを判別す
るために、測距手段を設ける必要があり、装置構成が複
雑になる不利があった。
Further, in order to determine whether the working vehicle has reached the end of its working stroke, it is necessary to provide a distance measuring means, which has the disadvantage of complicating the device configuration.

本発明は、上記実情に鑑みてなされたものであって、そ
の目的は、回向後の位置が設定適正状態からずれないよ
うに、回向中においても誘導できるようにすることにあ
る。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to enable guidance even during turning so that the position after turning does not deviate from the appropriate setting state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるビーム光誘導式作業車の走行制御装置は、
互いに平行な複数個の作業行程の夫々において作業車が
作業行程に沿って自動走行するように、作業行程の一端
側から他端側に向けて誘導用ビーム光を投射する誘導用
ビーム光投射手段が設けられ、前記作業車には、前記誘
導用ビーム光を受光する操向制御用光センサと、その操
向制御用光センサの受光情報に基づいて、前記作業車が
前記誘導用ビーム光に沿って自動走行するように操向制
御する操向制御手段と、前記作業車が一つの作業行程の
#端部に達するに伴って、その一つの作業行程に隣接す
る次の作業行程の始端部に向けて移動させる回向制御手
段とが設けられたものであって、その特徴構成は、以下
の通りである。
The travel control device for a beam guided work vehicle according to the present invention includes:
A guiding beam light projection means for projecting a guiding beam light from one end of the working stroke toward the other end so that the working vehicle automatically travels along the working stroke in each of a plurality of parallel working strokes. The work vehicle is provided with a steering control optical sensor that receives the guidance beam light, and a steering control optical sensor that allows the work vehicle to receive the guidance beam light based on the light reception information of the steering control optical sensor. a steering control means for controlling the steering so that the work vehicle automatically travels along the same line; and as the work vehicle reaches the # end of one work stroke, a starting end of the next work stroke adjacent to that one work stroke; The device is provided with a turning control means for moving the object toward the object, and its characteristic configuration is as follows.

すなわち、前記複数個の作業行程夫々の終端部の位置を
示す回向用ビーム光を、前記誘導用ビーム光に直交する
方向に向けて投射する回向用ビーム光投射手段が設けら
れ、前記作業車には、前記回向用ビーム光及び前記誘導
用ビーム光の両方を受光自在な回向用光センサが設けら
れ、前記操向制御用光センサは前記誘導用ビーム光及び
前記回向用ビーム光の両方を受光自在に構成され、且つ
、前記回向制御手段は、前記回向用光センサが前記回向
用ビーム光を受光するに伴って、前記操向制御用光セン
サが前記回向用ビーム光を受光するまで、前記作業車を
前進状態で旋回させる第1旋回制御手段と、前記操向制
御用光センサが前記回向用ビーム光を受光するに伴って
、前記回向用光センサが前記誘導用ビーム光を受光する
まで、前記操向制御用光センサによる前記回向用ビーム
光の受光情報に基づいて操向制御しながら、前記作業車
を後進させる後進制御手段と、前記回向用光センサが前
記誘導用ビーム光を受光するに伴って、前記操向制御用
光センサが前記誘導用ビーム光を受光するまで、前記作
業車を前進状態で旋回させる第2旋回制御手段とから構
成されている点にある。
That is, a redirection beam light projection means is provided for projecting redirection beam light indicating the position of the terminal end of each of the plurality of work strokes in a direction perpendicular to the guidance beam light, and The vehicle is provided with a turning optical sensor capable of receiving both the turning beam light and the guiding beam light, and the steering control optical sensor receives both the guiding beam light and the turning beam light. The steering control means is configured to be able to freely receive both lights, and the turning control means is configured to allow the steering control optical sensor to receive the turning beam light as the turning optical sensor receives the turning beam light. a first turning control means for turning the working vehicle in a forward state until it receives the turning beam; and as the steering control optical sensor receives the turning beam, a reversing control means for reversing the work vehicle while controlling steering based on reception information of the turning beam light by the steering control optical sensor until a sensor receives the guiding beam light; A second turning control means for turning the work vehicle in a forward state as the turning optical sensor receives the guiding beam light until the steering controlling optical sensor receives the guiding beam light. The point is that it is composed of.

〔作 用〕[For production]

つまり、複数個の作業行程夫々の終端部の位置を示す回
向用ビーム光を、誘導用ビーム光に直交する方向に向け
て投射すると共に、その回向用ビーム光と誘導用ビーム
光の両方を受光可能な回向用光センサを設けて、その回
向用光センサと操向制御用光センサの両方を用いて、作
業車を各ビーム光に沿って移動させることにより、回向
中においても、作業車の移動経路が設定された移動経路
となるように、誘導するのである。
In other words, the redirection beam that indicates the position of the end of each of a plurality of work strokes is projected in a direction perpendicular to the guidance beam, and both the redirection beam and the guidance beam are projected. By providing a turning optical sensor capable of receiving light, and using both the turning optical sensor and the steering control optical sensor to move the work vehicle along each beam light, The work vehicle is also guided so that the travel route of the work vehicle follows the set travel route.

〔発明の効果〕〔Effect of the invention〕

従って、回向用ビームによって回向開始位置を的確に指
示できると共に、回向中においても、作業車の移動経路
が設定された経路となるように誘導できるので、回向開
始位置並びに回向後の作業車位置の夫々が設定適正位置
となるように、的確に回向させることができるに至った
Therefore, the turning beam can accurately indicate the turning start position, and even during turning, the work vehicle can be guided so that the moving route follows the set route, so the turning beam can accurately indicate the turning start position and It has now become possible to accurately turn the work vehicle so that each of the work vehicle positions is set to an appropriate position.

〔実施例〕〔Example〕

以下、本発明を田植え用の作業車の走行制御装置に適用
した場合における実施例を図面に基づいて説明する。
EMBODIMENT OF THE INVENTION Hereinafter, an embodiment in which the present invention is applied to a travel control device for a work vehicle for rice planting will be described based on the drawings.

第3図に示すように、田植え用の作業車(V1)が互い
に平行に並ぶ複数個の作業行程夫々において作業行程の
長さ方向に向けて自動走行するように誘導するための走
行用ガイドとなる誘導用ビーム光(A1)を、作業行程
の長さ方向に沿って一端側から他端側に向けて投射する
誘導用ビーム光投射手段としての誘導用レーザ光投射装
置(B1)が、前記複数個の作業行程が並ぶ方向に沿っ
て作業行程の一端側に設置された直線状のガイド(L)
に沿って移動自在な光源移動用の移動体(v2)に搭載
され、もって、互いに平行する複数個の作業行程の夫々
において前記誘導用ビーム光(A1)を投射できるよう
に構成されている。
As shown in Fig. 3, a traveling guide is provided to guide the rice planting vehicle (V1) to automatically travel in the length direction of each of the plurality of work strokes lined up parallel to each other. The guidance laser light projection device (B1) as a guidance beam light projection means for projecting the guidance beam light (A1) from one end side to the other end side along the length direction of the working process comprises: A linear guide (L) installed at one end of the work process along the direction in which multiple work processes are lined up.
The guiding light beam (A1) is mounted on a moving body (v2) for moving the light source, which is movable along the guide beam (A1), and is configured to project the guiding beam light (A1) in each of a plurality of work processes parallel to each other.

又、前記作業行程の長さ方向における両端部の位置を示
すと共に、次の作業行程への回向の開始位置及び終了位
置の夫々を示すための回向用ビーム光(A2)を、′前
記誘導用ビーム光(A1)の投射方向に対して直交する
方向に向けて投射する回向用ビーム光投射手段としての
回向用レーザ光投射装置(B2)が、前記作業行程の長
さ方向における両端部夫々に対応する前記作業行程が並
ぶ圃場横側方箇所に設けられている。
In addition, a turning beam light (A2) for indicating the positions of both ends in the length direction of the working stroke and indicating the starting position and end position of turning to the next working stroke is used as described above. A redirection laser beam projection device (B2) as a redirection beam projection means that projects in a direction perpendicular to the projection direction of the guidance beam light (A1) is configured to It is provided at a lateral side of the field where the working strokes corresponding to both ends are lined up.

尚、本実施例では、前記誘導用ビーム光(A 1)によ
って誘導される前記作業車(V+)を、各作業行程の両
端部において180度方向転換させながら、各作業行程
を往復走行させるようにしである。但し、前記作業車(
V1)が−往復する間は、前記誘導用レーザ光投射装置
(Bυを移動させることなく誘導できるように、ビーム
光投射位置を、一つの作業行程とそれに隣接する次の作
業行程との中間に相当する位置に設定しである。
In this embodiment, the working vehicle (V+) guided by the guiding beam light (A1) is caused to travel back and forth through each working stroke while changing direction by 180 degrees at both ends of each working stroke. It's Nishide. However, the said work vehicle (
While V1) is reciprocating, the beam light projection position is set between one working process and the next adjacent working process so that the guidance laser beam projection device (Bυ) can be guided without moving. Set it in the corresponding position.

これにより、前記作業車(Vυが各作業行程の終端部に
達するに伴って、前記作業車(V1)を次の作業行程に
向けて180度方向転換させると共に、前記作業車(V
1)が隣接する作業行程を一往復する毎に、前記誘導用
レーザ光投射装置(Bυを移動させる前記移動体(v2
)を、二行程分の作業幅に相当する距離を前記ガイド(
L)に沿って移動させることにより、所定範囲の圃場に
ふける植え付は作業を連続して自動的に行えるようにな
っている。
Thereby, as the working vehicle (Vυ) reaches the end of each working stroke, the working vehicle (V1) is turned 180 degrees toward the next working stroke, and the working vehicle (V
1) moves the guiding laser beam projection device (Bυ) every time the guiding laser beam projection device (Bυ
), and move the distance corresponding to the working width of two strokes to the guide (
By moving the plant along the line L), planting in a predetermined field can be carried out continuously and automatically.

前記光源移動用のガイド(L)は、第4図及び第5図に
も示すように、断面が四角状の鉄製パイプ部材を、複数
個の作業行程が並ぶ方向に沿って設置したものであって
、二行程分の作業幅に相当する距離毎で、且つ、隣接す
る作業行程の中間に相当する位置の上面に、ビーム光投
射位置を示すマークとしての孔(1)が形成されている
As shown in FIGS. 4 and 5, the guide (L) for moving the light source is a steel pipe member with a square cross section installed along the direction in which a plurality of work processes are lined up. Holes (1) as marks indicating the beam light projection position are formed on the upper surface at intervals of a distance corresponding to the working width of two strokes and at a position corresponding to the middle of adjacent working strokes.

尚、図中、(S1)は前記移動体(v2)を、各ビーム
光投射位置に停止させるために設けられた前記孔(1)
を感知する磁気感知式の近接センサ、(S5)は前記作
業車(V1)の前部に設けられた投光器(2)(第4図
参照)から投光される光を受光することにより、前記作
業車(Vυが作業行程の終端部に達したことを検出して
、前記移動体(v2)を次のビーム光投射位置に向けて
自動的に移動開始させるための作業車検出用の光センサ
である。
In the figure, (S1) is the hole (1) provided for stopping the moving body (v2) at each beam projection position.
A magnetic sensing type proximity sensor (S5) detects the above by receiving light emitted from a light projector (2) (see Fig. 4) provided at the front part of the work vehicle (V1). An optical sensor for detecting a working vehicle, which detects that the working vehicle (Vυ) has reached the end of the working stroke and automatically starts moving the moving body (v2) toward the next beam projection position. It is.

前記作業車(V1)の構成について説明すれば、第3図
乃至第5図に示すように、左右一対の前輪(3)及び後
輪(4)を備えた走行機体(5)の後部に、作業装置と
しての苗植え付は装置(6)が、昇降自在で且つ駆動停
止自在に設けられている。
To explain the structure of the working vehicle (V1), as shown in FIGS. 3 to 5, at the rear of a traveling body (5) equipped with a pair of left and right front wheels (3) and rear wheels (4), A seedling planting device (6) serving as a working device is provided so that it can be raised and lowered and can be stopped.

第1図に示すように、前記前後輪(3)、 (4)は、
左右を一対として前後で各別に摸向摸作自在に構成され
、操向用の油圧シリンダ(7)、 (B)  と、それ
らに対する電磁操作式の制御弁(9)、 (10)とが
設けられている。
As shown in FIG. 1, the front and rear wheels (3) and (4) are
The left and right sides are a pair, and the front and rear sides are configured to be freely movable, and are equipped with hydraulic cylinders (7), (B) for steering, and electromagnetically operated control valves (9), (10) for them. It is being

つまり1.前輪(3)又は後輪(4)の一方のみを操向
する2輪ステアリング形式、前後輪(3)、(4)を逆
位相で且つ同角度に操向する4輪ステアリング形式、前
後輪(3)、 (4)を同位相で且つ同角度に操向する
平行ステアリング形式の三種類のステアリング形式を選
択使用できるようになっている。
In other words, 1. Two-wheel steering type that steers only one of the front wheels (3) or rear wheels (4), four-wheel steering type that steers the front and rear wheels (3) and (4) in opposite phases and at the same angle, and front and rear wheels (4). It is possible to select and use three types of steering types: a parallel steering type in which the steering wheels 3) and (4) are steered in the same phase and at the same angle.

尚、第1図中、(11)はエンジン(B)からの出力を
変速して前記前後輪(3)、 (4)の夫々を同時に駆
動する油圧式無段変速装置、(12)はその変速操作用
の電動モータ、(13)は前記植え付は装置(6)の昇
降用油圧シリンダ、(14)はその制御弁、(15)は
前記エンジン(E) による前記植え付は装置(6)の
駆動を断続する電磁操作式の植え付はクラッチ、(16
)は前記作業車(V1)の走行並びに前記植え付は装置
(6)の作動を制御するためのマイクロコンピュータ利
用の制御装置であって、後述の各種センサによる検出情
報に基づいて、前記変速用モータ(12)、前記各制御
弁(9)、 (10)、 (14)、前記植え付はクラ
ッチ(15)、及び、前記投光器(2)の夫々を制御す
るように構成されている。
In Fig. 1, (11) is a hydraulic continuously variable transmission that changes the output from the engine (B) to simultaneously drive each of the front and rear wheels (3) and (4), and (12) is its hydraulic continuously variable transmission. An electric motor for speed change operation, (13) a hydraulic cylinder for raising and lowering the planting device (6), (14) a control valve thereof, and (15) a control valve for the planting device (6) using the engine (E). ) The electromagnetic operation type planting that intermittents the drive of the clutch, (16
) is a control device using a microcomputer to control the traveling of the work vehicle (V1) and the operation of the planting device (6), and the control device uses a microcomputer to control the operation of the device (6) for controlling the speed change based on the information detected by various sensors described later. The motor (12), each of the control valves (9), (10), (14), and the said planting are configured to control each of the clutch (15) and the floodlight (2).

前記作業車(V1)に装備されるセンサ類について説明
すれば、第1図に示すように、前記前後輪(3)、 (
4)夫々の操向角を検出するポテンショメータ利用の操
向角検出センサ(R1)、 (L)  と、前記変速装
置(11)の変速状態に基づいて間接的に前後進状態及
び車速を検出するポテンショメータ利用の車速センサ(
R3)とが設けられている。
To explain the sensors installed in the work vehicle (V1), as shown in FIG. 1, the front and rear wheels (3), (
4) Directly detects the forward/reverse state and vehicle speed based on the steering angle detection sensors (R1), (L) using potentiometers that detect the respective steering angles, and the shift state of the transmission (11). Vehicle speed sensor using potentiometer (
R3) is provided.

第3図乃至第5図に示すように、前記誘導用ビーム光(
A1)に対する機体横幅方向でのずれをその機体横幅方
向での受光位置に基づいて検出する操向制御用光センサ
(17)が、機体右側方の前方側に設けられ、前記回向
用ビーム光(A2)を受光する回向用光センサ(S3)
が、機体左右何れの側からでも前記回向用ビーム光(A
2)を受光できるように、前記操向制御用光センサ(1
7)の前方側の機体左右両側の夫々に設けられている。
As shown in FIGS. 3 to 5, the guiding beam light (
A steering control optical sensor (17) that detects a deviation in the aircraft width direction with respect to A1) based on the light receiving position in the aircraft width direction is provided on the front side on the right side of the aircraft body, and Optical sensor for turning (S3) that receives light from (A2)
However, the redirecting beam light (A
2), the steering control optical sensor (1)
7) are provided on both the left and right sides of the front side of the aircraft.

但し、前記操向制御用光センサ(17)は前記回向用ビ
ーム光(A2)の受光位置をも判別自在に構成され、且
つ、前記回向用光センサ(S3)は前記誘導用ビーム光
(A1)をも受光自在に構成されている。
However, the steering control optical sensor (17) is configured to be able to freely determine the receiving position of the turning beam light (A2), and the steering control optical sensor (S3) is configured to detect the guiding beam light (A2). (A1) is also configured to freely receive light.

前記操向制御用光センサ(17)について説明を加えれ
ば、第5図及び第6図にも示すように、機体前後方向に
間隔を隔て且つ上下方向にも間隔を隔てて位置するよう
に配置された前後一対の光センサ(St)、 (S2)
から構成され、そして、前記誘導用ビーム光(A1)又
は前記回向用ビーム光(A2)が機体前後の何れの方向
から入射される場合でも差のない状態で受光できるよう
にするために、機体前後の各方向からの入射光を前記光
センサ(S1)、 (B2)夫々の受光面に向けて反射
する反射鏡(18)を備えている。
To further explain the steering control optical sensors (17), as shown in FIGS. 5 and 6, they are arranged so as to be spaced apart in the longitudinal direction of the aircraft and also spaced apart in the vertical direction. A pair of front and rear optical sensors (St), (S2)
In order to be able to receive the guiding beam light (A1) or the turning beam light (A2) without any difference even when the guiding beam light (A1) or the turning beam light (A2) is incident from the front or rear of the aircraft body, It is equipped with a reflecting mirror (18) that reflects incident light from each direction of the front and rear of the aircraft toward the light receiving surface of each of the optical sensors (S1) and (B2).

前記前後一対の光センサ(S1)、 (B2)の夫々は
、第6図にも示すように、複数個の受光素子(D)を機
体横幅方向に並設したものであって、横幅方向でのセン
サ中心(Do)に位置する受光素子の位置を基準としで
、前記誘導用ビーム光(八〇を受光した前後夫々の受光
素子の位置(X1)、 (X2)と前記一対の光センサ
(S1)、 (32)の車体前後方向での取り付は間隔
(β)とに基づいて、下記(1)式から、前記誘導用ビ
ーム光(A1)の投射方向に対する傾き(ψ)と、横幅
方向における位置の偏位(χ)とを求めるようになって
いる。
As shown in FIG. 6, each of the pair of front and rear optical sensors (S1) and (B2) has a plurality of light receiving elements (D) arranged in parallel in the width direction of the aircraft body. With reference to the position of the light-receiving element located at the sensor center (Do) of The installation of S1) and (32) in the longitudinal direction of the vehicle body is based on the distance (β), and from the following formula (1), the inclination (ψ) with respect to the projection direction of the guiding beam light (A1) and the width. The positional deviation (χ) in the direction is determined.

但し、前記横幅方向における位置の偏位(χ)は、前記
一対の光センサ(S1)、(Sa)の一方の受光位置と
してもよいが、前記傾き(ψ)による誤差が生じないよ
うにするために、前記一対の光センf(S1)、(s1
)夫々ノ受光位置(X1)、 (L) (7)平均値を
用いるようにしてもよい。
However, the positional deviation (χ) in the width direction may be the light receiving position of one of the pair of optical sensors (S1) and (Sa), but it should be made such that an error due to the inclination (ψ) does not occur. Therefore, the pair of optical sensors f(S1), (s1
) The light receiving positions (X1) and (L) (7) may be averaged.

つまり、前記作業車(v1)は、前記傾き(ψ)と前記
偏位(χ)とが共に零となるように、目標操向角を設定
して操向制御されることになる。但し、本実施例では、
各作業行程では、前記前輪(3)のみを操向する2輪ス
テアリング形式で操向制御するように構成しである。
In other words, the work vehicle (v1) is controlled to be steered by setting a target steering angle so that both the inclination (ψ) and the deviation (χ) become zero. However, in this example,
In each work process, the steering control is performed in a two-wheel steering type in which only the front wheels (3) are steered.

そして、前記制御装置(16)を利用して、前記操向制
御用光センサ(17)の受光情報に基づいて、前記作業
車(V1)が前記誘導用ビーム光(A1)に沿って自動
走行するように操向制御する操向制御手段(100)、
前記作業車(V1)が一つの作業行程の終端部に達する
に伴って、その一つの作業行程、に隣接する次の作業行
程の始端部に向けて移動させる回向制御手段(101)
、前記回向用光センサ(B3)が前記回向用ビーム光(
A2)を受光するに伴って、前記操向制御用光センサ(
17)が前記回向用ビーム光(A2)を受光するまで、
前記作業車(V1)を前進状態で旋回させる第1旋回制
御手段(101A)、前記操向制御用光センサ(17)
が前記回向用ビーム光(A2)を受光するに伴って、前
記回向用光センサ(B3)が前記誘導用ビーム光(A1
)を受光するまで、前記操向制御用光センサ(17)に
よる前記回向用ビーム光(A2)の受光情報に基づいて
操向制御しながら、前記作業車(V1)を後進させる後
進制御手段(101B)、及び、前記回向用光センサ(
B3)が前記誘導用ビーム光(A1)を受光するに伴っ
て、前記操向制御用光センサ(17)が前記誘導用ビー
ム光(八〇を受光するまで、前記作業車(V+)を前進
状態で旋回させる第2旋回制御手段(101C)の夫々
が構成されることになる。
Then, using the control device (16), the work vehicle (V1) automatically travels along the guidance beam light (A1) based on the light reception information of the steering control optical sensor (17). steering control means (100) for controlling the steering so as to
Turning control means (101) for causing the work vehicle (V1) to move toward the starting end of the next work stroke adjacent to that one work stroke as the work vehicle (V1) reaches the end of one work stroke;
, the redirection optical sensor (B3) detects the redirection beam light (
A2), the steering control optical sensor (
17) until it receives the redirecting beam light (A2),
a first turning control means (101A) for turning the work vehicle (V1) in a forward state; and the steering control optical sensor (17).
receives the redirecting beam light (A2), the redirecting optical sensor (B3) receives the guiding beam light (A1).
) for reversing the work vehicle (V1) while controlling the steering based on information on reception of the turning beam light (A2) by the steering control optical sensor (17); (101B), and the turning optical sensor (
As B3) receives the guidance beam light (A1), the steering control optical sensor (17) moves the work vehicle (V+) forward until it receives the guidance beam light (80). Each of the second turning control means (101C) for turning in this state is configured.

尚、前記回向用光センサ(S1)は前記誘導用ビーム光
(A1)及び前記回向用ビーム光(A2)に対する受光
の有無のみを検出するように構成されているものであっ
て、受光位置は判別できないようになっている。
The redirecting optical sensor (S1) is configured to detect only whether or not the guiding beam light (A1) and the redirecting beam light (A2) are received. The location cannot be determined.

又、前記投光器(2)は前記回向用光センサ(B3)が
前記回向用ビーム光(A2)を受光して、前記作業車(
V1)が作業行程終端に達したことを判別するに伴って
、作動されることになる。
In addition, the light projector (2) receives the redirection beam light (A2) with the redirection optical sensor (B3), and the redirection light sensor (B3) receives the redirection beam light (A2).
V1) will be activated upon determining that the end of the working stroke has been reached.

次に、第2図に示すフローチャートに基づいて、前記作
業車(Vυの走行について説明する。
Next, the traveling of the working vehicle (Vυ) will be explained based on the flowchart shown in FIG.

前記作業車(v1)は、前記誘導用レーザ光投射装置(
B1)から投射される誘導用ビーム光(A1)を機体後
方側から受光する状態で、圃場の一端側に設定された最
初の作業行程を、その長さ方向に沿って一端側から他端
側に向けて走行開始することになる(第3図参照)。
The work vehicle (v1) includes the guidance laser light projection device (
While receiving the guidance beam light (A1) projected from B1) from the rear side of the machine, move the first working stroke set at one end of the field from one end to the other along the length of the field. The vehicle will start traveling toward (see Figure 3).

走行開始後は、前記操向制御用センサ(17)による前
記誘導用ビーム光(A1)の受光位置情報に基ツいて、
前記一対の光センサ(S1)、 (B2) ノ両方の受
光位置がセンサ中央となるように、前述の如く、2輪ス
テアリング形式で前記前輪(3)を操向制御することに
なる。そして、前記回向用光センサ(B3)が、作業行
程の一端側において投射される前記回向用ビーム光(A
2)を受光した時点から設定距離を走行して植え付は開
始位置に達するに伴って、前記植え付は装置(6)を下
降させると共に駆動開始して、植え付は作業を開始する
ことになる。
After the start of travel, based on the light receiving position information of the guidance beam light (A1) by the steering control sensor (17),
As described above, the front wheels (3) are steered in a two-wheel steering manner so that the light receiving positions of the pair of optical sensors (S1) and (B2) are at the center of the sensors. The redirection optical sensor (B3) detects the redirection beam light (A
2) As the planting distance reaches the starting position after traveling a set distance from the time when the light is received, the planting device (6) is lowered and starts driving, and the planting starts. Become.

前記作業車(V1)が作業行程の終端部に達して、前記
回向用光センサ(S3)が作業行程の他端側において投
射される回向用ビーム光(A2)を受光すると、前記植
え付は装置(6)の駆動を停止して植え付は作業を停止
すると共に、前記操向制御用センサ(17)による操向
制御を停止して、前記作業車(V1)を次の作業行程に
向けて180度方向転換させるための回向制御を開始す
ることになる。
When the working vehicle (V1) reaches the end of the working stroke and the turning light sensor (S3) receives the turning beam light (A2) projected at the other end of the working stroke, the At the same time, the driving of the planting device (6) is stopped and the planting operation is stopped, and the steering control by the steering control sensor (17) is also stopped and the work vehicle (V1) is moved to the next work process. Turning control will be started to turn the vehicle 180 degrees toward the target.

但し、詳述はしないが、ターン回数等に基づいて作業終
了を判別した場合には、回向制御を行うことなく、走行
停止して全処理を終了することになる。
However, although not described in detail, if it is determined that the work is completed based on the number of turns or the like, the vehicle will stop traveling and complete the entire process without performing turning control.

回向制御を開始するに伴って、先ず、前記2輪ステアリ
ング形式から前記4輪ステアリング形式に切り換えて、
前記操向制御用光センサ(17)が前記回向用ビーム光
(A2)を受光するまで、前記作業車(V1)を次の作
業行程側に向けて前進状態で略90度回向させる。
When starting turning control, first, switch from the two-wheel steering type to the four-wheel steering type,
The work vehicle (V1) is turned approximately 90 degrees in a forward state toward the next work stroke until the steering control optical sensor (17) receives the turning beam light (A2).

つまり、前記作業車(V+)を次の作業行程側に向けて
前進状態で略90度回向させる処理が、第1旋回制御手
段(101A)に対応することになる。
In other words, the process of turning the work vehicle (V+) approximately 90 degrees toward the next work stroke in the forward state corresponds to the first turning control means (101A).

前記操向制御用光センサ(17)が前記回向用ビーム光
(A2)を受光するに伴って、前後進を切り換えると共
に、前記4輪ステアリング形式から前記後輪(4)のみ
を操向する2輪ステアリング形式に切り換えて、前記回
向用光センサ(S3)が前記誘導用ビーム光(A1)を
受光するまで、前記操向制御用光センサ(17)による
前記回向用ビーム光(A2)の受光位置情報に基づいて
操向制御しながら前記回向用ビーム光(A2)に沿って
後進させる。
As the steering control optical sensor (17) receives the turning beam light (A2), it switches between forward and backward movement and steers only the rear wheels (4) from the four-wheel steering type. After switching to the two-wheel steering mode, the turning beam light (A2) is controlled by the steering control optical sensor (17) until the turning optical sensor (S3) receives the guiding beam light (A1). ) is made to move backward along the turning beam (A2) while controlling the steering based on the light receiving position information.

つまり、前記操向制御用光センサ(17)による前記回
向用ビーム光(A2)の受光位置情報に基づいて操向制
御しながら前記作業車(V1)を前記回向用ビーム光(
A2)に沿って後進させる処理が、後進制御手段(10
1B)に対応することになる。
That is, while controlling the steering based on the light receiving position information of the turning beam light (A2) by the steering control optical sensor (17), the work vehicle (V1) is controlled by the turning beam light (A2).
The process of moving backward along A2) is performed by the backward movement control means (10
1B).

前記回向用光センサ(S3)が前記誘導用ビーム光(A
1)を受光すると、後進から前進に切り換えると共に、
4輪ステアリング形式に切り換えて、再度、前記操向制
御用光センサ(17)が前記誘導用ビーム光(A;)を
受光するまで、次の作業行程始端側に向けて略90度回
向させる。
The turning optical sensor (S3) detects the guiding beam light (A
1) When it receives light, it switches from reverse to forward, and
Switch to the four-wheel steering mode and turn the steering wheel approximately 90 degrees toward the starting end of the next work stroke until the steering control optical sensor (17) receives the guidance beam light (A;) again. .

つまり、前記作業車(V1)を前進状態で次の作業行程
始端側に向けて略90度回向させる処理が、第2旋回制
御手&(101C)に対応することになる。
In other words, the process of turning the work vehicle (V1) approximately 90 degrees toward the starting end of the next work stroke in the forward state corresponds to the second turning control hand & (101C).

そして、前記操向制御用光センサ(17)による前記誘
導用ビーム光(AI>の受光情報に基づいて操向制御す
る処理が、操向制御手段(100)に対応し、前記回向
用光センサ(S3)が前記回向用ビーム光(A2)を受
光した時点から、前記操向制御用光センサ(17)が再
度前記誘導用ビーム光(A1)を受光するまでの処理が
、回向制御手段(101)に対応することになる。
The process of controlling steering based on the light reception information of the guiding beam light (AI>) by the steering controlling optical sensor (17) corresponds to the steering controlling means (100), The processing from the time when the sensor (S3) receives the turning beam light (A2) until the steering control optical sensor (17) receives the guiding beam light (A1) again is a turning process. This corresponds to the control means (101).

前記操向制御用光センサ(17)が前記誘導用ビーム光
(A1)を受光すると回向制御を終了して、ステアリン
グ形式を前輪(3)のみを操向する2輪ステアリング形
式に切り換えて、前記作業車(V1)が次の作業行程を
前記誘導用ビーム光(A1)に沿って自動走行するよう
に、前述の如く、操向制御用光センサ(17)による操
向制御を再開して、前記作業車(V1)を作業行程の他
端側から一端側に向けて自動走行させることになる。
When the steering control optical sensor (17) receives the guidance beam light (A1), it ends the turning control and switches the steering type to a two-wheel steering type that steers only the front wheels (3), As described above, the steering control by the steering control optical sensor (17) is restarted so that the work vehicle (V1) automatically travels the next work process along the guidance beam light (A1). , the working vehicle (V1) is caused to automatically travel from the other end of the working path toward the one end.

つまり、前記作業車(V1)が各作業行程の疼端部に達
する毎に、前記操向制御手段(100) と前記回向制
御手段(101)  とが交互に制御作動することにな
る。
That is, each time the work vehicle (V1) reaches the end of each work stroke, the steering control means (100) and the turning control means (101) are alternately operated.

尚、前記操向制御用光センサ(17)が前記誘導用ビー
ム光(A1)を受光した後、設定距離を走行した状態で
前記植え付は装置(6)の駆動を再開させることにより
、次の作業行程における植え付は開始位置が前行程での
植え付は終了位置に揃うようにすることになる。
In addition, after the steering control optical sensor (17) receives the guidance beam light (A1), the planting is performed by restarting the driving of the device (6) after traveling a set distance. The starting position of planting in the work process is aligned with the finishing position of planting in the previous process.

但し、前記誘導用レーザ光投射装置(B1)は、前記作
業車(V+)が作業行程を一往復する毎に、次の投射位
置に移動させる必要があることから、前記作業車(V1
)が前記誘導用レーザ光投射装置(B1)の設置側にお
いて回向する場合には、前記誘導用レーザ光投射装置(
B1)を前記作業車(V1)の回向に連係して、自動的
に次のビーム光投射位置に移動させることになる。
However, since the guiding laser beam projection device (B1) needs to be moved to the next projection position every time the working vehicle (V+) makes one reciprocation of the working process, the guiding laser beam projecting device (B1) is
) is turned on the installation side of the guidance laser beam projection device (B1), when the guidance laser beam projection device (B1) is turned around, the guidance laser beam projection device (
B1) is automatically moved to the next beam projection position in conjunction with the turning of the working vehicle (V1).

説明を加えれば、前記作業車(V1)が作業行程の終端
に達して前記回向用光センサ(B3)が前記回向用ビー
ム光(A2)を受光して植え付は作業を停止すると、作
業行程数等に基づいて前記透導用レーザ光投射装置(B
1)が設置された作業行程の一端側での回向であるか否
かを判別して、作業行程の一端側での回向である場合に
は、前記投光器(2)を作動させることになる。
To explain, when the working vehicle (V1) reaches the end of the working process and the turning light sensor (B3) receives the turning beam light (A2), the planting operation is stopped. The transmission laser beam projection device (B
1) determines whether or not the turn is on one end side of the installed work process, and if the turn is on the one end side of the work process, the projector (2) is activated. Become.

つまり、回向制御が開始されるに伴って、前記誘導用レ
ーザ光投射装置(B1)に設けられた前記作業車検出用
の光センサ(B5)が、前記作業車(v1)側の投光器
(2)から投光される光を受光して、前記移動体(v2
)側では前記作業車(Vりが作業行程の終端部に達した
ことを判別して、前記作業車(v1)が次の作業行程に
向けて移動する間に、前記誘導用レーザ光投射装置(B
1)を次のビーム光投射位置に向けて自動的に移動させ
ることができるようになっているのである。
That is, as the turning control is started, the light sensor (B5) for detecting the work vehicle provided in the guidance laser beam projection device (B1) detects the light from the projector (v1) on the work vehicle (v1) side. 2) and receives the light projected from the moving body (v2).
) side, the guiding laser beam projection device determines that the working vehicle (v1) has reached the end of the working stroke, and while the working vehicle (v1) moves toward the next working stroke. (B
1) can be automatically moved toward the next beam projection position.

〔別実施例〕[Another example]

上記実施例では、各作業行程における植え付は開始位置
を前行程での植え付は停止位置に揃えるために、前記回
向用光センサ(S1)が作業行程の他端側において投射
される回向用ビーム光(A2)を受光すると、前記植え
付は装置(6)の駆動を停止して植え付は作業を停止さ
せ、且つ、回向を終了して前記操向制御用光センサ(1
7)が前記誘導用ビーム光(A1)を受光した後、設定
距離を走行した状態で前記植え付は装置(6)の駆動を
再開させるようにした場合を例示したが、前記回向用光
センサ(B3)を、植え付は停止位置に対応する車体前
部側と植え付は開始位置に対応する車体後部側の二箇所
に設けて、それら前後二箇所の回向用光センサ(B3)
の検出情報に基づいて前記植え付は装置(6)の駆動を
制御するようにしてもよい。
In the above embodiment, in order to align the starting position for planting in each work process with the stop position for planting in the previous process, the turning optical sensor (S1) is projected at the other end of the work process. When the steering beam light (A2) is received, the steering device (6) stops driving, the planting device stops the operation, and the steering control optical sensor (1) finishes turning.
7) has traveled a set distance after receiving the guiding beam light (A1), and the planting device (6) is restarted; Sensors (B3) are installed at two locations, one on the front side of the vehicle body corresponding to the stop position for planting, and the rear side of the vehicle body corresponding to the start position for planting, and the turning optical sensors (B3) are installed at two locations in front and behind these locations.
The planting may be performed by controlling the driving of the device (6) based on the detected information.

説明を加えれば、第7図及び第8図に示すように、前記
車体前部側の回向用光センサ(B3)が前記回向用ビー
ム光(A2)を受光して植え付は停止させた前記植え付
は装置(6)の作業行程長手方向における位置と、作業
行程長手方向における回向後の植え付は開始位置とが一
致する状態となる箇所において前記回向用ビーム光(A
2)を受光するように、前記回向用光センサ(B3)と
同構成になる光センサ(Sto)を、前記植え付は装置
(6)よりも車体後方側となる箇所に向けて車体から延
出したセンサ支持部材(19)の先端部に取り付けるよ
うにすればよい。
To explain, as shown in FIGS. 7 and 8, the turning light sensor (B3) on the front side of the vehicle body receives the turning beam light (A2) and stops planting. The turning beam light (A
2), an optical sensor (Sto) having the same configuration as the turning optical sensor (B3) is planted from the vehicle body toward a location on the rear side of the vehicle body than the device (6). What is necessary is just to attach it to the tip part of the sensor support member (19) which extended.

そして、第9図に示すように、車体前部側の回向用光セ
ンサ(B3)が回向用ビーム光(A2)を受光するに伴
って、植え付は停止並びに回向開始を制御し、車体後部
側の光センサ(S3°)が回向用ビーム光(A2)を受
光するに伴って、回向終了並びに植え付は開始させるよ
うにするのである。
Then, as shown in Fig. 9, as the turning light sensor (B3) on the front side of the vehicle receives the turning beam light (A2), the planting stops and the turning start is controlled. As the optical sensor (S3°) on the rear side of the vehicle body receives the turning beam light (A2), turning ends and planting starts.

又、上記実施例では、回向制御において車体旋回を、4
輪ステアリング形式で行わせるようにした場合を例示し
たが、2輪ステアリング形式で旋回させてもよ(、回向
パターンの具体的な形態4′!各種変更できる。
In addition, in the above embodiment, the vehicle body turning is controlled by 4 in the turning control.
Although the case is illustrated in which the turning is performed using wheel steering, it is also possible to turn using two-wheel steering.

又、上記実施例では、本発明を田植え用の作業車に適用
した場合を例示したが、本発明は、各種の作業車の走行
制御手段として適用できるものであって、各部の具体構
成は各種変更できる。
Further, in the above embodiment, the case where the present invention is applied to a work vehicle for rice planting has been exemplified, but the present invention can be applied as a traveling control means for various kinds of work vehicles, and the specific configuration of each part can be modified in various ways. Can be changed.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るビーム光誘導式作業車の走行制御装
置の実施例を示し、第1図は制御構成のブロック図、第
2図は制御作動のフローチャート、第3図は回向パター
ンを示す作業行程の概略平面図、第4図は作業車及びビ
ーム光投射装置の概略平面図、第5図は同側面図、第6
図は光センサの受光位置の説明図、第7図は別実施例に
おける作業車の概略平面図、第8図は同側面図、第9図
はその制御作動のフローチャ−トである。 (v1)・・・・・・作業車、(A1)・・・・・・誘
導用ビーム光、(A2)・・・・・・回向用ビーム光、
(B1)・・・・・・透導用ビーム光投射手段、(B2
)・・・・・・回向用ビーム光投射手段、(17)・・
・・・・操向制御用光センサ、(B3)・・・・・・回
向用光センサ、(100)・・・・・・操向制御手段、
(1旧)・・・・・・回向制御手段、(101A)・・
・・・・第1旋回制御手段、(101B)・・・・・・
後進制御手段、(101C)・・・・・・第2旋回制御
手段。
The drawings show an embodiment of the traveling control device for a beam-guided work vehicle according to the present invention, in which FIG. 1 is a block diagram of the control configuration, FIG. 2 is a flowchart of control operation, and FIG. 3 is a turning pattern. 4 is a schematic plan view of the working vehicle and beam light projection device; FIG. 5 is a side view of the same; FIG.
7 is a schematic plan view of a working vehicle in another embodiment, FIG. 8 is a side view of the same, and FIG. 9 is a flowchart of its control operation. (v1)... Working vehicle, (A1)... Guiding beam light, (A2)...... Turning beam light,
(B1)...Transmission beam light projection means, (B2
)... Redirection beam light projection means, (17)...
... Steering control optical sensor, (B3) ... Turning optical sensor, (100) ... Steering control means,
(1 old)... Turning control means, (101A)...
...First swing control means, (101B)...
Reverse control means, (101C)...Second turning control means.

Claims (1)

【特許請求の範囲】[Claims] 互いに平行な複数個の作業行程の夫々において作業車(
V_1)が作業行程に沿って自動走行するように、作業
行程の一端側から他端側に向けて誘導用ビーム光(A_
1)を投射する誘導用ビーム光投射手段(B_1)が設
けられ、前記作業車(V_1)には、前記誘導用ビーム
光(A_1)を受光する操向制御用光センサ(17)と
、その操向制御用光センサ(17)の受光情報に基づい
て、前記作業車(V_1)が前記誘導用ビーム光(A_
1)に沿って自動走行するように操向制御する操向制御
手段(100)と、前記作業車(V_1)が一つの作業
行程の終端部に達するに伴って、その一つの作業行程に
隣接する次の作業行程の始端部に向けて移動させる回向
制御手段(101)とが設けられたビーム光誘導式作業
車の走行制御装置であって、前記複数個の作業行程夫々
の終端部の位置を示す回向用ビーム光(A_2)を、前
記誘導用ビーム光(A_1)に直交する方向に向けて投
射する回向用ビーム光投射手段(B_2)が設けられ、
前記作業車(V_1)には、前記回向用ビーム光(A_
2)及び前記誘導用ビーム光(A_1)の両方を受光自
在な回向用光センサ(S_3)が設けられ、前記操向制
御用光センサ(17)は前記誘導用ビーム光(A_1)
及び前記回向用ビーム光(A_2)の両方を受光自在に
構成され、且つ、前記回向制御手段(101)は、前記
回向用光センサ(S_3)が前記回向用ビーム光(A_
2)を受光するに伴って、前記操向制御用光センサ(1
7)が前記回向用ビーム光(A_2)を受光するまで、
前記作業車(V_1)を前進状態で旋回させる第1旋回
制御手段(101A)と、前記操向制御用光センサ(1
7)が前記回向用ビーム光(A_2)を受光するに伴っ
て、前記回向用光センサ(S_3)が前記誘導用ビーム
光(A_1)を受光するまで、前記操向制御用光センサ
(17)による前記回向用ビーム光(A_2)の受光情
報に基づいて操向制御しながら、前記作業車(V_1)
を後進させる後進制御手段(101B)と、前記回向用
光センサ(S_3)が前記誘導用ビーム光(A_1)を
受光するに伴って、前記操向制御用光センサ(17)が
前記誘導用ビーム光(A_1)を受光するまで、前記作
業車(V_1)を前進状態で旋回させる第2旋回制御手
段(101C)とから構成されているビーム光誘導式作
業車の走行制御装置。
The work vehicle (
A guiding beam light (A_
1), and the work vehicle (V_1) includes a steering control optical sensor (17) that receives the guidance beam light (A_1), and a steering control optical sensor (17) that receives the guidance beam light (A_1). Based on the light reception information of the steering control optical sensor (17), the work vehicle (V_1) receives the guidance beam light (A_
1), and as the work vehicle (V_1) reaches the end of one work stroke, a steering control means (100) that performs steering control so as to automatically travel along one work stroke; A traveling control device for a beam-guided work vehicle, which is provided with a turning control means (101) for moving the work vehicle toward the starting end of the next working stroke, wherein A redirection beam light projection means (B_2) is provided for projecting a redirection beam light (A_2) indicating the position in a direction orthogonal to the guidance beam light (A_1),
The work vehicle (V_1) is provided with the redirecting beam light (A_
2) and a turning optical sensor (S_3) capable of receiving both the guiding beam light (A_1), and the steering control optical sensor (17) receives the guiding beam light (A_1).
and the redirecting beam light (A_2), and the redirecting control means (101) is configured such that the redirecting optical sensor (S_3) receives the redirecting beam light (A_2).
2), the steering control optical sensor (1)
7) until it receives the redirecting beam light (A_2),
a first turning control means (101A) for turning the work vehicle (V_1) in a forward state; and a first turning control means (101A) for turning the work vehicle (V_1) in a forward state;
7) receives the turning beam light (A_2), the steering control optical sensor (S_3) receives the guiding beam light (A_1). 17) while controlling the steering based on the light reception information of the turning beam light (A_2), the work vehicle (V_1)
As the steering control means (101B) and the turning optical sensor (S_3) receive the guiding beam light (A_1), the steering controlling optical sensor (17) A travel control device for a beam light guided working vehicle, comprising a second turning control means (101C) for turning the working vehicle (V_1) in a forward state until it receives the beam light (A_1).
JP63214272A 1988-08-29 1988-08-29 Running controller for beam light guided type working vehicle Pending JPH0261705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214272A JPH0261705A (en) 1988-08-29 1988-08-29 Running controller for beam light guided type working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214272A JPH0261705A (en) 1988-08-29 1988-08-29 Running controller for beam light guided type working vehicle

Publications (1)

Publication Number Publication Date
JPH0261705A true JPH0261705A (en) 1990-03-01

Family

ID=16652985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214272A Pending JPH0261705A (en) 1988-08-29 1988-08-29 Running controller for beam light guided type working vehicle

Country Status (1)

Country Link
JP (1) JPH0261705A (en)

Similar Documents

Publication Publication Date Title
JPH0944240A (en) Guide device for moving vehicle
JPH0261705A (en) Running controller for beam light guided type working vehicle
JPS63308609A (en) Working vehicle guide device using beam light
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPH01201707A (en) Distance detector for beam light guiding system working vehicle
JPH01188906A (en) Travel controller for beam light guided work vehicle
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JPH075914A (en) Travel controller for beam light-guided work vehicles
JPH07175517A (en) Travel controller for beam light guide type operation vehicle
JPH01155406A (en) Controller for turn of beam light guidance type work vehicle
JPH07175516A (en) Photodetector for beam light guide type operating vehicle
JPH06149354A (en) Traveling controller for beam light guidance type working car
JPH0944241A (en) Beam light guidance device for moving object
JPH0216607A (en) Working vehicle guiding device for beam light utilization
JPH06149352A (en) Traveling controller for beam light guidance type working car
JP3046718B2 (en) Beam light guiding device for work vehicles
JPH06149372A (en) Traveling controller for beam-light-guided working vehicle
JPS6371106A (en) Guide apparatus of working vehicle
JPH06161546A (en) Controller for traveling of light-guided work wagon
JPH01183707A (en) Distance detector for beam light guided work truck
JPS63311413A (en) Guiding device using beam light for working vehicle
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle