JPH0937608A - Control information detector of working vehicle - Google Patents

Control information detector of working vehicle

Info

Publication number
JPH0937608A
JPH0937608A JP7196781A JP19678195A JPH0937608A JP H0937608 A JPH0937608 A JP H0937608A JP 7196781 A JP7196781 A JP 7196781A JP 19678195 A JP19678195 A JP 19678195A JP H0937608 A JPH0937608 A JP H0937608A
Authority
JP
Japan
Prior art keywords
light receiving
light
height
information
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7196781A
Other languages
Japanese (ja)
Inventor
Atsushi Masutome
淳 増留
Koji Yoshikawa
浩司 吉川
Masanori Fujiwara
正徳 藤原
Katsumi Ito
勝美 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7196781A priority Critical patent/JPH0937608A/en
Publication of JPH0937608A publication Critical patent/JPH0937608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transplanting Machines (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the device capable of stably detecting the height of a working device on a beam projected on the side of the ground without being affected by the conditions of soil surface, ground surface, etc. SOLUTION: A working device 6 is attached to a vehicle body 5 in a state capable of being lifted on the basis of the vehicle body with an actuator 13 for lifting the working device, and a beam-projecting means B1 for projecting a standard beam A1 in a vertically scanning state in a set cycle and at a set angle is disposed on the side of the ground. A beam-receiving means 17 for receiving the standard beam A1 is installed on the working device 6, and the height of the working device 6 on the beam is determined on the basis of a light-receiving time interval information of the beam-receiving means 17 about the standard beam A1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、昇降用アクチュエ
ータによって車体に対して昇降操作自在な状態で作業装
置が付設された作業車の制御情報検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control information detecting device for a work vehicle in which a work device is attached to a vehicle body such that the work device can be moved up and down by an elevator actuator.

【0002】[0002]

【従来の技術】上記作業車の制御情報検出装置は、例え
ば圃場内を走行する田植え用の作業車の車体に、昇降用
アクチュエータである油圧シリンダ等にて昇降操作され
る苗植付け装置(作業装置に相当)を付設し、その苗植
付け装置を適正高さに維持するように、例えば自動制御
するための制御情報として、苗植付け装置の対地高さ等
の高さ情報を得るものであるが、従来では、例えば泥面
に浮くフロートセンサの上下位置や、投射した超音波が
地面から反射するときの時間差に基づいて距離を検出す
る超音波式のセンサ等の検出情報に基づいて高さを検出
していた。
2. Description of the Related Art A control information detecting device for a work vehicle described above is a seedling planting device (working device) that is moved up and down by a hydraulic cylinder or the like that is an actuator for raising and lowering the body of a work vehicle for rice planting that runs in a field. (Equal to), to obtain the height information such as the ground height of the seedling planting device, for example, as control information for automatically controlling so that the seedling planting device is maintained at an appropriate height. Conventionally, for example, the vertical position of a float sensor floating on a mud surface, or the height is detected based on the detection information of an ultrasonic sensor that detects the distance based on the time difference when the projected ultrasonic waves are reflected from the ground. Was.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
では、例えばフロートセンサは、作業車の走行等によっ
て泥面が揺れるとその泥面の揺動の影響を受けて上下位
置が変動し、又、超音波式のセンサは、地面の凹凸の影
響を受けて検出値が変動し、いずれの場合も、外乱の影
響を受け易く、作業装置(植付け装置)の高さを安定に
検出することができなかった。そのために、上記高さ検
出情報に基づいて作業装置を所定高さに維持する等の高
さ制御を適正に行う上で支障があった。
However, in the above-mentioned prior art, for example, in the float sensor, when the mud surface sways due to traveling of the work vehicle, the vertical position fluctuates under the influence of the swing of the mud surface, and The ultrasonic type sensor is affected by the unevenness of the ground and the detected value fluctuates. In any case, it is easily affected by the disturbance, and the height of the working device (planting device) can be detected stably. could not. Therefore, there is a problem in properly performing height control such as maintaining the working device at a predetermined height based on the height detection information.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その第1の目的は、上記従来技術の不具合を
解消させるべく、泥面や地面等の状態による影響を受け
ずに、作業装置の高さを安定に検出することができる作
業車の制御情報検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and a first object thereof is to eliminate the problems of the above-mentioned prior art without being affected by conditions such as mud and ground, It is an object of the present invention to provide a control information detection device for a work vehicle that can stably detect the height of the work device.

【0005】又、第2の目的は、上記第1の目的を達成
するための手段を利用して、作業車が、圃場内に設定し
た誘導経路に沿って自動走行する場合に必要な制御情報
として、車体の誘導経路に対する横方向での位置や長手
方向での距離を検出することができる作業車の制御情報
検出装置を提供することにある。
The second purpose is to use the means for achieving the first purpose, and control information required when the work vehicle automatically travels along the guide route set in the field. Another object of the present invention is to provide a control information detecting device for a work vehicle capable of detecting the lateral position and the longitudinal distance of the vehicle body with respect to the guide route.

【0006】[0006]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1の構成によれば、昇降用アクチュエ
ータによって昇降操作自在な状態で車体に付設した作業
装置に設置した受光手段が、地上側において上下方向に
設定周期で設定角度走査する状態で投射される基準ビー
ム光を下から上及び上から下に走査されるときに夫々受
光する。そのときに、例えば、受光手段がビーム光走査
範囲の中央に位置しているときは上記両受光間の時間間
隔は等しいが、この状態から作業装置の高さが上側又は
下側に変化して受光手段がビーム光走査範囲の中央位置
から上側又は下側に偏位すると、その偏位状態が大であ
るほど上記両受光間の時間間隔の一方は長くなり他方は
短くなる。以上より、受光手段の受光時間間隔情報によ
って、受光手段の上下位置つまり作業装置のビーム光に
対する高さが求められる。
In order to achieve the first object, according to the structure of claim 1, the light receiving means installed in the working device attached to the vehicle body in a state in which the lifting actuator can freely perform the lifting operation. However, on the ground side, the reference beam light projected in the state of being vertically scanned at the set angle at the set period is received when being scanned from the bottom to the top and from the top to the bottom. At that time, for example, when the light receiving means is located at the center of the beam light scanning range, the time intervals between the two light receptions are equal, but the height of the working device changes from this state to the upper side or the lower side. When the light receiving means is displaced to the upper side or the lower side from the center position of the beam light scanning range, one of the time intervals between the two light receptions becomes longer and the other becomes shorter as the deviation state becomes larger. From the above, the vertical position of the light receiving means, that is, the height with respect to the light beam of the working device is obtained from the light receiving time interval information of the light receiving means.

【0007】従って、地上に投射される基準ビーム光を
受光した情報に基づいて、車体に付設した作業装置のビ
ーム光に対する高さを求めるので、従来のフロートセン
サや超音波センサ等に比べて、泥面や地面状態による影
響を受けることなく、作業装置の高さを安定に検出で
き、もって、その高さ検出情報に基づいて昇降用アクチ
ュエータを作動させて、作業装置を所定高さに維持する
等の高さ制御を適正に行うことができる。
Therefore, since the height of the working device attached to the vehicle body with respect to the beam light is obtained based on the information received from the reference beam light projected on the ground, compared with the conventional float sensor or ultrasonic sensor, The height of the working device can be stably detected without being affected by the mud surface or the ground condition, and the lifting actuator is operated based on the height detection information to maintain the working device at a predetermined height. It is possible to properly control the height of the above.

【0008】又、請求項2の構成によれば、請求項1の
構成において、上下方向に所定距離離れて設置される一
対の受光部のうちの例えば上側の受光部がビーム光走査
範囲の中央に位置しているときは、その上側の受光部に
対して、ビーム光が上から下へ又は下から上へ走査され
る時の両受光間の時間間隔は等しいが、この状態から作
業装置の高さが上側又は下側に変化して上側の受光部が
ビーム光走査範囲の中央位置から上側又は下側に偏位す
ると、上記両受光間の時間間隔の一方は長くなり他方は
短くなる。このとき、両受光部の受光タイミングの差、
例えば図9に例示するように、上側の受光部S1の受光
タイミングに対して下側の受光部S2の受光タイミング
が後行するのは、上側に偏位した場合には、上記時間間
隔が長い方の間隔t2の始めの期間に発生する(図9の
(ロ)のt3の開始点)のに対して、下側に偏位した場
合には、時間間隔が短い方の間隔t1の始めの期間に発
生する(図9の(ハ)のt3の開始点)。これより、例
えば上側の受光部S1がビーム光走査範囲の中央に位置
しているときを基準位置として、作業装置の高さが高く
なったか低くなったかの偏位方向が判別される。
Further, according to the structure of claim 2, in the structure of claim 1, for example, the upper light receiving part of the pair of light receiving parts installed at a predetermined distance in the vertical direction is the center of the beam light scanning range. , The time interval between the two light receptions when the light beam is scanned from the top to the bottom or from the bottom to the top is equal to that of the work device of the working device from this state. When the height is changed to the upper side or the lower side and the upper light receiving portion is deviated from the center position of the beam light scanning range to the upper side or the lower side, one of the time intervals between the above two light receptions becomes long and the other becomes short. At this time, the difference in the light receiving timing of both light receiving units,
For example, as illustrated in FIG. 9, the light receiving timing of the lower light receiving section S2 follows the light receiving timing of the upper light receiving section S1 because the time interval is long when the light is shifted upward. On the other hand, when the deviation occurs in the lower part of the interval t2 (the starting point of t3 in (b) of FIG. 9) at the beginning of the interval t2, the beginning of the interval t1 having the shorter time interval. Occurs during the period (starting point of t3 in FIG. 9C). From this, for example, when the upper light receiving portion S1 is located in the center of the beam light scanning range as a reference position, the deviation direction of whether the height of the working device has become higher or lower is determined.

【0009】従って、上下方向に距離を離れて位置する
一対の受光部の受光情報に基づいて、作業装置の高さ
を、例えば基準位置から上側又は下側のいずれの方向に
偏位しているかの情報として判別するので、例えば1個
の受光部だけでは偏位していることは判別できるがその
偏位方向は判別できないのに比べて、より的確な作業装
置の高さ情報を得て、例えば上記偏位方向の情報に基づ
いて作業装置を適正高さに維持する高さ制御を一層的確
に行うことができ、もって、請求項1の構成の好適な手
段が得られる。
Therefore, based on the light receiving information of the pair of light receiving portions which are located apart from each other in the vertical direction, the height of the working device is deviated from the reference position in either the upper direction or the lower direction. Since it can be determined that only one light receiving unit is deviating, but the direction of the deviation cannot be determined, it is possible to obtain more accurate height information of the working device. For example, the height control for maintaining the working device at the proper height can be more accurately performed based on the information on the deviation direction, and the preferable means of the configuration of claim 1 can be obtained.

【0010】又、請求項3の構成によれば、請求項2の
構成において、例えば上側の受光部がビーム光走査範囲
中央位置にあるときは、その受光部の受光時間間隔は、
同じ時間幅の時間間隔を繰り返したものになるが、図8
及び図9の(ロ)又は(ハ)に例示するように、作業装
置が上側又は下側に偏位してその偏位量が大きいほど、
上側の受光部S1の2つの受光時間間隔t1,t2の時
間差が大きくなる。そして、その時間差は、ビーム光の
上下走査角度や両受光部S1,S2の上下距離等の条件
に基づいて所定の計算式にて定まる値になる。これよ
り、作業装置の高さ情報として、例えば上側の受光部S
1がビーム光走査範囲の中央に位置しているときの作業
装置の高さを基準ビーム光の走査範囲内における設定高
さとして、作業装置がその設定高さから偏位している偏
位量が、前記した偏位方向の情報とともに判別される。
According to the structure of claim 3, in the structure of claim 2, for example, when the upper light receiving portion is located at the center position of the light beam scanning range, the light receiving time interval of the light receiving portion is
Although the time interval of the same time width is repeated,
And as illustrated in (b) or (c) of FIG. 9, as the working device is displaced to the upper side or the lower side and the displacement amount is larger,
The time difference between the two light receiving time intervals t1 and t2 of the upper light receiving section S1 becomes large. Then, the time difference becomes a value determined by a predetermined calculation formula based on the conditions such as the vertical scanning angle of the light beam and the vertical distance between the light receiving units S1 and S2. From this, as the height information of the working device, for example, the upper light receiving portion S
The height of the working device when 1 is located in the center of the scanning range of the beam light is set as the set height within the scanning range of the reference light beam, and the deviation amount at which the working device is deviated from the set height. Are discriminated together with the information on the deviation direction.

【0011】従って、作業装置の高さ情報として、例え
ば基準位置から偏位している方向と、その偏位量が検出
できるので、より一層より的確な作業装置の高さ情報を
得て、例えばその偏位方向及び偏位量の情報に基づいて
作業装置を適正高さに維持する高さ制御をより一層有利
に行うことができ、もって、請求項2の構成の好適な手
段が得られる。
Therefore, as the height information of the working device, for example, the direction deviated from the reference position and the amount of the deviation can be detected, so that more accurate height information of the working device can be obtained. Based on the information on the deviation direction and the deviation amount, the height control for maintaining the working device at the proper height can be more advantageously performed, and the preferable means of the configuration of claim 2 can be obtained.

【0012】次に、上記第2の目的を達成するために、
請求項4の構成によれば、請求項1、2又は3の構成に
おいて、前記基準ビーム光が、平面視において作業車誘
導用の誘導経路の長手方向に沿う状態で投射され、その
基準ビーム光が、前記一対の受光部のうちの少なくとも
一方によって、平面視において基準ビーム光の投射方向
に交差する方向に備えた所定分解能の受光位置で受光さ
れ、その受光位置の情報に基づいて、車体の誘導経路に
対する例えば横方向への偏位等の位置が検出される。
Next, in order to achieve the above second object,
According to the structure of claim 4, in the structure of claim 1, 2 or 3, the reference beam light is projected in a state along the longitudinal direction of the guide route for guiding the work vehicle in plan view, and the reference beam light is projected. Is received by at least one of the pair of light receiving portions at a light receiving position of a predetermined resolution provided in a direction intersecting the projection direction of the reference beam light in plan view, and based on the information of the light receiving position, A position such as a lateral deviation with respect to the guide path is detected.

【0013】従って、作業装置の高さ検出用に設けた地
上側のビーム光及び車体側の受光手段を利用して、車体
の誘導経路に対する位置を検出するので、その位置検出
情報を用いて、作業車を上記誘導経路に沿って適正に操
向させながら自動走行させるように制御することがで
き、もって、上記請求項1、2又は3の構成の好適な手
段が得られる。
Therefore, the position of the vehicle body with respect to the guide path is detected by using the light beam on the ground side and the light receiving means on the vehicle body side provided for detecting the height of the working device. Therefore, using the position detection information, It is possible to control the work vehicle to automatically run while properly steering along the guide route, and thus the preferable means of the configuration of claim 1, 2 or 3 can be obtained.

【0014】又、請求項5の構成によれば、請求項4の
構成において、作業車誘導用の誘導経路の長手方向に沿
う基準ビーム光が、車体前後方向にも所定距離離れて設
置された前記一対の受光部の両方にて、平面視において
基準ビーム光の投射方向に交差する方向に備えた所定分
解能の受光位置で受光され、その両受光部の基準ビーム
光についての受光位置の情報及び車体前後方向での間隔
情報に基づいて、車体のビーム投射方向つまり誘導経路
に対する平面視での傾きが求まる。
Further, according to the structure of claim 5, in the structure of claim 4, the reference beam light along the longitudinal direction of the guide path for guiding the work vehicle is installed at a predetermined distance in the longitudinal direction of the vehicle body. In both of the pair of light receiving units, light is received at a light receiving position of a predetermined resolution provided in a direction intersecting with the projection direction of the reference beam light in a plan view, and light receiving position information about the reference beam light of both light receiving units and Based on the distance information in the vehicle front-rear direction, the inclination of the vehicle body in the beam projection direction, that is, the guidance path in plan view can be obtained.

【0015】従って、車体の誘導経路に対する位置情報
として、誘導経路に対する横方向での位置と平面視での
傾きの両方を検出するので、例えば、誘導経路に対する
横方向での位置のみを検出するのに比べて、その位置検
出情報を用いて作業車を上記誘導経路に沿って自動走行
させる場合に、一層的確な操向操作を行うことができ、
もって、上記請求項4の構成の好適な手段が得られる。
Therefore, since both the position in the lateral direction with respect to the guide route and the inclination in plan view are detected as the position information for the guide route of the vehicle body, for example, only the position in the lateral direction with respect to the guide route is detected. In comparison with the above, when the work vehicle is automatically driven along the guide route using the position detection information, more accurate steering operation can be performed,
Therefore, the preferable means of the constitution of the above-mentioned claim 4 can be obtained.

【0016】又、請求項6の構成によれば、請求項4又
は5の構成において、図10に例示するように、ビーム
光投射手段B1からの距離a1が、基準ビーム光A1の
設定角度(走査角度2θ)と、設定周期(走査周期T)
と、上下距離b離れた一対の受光部S1,S2の受光タ
イミングの差(時間差)Δtと、作業装置つまり一対の
受光部S1,S2の高さ検出情報Hから定まる係数k1
とによって、下式のように求められる。
According to the structure of claim 6, in the structure of claim 4 or 5, as illustrated in FIG. 10, the distance a1 from the beam light projection means B1 is equal to the set angle of the reference beam light A1 ( Scan angle 2θ) and set cycle (scan cycle T)
And a coefficient k1 determined from the difference (time difference) Δt in the light receiving timings of the pair of light receiving portions S1 and S2 that are separated by the vertical distance b, and the height detection information H of the working device, that is, the pair of light receiving portions S1 and S2.
It is calculated by the formula below.

【0017】[0017]

【数1】 a1=(k1・b・T/4)/(tanθ・Δt)## EQU00001 ## a1 = (k1.b.T / 4) / (tan θ.Δt)

【0018】従って、地上側のビーム光及び車体側の受
光手段を利用して、ビーム光投射手段からの距離、即
ち、誘導経路の長手方向における車体の位置を検出する
ので、他の距離検出手段(車輪の回転数を計数するエン
コーダ等)を設けることなく、例えばその経路終端部に
到着したこと等が判別できて、その終端部から次の経路
始端部に移動させる等の制御を行うことができ、もっ
て、上記請求項4又は5の構成の好適な手段が得られ
る。
Therefore, the distance from the light beam projecting means, that is, the position of the vehicle body in the longitudinal direction of the guide path is detected by utilizing the light beam on the ground side and the light receiving means on the vehicle body side, so that another distance detecting means is provided. Without providing a wheel encoder or the like, it is possible to determine that the vehicle arrives at the end of the route, for example, and perform control such as moving from the end to the beginning of the next route. Therefore, it is possible to obtain the preferable means of the configuration of claim 4 or 5.

【0019】[0019]

【発明の実施の形態】以下、本発明の作業車の制御情報
検出装置を、田植え用の作業車に適用した場合について
図面に基づいて具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a case where the control information detecting device for a work vehicle according to the present invention is applied to a work vehicle for rice planting will be specifically described with reference to the drawings.

【0020】図1に示すように、圃場内に設定された互
いに平行に並ぶ複数の誘導経路としての作業行程Lの夫
々に沿って作業車Vを自動走行させるべく、作業行程L
の長手方向に沿って誘導用のビーム光A1を、上下方向
に設定周期Tで設定角度2θ走査する状態(図2参照)
で投射するビーム光投射手段としてのビーム光投射装置
B1が、複数の作業行程Lのうちの隣接する一対の作業
行程Lによって共用されて設けられている。
As shown in FIG. 1, in order to automatically drive the work vehicle V along each of the work paths L as a plurality of guide paths set in the field and arranged in parallel with each other, the work path L is automatically traveled.
A state in which the guiding light beam A1 is scanned in the up-down direction at a set period T at a set angle 2θ along the longitudinal direction of the (see FIG. 2).
The beam light projection device B1 as the beam light projection means for projecting at is shared by a pair of adjacent work steps L of the plurality of work steps L.

【0021】前記作業車Vの構成について説明すれば、
図1〜図3に示すように、左右一対の前輪3及び後輪4
を備えた車体5の後部に、作業装置としての苗植え付け
装置6が、昇降自在で且つ駆動停止自在な状態で付設さ
れている。つまり、下降状態で駆動されているときが対
地作業状態であり、これ以外の状態は非作業状態とな
る。前後輪3,4は、左右を一対として各別に操向操作
自在に構成され、操向用の油圧シリンダ7,8と、それ
らに対する電磁操作式の制御弁9,10とが設けられて
いる。つまり、前輪3又は後輪4の一方のみを操向する
2輪ステアリング形式、前後輪3,4を逆位相で且つ同
角度に操向する4輪ステアリング形式、前後輪3,4を
同位相で且つ同角度に操向する平行ステアリング形式の
3種類のステアリング形式を選択使用できるようになっ
ている。
Explaining the structure of the work vehicle V,
As shown in FIGS. 1 to 3, a pair of left and right front wheels 3 and rear wheels 4 are provided.
A seedling planting device 6 as a working device is attached to the rear part of the vehicle body 5 provided with the so as to be able to move up and down and stop driving. In other words, when the vehicle is driven in the lowered state, it is the ground work state, and the other states are non-working states. The front and rear wheels 3 and 4 are configured so that each pair of left and right wheels can be steered independently, and steering hydraulic cylinders 7 and 8 and electromagnetic control valves 9 and 10 for them are provided. That is, a two-wheel steering system that steers only one of the front wheels 3 or the rear wheels 4, a four-wheel steering system that steers the front and rear wheels 3, 4 in opposite phases and at the same angle, and the front and rear wheels 3, 4 in the same phase. In addition, it is possible to selectively use three types of steering types, that is, a parallel steering type that steers at the same angle.

【0022】図3中、11はエンジンEからの出力を変
速して前後輪3,4の夫々を同時に駆動する油圧式無段
変速装置、12はその変速操作用の電動モータ、13は
植え付け装置6を昇降操作する昇降用アクチュエータと
しての昇降用油圧シリンダ、14はその制御弁、15は
エンジンEによる植え付け装置6の駆動を断続する電磁
操作式の植え付けクラッチ、16は作業車Vの走行並び
に植え付け装置6の作動を制御するためのマイクロコン
ピュータ利用の制御装置であって、後述の各種センサに
よる検出情報及び予め記憶された作業データに基づい
て、変速用モータ12、各制御弁9,10,14、及
び、植え付けクラッチ15の夫々を制御するように構成
されている。
In FIG. 3, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 simultaneously, 12 is an electric motor for gear shifting operation, and 13 is a planting device. A hydraulic cylinder for raising and lowering as an ascending / descending actuator that operates 6 for raising and lowering, 14 a control valve thereof, 15 an electromagnetically-operated planting clutch for intermittently driving the planting device 6 by the engine E, and 16 traveling and planting of the work vehicle V. A control device using a microcomputer for controlling the operation of the device 6, which is based on detection information from various sensors to be described later and work data stored in advance, the shift motor 12, the control valves 9, 10, 14 , And each of the planting clutch 15 are controlled.

【0023】作業車Vに装備されるセンサ類について説
明すれば、図3に示すように、前後輪3,4夫々の操向
角を検出するポテンショメータ利用の操向角検出センサ
R1,R2と、変速装置11の変速状態に基づいて間接
的に前後進状態及び車速を検出するポテンショメータ利
用の車速センサR3と、変速装置11の出力軸の回転数
を計数して走行距離を検出するためのエンコーダS4
と、作業車Vの車体方位を検出する地磁気利用の方位セ
ンサS5とが設けられている。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 3, steering angle detection sensors R1 and R2 using potentiometers for detecting steering angles of the front and rear wheels 3 and 4, respectively. A vehicle speed sensor R3 that uses a potentiometer to indirectly detect the forward / backward traveling state and the vehicle speed based on the speed change state of the transmission device 11, and an encoder S4 for detecting the traveling distance by counting the number of rotations of the output shaft of the transmission device 11.
And a direction sensor S5 using geomagnetism for detecting the body direction of the work vehicle V.

【0024】図1及び図2に示すように、誘導用のビー
ム光A1に対する車体横幅方向での操向位置のずれをそ
の車体横幅方向での受光位置に基づいて検出するため
に、前記ビーム光投射装置B1からの誘導用ビーム光A
1を受光する受光手段としての操向制御用光センサ17
が、苗植え付け装置6の右側端部に設置されている。
As shown in FIGS. 1 and 2, in order to detect the deviation of the steering position in the lateral direction of the vehicle body with respect to the guiding light beam A1, the beam light is used in order to be detected based on the light receiving position in the lateral direction of the vehicle body. Guiding light beam A from the projection device B1
Steering control optical sensor 17 as light receiving means for receiving 1
Is installed at the right end of the seedling planting device 6.

【0025】前記操向制御用光センサ17について説明
を加えれば、図4にも示すように、車体前後方向に所定
間隔dを置き且つ上下方向にも所定距離離れて設置され
た一対の受光部としての光センサS1,S2を備えてお
り、各光センサS1,S2は、横方向に所定分解能の受
光位置を備えるべく複数個の受光素子Dを車体横方向に
並置して、横方向でのセンサ中心に位置する受光素子D
0の位置を基準として、誘導用ビーム光A1の車体横方
向での受光位置即ち受光素子Dの位置X1,X2夫々を
検出できるように構成されている。又、誘導用ビーム光
A1が車体前後の何れの方向から入射される場合でも差
のない状態で受光できるようにするために、車体前後の
各方向からの入射光を両光センサS1,S2夫々の受光
面に向けて反射する反射鏡18が設けられている。
The steering control optical sensor 17 will be described in more detail. As shown in FIG. 4, a pair of light receiving portions are arranged at a predetermined distance d in the longitudinal direction of the vehicle body and at a predetermined distance in the vertical direction. The optical sensors S1 and S2 are provided as a plurality of light receiving elements D1 and S2. Light receiving element D located in the center of the sensor
With reference to the position of 0, the light receiving position of the guiding light beam A1 in the lateral direction of the vehicle body, that is, the positions X1 and X2 of the light receiving element D can be detected. Further, in order to be able to receive the guiding beam light A1 from any direction before and after the vehicle body with no difference, the incident light from each direction before and after the vehicle body is respectively received by both optical sensors S1 and S2. A reflecting mirror 18 that reflects the light toward the light receiving surface is provided.

【0026】前記制御装置16は、前記操向制御用光セ
ンサ17等の各種センサの検出情報及び予め設定された
作業予定情報に基づいて、前記作業車Vを走行制御し又
前記植え付け部6等の各種装置の作動を制御するように
構成されている。そして、前記制御装置16を利用し
て、前記操向制御用光センサ17の前記誘導用ビーム光
A1についての受光位置情報に基づいて、車体5の作業
行程Lに対する位置を検出する位置検出手段102が構
成されている。
The control device 16 controls the traveling of the work vehicle V based on the detection information of various sensors such as the steering control optical sensor 17 and the preset work schedule information, and the planting section 6 and the like. Is configured to control the operation of the various devices of Then, using the control device 16, position detecting means 102 for detecting the position of the vehicle body 5 with respect to the work stroke L based on the light receiving position information of the steering control light sensor 17 with respect to the guiding beam light A1. Is configured.

【0027】前記位置検出手段102による位置検出に
ついて具体的に説明すれば、図4に示すように、前後一
対の光センサS1,S2の夫々の受光素子の位置X1,
X2とその車体前後方向での間隔dとに基づいて、下式
から、前記位置検出情報として、車体5の作業行程L
(ビーム投射方向)に対する平面視での傾きφ、及び、
作業行程Lに対する横方向への偏位xを求める。
The position detection by the position detecting means 102 will be described in detail. As shown in FIG. 4, the position X1 of each light receiving element of the front and rear photosensors S1 and S2 is detected.
Based on X2 and the distance d in the vehicle front-rear direction, the work stroke L of the vehicle body 5 is calculated as the position detection information from the following equation.
The inclination φ in plan view with respect to the (beam projection direction), and
The lateral deviation x with respect to the work stroke L is determined.

【0028】[0028]

【数2】φ=tan-1(|X1−X2|/d) x=X1## EQU2 ## φ = tan -1 (| X1-X2 | / d) x = X1

【0029】尚、この例では、横方向への偏位xは、前
後一対の光センサS1,S2の一方(S1)の受光位置
としているが、車体の傾きφによる誤差が生じないよう
にするために、前後一対の光センサS1,S2夫々の受
光位置X1,X2の平均値を用いるようにしてもよい。
In this example, the lateral deviation x is set to the light receiving position of one of the front and rear photosensors S1 and S2 (S1), but an error due to the inclination φ of the vehicle body should not occur. Therefore, the average value of the light receiving positions X1 and X2 of the front and rear photosensors S1 and S2 may be used.

【0030】そして、制御装置16は、前記偏位x及び
傾きφが共に零となるように、作業車Vの目標操向角を
設定しながら、前輪3のみを操向する2輪ステアリング
形式で各作業行程Lに沿って走行させ、各作業行程Lに
達すると、次の作業行程Lの始端部に向けて、設定回向
パターンで回向動作させる。具体的には、図5に示すよ
うに、作業行程Lの終端部(e地点で示す)から前記エ
ンコーダS4の検出情報に基づいて所定距離だけ走行さ
せ、その地点fから180度の旋回動作を開始し、所定
の旋回区間gを経て旋回動作の終点hに至る経路e〜h
を所望の回向軌跡とするように、回向パターンが設定さ
れる。
Then, the control device 16 sets the target steering angle of the work vehicle V so that the deviation x and the inclination φ are both zero, and is a two-wheel steering type in which only the front wheels 3 are steered. The vehicle travels along each work stroke L, and when each work stroke L is reached, a turning operation is performed in the set turning pattern toward the starting end portion of the next work stroke L. Specifically, as shown in FIG. 5, the vehicle travels a predetermined distance from the terminal end of the work stroke L (indicated by point e) based on the detection information of the encoder S4, and then makes a 180 degree turning motion from the point f. Paths e to h that start and go to the end point h of the turning motion through a predetermined turning section g
The turning pattern is set so that is the desired turning trajectory.

【0031】又、前記制御装置16を利用して、前記操
向制御用光センサ17の前記基準ビーム光A1について
の受光時間間隔情報に基づいて、前記苗植付け装置6の
ビーム光に対する高さを求める高さ検出手段100が構
成されている。つまり、高さ検出手段100は、前記一
対の受光部S1,S2のいずれか一方の受光時間間隔情
報と、前記一対の受光部S1,S2の受光タイミングの
差情報とから、苗植付け装置6のビーム光に対する高さ
を判別する。具体的には、高さ検出手段100は、その
高さ情報として、植付け装置6が前記基準ビーム光の走
査範囲内における設定高さから偏位している偏位量と偏
位方向とを判別する。
Further, by using the control device 16, the height of the seedling planting device 6 with respect to the beam light is set based on the light receiving time interval information on the reference beam light A1 of the steering control optical sensor 17. The required height detecting means 100 is configured. That is, the height detection means 100 detects the seedling planting device 6 from the light receiving time interval information of one of the pair of light receiving portions S1 and S2 and the light receiving timing difference information of the pair of light receiving portions S1 and S2. Determine the height for the light beam. Specifically, the height detection means 100 determines, as the height information, the deviation amount and the deviation direction in which the planting device 6 deviates from the set height within the scanning range of the reference beam light. To do.

【0032】以下、図8及び図9に基づいて説明する
と、(イ)に示すように、上下方向に所定距離離れて設
置される一対の受光部S1,S2のうちの例えば上側の
受光部S1がビーム光走査範囲の中央cに位置している
ときは、その上側の受光部S1において、ビーム光が上
から下へ又は下から上へ走査される時の両受光間の時間
間隔t1,t2は等しいが、(ロ)に示すように、植付
け装置6の高さが高くなって上側の受光部S1がビーム
光走査範囲の中央位置cから上側に偏位すると、上記両
受光間の時間間隔の一方t2は長くなり他方t1は短く
なる。このとき、両受光部S1,S2の受光タイミング
の差、つまり、上側の受光部S1の受光タイミングに対
して下側の受光部S2の受光タイミングが後行する(図
のt3の開始点)のは、上記時間間隔が長い方の間隔t
2の始めの期間に発生し、時間間隔が短い方の間隔t1
には発生しない。逆に、植付け装置6の高さが低くなっ
上側の受光部S1がビーム光走査範囲の中央位置cから
下側に偏位したときは、(ハ)に示すように、上側の受
光部S1の受光タイミングに対して下側の受光部S2の
受光タイミングが後行する(図のt3の開始点)のは、
時間間隔が短い方の間隔t1の始めの期間に発生し、時
間間隔が長い方の間隔t2には発生しない。これより、
上側の受光部S1がビーム光走査範囲の中央cに位置し
ているときを基準位置として、植付け装置6の高さが高
くなったか低くなったかの偏位方向が判別される。
Referring to FIGS. 8 and 9, hereinafter, as shown in FIG. 8A, for example, the upper light receiving portion S1 of the pair of light receiving portions S1 and S2 installed vertically at a predetermined distance. Is located at the center c of the beam light scanning range, the time intervals t1 and t2 between the two light receptions when the light beam is scanned from the top to the bottom or from the bottom to the top in the light receiving portion S1 on the upper side thereof. However, as shown in (b), when the height of the planting device 6 is increased and the upper light receiving portion S1 is deviated from the central position c of the beam light scanning range to the upper side, the time interval between the two light receptions is increased. One t2 becomes long and the other t1 becomes short. At this time, the difference between the light receiving timings of the two light receiving portions S1 and S2, that is, the light receiving timing of the lower light receiving portion S2 follows the light receiving timing of the upper light receiving portion S1 (start point of t3 in the figure). Is the interval t of the longer time interval.
The interval t1 that occurs in the first period of 2 and has a shorter time interval
Does not occur in On the contrary, when the height of the planting device 6 is lowered and the upper light receiving portion S1 is deviated downward from the central position c of the beam light scanning range, as shown in (c), the upper light receiving portion S1 The light receiving timing of the light receiving portion S2 on the lower side with respect to the light receiving timing follows (start point of t3 in the figure)
It occurs in the beginning period of the interval t1 having the shorter time interval, and does not occur in the interval t2 having the longer time interval. Than this,
When the upper light receiving portion S1 is located at the center c of the beam light scanning range, the deviation direction of whether the height of the planting device 6 has become higher or lower is determined with the reference position as the reference position.

【0033】又、図8及び図9の(イ)に示すように、
ビーム光走査範囲中央位置cにあるときの受光部S1の
受光時間間隔は、同じ時間幅の時間間隔t1,t2の繰
り返しであるが、(ロ)又は(ハ)のように、植付け装
置6が上側又は下側に偏位すると、その偏位量が大きい
ほど、上側の受光部S1の2つの時間間隔t1,t2の
時間幅が異なる度合い(時間差)が大きくなる。そし
て、その時間差は、ビーム光A1の上下走査角度2θや
両受光部S1,S2の上下距離b等の条件に基づいて所
定の計算式にて定まる値になる。これより、植付け装置
6の高さ情報として、例えば上側の受光部S1がビーム
光走査範囲の中央cに位置しているときの植付け装置6
の高さを基準ビーム光の走査範囲内における設定高さと
して、植付け装置6がその設定高さから偏位している偏
位量が、上記のように判別される偏位方向とともに判別
される。
Further, as shown in (a) of FIGS. 8 and 9,
The light receiving time interval of the light receiving section S1 at the center position c of the light beam scanning range is a repetition of the time intervals t1 and t2 having the same time width, but as shown in (b) or (c), When it is deviated to the upper side or the lower side, the degree (time difference) in which the time widths of the two time intervals t1 and t2 of the light receiving unit S1 on the upper side are different increases as the deviation amount increases. Then, the time difference becomes a value determined by a predetermined calculation formula based on the conditions such as the vertical scanning angle 2θ of the light beam A1 and the vertical distance b between the light receiving units S1 and S2. From this, as the height information of the planting device 6, for example, the planting device 6 when the upper light receiving portion S1 is located at the center c of the beam light scanning range.
Is set as the set height within the scanning range of the reference light beam, and the displacement amount by which the planting device 6 is displaced from the set height is determined together with the displacement direction determined as described above. .

【0034】又、前記制御装置16を利用して、前記基
準ビーム光A1の前記設定角度2θ及び前記設定周期T
情報と、前記一対の受光部S1,S2の受光タイミング
の差Δt情報と、苗植付け装置6のビーム光に対する高
さ検出情報とに基づいて、前記ビーム光投射装置B1か
らの距離a1を検出する距離検出手段102が構成され
ている。以下、この距離検出について、具体的に説明す
ると、図10に例示するように、一対の受光部S1,S
2がビーム光投射装置B1から距離a1に位置している
とすると、その距離a1と走査角度2θとビーム走査幅
a2との間には、下式(1)の関係があり、また、一対
の受光部S1,S2の上下距離b、ビーム走査幅a2、
走査周期T、及び、作業装置つまり一対の受光部S1,
S2の高さ検出H情報から定まる係数k1によって、一
対の受光部の受光タイミングの差(時間差)Δtは、下
式(2)で表される。従って、式(1)(2)よりa2
を消すことにより、ビーム光投射手段B1からの距離a
1が式(3)で表すように検出されることになる。
Further, by using the control device 16, the set angle 2θ of the reference beam light A1 and the set period T are set.
The distance a1 from the light beam projection device B1 is detected based on the information, the difference Δt information of the light reception timings of the pair of light receiving portions S1 and S2, and the height detection information for the light beam of the seedling planting device 6. The distance detecting means 102 is configured. Hereinafter, the distance detection will be described in detail. As illustrated in FIG. 10, the pair of light receiving units S1 and S1.
2 is located at a distance a1 from the beam light projection device B1, there is a relationship of the following expression (1) between the distance a1, the scanning angle 2θ, and the beam scanning width a2. The vertical distance b between the light receiving portions S1 and S2, the beam scanning width a2,
The scanning cycle T and the working device, that is, the pair of light receiving portions S1,
The difference (time difference) Δt between the light receiving timings of the pair of light receiving portions is expressed by the following equation (2) by the coefficient k1 determined from the height detection H information of S2. Therefore, from equations (1) and (2), a2
Is turned off, the distance a from the light beam projection means B1
1 will be detected as represented by equation (3).

【0035】[0035]

【数3】 2・a1・tanθ=a2 ……(1) Δt=k1・(b/a2)・T/2 ……(2) a1=(k1・b・T/4)/(tanθ・Δt) ……(3)[Formula 3] 2 · a1 · tan θ = a2 (1) Δt = k1 · (b / a2) · T / 2 (2) a1 = (k1 · b · T / 4) / (tan θ · Δt ) …… (3)

【0036】次に、図11及び図12のフローチャート
に基づいて、制御装置16の動作について説明する。作
業車Vは、苗植付け装置6を下降させて(但し、駆動は
しない)操向制御用光センサ17が誘導用のビーム光A
1を受光する状態で、圃場の一端側(図1の左端)に設
定した最初の作業行程Lを、その長手方向に沿って行程
始端部(図1の下端)から終端側に向けて走行を開始す
る。走行開始後は、前記偏位x及び傾きφが共に零とな
るように、2輪ステアリング形式で前輪3を操向制御し
ながら、作業行程Lの始端部の植付け開始位置に達する
に伴って、苗植付け装置6の駆動を開始する。
Next, the operation of the control device 16 will be described with reference to the flowcharts of FIGS. 11 and 12. The work vehicle V lowers the seedling planting device 6 (but does not drive it), and the steering control optical sensor 17 guides the beam light A.
1 is received, the first work stroke L set at one end side (left end in FIG. 1) of the field is traveled along the longitudinal direction from the stroke start end (lower end in FIG. 1) toward the end side. Start. After traveling, while controlling the steering of the front wheels 3 in a two-wheel steering manner so that both the deviation x and the inclination φ become zero, as the planting start position at the start end of the work stroke L is reached, The drive of the seedling planting device 6 is started.

【0037】作業車Vが作業行程Lの終端部(e地点)
に達すると、植付け装置6の駆動を停止して植付け作業
を停止する。尚、詳述はしないが、回向回数等に基づい
て作業終了と判断した場合には、次の回向動作は行わず
に走行を停止して全作業を終える。作業終了でない場合
は、e地点からf地点に向けて設定距離直進させ、f地
点に到着すると、植付け装置6を上昇させるとともに、
2輪ステアリング形式から4輪ステアリング形式に切り
換えて、作業車Vを次の作業行程Lの始端側に向けて1
80度方向転換させるように旋回区間gに沿って旋回動
作させる。
Work vehicle V is at the end of work stroke L (point e)
When it reaches, the driving of the planting device 6 is stopped and the planting work is stopped. Although not described in detail, when it is determined that the work is completed based on the number of times of turning, etc., the next turning operation is not performed and the traveling is stopped to complete the entire work. If the work is not completed, the set point 6 is moved straight from the point e toward the point f, and when the work arrives at the point f, the planting device 6 is raised, and
Switching from the two-wheel steering type to the four-wheel steering type, the work vehicle V is directed toward the starting end side of the next work stroke L1.
A turning operation is performed along the turning section g so as to change the direction by 80 degrees.

【0038】旋回終了点(h地点)に達すると、いった
ん停止して植付け装置6を下降させ、操向制御用光セン
サ17が誘導用のビーム光A1を受光するかどうかを調
べ、受光していなければ、平行ステアリング形式に切り
換えて横方向に移動させて、受光状態になるようにす
る。受光状態になれば、2輪ステアリング形式に切り換
えて、作業車Vを次の作業行程Lに沿っての操向制御を
開始する。
When the turning end point (point h) is reached, the planting device 6 is stopped once and the planting device 6 is lowered to check whether the steering control optical sensor 17 receives the guiding beam light A1. If not, the steering mode is switched to the parallel steering type and moved in the lateral direction so that the light is received. When the light-receiving state is reached, the vehicle is switched to the two-wheel steering type and the steering control of the work vehicle V along the next work stroke L is started.

【0039】[別実施形態]受光手段17を一対の受光
部S1,S2ではなく、3個以上の受光部で構成しても
よく、この場合は、それら複数個の受光部のいずれか1
つの受光時間間隔情報と、それら複数個の受光部の受光
タイミングの差情報とから、より高い精度で作業装置6
のビーム光に対する高さが判別できることになる。
[Another Embodiment] The light receiving means 17 may be composed of three or more light receiving portions instead of the pair of light receiving portions S1 and S2. In this case, one of the plurality of light receiving portions is used.
The work device 6 with higher accuracy based on one light receiving time interval information and the light receiving timing difference information of the plurality of light receiving portions.
The height with respect to the beam light can be determined.

【0040】受光手段17を、1個の受光部で(例えば
前記上側の受光部S1と同じ受光部)にて構成してもよ
い。この場合は、1個の受光部S1が基準ビーム光A1
を受光した時間間隔情報に基づいて、作業装置6の高さ
を判別する。以下、図6及び図7に基づいて、具体的に
説明する。
The light receiving means 17 may be composed of one light receiving portion (for example, the same light receiving portion as the upper light receiving portion S1). In this case, one light receiving portion S1 is used as the reference beam light A1.
The height of the work device 6 is determined based on the time interval information of the received light. Hereinafter, a specific description will be given based on FIGS. 6 and 7.

【0041】図6(イ)のように、作業装置6の高さが
設定高さのときに、例えば受光部S1がビーム光走査範
囲中央位置にあるとして、その受光間隔は、図7(イ)
のように、同じ時間間隔t0になる。これに対して、図
6(ロ)のように、例えば、作業装置6の高さが上方に
変化して受光部S1がビーム光走査範囲中央位置cから
上側に偏位すると、その受光間隔は、図7(ロ)のよう
に、時間幅の異なる2つの時間間隔t5,t6の繰り返
しになり、その時間間隔の差|t5−t6|が大きいほ
ど、受光部S1のビーム光走査範囲中央位置cからの偏
位量が大きい状態、つまり、作業装置6の高さが設定高
さから偏位していることが判別される。そこで、作業装
置6の高さを設定高さに維持するように制御するために
は、作業装置6を所定量上方向に上げると、上記時間間
隔の差|t5−t6|は大きくなり偏位量が増加するの
で、次に、作業装置6を所定距離反対の下方向に下げる
と、上記時間間隔の差|t5−t6|は小さくなり偏位
量が減少するので、続けて下方向に下げるように制御
し、そして、上記時間間隔の差|t5−t6|が0にな
る状態に制御することになる。
As shown in FIG. 6 (a), when the height of the working device 6 is the set height, assuming that the light receiving portion S1 is at the center position of the beam light scanning range, the light receiving interval is as shown in FIG. )
, The same time interval t0 is obtained. On the other hand, as shown in FIG. 6B, for example, when the height of the working device 6 changes upward and the light receiving section S1 is deviated upward from the center position c of the light beam scanning range, the light receiving interval is As shown in FIG. 7B, two time intervals t5 and t6 having different time widths are repeated, and the larger the difference between the time intervals | t5-t6 |, the central position of the light beam scanning range of the light receiving unit S1. It is determined that the deviation amount from c is large, that is, the height of the work device 6 deviates from the set height. Therefore, in order to control the height of the work device 6 to be maintained at the set height, when the work device 6 is moved upward by a predetermined amount, the time interval difference | t5-t6 | increases and the deviation occurs. Then, when the working device 6 is lowered downward by a predetermined distance, the difference | t5-t6 | between the time intervals becomes small and the deviation amount decreases, so that the working device 6 is continuously lowered downward. Control is performed so that the time interval difference | t5-t6 | becomes zero.

【0042】尚、受光手段17を、1個の受光部S1で
構成した場合にも、平面視において基準ビーム光のビー
ム投射方向に交差する方向に所定分解能の受光位置を備
えるように構成して、基準ビーム光(誘導経路)に対す
る位置を検出するように構成することができる。
Even when the light receiving means 17 is composed of one light receiving portion S1, it is configured so as to have a light receiving position of a predetermined resolution in a direction intersecting the beam projection direction of the reference beam light in plan view. , The position with respect to the reference light beam (guide path) can be detected.

【0043】ビーム光投射手段B1は、レーザー光発生
器等で構成するが、レーザー光以外のビーム光を発生す
る装置でもよい。
The beam light projecting means B1 is composed of a laser light generator or the like, but may be a device which generates a light beam other than laser light.

【0044】上記実施例では、誘導経路を作業車Vが田
植え作業等の作業をしながら走行する作業行程Lに構成
したものを示したが、作業しないで単に移動する作業車
を誘導する経路でもよい。
In the above-mentioned embodiment, the guide route is shown as the work path L in which the work vehicle V travels while performing work such as rice planting work, but it is also possible to use a route for guiding a work vehicle that simply moves without work. Good.

【0045】又、本発明は、実施例にて説明する田植え
用の作業車Vに適用したものに限らず、田植え用以外の
農作業用作業車及び農作業用以外の各種作業車等にも適
用できるものであって、その際の作業装置は田植え用の
苗植付け装置6ではなく、例えばコンバインの場合には
刈取前処理装置が作業装置に相当し、また、昇降用アク
チュエータも油圧シリンダ13以外に電動モータ等でも
よく、その他各部の具体構成は、作業車の目的や作業条
件等に合わせて適宜変更される。
Further, the present invention is not limited to being applied to the work vehicle V for rice planting described in the embodiments, but can also be applied to agricultural work vehicles other than rice planting and various work vehicles other than agricultural work. In this case, the working device at that time is not the seedling planting device 6 for rice planting. For example, in the case of a combine, the cutting pretreatment device corresponds to the working device, and the lifting actuator is electrically operated other than the hydraulic cylinder 13. A motor or the like may be used, and the specific configuration of each of the other parts may be appropriately changed according to the purpose of the work vehicle, work conditions, and the like.

【0046】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】誘導経路の全体及びビーム光の投射位置を示す
平面図
FIG. 1 is a plan view showing an entire guide path and a projection position of a light beam.

【図2】作業車及びビーム光投射手段の概略側面図FIG. 2 is a schematic side view of a work vehicle and a beam light projection means.

【図3】作業車側の制御構成のブロック図FIG. 3 is a block diagram of a control configuration on the work vehicle side.

【図4】操向制御用光センサの受光位置の説明図FIG. 4 is an explanatory view of a light receiving position of a steering control optical sensor.

【図5】作業行程端端側における作業車の回向動作を示
す平面図
FIG. 5 is a plan view showing the turning operation of the work vehicle on the end side of the work stroke.

【図6】高さ検出を説明する側面図FIG. 6 is a side view illustrating height detection.

【図7】高さ検出を説明するタイミングチャートFIG. 7 is a timing chart illustrating height detection.

【図8】高さ検出を説明する側面図FIG. 8 is a side view illustrating height detection.

【図9】高さ検出を説明するタイミングチャートFIG. 9 is a timing chart illustrating height detection.

【図10】距離検出を説明する側面図FIG. 10 is a side view illustrating distance detection.

【図11】作業車の制御作動のフローチャートFIG. 11 is a flowchart of control operation of the work vehicle.

【図12】作業車の制御作動のフローチャートFIG. 12 is a flowchart of control operation of the work vehicle.

【符号の説明】[Explanation of symbols]

13 昇降用アクチュエータ 5 車体 6 作業装置 B1 ビーム光投射手段 17 受光手段 100 高さ検出手段 S1 受光部 S2 受光部 101 位置検出手段 102 距離検出手段 13 Elevating actuator 5 Vehicle body 6 Working device B1 Beam light projecting means 17 Light receiving means 100 Height detecting means S1 Light receiving part S2 Light receiving part 101 Position detecting means 102 Distance detecting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 勝美 大阪府堺市石津北町64番地 株式会社クボ タ堺製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Ito 64, Ishizukita-machi, Sakai City, Osaka Prefecture Kubota Sakai Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 昇降用アクチュエータ(13)によって
車体(5)に対して昇降操作自在な状態で作業装置
(6)が付設された作業車の制御情報検出装置であっ
て、 地上側に、基準ビーム光を上下方向に設定周期で設定角
度走査する状態で投射するビーム光投射手段(B1)が
設けられ、 前記基準ビーム光を受光する受光手段(17)が、前記
作業装置(6)に設置され、 前記受光手段(17)の前記基準ビーム光についての受
光時間間隔情報に基づいて、前記作業装置(6)のビー
ム光に対する高さを求める高さ検出手段(100)が設
けられている作業車の制御情報検出装置。
1. A control information detection device for a work vehicle, wherein a work device (6) is attached to the vehicle body (5) so that the work device (6) can be freely moved up and down by a lift actuator (13). A beam light projecting means (B1) for projecting the beam light in a vertical direction at a set cycle at a set angle is provided, and a light receiving means (17) for receiving the reference beam light is installed in the working device (6). And a height detecting means (100) for obtaining the height of the working device (6) with respect to the light beam based on the light receiving time interval information on the reference light beam of the light receiving means (17). Vehicle control information detection device.
【請求項2】 前記受光手段(17)が、上下方向に所
定距離離れて設置される一対の受光部(S1,S2)を
備え、 前記高さ検出手段(100)は、前記一対の受光部(S
1,S2)のいずれか一方の受光時間間隔情報と、前記
一対の受光部(S1,S2)の受光タイミングの差情報
とから、前記作業装置(6)のビーム光に対する高さを
判別するように構成されている請求項1記載の作業車の
制御情報検出装置。
2. The light receiving means (17) comprises a pair of light receiving portions (S1, S2) installed at a predetermined distance in the vertical direction, and the height detecting means (100) comprises the pair of light receiving portions. (S
1, S2), the height of the working device (6) with respect to the light beam is discriminated from the light receiving time interval information and the difference in light receiving timing between the pair of light receiving units (S1, S2). The control information detection device for a work vehicle according to claim 1, wherein the control information detection device is configured as follows.
【請求項3】 前記高さ検出手段(100)は、前記作
業装置(6)のビーム光に対する高さ情報として、前記
作業装置(6)が前記基準ビーム光の走査範囲内におけ
る設定高さから偏位している偏位量と偏位方向とを判別
するように構成されている請求項2記載の作業車の制御
情報検出装置。
3. The height detecting means (100) uses, as height information for the light beam of the working device (6), a height set by the working device (6) within a scanning range of the reference light beam. The control information detecting device for a work vehicle according to claim 2, wherein the control information detecting device is configured to determine the amount of deviation and the direction of deviation.
【請求項4】 前記ビーム光投射手段(B1)は、前記
基準ビーム光を平面視において作業車誘導用の誘導経路
の長手方向に沿う状態で投射し、 前記一対の受光部(S1,S2)のうちの少なくとも一
方が、平面視において前記基準ビーム光のビーム投射方
向に交差する方向に所定分解能の受光位置を備えるよう
に構成され、 前記少なくとも一方の受光部(S1,S2)の前記基準
ビーム光についての受光位置情報に基づいて、前記車体
(5)の前記誘導経路に対する位置を検出する位置検出
手段(101)が設けられている請求項1、2又は3記
載の作業車の制御情報検出装置。
4. The beam light projecting means (B1) projects the reference beam light in a state along a longitudinal direction of a guide path for guiding a work vehicle in a plan view, and the pair of light receiving portions (S1, S2). At least one of the reference beams of the at least one light receiving unit (S1, S2) is configured to have a light receiving position of a predetermined resolution in a direction intersecting the beam projection direction of the reference beam light in plan view. The control information detection of the work vehicle according to claim 1, 2 or 3, further comprising: position detection means (101) for detecting a position of the vehicle body (5) with respect to the guide path based on light reception position information regarding light. apparatus.
【請求項5】 前記一対の受光部(S1,S2)が車体
前後方向にも所定距離離れて設置されるとともに、両受
光部(S1,S2)が平面視において前記基準ビーム光
のビーム投射方向に交差する方向に所定分解能の受光位
置を備えるように構成され、 前記位置検出手段(101)は、前記一対の受光部(S
1,S2)夫々の前記基準ビーム光についての受光位置
情報及び前記車体前後方向での間隔情報に基づいて、前
記車体(5)の前記ビーム投射方向に対する平面視での
傾きを検出するように構成されている請求項4記載の作
業車の制御情報検出装置。
5. The pair of light receiving portions (S1, S2) are installed at a predetermined distance in the front-rear direction of the vehicle body, and both light receiving portions (S1, S2) are viewed in plan view in the beam projection direction of the reference beam light. The position detecting means (101) is configured to have a light receiving position having a predetermined resolution in a direction intersecting with the pair of light receiving portions (S
1, S2) The tilt of the vehicle body (5) in plan view with respect to the beam projection direction is detected based on the light receiving position information for each of the reference light beams and the distance information in the vehicle front-back direction. The control information detecting device for a work vehicle according to claim 4,
【請求項6】 前記基準ビーム光の前記設定角度及び前
記設定周期情報と、前記一対の受光部(S1,S2)の
受光タイミングの差情報と、前記作業装置(6)のビー
ム光に対する高さ検出情報とに基づいて、前記ビーム光
投射手段(B1)からの距離を検出する距離検出手段
(102)が設けられている請求項4又は5記載の作業
車の制御情報検出装置。
6. The set angle and the set cycle information of the reference light beam, information on the difference in light receiving timing of the pair of light receiving portions (S1, S2), and the height of the working device (6) with respect to the light beam. 6. The control information detecting device for a work vehicle according to claim 4, further comprising a distance detecting means (102) for detecting a distance from the beam light projecting means (B1) based on the detected information.
JP7196781A 1995-08-01 1995-08-01 Control information detector of working vehicle Pending JPH0937608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7196781A JPH0937608A (en) 1995-08-01 1995-08-01 Control information detector of working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7196781A JPH0937608A (en) 1995-08-01 1995-08-01 Control information detector of working vehicle

Publications (1)

Publication Number Publication Date
JPH0937608A true JPH0937608A (en) 1997-02-10

Family

ID=16363533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7196781A Pending JPH0937608A (en) 1995-08-01 1995-08-01 Control information detector of working vehicle

Country Status (1)

Country Link
JP (1) JPH0937608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038549A (en) * 2015-08-19 2017-02-23 東洋農機株式会社 Liquid agent spaying height detection module and boom sprayer having the same, and program for liquid agent spaying height detection module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038549A (en) * 2015-08-19 2017-02-23 東洋農機株式会社 Liquid agent spaying height detection module and boom sprayer having the same, and program for liquid agent spaying height detection module

Similar Documents

Publication Publication Date Title
JPH0944240A (en) Guide device for moving vehicle
JPH0937608A (en) Control information detector of working vehicle
JPS63153605A (en) Steering controller for automatic traveling working vehicle
JPH08194533A (en) Controller for beam light guidance for mobile object
JPH0944241A (en) Beam light guidance device for moving object
JP2506146B2 (en) Work vehicle guidance system using beam light
JPH09222919A (en) Device for guiding work wagon by utilizing beam light
JPH075915A (en) Traveling controller for beam light guided work vehicle
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPH06149352A (en) Traveling controller for beam light guidance type working car
JP3113457B2 (en) Work vehicle travel control device
JPS63308609A (en) Working vehicle guide device using beam light
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JP2506158B2 (en) Work vehicle guidance system using beam light
JPH0950317A (en) Traveling controller for beam light guided mobile vehicle
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JPH01183707A (en) Distance detector for beam light guided work truck
JPH08179829A (en) Guide controller for mobile object
JPH01188906A (en) Travel controller for beam light guided work vehicle
JPH07175517A (en) Travel controller for beam light guide type operation vehicle
JPH06149353A (en) Traveling controller for beam light guidance type working car
JPH08179828A (en) Controller for light beam guide for mobile object
JPH075914A (en) Travel controller for beam light-guided work vehicles
JPH08178650A (en) Position detecting device for work vehicle
JPH07291140A (en) Steering controller for working vehicle