JPH0876842A - Light receiving device for beam light guide type working vehicle - Google Patents

Light receiving device for beam light guide type working vehicle

Info

Publication number
JPH0876842A
JPH0876842A JP6215475A JP21547594A JPH0876842A JP H0876842 A JPH0876842 A JP H0876842A JP 6215475 A JP6215475 A JP 6215475A JP 21547594 A JP21547594 A JP 21547594A JP H0876842 A JPH0876842 A JP H0876842A
Authority
JP
Japan
Prior art keywords
light
light receiving
pair
reflector
guiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215475A
Other languages
Japanese (ja)
Inventor
Atsushi Masutome
淳 増留
Koji Yoshikawa
浩司 吉川
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6215475A priority Critical patent/JPH0876842A/en
Publication of JPH0876842A publication Critical patent/JPH0876842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE: To accurately detect the position shift and the tilt of the body of a working vehicle in the width direction of the vehicle body by suppressing the variance of the light receiving position that is caused by the rolling or the pitching of the vehicle body. CONSTITUTION: A pair of light reception sensors S1 and S2 having a resolution are placed side by side along the lengthwise direction of a long light receiving surface D with a space secured between them. A pair of light reflection means H1 and H2 reflect the guide beam light at almost the same positions set in the horizontal and vertical directions of the body of a working vehicle and make the reflected light incident on the surface D. When the projecting direction of the guide beam light is set orthogonal to the lengthwise direction of the surface D in terms of the planar view, the means H1 and H2 reflect the guide beam light at the same positions in the lengthwise direction of the surface D. Meanwhile, the means H1 and H2 reflect the guide beam light at different positions in the lengthwise direction of the surface D when the projecting direction and the lengthwise direction of the surface D are tilted against the orthogonal state of them in terms of the plane view. Furthermore, the distance between the reflecting positions of both means H1 and H2 increases to the surface D as the tilt angle increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平面視において、投射
される誘導用ビーム光に対する直交方向での位置及び傾
きの検出のために、前記誘導用ビーム光を受光するビー
ム光誘導式作業車用の受光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beam light guide type work vehicle for receiving the guide beam light in order to detect a position and an inclination in a direction orthogonal to the projected guide beam light in plan view. The present invention relates to a light receiving device.

【0002】[0002]

【従来の技術】上記この種のビーム光誘導式作業車用の
受光装置では、従来、例えば作業車が複数個の走行行程
の夫々に沿って自動走行するように誘導するために、誘
導用ビーム光が走行行程の長手方向に沿って投射され、
その誘導用ビーム光に対する直交方向(例えば車体横幅
方向)での受光位置を夫々検出する一対の受光センサ
が、車体前後方向に間隔をおき、且つ、一方の受光セン
サが他方の受光センサへのビーム光の入射を妨げないよ
うにするために上下方向に位置をずらして並置されてい
た。因みに、上記一対の受光センサの各受光位置及び車
体前後方向の間隔情報から、誘導用ビーム光に対する直
交方向(例えば車体横幅方向)での作業車の位置ずれ及
び走行行程の長手方向に対する車体の傾きが検出され、
作業車は上記位置ずれ及び車体傾きの検出情報に基づい
て各走行行程に沿うように操向制御されて上記複数個の
走行行程を走行して作業を行う。
2. Description of the Related Art In the light receiving device for a beam light guide type work vehicle of the above type, conventionally, for example, in order to guide the work vehicle to automatically travel along each of a plurality of travel paths, a guide beam is used. Light is projected along the longitudinal direction of the travel,
A pair of light-receiving sensors for detecting light-receiving positions in a direction orthogonal to the guiding light beam (for example, a vehicle widthwise direction) are spaced from each other in the vehicle body front-rear direction, and one light-receiving sensor is a beam to the other light-receiving sensor. In order to prevent the incidence of light from being impeded, they were arranged side by side in a vertically shifted position. By the way, based on the light receiving positions of the pair of light receiving sensors and the distance information in the longitudinal direction of the vehicle body, the positional deviation of the work vehicle in the direction orthogonal to the guiding light beam (for example, the lateral direction of the vehicle body) and the inclination of the vehicle body with respect to the longitudinal direction of the traveling stroke. Is detected,
The work vehicle is steered and controlled so as to follow each traveling stroke on the basis of the detection information of the positional deviation and the vehicle body inclination, and travels along the plurality of traveling strokes to perform work.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術においては、車体前後方向に間隔をおき且つ上下
方向に位置をずらして設置した一対の受光センサにて誘
導用ビーム光を受光していたので、以下の問題点があっ
た。すなわち、走行中に車体のローリング(横幅方向で
の傾き)が発生した場合には、上側に位置するセンサの
方が下側に位置するセンサよりもそのローリングの影響
を大きく受けて、受光位置がより大きく変動し、又、走
行中に車体のピッチング(前後方向での傾き)が発生し
た場合には、前側に位置するセンサと後側に位置するセ
ンサとの平面視における車体前後方向の間隔が小さくな
ることによる受光位置のずれが発生する。そのために、
上記一対の受光センサの受光情報に基づいて、前記車体
の車体横幅方向での位置ずれ及び傾きを検出するとき
に、検出誤差を生じさせることになっていた。
However, in the above-mentioned prior art, the guiding light beam is received by the pair of light receiving sensors which are arranged at intervals in the longitudinal direction of the vehicle body and are vertically displaced from each other. , There were the following problems. That is, when rolling of the vehicle body (inclination in the lateral width direction) occurs during traveling, the sensor located on the upper side is more affected by the rolling than the sensor located on the lower side. When the vehicle pitches more greatly (inclination in the front-rear direction) while traveling, the distance between the front-side sensor and the rear-side sensor in the front-rear direction of the vehicle in plan view becomes smaller. A shift of the light receiving position occurs due to the reduction. for that reason,
Based on the light reception information of the pair of light reception sensors, a detection error is to be generated when detecting the positional displacement and inclination of the vehicle body in the vehicle body lateral width direction.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の欠点を解消すべ
く、走行中に発生する車体のローリングやピッチングの
影響を極力受けることなく、作業車の車体横幅方向での
位置ずれ及び車体の傾き検出を正確に行うことができる
ビーム光誘導式作業車用の受光装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to eliminate the drawbacks of the above-mentioned prior art without being affected by rolling or pitching of the vehicle body which occurs during traveling as much as possible. An object of the present invention is to provide a light-receiving device for a beam light guide type working vehicle, which can accurately detect the positional deviation of the working vehicle in the lateral direction of the vehicle body and the inclination of the vehicle body.

【0005】[0005]

【課題を解決するための手段】本発明によるビーム光誘
導式作業車用の受光装置の第1の特徴構成は、長尺状の
受光面の受光面長手方向に沿って分解能を備える一対の
受光センサが、間隔を隔てて並置され、前記誘導用ビー
ム光を車体前後及び上下方向での略同一位置で反射して
前記各受光面に入射させる一対の光反射手段が設けら
れ、前記一対の光反射手段は、平面視において前記誘導
用ビーム光の投射方向と前記受光面長手方向とが直交す
るときには、前記誘導用ビーム光を前記各受光面の前記
受光面長手方向での同一位置に反射し、平面視において
前記誘導用ビーム光の投射方向と前記受光面長手方向と
が直交状態から傾いているときには、前記誘導用ビーム
光を前記各受光面の前記受光面長手方向での異なる位置
に反射し、且つ、その傾き角が大きいほど各光反射手段
による前記各受光面に対する反射位置の間の距離を大き
くする状態で反射するように構成されている点にある。
A first characteristic structure of a light receiving device for a beam light guide type working vehicle according to the present invention is a pair of light receiving devices having resolution along the light receiving surface longitudinal direction of a long light receiving surface. The sensors are arranged side by side with a space therebetween, and a pair of light reflecting means for reflecting the guiding beam light at substantially the same position in the front-rear direction and the up-down direction of the vehicle body to enter the light-receiving surfaces is provided, and the pair of light beams is provided. The reflecting means reflects the guiding beam light to the same position in the light receiving surface longitudinal direction of each of the light receiving surfaces when the projection direction of the guiding light beam and the light receiving surface longitudinal direction are orthogonal to each other in a plan view. When the projection direction of the guiding light beam and the light receiving surface longitudinal direction are tilted from the orthogonal state in a plan view, the guiding light beam is reflected to different positions in the light receiving surface longitudinal direction of each light receiving surface. And that In that it is configured to reflect a state of increasing the distance between the reflection position with respect to the respective light-receiving surface by the light reflecting means larger the inclination angle.

【0006】又、第2の特徴構成は、前記一対の受光セ
ンサが、上下方向に配置され、その上下一対の受光セン
サの上下方向の間に、前記一対の光反射手段が、前記一
対の受光センサのうちの上側のセンサに対する上側反射
器及び下側のセンサに対する下側反射器を備えて配置さ
れ、前記上側反射器から前記上側のセンサまでの距離
と、前記下側反射器から前記下側のセンサまでの距離と
が異なるように設定されている点にある。
In a second characteristic configuration, the pair of light receiving sensors are arranged in the vertical direction, and the pair of light reflecting means is provided between the pair of upper and lower light receiving sensors in the vertical direction. Arranged with an upper reflector for the upper sensor of the sensors and a lower reflector for the lower sensor, the distance from the upper reflector to the upper sensor, and the lower reflector to the lower sensor. It is set to be different from the distance to the sensor.

【0007】又、第3の特徴構成は、前記両反射器のう
ちの前記上側又は下側のセンサまでの距離が短い方の反
射器が、平面反射器にて構成され、前記距離が長い方の
反射器が、凸面反射器にて構成されている点にある。
A third characteristic configuration is that one of the two reflectors, which has a shorter distance to the upper or lower sensor, is a flat reflector, and the one having a longer distance. Is that the reflector is composed of a convex reflector.

【0008】又、第4の特徴構成は、前記一対の光反射
手段として、平面視において前記各受光面に対する投射
向きが逆となる誘導用ビーム光夫々に対応する2種類が
設けられている点にある。
In the fourth characteristic configuration, as the pair of light reflecting means, two types are provided corresponding to the respective guiding light beams whose projection directions with respect to the respective light receiving surfaces are opposite in plan view. It is in.

【0009】[0009]

【作用】本発明の第1の特徴構成によれば、図6及び図
7に例示するように、間隔を隔てて並置された一対の受
光センサS1,S2の受光面長手方向と平面視において
直交する状態で投射された誘導用ビーム光A1(図7で
点線で示す)は、一対の光反射手段H1,H2によって
車体前後及び上下方向の略同一位置で反射されて、上記
一対の受光センサS1,S2の各受光面Dの受光面長手
方向での同一位置に入射する。一方、一対の受光センサ
S1,S2の受光面長手方向と平面視において直交する
状態から傾いて投射された誘導用ビーム光A1(図7で
一点鎖線で示す)は、一対の光反射手段H1,H2によ
って車体前後及び上下方向の略同一位置で反射されて、
上記一対の受光センサS1,S2の各受光面Dの受光面
長手方向での異なる位置に、上記傾き角φが大きいほど
各光反射手段H1,H2による一対の受光センサS1,
S2の各受光面Dに対する反射位置X1,X2の間の距
離X1−X2が大きくなる状態で入射する。
According to the first characteristic configuration of the present invention, as shown in FIGS. 6 and 7, the light receiving surfaces of the pair of light receiving sensors S1 and S2 arranged side by side at right angles are orthogonal to each other in plan view. The guiding beam light A1 (shown by a dotted line in FIG. 7) projected in this state is reflected by the pair of light reflecting means H1 and H2 at substantially the same positions in the vehicle front-rear direction and the up-down direction, and the pair of light-receiving sensors S1. , S2 are incident on the same position in the light receiving surface longitudinal direction of each light receiving surface D. On the other hand, the guiding beam light A1 (shown by the one-dot chain line in FIG. 7) that is obliquely projected from a state orthogonal to the light-receiving surface longitudinal direction of the pair of light-receiving sensors S1 and S2 in a plan view includes a pair of light-reflecting means H1. It is reflected by H2 at almost the same position in the front and rear and up and down directions of the vehicle body,
As the tilt angle φ increases, the pair of light receiving sensors S1 and S1 of the pair of light receiving sensors S1 and S2 are located at different positions in the light receiving surface longitudinal direction.
The light enters in a state in which the distance X1-X2 between the reflection positions X1 and X2 with respect to each light receiving surface D of S2 increases.

【0010】ここで、車体が、図10に示すようにロー
リング角θrで横幅方向に傾いた状態を想定すると、一
対の受光センサS1,S2夫々に入射する誘導用ビーム
光A1は、車体上下方向の略同一位置で反射されるの
で、車体のローリングによって生じる一対の受光センサ
S1,S2の受光位置の差Δxは、無視できる程度に小
さくなる。又、車体が、図11に例示するようにピッチ
ングにより前後方向に傾いた状態を想定すると、誘導用
ビーム光A1は、車体前後方向の略同一位置で各反射手
段H1,H2にて反射された後、その反射位置から一対
の受光センサS1,S2夫々まで各距離d1,d2を経
て入射し、車体のピッチングによって、一対の受光セン
サS1,S2の間隔d(距離d1とd2の差)は変化せ
ず、各受光センサS1,S2の受光位置も変動しない
(図6及び図7参照)。従って、例えば、一対の受光セ
ンサS1,S2の一方の受光位置や、一対の受光センサ
S1,S2の受光位置を平均した値によって車体横幅方
向での位置ずれを検出するような場合、及び、一対の受
光センサS1,S2の受光位置の車体横幅方向での距離
の差(X1−X2)と、その一対の受光センサS1,S
2の間隔d(d1−d2)の情報とに基づいて、例えば
走行行程長手方向に対する車体の傾きを検出するような
場合において、車体のローリング、並びに、ピッチング
による検出誤差の影響を抑制することができる。
Assuming that the vehicle body is tilted in the lateral direction at a rolling angle θr as shown in FIG. 10, the guiding beam light A1 incident on each of the pair of light receiving sensors S1 and S2 is directed in the vertical direction of the vehicle body. Since the light is reflected at substantially the same position, the difference Δx between the light receiving positions of the pair of light receiving sensors S1 and S2 caused by rolling of the vehicle body becomes small enough to be ignored. Assuming that the vehicle body is tilted in the front-rear direction by pitching as illustrated in FIG. 11, the guiding beam light A1 is reflected by the reflecting means H1 and H2 at substantially the same position in the front-rear direction of the vehicle body. After that, the light enters from the reflection position to each of the pair of light receiving sensors S1 and S2 via each distance d1 and d2, and the pitch d of the vehicle body changes the distance d between the pair of light receiving sensors S1 and S2 (the difference between the distances d1 and d2). Without this, the light receiving positions of the light receiving sensors S1 and S2 do not change (see FIGS. 6 and 7). Therefore, for example, a case where the positional deviation in the lateral direction of the vehicle body is detected based on an average value of the light receiving positions of the pair of light receiving sensors S1 and S2 and the light receiving positions of the pair of light receiving sensors S1 and S2, and Difference (X1-X2) between the light receiving positions of the light receiving sensors S1 and S2 in the lateral direction of the vehicle body and the pair of light receiving sensors S1 and S2.
On the basis of the information of the interval d (d1-d2) of two, for example, when detecting the inclination of the vehicle body with respect to the longitudinal direction of the traveling stroke, it is possible to suppress the influence of detection error due to rolling of the vehicle body and pitching. it can.

【0011】又、第2の特徴構成によれば、図6及び図
7に例示するように、上下方向に間隔を隔てて並置され
た一対の受光センサS1,S2の受光面長手方向と平面
視において直交する状態で投射された誘導用ビーム光A
1(図7で点線で示す)は、車体前後及び上下方向の略
同一位置で上側反射器M1及び下側反射器M2で夫々反
射されてから、異なる距離d1,d2を経て上側及び下
側のセンサS1,S2の各受光面Dに入射するが、受光
面長手方向と平面視において直交状態であるために、各
反射器M1,M2からの反射光は、上側及び下側のセン
サS1,S2の各受光面長手方向での同一位置に入射す
る。一方、上記一対の受光センサS1,S2の受光面長
手方向と平面視において直交する状態から傾いて投射さ
れた誘導用ビーム光A1(図7で一点鎖線で示す)は、
車体前後及び上下方向の略同一位置で上側反射器M1及
び下側反射器M2で夫々反射されてから、異なる距離d
1,d2を経て上側及び下側のセンサS1,S2の各受
光面Dに入射するが、受光面長手方向と平面視において
直交状態から傾いて投射されているために、各反射器M
1,M2からの反射光は、上側及び下側のセンサS1,
S2の各受光面長手方向での異なる位置に、上記傾き角
φが大きいほど各受光センサS1,S2の各受光面Dに
対する反射位置X1,X2の間の距離X1−X2が大き
くなる状態で入射する。
Further, according to the second characteristic configuration, as shown in FIGS. 6 and 7, the pair of light receiving sensors S1 and S2, which are arranged side by side in the vertical direction, are longitudinally aligned with the light receiving surfaces of the pair of light receiving sensors S1 and S2. Beam light A projected orthogonally at
1 (indicated by a dotted line in FIG. 7) is reflected by the upper reflector M1 and the lower reflector M2 at substantially the same positions in the front-rear direction and the vertical direction of the vehicle body, respectively, and then passes through different distances d1 and d2, and Although the light is incident on each light receiving surface D of the sensors S1 and S2, the light reflected from each of the reflectors M1 and M2 is orthogonal to the light receiving surface longitudinal direction in a plan view, and thus the upper and lower sensors S1 and S2. The light is incident on the same position in the longitudinal direction of each light receiving surface. On the other hand, the guiding beam light A1 (indicated by the one-dot chain line in FIG. 7) projected obliquely from the state orthogonal to the light receiving surface longitudinal direction of the pair of light receiving sensors S1 and S2 in a plan view is
After being reflected by the upper reflector M1 and the lower reflector M2 at substantially the same positions in the front-rear direction and the vertical direction of the vehicle body, different distances d
Although the light is incident on each of the light receiving surfaces D of the upper and lower sensors S1 and S2 via 1 and d2, the reflectors M are projected at an angle from the orthogonal state in a plan view with the light receiving surface longitudinal direction.
Reflected light from M1 and M2 includes sensors S1 and
Incidents at different positions in the longitudinal direction of each light receiving surface of S2 are such that the greater the above-mentioned tilt angle φ, the greater the distance X1-X2 between the reflection positions X1, X2 with respect to each light receiving surface D of each light receiving sensor S1, S2 becomes. To do.

【0012】又、第3の特徴構成によれば、誘導用ビー
ム光A1は、図6に例示するように、車体前後及び上下
方向の略同一位置で上側反射器である凸面反射器M1及
び下側反射器である平面反射器M2で夫々反射された
後、凸面反射器M1(上側反射器)による反射光が上側
のセンサS1の受光面に至る距離d1の方が、平面反射
器M2(下側反射器)による反射光が下側のセンサS2
の受光面に至る距離d2よりも長い状態で、凸面反射器
M1及び平面反射器M2による反射光が、夫々各受光セ
ンサS1,S2の受光面Dに入射する。
Further, according to the third characteristic configuration, as shown in FIG. 6, the guiding beam light A1 is provided with a convex reflector M1 which is an upper reflector and a lower reflector at substantially the same positions in the front-rear direction and the vertical direction of the vehicle body. After being reflected by the plane reflector M2 which is a side reflector, the distance d1 where the light reflected by the convex reflector M1 (upper reflector) reaches the light receiving surface of the upper sensor S1 is lower than the plane reflector M2 (lower The light reflected by the side reflector) is the sensor S2 on the lower side.
The light reflected by the convex reflector M1 and the planar reflector M2 is incident on the light receiving surface D of each of the light receiving sensors S1 and S2 in a state of being longer than the distance d2 to the light receiving surface.

【0013】ここで、車体が、図12に例示するように
ピッチングにより前後方向に傾いた状態を想定すると、
誘導用ビーム光A1は、ピッチングがないときの入射方
向(水平方向)を基準にして上側に角度θ1又は下側に
角度θ2傾いて入射することになる。そして、(イ)に
示すように、凸面反射器M1に代えて、仮に図中に二点
鎖線で示す平面反射器HMを設置した場合には、上側に
角度θ1又下側に角度θ2夫々傾いて入射するビーム光
A1a,A1bは、その傾き角度θ1,θ2のために、
各反射光A1a’,A1b’は受光センサS1に入射し
ない方向に反射されるのに対して、凸面反射器M1で
は、上記傾き角度θ1,θ2による反射方向のずれを減
らすように働いて、各反射光は受光センサS1に入射す
ることになる。一方、(ロ)に示すように、他方の平面
反射器M2においては、受光センサS2までの距離d2
が短いので、上記傾き角度θ1,θ2による反射方向の
ずれがあっても、受光センサS2に入射しない状態には
ならない。
Assuming that the vehicle body is inclined in the front-rear direction by pitching as illustrated in FIG. 12,
The guiding beam light A1 is incident with an angle θ1 upward or an angle θ2 downward with reference to the incident direction (horizontal direction) when there is no pitching. Then, as shown in (a), if a flat reflector HM indicated by a chain double-dashed line in the figure is installed instead of the convex reflector M1, the angle θ1 is inclined upward and the angle θ2 is inclined downward. The incident light beams A1a and A1b have inclination angles θ1 and θ2,
The respective reflected lights A1a 'and A1b' are reflected in a direction not incident on the light receiving sensor S1, whereas the convex reflector M1 works to reduce the deviation of the reflection direction due to the inclination angles θ1 and θ2. The reflected light is incident on the light receiving sensor S1. On the other hand, as shown in (b), in the other plane reflector M2, the distance d2 to the light receiving sensor S2.
Is short, even if there is a deviation in the reflection direction due to the tilt angles θ1 and θ2, the state where the light does not enter the light receiving sensor S2 does not occur.

【0014】又、第4の特徴構成によれば、平面視にお
いて誘導用ビーム光が一対の受光センサの各受光面に対
して一方側から投射されているときには、2種類設けた
一対の光反射手段のうちの一方の一対の光反射手段が誘
導用ビーム光を各受光面に向けて反射し、平面視におい
て誘導用ビーム光が上記一方側から投射されている誘導
用ビーム光の投射向きの逆側から投射されているときに
は、2種類設けた一対の光反射手段のうちの他方の一対
の光反射手段が誘導用ビーム光を各受光面に向けて反射
する。
Further, according to the fourth characteristic configuration, when the guiding beam light is projected from one side to each light receiving surface of the pair of light receiving sensors in plan view, a pair of two light reflections are provided. One pair of light reflecting means of one of the means reflects the guiding light beam toward each light receiving surface, and the guiding light beam is projected from the one side in a plan view in the projection direction of the guiding light beam. When projected from the opposite side, the other pair of light reflecting means of the two types of light reflecting means provided reflects the guiding beam light toward each light receiving surface.

【0015】[0015]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、走行中に車体のローリングやピッチングが発生して
も、それによる一対の受光センサの受光位置の変動を抑
制することができ、もって、上記一対の受光センサの受
光位置情報に基づいて、作業車の車体横幅方向での位置
ずれや車体の傾き等の検出を極力正確に行うことができ
るに至った。
As described above, according to the first characteristic configuration of the present invention, even if rolling or pitching of the vehicle body occurs during traveling, it is possible to suppress fluctuations in the light receiving positions of the pair of light receiving sensors. Therefore, based on the light receiving position information of the pair of light receiving sensors, it is possible to detect the position shift of the working vehicle in the lateral direction of the vehicle body, the inclination of the vehicle body, etc. as accurately as possible.

【0016】又、第2の特徴構成によれば、一対の受光
センサを上下方向に配置することによって受光装置の特
に平面的な設置スペースを小さくすることができて、作
業車上に他の各種装置を設置するための充分なスペース
が確保でき、もって、上記第1の特徴構成を実施する際
の好適な手段が得られる。
Further, according to the second characteristic configuration, by arranging the pair of light receiving sensors in the vertical direction, a particularly planar installation space of the light receiving device can be made small, and various other types can be mounted on the work vehicle. A sufficient space for installing the device can be ensured, and therefore, a suitable means for implementing the first characteristic configuration can be obtained.

【0017】又、第3の特徴構成によれば、例えば、上
側及び下側の両反射器を共に平面反射器とするのに比べ
て、上側又は下側反射器からその受光センサまでの距離
が遠い方は、凸面反射器にて反射させてビーム光を確実
にその受光センサに入射させることができとともに、例
えば、両反射器の一方を凸面反射器で他方を凹面反射器
で構成するものに比べて、少なくとも一方が平面反射器
である分、装置の簡素化を図ることができ、もって、上
記第2の特徴構成を実施する際の好適な手段が得られ
る。
According to the third characteristic configuration, for example, the distance from the upper or lower reflector to the light receiving sensor is greater than that when both the upper and lower reflectors are flat reflectors. The far side can be reflected by a convex reflector so that the beam light can be surely made incident on the light receiving sensor, and for example, one of both reflectors is a convex reflector and the other is a concave reflector. In comparison, since at least one of them is a flat reflector, the device can be simplified, and a suitable means for implementing the second characteristic configuration can be obtained.

【0018】又、第4の特徴構成によれば、平面視にお
いて受光センサに対して逆向きに(例えば、車体前方側
と車体後方側から)投射される誘導用ビーム光を受光し
て、各誘導用ビーム光に対する直交方向での作業車の位
置及び傾きを検出できるので、例えば、作業車が走行す
る複数個の走行行程の長手方向の一方向きに誘導用ビー
ム光が投射されている場合にも、作業車を各走行行程に
沿って往復走行させることが円滑にでき、もって、上記
第1、第2又は第3の特徴構成を実施する際の好適な手
段が得られる。
According to the fourth characteristic configuration, the guiding beam light projected in the opposite direction (for example, from the front side of the vehicle body and the rear side of the vehicle body) is received by the light receiving sensor in plan view, and Since it is possible to detect the position and inclination of the work vehicle in the direction orthogonal to the guidance light beam, for example, when the guidance light beam is projected in one direction in the longitudinal direction of a plurality of traveling strokes in which the work vehicle travels. In addition, the work vehicle can be smoothly reciprocated along each travel path, and therefore, suitable means for implementing the first, second, or third characteristic configuration can be obtained.

【0019】[0019]

【実施例】以下、本発明を田植え用の作業車の走行制御
装置に適用した場合における実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a traveling control device for a rice planting work vehicle will be described below with reference to the drawings.

【0020】図4に示すように、圃場内に設定された互
いに平行に並ぶ複数個の作業用の走行行程において、田
植え用の作業車Vが走行行程の夫々に沿って自動走行す
るように誘導するために、その走行用ガイドとなる誘導
用ビーム光A1を走行行程の長手方向に沿って投射する
誘導用レーザ光投射装置B1が、前記複数個の走行行程
のうちの隣接する一対の走行行程によって共用される状
態でその一対の走行行程の間に設けられ、もって、互い
に平行する複数個の走行行程の夫々において前記誘導用
ビーム光A1を投射できるように構成している。尚、詳
述はしないが、前記誘導用ビーム光A1は垂直方向の所
定角度範囲に走査されるようになっている(図5参
照)。
As shown in FIG. 4, in a plurality of work traveling strokes set in a field parallel to each other, the rice planting work vehicle V is guided so as to automatically travel along each of the traveling strokes. In order to do so, the guiding laser beam projector B1 for projecting the guiding beam light A1 which serves as a guide for the traveling along the longitudinal direction of the traveling stroke is provided with a pair of adjacent traveling strokes among the plurality of traveling strokes. The guide beam light A1 is provided between the pair of traveling strokes in a state of being shared by the two, so that the guiding beam light A1 can be projected in each of a plurality of parallel traveling strokes. Although not described in detail, the guiding beam light A1 is scanned within a predetermined angle range in the vertical direction (see FIG. 5).

【0021】又、前記走行行程の長手方向における両端
部の位置を示すと共に、次の走行行程への回向動作の開
始位置を示すための回向用ビーム光A2を、前記誘導用
ビーム光A1の投射方向に対して直交する方向に向けて
投射する回向用レーザ光投射装置B2が、走行行程の長
手方向における両端部夫々に対応する前記走行行程が並
ぶ圃場横側方箇所に設けられている。これにより、前記
作業車Vが各走行行程の終端部に達するに伴って前記作
業車Vを次の走行行程の始端部に向けて180度方向転
換させて、各走行行程を往復走行させることにより、所
定範囲の圃場における植え付け作業を連続して自動的に
行えるようにしている。
Further, the turning beam light A2 for indicating the positions of both end portions in the longitudinal direction of the traveling stroke and for indicating the starting position of the turning operation for the next traveling stroke is the guiding beam light A1. A laser beam projection device for turning B2 for projecting in a direction orthogonal to the direction of projection of is provided at a lateral position in the field where the traveling strokes are aligned, corresponding to both ends in the longitudinal direction of the traveling strokes. There is. As a result, as the working vehicle V reaches the end portion of each traveling stroke, the working vehicle V is turned by 180 degrees toward the starting end portion of the next traveling stroke and reciprocally travels each traveling stroke. The planting work in a predetermined range of fields can be continuously and automatically performed.

【0022】前記作業車Vの構成について説明すれば、
図4及び図5に示すように、左右一対の前輪3及び後輪
4を備えた車体5の後部に、苗植え付け装置6が、昇降
自在で且つ駆動停止自在に設けられている。又、図1に
示すように、前記前後輪3,4は、左右を一対として前
後で各別に操向操作自在に構成され、操向用の油圧シリ
ンダ7,8と、それらに対する電磁操作式の制御弁9,
10とが設けられている。つまり、前輪3又は後輪4の
一方のみを操向する2輪ステアリング形式、前後輪3,
4を逆位相で且つ同角度に操向する4輪ステアリング形
式、前後輪3,4を同位相で且つ同角度に操向する平行
ステアリング形式の3種類のステアリング形式を選択使
用できるようになっている。
Explaining the structure of the work vehicle V,
As shown in FIGS. 4 and 5, a seedling planting device 6 is provided at a rear portion of a vehicle body 5 including a pair of left and right front wheels 3 and rear wheels 4 so that the seedling planting device 6 can be moved up and down and can be stopped. Further, as shown in FIG. 1, the front and rear wheels 3 and 4 are composed of a pair of left and right wheels so that the front and rear wheels can be individually steered, and steering hydraulic cylinders 7 and 8 and electromagnetic operation type cylinders for them are provided. Control valve 9,
And 10 are provided. In other words, a two-wheel steering system that steers only one of the front wheels 3 or the rear wheels 4, the front and rear wheels 3,
It is now possible to select and use three types of steering types: a four-wheel steering type that steers 4 in the opposite phase and at the same angle, and a parallel steering type that steers the front and rear wheels 3, 4 in the same phase and at the same angle. There is.

【0023】図1中、11はエンジンEからの出力を変
速して前記前後輪3,4の夫々を同時に駆動する油圧式
無段変速装置、12はその変速操作用の電動モータ、1
3は前記植え付け装置6の昇降用油圧シリンダ、14は
その制御弁、15は前記エンジンEによる前記植え付け
装置6の駆動を断続する電磁操作式の植え付けクラッ
チ、16は前記作業車Vの走行並びに前記植え付け装置
6の作動を制御するためのマイクロコンピュータ利用の
制御装置であって、後述の各種センサによる検出情報に
基づいて、前記変速用モータ12、前記各制御弁9,1
0,14、及び、前記植え付けクラッチ15の夫々を作
動させるように構成されている。
In FIG. 1, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 at the same time, 12 is an electric motor for gear shifting operation, 1
3 is a hydraulic cylinder for raising and lowering the planting device 6, 14 is a control valve thereof, 15 is an electromagnetically-operated planting clutch for intermittently driving the planting device 6 by the engine E, 16 is traveling of the work vehicle V, and A control device using a microcomputer for controlling the operation of the planting device 6, wherein the shifting motor 12 and the control valves 9, 1 are based on detection information from various sensors described later.
0, 14 and the planting clutch 15 are each activated.

【0024】前記作業車Vに装備されるセンサ類につい
て説明すれば、図1に示すように、前記前後輪3,4夫
々の操向角を検出するポテンショメータ利用の操向角検
出センサR1,R2と、前記変速装置11の変速状態に
基づいて間接的に前後進状態及び車速を検出するポテン
ショメータ利用の車速センサR3と、前記変速装置11
の出力軸の回転数を計数して走行距離を検出するための
エンコーダS4とが設けられている。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 1, steering angle detection sensors R1 and R2 using potentiometers for detecting steering angles of the front and rear wheels 3 and 4, respectively. And a vehicle speed sensor R3 using a potentiometer that indirectly detects the forward / backward traveling state and the vehicle speed based on the speed change state of the speed change device 11, and the speed change device 11
An encoder S4 for counting the number of rotations of the output shaft and detecting the traveling distance is provided.

【0025】又、図4及び図5にも示すように、平面視
において、前述のように投射される誘導用ビーム光A1
に対する操向位置のずれ即ち誘導用ビーム光A1に対す
る直交方向(車体横幅方向)での車体5の位置及び傾き
の検出のために、前記誘導用ビーム光A1を受光する受
光装置としての操向制御用光センサ17が作業車Vの横
幅方向の右側の車体前方側に設けられている。更に、前
記回向用ビーム光A2を受光する回向用光センサS3
が、車体左右何れの側からでも前記回向用ビーム光A2
を受光できるように、前記操向制御用光センサ17の前
方側の車体左右両側の夫々に設けられている。尚、前記
回向用光センサS3は前記回向用ビーム光A2に対する
受光の有無のみを検出するように構成され、受光位置は
判別できないようになっている。
Further, as shown in FIGS. 4 and 5, in the plan view, the guiding light beam A1 projected as described above.
Steering control as a light receiving device for receiving the guiding beam light A1 in order to detect the deviation of the steering position, that is, the position and inclination of the vehicle body 5 in the direction (horizontal width direction of the vehicle body) orthogonal to the guiding beam light A1. The optical sensor 17 is provided on the right side in the lateral direction of the work vehicle V on the front side of the vehicle body. Further, a turning optical sensor S3 for receiving the turning beam light A2.
However, the turning beam light A2 from either side of the vehicle body
Are provided on the left and right sides of the vehicle body on the front side of the steering control optical sensor 17, respectively. The turning optical sensor S3 is configured to detect only whether or not the turning beam light A2 is received, and the light receiving position cannot be determined.

【0026】前記操向制御用光センサ17について説明
を加えれば、図5〜図7に示すように、長尺状の受光面
Dの受光面長手方向(車体横幅方向)に沿って分解能を
備える一対の受光センサS1,S2が、上下方向に間隔
を隔てて配置された状態で並置されている。又、上記上
下一対の受光センサS1,S2の間に、前記誘導用ビー
ム光A1を車体前後及び上下方向での略同一位置で反射
して前記受光センサS1,S2の各受光面Dに入射させ
る一対の光反射手段H1,H2が、一対の受光センサS
1,S2のうちの上側のセンサS1に対する上側反射器
M1及び下側のセンサS2に対する下側反射器M2を備
えて配置されている。そして、上記一対の光反射手段H
1,H2として、平面視において前記各受光面Dに対す
る投射向きが逆となる誘導用ビーム光夫々に対応する2
種類、つまり、図6の左側からの誘導用ビーム光A1に
対応する一対の光反射手段H1,H2と、図6の右側か
らの誘導用ビーム光A1’に対応する一対の光反射手段
H1’,H2’とが設けられている。尚、右側の一対の
光反射手段H1’,H2’は、上側のセンサS1に対す
る上側反射器M1’及び下側のセンサS2に対する下側
反射器M2’にて構成されている。
The steering control optical sensor 17 will be described in more detail. As shown in FIGS. 5 to 7, a resolution is provided along the light-receiving surface longitudinal direction of the elongated light-receiving surface D (lateral direction of the vehicle body). The pair of light receiving sensors S1 and S2 are arranged side by side in a state of being spaced apart in the vertical direction. Further, the guiding beam light A1 is reflected between the pair of upper and lower light receiving sensors S1 and S2 at substantially the same position in the front-rear direction and the up-down direction of the vehicle body and is incident on each light-receiving surface D of the light receiving sensors S1 and S2. The pair of light reflecting means H1 and H2 are provided as a pair of light receiving sensors S.
1 and S2, the upper reflector M1 for the upper sensor S1 and the lower reflector M2 for the lower sensor S2 are provided. Then, the pair of light reflecting means H
1 and H2, which correspond to the respective guidance beam lights whose projection directions with respect to the respective light receiving surfaces D are opposite in plan view.
6, that is, a pair of light reflecting means H1 and H2 corresponding to the guiding light beam A1 from the left side of FIG. 6 and a pair of light reflecting means H1 ′ corresponding to the guiding light beam A1 ′ from the right side of FIG. , H2 ′ are provided. The pair of right side light reflecting means H1 ′, H2 ′ is composed of an upper reflector M1 ′ for the upper sensor S1 and a lower reflector M2 ′ for the lower sensor S2.

【0027】上記2種類の一対の光反射手段は左右対称
である点を除いて同一構成になるものであり、以下、図
6の左側からの誘導用ビーム光A1に対応する一対の光
反射手段H1,H2を例にその具体構成を説明する。前
記上側反射器M1から前記上側のセンサS1までの距離
d1と、前記下側反射器M2から前記下側のセンサS2
までの距離d2とが異なる(具体的にはd1>d2)よ
うに設定されている。そして、前記両反射器M1,M2
のうちの前記下側のセンサS2までの距離が短い方の反
射器S2が、平面ミラーからなる平面反射器にて構成さ
れ、前記距離が長い方の反射器M1が、かまぼこ型の凸
面ミラーからなる凸面反射器にて構成されている。
The above-mentioned two types of pair of light reflecting means have the same structure except that they are symmetrical, and hereinafter, the pair of light reflecting means corresponding to the guiding beam light A1 from the left side of FIG. The specific configuration will be described by taking H1 and H2 as an example. The distance d1 from the upper reflector M1 to the upper sensor S1 and the lower reflector M2 to the lower sensor S2.
Is set to be different from the distance d2 (specifically d1> d2). Then, the both reflectors M1 and M2
The reflector S2, which has a shorter distance to the lower sensor S2, is composed of a plane reflector composed of a plane mirror, and the reflector M1 having a longer distance is formed from a semi-cylindrical convex mirror. It is composed of a convex reflector.

【0028】前記一対の受光センサS1,S2の各受光
面Dの分解能について説明すれば、図7に示すように、
各受光面Dは長手方向に沿って所定幅の複数個の受光位
置Dnに分割構成されており、その複数個の受光位置D
nのうちの長手方向の中心位置D0を基準として、前記
誘導用ビーム光A1を受光した各受光位置D1,D2の
受光面長手方向での位置を上記中心位置D0からの距離
X1,X2として検出できるように構成されている。
The resolution of each light receiving surface D of the pair of light receiving sensors S1 and S2 will be described. As shown in FIG.
Each light receiving surface D is divided into a plurality of light receiving positions Dn having a predetermined width along the longitudinal direction, and the plurality of light receiving positions Dn are formed.
With reference to the center position D0 in the longitudinal direction of n, the positions in the light receiving surface longitudinal direction of the light receiving positions D1 and D2 that have received the guiding beam light A1 are detected as distances X1 and X2 from the center position D0. It is configured to be able to.

【0029】そして、前記一対の光反射手段H1,H2
は、平面視において前記誘導用ビーム光A1の投射方向
と前記受光面長手方向とが直交するとき(図7の点線で
示す状態)には、誘導用ビーム光A1を各受光面Dの受
光面長手方向での同一位置Dnに反射し、平面視におい
て誘導用ビーム光A1の投射方向と受光面長手方向とが
直交状態から傾いているとき(図7の一点鎖線で示す状
態)には、誘導用ビーム光A1を受光面Dの受光面長手
方向での異なる位置D1,D2(一方の光反射手段H1
による反射位置がD1、他方の光反射手段H2による反
射位置がD2である)に、且つ、その傾き角φが大きい
ほど各光反射手段H1,H2による各受光面Dに対する
反射位置D1,D2の間の距離|X1−X2|を大きく
する状態で反射するように構成されている。
Then, the pair of light reflecting means H1, H2
When the projection direction of the guiding beam light A1 and the light receiving surface longitudinal direction are orthogonal to each other in a plan view (state shown by a dotted line in FIG. 7), the guiding beam light A1 is received on each light receiving surface D. When the light is reflected at the same position Dn in the longitudinal direction and the projection direction of the guiding beam light A1 and the light-receiving surface longitudinal direction are inclined from the orthogonal state in a plan view (the state shown by the chain line in FIG. 7), The beam light A1 for light is received at different positions D1 and D2 in the longitudinal direction of the light receiving surface D (one light reflecting means H1
(The reflection position by D1 is D1 and the reflection position by the other light reflecting means H2 is D2), and the inclination angle φ is larger, the reflection positions D1, D2 of the respective light reflecting means H1, H2 with respect to each light receiving surface D are It is configured to reflect with a large distance | X1-X2 | between them.

【0030】そして、前記制御装置16は、上記操向制
御用光センサ17の受光情報に基づいて前記作業車Vの
前記誘導用ビーム光A1に対する位置及び傾きを検出す
るように構成されている。この位置及び傾きの検出につ
いて説明すれば、図7に示すように、前記各受光センサ
S1,S2の各受光面Dにおける異なる反射位置D1,
D2の各距離X1,X2と、前記上側反射器M1から前
記上側のセンサS1までの距離d1と前記下側反射器M
2から前記下側のセンサS2までの距離d2の差dとに
基づいて、下式(1)から、前記誘導用ビーム光A1の
投射方向に対する車体横幅方向の位置xと傾きφとを求
める。因みに、傾きφの式において、傾き角φが大きい
ほど各受光センサS1,S2の各受光面Dにおける異な
る反射位置D1,D2間の距離|X1−X2|が大きく
なっていることが判る。
The control device 16 is configured to detect the position and inclination of the work vehicle V with respect to the guiding beam light A1 based on the light reception information of the steering control optical sensor 17. The detection of the position and the tilt will be described. As shown in FIG. 7, different reflection positions D1 and D1 on the light receiving surfaces D of the light receiving sensors S1 and S2, respectively.
The distances X1 and X2 of D2, the distance d1 from the upper reflector M1 to the upper sensor S1 and the lower reflector M.
Based on the difference d of the distance d2 from 2 to the sensor S2 on the lower side, the position x and the inclination φ in the lateral direction of the vehicle body with respect to the projection direction of the guiding beam light A1 are obtained from the following equation (1). By the way, in the equation of the inclination φ, it is understood that the larger the inclination angle φ, the larger the distance | X1-X2 | between the different reflection positions D1 and D2 on the light receiving surfaces D of the light receiving sensors S1 and S2.

【0031】[0031]

【数1】 φ=tan-1(|X1−X2|/d) x=(X1+X2)/2) ………(1)## EQU1 ## φ = tan -1 (| X1-X2 | / d) x = (X1 + X2) / 2) ... (1)

【0032】そして、前記制御装置16は、上記位置x
及び傾きφの検出情報に基づいて前記作業車Vを操向制
御しながら前記複数個の走行行程の夫々に沿って走行さ
せるように構成されている。つまり、各走行行程に沿っ
ての直線走行時は、前記傾きφと前記位置xとが共に零
となるように目標操向角を設定して2輪ステアリング形
式で操向制御し、各走行行程の終端部から次の走行行程
の始端部に向けての旋回走行時は、作業車Vを設定回向
パターンで回向動作させる。具体的には、図8及び図9
に示すように、前記回向用光センサS3が前記回向用ビ
ーム光A2を検出した地点をeとし、このe地点から前
記エンコーダS4の検出情報に基づいて距離aだけ走行
させた地点fから180度の旋回動作を開始し、所定の
旋回区間gを経て旋回動作の終点hに至る経路e〜hを
所望の回向軌跡とするように、設定回向パターンが設定
される。尚、この旋回走行における操向制御は、旋回区
間gの後半において、操向制御用光センサ17の情報に
基づいて作業車Vの位置x及び傾きφが検出できるよう
になったときから開始される。
Then, the control device 16 controls the position x
Further, the work vehicle V is configured to travel along each of the plurality of travel strokes while controlling the steering based on the detection information of the inclination φ. That is, when the vehicle travels straight along each traveling stroke, the target steering angle is set so that both the inclination φ and the position x become zero, and steering control is performed in a two-wheel steering manner. When the vehicle travels from the end of the vehicle toward the beginning of the next traveling stroke, the work vehicle V is turned in the set turning pattern. Specifically, FIG. 8 and FIG.
As shown in FIG. 5, the point where the turning optical sensor S3 detects the turning beam light A2 is defined as e, and from this point e, a point f traveled a distance a based on the detection information of the encoder S4. The set turning pattern is set so that the paths e to h starting the turning operation of 180 degrees and reaching the end point h of the turning operation via the predetermined turning section g are the desired turning loci. The steering control in the turning traveling is started in the latter half of the turning section g when the position x and the inclination φ of the work vehicle V can be detected based on the information of the steering control optical sensor 17. It

【0033】次に、図2及び図3に示すフローチャート
に基づいて、前記制御装置16の動作について説明すれ
ば、前記作業車Vは、前記誘導用レーザ光投射装置B1
から投射される誘導用ビーム光A1を車体後方側から受
光する状態で、圃場の一端側に設定された最初の走行行
程を、その長手方向に沿って一端側から他端側に向けて
走行開始する(図4参照)。
Next, the operation of the control device 16 will be described with reference to the flow charts shown in FIGS. 2 and 3. In the work vehicle V, the guiding laser beam projection device B1 is used.
In the state in which the guiding beam light A1 projected from the vehicle is received from the rear side of the vehicle body, the first traveling stroke set on one end side of the field starts traveling from one end side to the other end side along the longitudinal direction thereof. (See FIG. 4).

【0034】走行開始後は、操向制御用センサ17によ
る前記誘導用ビーム光A1の受光情報に基づいて検出し
た車体5の傾きφと横方向の位置xが共に零になるよう
に、前述の如く、2輪ステアリング形式で前記前輪3を
操向制御する。そして、前記回向用光センサS3が、走
行行程の一端側において投射される前記回向用ビーム光
A2を受光した時点から設定距離を走行して植え付け開
始位置に達するに伴って、前記植え付け装置6を下降さ
せると共に駆動開始して、植え付け作業を開始すること
になる。
After the start of traveling, the inclination φ of the vehicle body 5 and the lateral position x detected by the steering control sensor 17 based on the received light information of the guiding light beam A1 are both set to zero. As described above, the steering control of the front wheels 3 is performed by the two-wheel steering system. Then, as the turning optical sensor S3 travels a set distance from the time when the turning beam light A2 projected on one end side of the traveling stroke is received and reaches the planting start position, the planting device is installed. 6 is lowered and the driving is started, and the planting work is started.

【0035】前記作業車Vが走行行程の終端部に達し
て、前記回向用光センサS3が走行行程の他端側におい
て投射される回向用ビーム光A2を受光すると(e地
点)、前記植え付け装置6の駆動を停止して植え付け作
業を停止する。尚、詳述はしないが、回向回数等に基づ
いて作業終了を判別した場合には、次の回向動作を行わ
ず、走行停止して全処理を終了する。そして、上記e地
点から距離a離れたf地点に向けて走行させる。f地点
に到着すると、前記2輪ステアリング形式から前記4輪
ステアリング形式に切り換えて、前記作業車Vを次の走
行行程の始端部に向けて180度方向転換させるために
前記旋回区間gに沿って旋回動作させる。
When the working vehicle V reaches the end of the traveling stroke and the turning optical sensor S3 receives the turning beam light A2 projected on the other end side of the traveling stroke (point e), The driving of the planting device 6 is stopped to stop the planting work. Although not described in detail, when it is determined that the work is completed based on the number of times of turning, the next turning operation is not performed, the traveling is stopped, and the entire process is ended. Then, the vehicle travels toward the point f, which is a distance a away from the point e. When the vehicle arrives at the point f, the two-wheel steering type is switched to the four-wheel steering type and along the turning section g in order to turn the working vehicle V by 180 degrees toward the start end of the next traveling stroke. Rotate.

【0036】そして、上記旋回区間gの中間点を通過す
るまで旋回動作を続け、中間点を通過した後の旋回区間
gの後半においては、操向制御用センサ17が前記誘導
用ビーム光A1を受光するかどうかを調べながら旋回終
了点(h地点)まで旋回動作を続ける。旋回終了点(h
地点)に到達する前に誘導用ビーム光A1を受光したと
きは、4輪ステアリング形式から2輪ステアリング形式
に切り換えて、次の走行行程における前記操向制御用セ
ンサ17の受光情報に基づく操向制御を開始する。
Then, the turning operation is continued until it passes through the midpoint of the turning section g, and in the latter half of the turning section g after passing through the midpoint, the steering control sensor 17 outputs the guiding light beam A1. While checking whether light is received, the turning operation is continued until the turning end point (point h). Turn end point (h
When the guidance beam light A1 is received before reaching the point), the four-wheel steering system is switched to the two-wheel steering system and the steering based on the light reception information of the steering control sensor 17 in the next traveling stroke. Start control.

【0037】一方、旋回終了点(h地点)に到達するま
でに誘導用ビーム光A1を受光しなければ、前記4輪ス
テアリング形式から前記平行ステアリング形式に切り換
えて誘導用ビーム光A1を受光するまで車体を横移動さ
せる。この誘導用ビーム光A1非受光時に車体を横移動
させる方向は、車体進行方向の右側になる。そして、誘
導用ビーム光A1を受光したら、前記平行ステアリング
形式から前記2輪ステアリング形式に切り換えて、次の
走行行程における前記操向制御用センサ17の受光情報
に基づく操向制御を開始する。
On the other hand, if the guidance beam light A1 is not received before the turning end point (point h) is reached, the guidance beam light A1 is received by switching from the four-wheel steering system to the parallel steering system. Move the car body laterally. The direction in which the vehicle body is laterally moved when the guide light beam A1 is not received is the right side of the vehicle body traveling direction. Then, when the guidance beam light A1 is received, the parallel steering system is switched to the two-wheel steering system and the steering control based on the light reception information of the steering control sensor 17 in the next traveling stroke is started.

【0038】〔別実施例〕上記実施例では、各受光セン
サS1,S2が長尺状の受光面Dの長手方向に沿って分
解能を有するのに、受光面Dを所定幅の複数個の受光位
置Dnに分割構成したものを示したが、これに限るもの
ではない。例えば、長尺状の受光面Dが全体として1つ
の光検出部を構成し、その長尺状の受光面Dの前に光透
過部が受光面長手方向に沿って移動するシャッターを設
け、そのシャッターの光透過部の位置情報と受光面Dの
受光情報とから、受光面長手方向の複数の位置において
誘導用ビーム光A1を受光したことを検出するようにし
てもよい。
[Other Embodiments] In the above embodiment, although each of the light receiving sensors S1 and S2 has resolution along the longitudinal direction of the elongated light receiving surface D, the light receiving surface D has a plurality of light receiving areas of a predetermined width. Although the divided structure is shown at the position Dn, the present invention is not limited to this. For example, the elongated light receiving surface D constitutes one photodetector as a whole, and a shutter in which the light transmitting portion moves along the light receiving surface longitudinal direction is provided in front of the elongated light receiving surface D. It may be possible to detect that the guiding beam light A1 is received at a plurality of positions in the longitudinal direction of the light receiving surface based on the position information of the light transmitting portion of the shutter and the light receiving information of the light receiving surface D.

【0039】上記実施例では、一対の受光センサS1,
S2を上下方向に配置するに鉛直方向に配置したが、必
ずしも鉛直方向にする必要はなく、例えば、鉛直方向か
ら少し車体前方側又は後方側に傾いた斜め上下方向に配
置してもよい。
In the above embodiment, the pair of light receiving sensors S1,
Although S2 is arranged vertically in the vertical direction, it does not necessarily have to be the vertical direction. For example, S2 may be arranged obliquely in the vertical direction slightly inclined to the vehicle front side or the rear side from the vertical direction.

【0040】上記実施例では、各反射器から受光センサ
までの距離を異ならせるのに、上側反射器M1から上側
のセンサS1までの距離d1を、下側反射器M2から下
側のセンサS2までの距離d2よりも長くしたものを示
したが、これとは逆に、下側反射器M2から下側のセン
サS2までの距離d2を、上側反射器M1から上側のセ
ンサS1までの距離d1よりも長くしてもよい。
In the above embodiment, the distances d1 from the upper reflector M1 to the upper sensor S1 are changed from the lower reflector M2 to the lower sensor S2 in order to make the distances from the respective reflectors to the light receiving sensor different. The distance d2 from the lower reflector M2 to the lower sensor S2 is larger than the distance d1 from the upper reflector M1 to the upper sensor S1. May be longer.

【0041】上記実施例では、両反射器M1,M2のう
ちの受光センサ(下側のセンサS2)までの距離が短い
方の反射器M2を、平面反射器にて構成し、前記距離が
長い方の反射器M1を、凸面反射器にて構成したものを
示したが、この組み合わせに限るものではない。例え
ば、両反射器M1,M2を共に平面反射器で構成した
り、あるいは、前記距離が短い方の反射器を凹面反射器
で、前記距離が長い方の反射器を凸面反射器で構成する
等、種々の組み合わせが可能である。
In the above embodiment, of the two reflectors M1 and M2, the reflector M2, which has a shorter distance to the light receiving sensor (lower sensor S2), is a flat reflector, and the distance is long. Although the reflector M1 of the other side is configured by the convex reflector, it is not limited to this combination. For example, both the reflectors M1 and M2 may both be plane reflectors, or the reflector having the shorter distance may be a concave reflector and the reflector having the longer distance may be a convex reflector. , Various combinations are possible.

【0042】上記実施例では、一対の光反射手段H1,
H2として、平面視において受光センサSの受光面Dに
対する投射向きが逆となる誘導用ビーム光A1,A1’
夫々に対応する2種類を設けるようにしたが、2種類設
けずに1種類(例えば車体前方側からの誘導用ビーム光
A1に対応するもの)だけでもよい。尚、この場合は、
隣接する走行行程では誘導用ビーム光A1の投射方向を
逆にすることが必要になる。
In the above embodiment, the pair of light reflecting means H1,
As H2, the guiding light beams A1 and A1 ′ whose projection directions with respect to the light receiving surface D of the light receiving sensor S are opposite in plan view
Although two types corresponding to each are provided, only one type (for example, one corresponding to the guiding beam light A1 from the front side of the vehicle body) may be provided without providing two types. In this case,
It is necessary to reverse the projection direction of the guidance light beam A1 in the adjacent travel processes.

【0043】又、上記実施例では、一対の光反射手段H
1,H2に備える反射器M1,M2を各1個のミラーM
1,M2(平面ミラー又は凸面ミラー)で構成したが、
光を反射する手段であればミラー以外の例えばプリズム
等が使用でき、又、その個数も、各1個ではなく、各複
数個の反射器で構成してもよい。
In the above embodiment, the pair of light reflecting means H is used.
One reflector M1 and one reflector M2 provided for H2
1, M2 (flat mirror or convex mirror),
Other than a mirror, for example, a prism or the like can be used as long as it is a means for reflecting light, and the number of reflectors may not be one but may be a plurality of reflectors.

【0044】又、上記実施例では、複数個の走行行程の
方向が平行に並ぶ場合について作業車Vを180度旋回
させて次の走行行程の始端部に回向させるものを例示し
たが、180度旋回以外に、例えば90度旋回させて次
の走行行程の始端部に回向させる場合においても同様に
本発明を適用することができる。
Further, in the above embodiment, the case where the work vehicle V is turned 180 degrees and turned to the starting end portion of the next traveling stroke when a plurality of traveling strokes are arranged in parallel is exemplified. The present invention can be similarly applied to the case where the vehicle is turned 90 degrees and turned to the start end portion of the next traveling stroke, other than the degree turning.

【0045】又、上記実施例では、誘導用ビーム光A1
を複数個の走行行程のうちの隣接する一対の行程によっ
て共用させるように構成し、その誘導用ビーム光A1を
受光する操向制御用光センサ17を車体横方向の右側に
設けたが、右側ではなく左側でもよい。又、誘導用ビー
ム光A1を隣接する一対の行程によって共用させず、各
走行行程に1個の誘導用ビーム光A1を投射させるよう
にしてもよく、この場合は、操向制御用光センサ17を
車体横方向の片側に設けることは必ずしも必要ではな
く、中央上部位置でもよい。
In the above embodiment, the guiding beam light A1 is used.
Is configured to be shared by a pair of adjacent strokes of a plurality of traveling strokes, and a steering control optical sensor 17 for receiving the guidance beam light A1 is provided on the right side in the lateral direction of the vehicle body. Not on the left side. Alternatively, the guiding beam light A1 may not be shared by a pair of adjacent strokes, and one guiding beam light A1 may be projected in each traveling stroke. In this case, the steering control light sensor 17 is used. Is not necessarily provided on one side in the lateral direction of the vehicle body, and may be provided at the central upper position.

【0046】又、上記実施例では、本発明を田植え用の
ビーム光作業車用の受光装置に適用したものを例示した
が、田植え機以外の農機及び各種走行作業車にも適用で
きるものであって、その際の各部の具体構成は種々変更
できる。
Further, in the above embodiments, the present invention is applied to the light receiving device for the beam light work vehicle for rice planting, but it is also applicable to agricultural machines other than rice planting machines and various traveling work vehicles. Then, the specific configuration of each part in that case can be variously changed.

【0047】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】制御構成のブロック図FIG. 1 is a block diagram of a control configuration.

【図2】制御作動のフローチャートFIG. 2 is a flowchart of control operation.

【図3】制御作動のフローチャートFIG. 3 is a flowchart of control operation.

【図4】走行行程及び回向動作を説明する概略平面図FIG. 4 is a schematic plan view illustrating a traveling stroke and a turning operation.

【図5】作業車及び誘導用ビーム光投射状態を示す概略
側面図
FIG. 5 is a schematic side view showing a work vehicle and a guidance light beam projection state.

【図6】受光装置の構成を示す概略側面図FIG. 6 is a schematic side view showing the configuration of a light receiving device.

【図7】受光センサ及びその受光面の受光位置を示す概
略平面図
FIG. 7 is a schematic plan view showing a light receiving sensor and a light receiving position on its light receiving surface.

【図8】回向動作を説明する平面図FIG. 8 is a plan view illustrating a turning operation.

【図9】設定回向パターンの説明図FIG. 9 is an explanatory diagram of a set turning pattern.

【図10】光反射手段の作用を説明する正面図FIG. 10 is a front view for explaining the operation of the light reflecting means.

【図11】光反射手段の作用を説明する側面図FIG. 11 is a side view illustrating the operation of the light reflecting means.

【図12】光反射手段の作用を説明する側面図FIG. 12 is a side view for explaining the operation of the light reflecting means.

【符号の説明】[Explanation of symbols]

D 受光面 S1 受光センサ S2 受光センサ H1 光反射手段 H2 光反射手段 M1 下側反射器 M2 上側反射器 D Light receiving surface S1 Light receiving sensor S2 Light receiving sensor H1 Light reflecting means H2 Light reflecting means M1 Lower reflector M2 Upper reflector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平面視において、投射される誘導用ビー
ム光に対する直交方向での位置及び傾きの検出のため
に、前記誘導用ビーム光を受光するビーム光誘導式作業
車用の受光装置であって、 長尺状の受光面(D)の受光面長手方向に沿って分解能
を備える一対の受光センサ(S1,S2)が、間隔を隔
てて並置され、 前記誘導用ビーム光を車体前後及び上下方向での略同一
位置で反射して前記各受光面(D)に入射させる一対の
光反射手段(H1,H2)が設けられ、 前記一対の光反射手段(H1,H2)は、平面視におい
て前記誘導用ビーム光の投射方向と前記受光面長手方向
とが直交するときには、前記誘導用ビーム光を前記各受
光面(D)の前記受光面長手方向での同一位置に反射
し、平面視において前記誘導用ビーム光の投射方向と前
記受光面長手方向とが直交状態から傾いているときに
は、前記誘導用ビーム光を前記各受光面(D)の前記受
光面長手方向での異なる位置に反射し、且つ、その傾き
角が大きいほど各光反射手段(H1,H2)による前記
各受光面(D)に対する反射位置の間の距離を大きくす
る状態で反射するように構成されているビーム光誘導式
作業車用の受光装置。
1. A light receiving device for a beam light guided working vehicle, which receives the guiding light beam for detecting a position and an inclination in a direction orthogonal to the projected guiding light beam in plan view. A pair of light-receiving sensors (S1, S2) having resolution along the light-receiving surface longitudinal direction of the long light-receiving surface (D) are arranged side by side with an interval, and the guiding beam light is transmitted to the front and rear and up and down of the vehicle body. A pair of light reflecting means (H1, H2) for reflecting the light at substantially the same position in the direction to enter each of the light receiving surfaces (D) is provided, and the pair of light reflecting means (H1, H2) is seen in a plan view. When the projection direction of the guiding light beam and the light receiving surface longitudinal direction are orthogonal to each other, the guiding light beam is reflected at the same position in the light receiving surface longitudinal direction of each of the light receiving surfaces (D), and in plan view. Projection direction of the guiding light beam And the light receiving surface longitudinal direction are tilted from the orthogonal state, the guiding beam light is reflected at different positions in the light receiving surface longitudinal direction of each light receiving surface (D), and the tilt angle is large. A light receiving device for a beam light guide type work vehicle, which is configured to reflect light in a state where a distance between reflection positions of the light reflecting means (H1, H2) with respect to the light receiving surfaces (D) is increased.
【請求項2】 前記一対の受光センサ(S1,S2)
が、上下方向に配置され、 その上下一対の受光センサ(S1,S2)の間に、前記
一対の光反射手段(H1,H2)が、前記一対の受光セ
ンサ(S1,S2)のうちの上側のセンサ(S1)に対
する上側反射器(M1)及び下側のセンサ(S2)に対
する下側反射器(M2)を備えて配置され、 前記上側反射器(M1)から前記上側のセンサ(S1)
までの距離と、前記下側反射器(M2)から前記下側の
センサ(S2)までの距離とが異なるように設定されて
いる請求項1記載のビーム光誘導式作業車用の受光装
置。
2. The pair of light receiving sensors (S1, S2)
Are arranged in the vertical direction, and between the pair of upper and lower light receiving sensors (S1, S2), the pair of light reflecting means (H1, H2) is the upper side of the pair of light receiving sensors (S1, S2). The upper reflector (M1) for the sensor (S1) and the lower reflector (M2) for the lower sensor (S2), the upper reflector (M1) to the upper sensor (S1).
2. The light-receiving device for a beam light guided working vehicle according to claim 1, wherein a distance from the lower reflector (M2) to a distance from the lower sensor (S2) are different from each other.
【請求項3】 前記両反射器(M1,M2)のうちの前
記上側又は下側のセンサ(S1,S2)までの距離が短
い方の反射器(M2)が、平面反射器にて構成され、前
記距離が長い方の反射器(M1)が、凸面反射器にて構
成されている請求項2記載のビーム光誘導式作業車用の
受光装置。
3. The reflector (M2) having a shorter distance to the upper or lower sensor (S1, S2) of the two reflectors (M1, M2) is a flat reflector. The light-receiving device for a beam light guided work vehicle according to claim 2, wherein the reflector (M1) having the longer distance is formed of a convex reflector.
【請求項4】 前記一対の光反射手段(H1,H2)と
して、平面視において前記各受光面(D)に対する投射
向きが逆となる誘導用ビーム光夫々に対応する2種類が
設けられている請求項1、2又は3記載のビーム光誘導
式作業車用の受光装置。
4. The pair of light reflecting means (H1, H2) are provided in two types corresponding to the respective guiding beam lights whose projection directions with respect to the respective light receiving surfaces (D) are opposite in plan view. A light receiving device for a beam light guide type working vehicle according to claim 1, 2 or 3.
JP6215475A 1994-09-09 1994-09-09 Light receiving device for beam light guide type working vehicle Pending JPH0876842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215475A JPH0876842A (en) 1994-09-09 1994-09-09 Light receiving device for beam light guide type working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215475A JPH0876842A (en) 1994-09-09 1994-09-09 Light receiving device for beam light guide type working vehicle

Publications (1)

Publication Number Publication Date
JPH0876842A true JPH0876842A (en) 1996-03-22

Family

ID=16672997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215475A Pending JPH0876842A (en) 1994-09-09 1994-09-09 Light receiving device for beam light guide type working vehicle

Country Status (1)

Country Link
JP (1) JPH0876842A (en)

Similar Documents

Publication Publication Date Title
JPH0944240A (en) Guide device for moving vehicle
JPH01316808A (en) Steering controller for self-traveling vehicle
JPH0876842A (en) Light receiving device for beam light guide type working vehicle
JPH07175516A (en) Photodetector for beam light guide type operating vehicle
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JPS63308609A (en) Working vehicle guide device using beam light
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JPH01183707A (en) Distance detector for beam light guided work truck
JPH075915A (en) Traveling controller for beam light guided work vehicle
JP3113457B2 (en) Work vehicle travel control device
JPH08178650A (en) Position detecting device for work vehicle
JPH06149372A (en) Traveling controller for beam-light-guided working vehicle
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JPH0876843A (en) Light receiving device and travel controller for beam light guide type working vehicle
JPH01228405A (en) Steering controller for beam guidance-type working truck
JP2859989B2 (en) Absolute position detection system for moving objects
JPH0944241A (en) Beam light guidance device for moving object
JPH07175517A (en) Travel controller for beam light guide type operation vehicle
JPH06149354A (en) Traveling controller for beam light guidance type working car
JPH06149352A (en) Traveling controller for beam light guidance type working car
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JPH0937608A (en) Control information detector of working vehicle
JPH0950317A (en) Traveling controller for beam light guided mobile vehicle
JPH01298408A (en) Working vehicle guiding device for beam light utilization
JPH08179827A (en) Controller for light beam guide for mobile object